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Statistics of a 2D immersed granular gas magnetically forced in volume

Jean-Baptiste Gorce∗ and Eric Falcon
Université Paris Cité, CNRS, MSC, UMR 7057, F-75013 Paris, France

(Dated: June 27, 2023)

We present an experimental study of the dynamics of a set of magnets within a fluid in which
a remote torque applied by a vertical oscillating magnetic field transfers angular momentum to
individual magnets. This system differs from previous experimental studies of granular gas where
the energy is injected by vibrating the boundaries. Here, we do not observe any cluster formation,
orientational correlation and equipartition of the energy. The magnets’ linear velocity distributions
are stretched exponentials, similar to 3D boundary-forced dry granular gas systems, but the ex-
ponent does not depend on the number of magnets. The value of the exponent of the stretched
exponential distributions is close to the value of 3/2 previously derived theoretically. Our results
also show that the conversion rate of angular momentum into linear momentum during the collisions
controls the dynamics of this homogenously-forced granular gas. We report the differences between
this homogeneously-forced granular gas, ideal gas, and nonequilibrium boundary-forced dissipative
granular gas.

Introduction.— Granular gases are many-particle
systems in which individual particles undergo random
motions, and whose dynamic differs from molecular gases
due to the energy loss during collisions [1, 2]. Granular
gases are complex out-of-equilibrium systems and show
unique properties compared to molecular gases as they
can violate the time-reversal symmetry [3, 4] and show
non-equipartition of energy [5–9]. The inelastic collisions
between the particles imply that granular gases are dis-
sipative and require a constant input of energy to com-
pensate for the loss of kinetic energy. They are usually
boundary-driven, for example by vibrating the boundary
of the container.

The theoretical framework of granular gases assumes
a homogeneous forcing and a high energy tail velocity
distribution of the particles P (v) ∼ exp

(
−av3/2

)
, where

v is the dimensionless velocity and a a constant involv-
ing the restitution coefficient ϵ [10]. Many experimental
measurements have shown that the value of the exponent
in the stretched exponential depends on the number of
particles [11–20]. The dissipation of the kinetic energy
in these boundary-driven granular gases leads to spatial
inhomogeneity such as clustering of monodispersed par-
ticles [21–27], and segregation of bidisperse particles [28–
33].

Recently, a new experimental forcing technique was
developed to inject energy directly into the volume of a
granular gas instead of at the boundaries [34]. A pair of
Helmholtz coils generates a vertical oscillating magnetic
field which transfers kinetic energy to magnetic stirrers
by imposing a magnetic torque. In the gas-like regime, N
magnets initially sitting at the bottom of a container re-
ceive angular momentum, which is converted into linear
momentum when the magnets collide with the side, top
boundaries, or other magnets. No clustering is observed
in this granular gas. The equation of state is measured
in three dimensions (3D) using an accelerometer clamp
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on the top lid and differs from the equation of state of
molecular gases by a geometric correction [34]. The ve-
locity statistics have an exponential tail independent of
the number of the magnets [34]. When the particles are
immersed in a liquid medium, the random motions of
the magnets within the liquid reservoir generate hydro-
dynamic turbulence [35, 36].

However, the relationship between the dynamics of the
magnets and the way the energy is injected is unclear be-
cause few experimental studies focused on measuring the
angular velocities of granular gases. In boundary-driven
granular gases, the angular velocity distributions are ei-
ther stretched exponential [37, 38], Gaussian [20, 39] or
non-Gaussian in 2D [40]. Here, we investigate the dy-
namics of a gas of magnets using Lagrangian tracking
techniques to understand how the magnets convert their
angular momentum into linear momentum and how the
kinetic energy is distributed between the degree of free-
dom in the gas.

Experimental setup.— Figures 1a and 1b show a
schematic of the experimental setup. The fluid container
is a quasi-2D transparent Plexiglas container of dimen-
sions 15× 1.4× 8 cm3 and a volume V = 168 cm3 filled
with distilled water. The aim of studying the motions
of the magnets in a quasi-2D liquid reservoir is to focus
solely on 3 degrees of freedom which are the horizontal
and vertical coordinates (x, y) and the angle θ between
the horizontal axis and the magnet dipolar moment. The
fluid container is fitted within a pair of Helmholtz coils
with an inner diameter of 18 cm and an outer diameter of
40 cm. A sinusoidal current is supplied to the coils pair
via a power amplifier (Qualitysource PA 2000AB), and
a waveform generator (Agilent 33220A) controls the in-
tensity B ∈ [0.0135, 0.0216] T and frequency fB ∈ [5, 50]
Hz of the applied vertical magnetic field. The magnets
are neodymium disks encapsulated in cylindrical shells of
a diameter of 1 cm, a height of 1 cm , and a of volume
Vm = 0.78 cm3. The Plexiglass shell aims to reduce the
dipolar interaction between adjacent magnets [34, 42].
The number of magnets is N ∈ [2, 50], which corresponds
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FIG. 1. (a,b) Schematic of the experimental setup for the 2D granular gas of magnets immersed in water and remotely
energized by a vertical oscillating magnetic. The vertical magnetic field is generated by a pair of Helmholtz coils. The magnets
are illuminated from the rear by a LED panel, and a high-speed camera records time series of images. (c) Trajectories of
N = 13 magnets (ϕ = 0.06) in the fluid reservoir (red). The black cores are neodymium magnets surrounded by transparent
Plexiglas shells.

to the volume fractions ϕ = NVm/V ∈ [0.01, 0.25]. The
mass of each magnet is m = 1 g, and its moment of in-
ertia is I = 0.14 g cm2. The magnets have a density of
ρ = 1.28 g/cm3 and are immersed in water to decrease
the effect of gravity. The dynamic is, therefore, closer to
3D boundary-forced granular gases in microgravity [41]
than to dry granular gases. A high-speed camera, (Phan-
tom v10 2 Mpixel - 1 kHz), records a time series of images
and Fig. 1c shows the erratic trajectories of the magnets
in the liquid container (see also Supplemental Material
[43]).

Angular velocity distributions.— Assuming the mag-
nets are in a liquid medium and at a high Reynolds num-
ber, the injection of energy to the magnets can be math-
ematically expressed using the equation of the angular
momentum,

Iθ̈ = −λθ̇|θ̇|+mB sin (ωBt) sin θ , θ̇ = dθ/dt (1)

where I is the moment of inertia of the magnet, θ is the
angle between the vertical magnetic field and the mag-
netic moment m of a magnet, λ = πρCrR

5/I = 0.007 is
the damping coefficient, B the intensity and ωB = 2πfB
the angular frequency of the magnetic field. Cr = 0.01 is
the coefficient of rotational drag, its value is assumed to
be equal to the one of a sphere of radius R [42].
We first measure the distributions of the angular ve-

locity of the magnets as a function of the frequency of
the magnetic field fB . We define ω = θ̇ as the angu-
lar velocity of a magnet and its standard deviation as

σω =
√

⟨ω2⟩t,N . Figure 2a shows the rescaled angular ve-

locity distributions of ω/σω for different frequencies fB .
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FIG. 2. (a) Probability density functions (PDFs) of the rescaled angular velocity ω/σω for different frequencies fB of the
oscillating magnetic field: 7, 20, 30, and 50 Hz (cold to hot colors). The number of magnets is equal to N = 25 (ϕ = 0.12) and
the intensity of the magnetic field to B = 0.0162 T. The equation of the solid line is y = aωe

−bωx, with aω = 0.58 and bω = 1.1.
(b) Temporal signal of the angular velocity ω/2π of a magnet for fB = 7 Hz. (c) Temporal signal of the angular velocity ω/2π
of a magnet for fB = 50 Hz. In both (b,c), the solid lines represent the standard deviation σω of the signal, and the dashed
lines represent the frequency of the magnetic field fB .

In this graphic, one can observe that the shape of the
distributions strongly depends on fB , similar to the one
of a vibration-driven disk [44]. For a low fB , the angular
velocity is erratic and its probability density function is
well fitted by a stretched exponential.

The angular velocity distribution is different from
the stretched exponential distributions measured in
boundary-driven rod-shaped grains in microgravity [38]
or the Gaussian distribution observed for rolling mag-
netic spheres [39]. The distribution of the angular veloc-
ity of the granular gas strongly depends on the forcing
frequency. Indeed, a sharp transition is observed when
the frequency of the magnetic field is increased above 20
Hz, as illustrated by the shape of yellow and red curves
in Fig. 2a. In particular, two humps are observed in the
distribution of the angular velocity at ω/σω ≈ ±1.5 for
fB = 50 Hz. Those humps have also been reported in
numerical studies [9, 45]. The humps measured in the
present manuscript are linked to the synchronization of
the magnets, while the humps observed in [9, 45] depend
on the roughness of the particles.

The erratic rotations observed at low fB become time-
dependent rotations, with reversals, at high fB , which is
illustrated by the temporal signals of the angular velocity
in Figs. 2b and 2c. Figures 2b and 2c show the influence
of the magnetic field frequency fB . At low frequency fB ,
the non-deterministic behavior of the angular velocity is
observed in Fig. 2b. At high frequency fB , Fig. 2c illus-
trates that the angular velocity is sometimes equal to the
frequency of the magnetic field (dashed lines). One can
understand this transition using Eq. (1) with λ = 0. If
the frequency of the magnetic field fB is high, the ratio
of the dipolar magnetic energy mB and the rotational
kinetic energy Iω2

B/2 becomes small. For fB = 50 Hz
and B = 0.0162 T, this ratio is equal to 0.02. There-

fore, one can approximate θ̈ ≈ 0 for fB = 50 Hz, lead-
ing to time-dependent rotation of the angular coordinate
θ = C1t+C2, where C1 and C2 are either positive or neg-
ative constants. When the ratio of the dipolar magnetic
energy mB and the rotational kinetic energy Iω2/2 is of
order unity, the angular velocity is erratic [46, 47]. This
ratio is equal to 0.78 for fB = 7 Hz and B = 0.0162 T,
which explains why the angular velocity is erratic. Such
measurements emphasize the influence of rotational iner-
tia on the magnets’ dynamics. If the rotational inertia is
low compared to the magnetic torque, the magnets are
more likely to follow the externally imposed magnetic,
and the rotations are erratic. However, high inertia im-
plies that the magnets persist in their rotation while the
magnetic torque constantly changes sign. This explains
the difference in the shape of the probability density func-
tions observed in Fig. 2a.

Rotational kinetic energy.— Measurements of the
standard deviation of the angular velocity σω suggest
that the relationship between the rotational kinetic en-
ergy and the control parameters fB , B, and N is com-
plex. As shown in Figs. 3a and 3b, σω is proportional
to f0.2B0.5 for our range of parameters and illustrates
that the energy injected into the magnets is an increas-
ing function of the energy stored in the pair of coils.

While σω is monotonically increasing as a function of
fB and B, the dependence on N is nontrivial. Indeed,
Fig. 3c illustrates that σω increases up to a maximum
value at N = 16, which corresponds to a volume fraction
ϕ = 0.07 and then decreases. We can understand the
regime N < 16 by assuming that the number of colli-
sions between the magnets increases and, consequently,
increases the fluctuations of the angular velocity. When
N is larger than 16, the steric effects within the reservoir
become important, and the high number of collisions de-
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FIG. 3. (a) Standard deviation of the rescaled angular frequency σω/ (2π) as a function of the frequency of the oscillating
magnetic field fB for B = 0.0162 T and N = 25 (ϕ = 0.12). The dashed line represents a power law fit of σω/ (2π). (b)
Standard deviation of the angular velocity σω/ (2π) as a function of the intensity of the oscillating magnetic field B for fB = 50
Hz and N = 25 (ϕ = 0.12). The dashed line represents a power law fit of σω/ (2π). (c) Standard deviation of the angular
velocity σω/ (2π) as a function of the number of magnets N or the volume fraction ϕ. (d) Diffusion constant D of the magnets
as a function of the number of magnets N or the volume fraction ϕ. In both (c,d) the values of the control parameters are
B = 0.0162 T and fB = 50 Hz.

creases the fluctuations of the angular velocity, thus lead-
ing to a decrease in the angular kinetic energy.

To evaluate the influence of the steric effect on the
gas’ dynamics, one can measure the diffusion constant

D defined by
〈
|ri (t)− ri (0)|2

〉
N

= 4Dt, where ri(t) =

xi(t)x + yi(t)y are the coordinates of the magnet i at a
time t. Figure 3d illustrates that the diffusion constantD
increases when N is smaller than 16, then decreases when
the number of magnets N is larger than 16 (ϕ = 0.07)
and stresses the role of the steric effect in the gas when N
is larger than 16. The shape of the curves also indicates
that one can link the rotational kinetic energy to the dif-
fusion of the magnets in the reservoir. Therefore, one can
assume that the collisions between the magnets control
the conversion of the rotational kinetic energy into linear
kinetic energy.

Linear velocity distributions.— Since the dynamics of
the magnets are driven by the externally imposed mag-
netic field, it is, therefore, important to estimate how the
angular velocity is converted into linear velocity. Figure
4 illustrates that the probability density functions of the
horizontal vx velocities of the magnets are very well fitted

by the expression

P (vx) = avx exp

[
−bvx

(
vx
σvx

)1.6
]

(2)

with σvx =
√
⟨v2x⟩t,N , avx

= 0.45 and bvx = 0.7.

The stretched exponential distributions are consis-
tently observed for an increasing value of the magnetic
field frequency fB as shown in Fig. 4a. No transition in
the shape of the distributions of the linear velocity is mea-
sured, conversely to the shape of the distributions of the
angular velocity. This implies that the frequency of the
magnetic field fB solely changes the standard deviation
of the velocity without affecting the shape of the proba-
bility density functions. Measurements of the vertical vy
velocities are also very well fitted by the same expression,
stressing the absence of the effect of gravity. Stretched
exponential distributions have been reported in differ-
ent granular systems, but are different from the Gaus-
sian distribution observed in ideal gases because of the
dissipation and inelastic collisions in out-of-equilibrium
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FIG. 4. (a) Probability density functions (PDFs) of the rescaled horizontal velocity vx/σvx for different frequencies of the

magnetic field fB : 7, 10, 40, and 50 Hz (cold to hot colors). The equation of the dashed line is y = avxe
−bvxx1.6

, with
avx = 0.45 and bvx = 0.7 and the dotted line represents a Gaussian distribution. (b) PDFs of the rescaled modulus of the
velocity v/σv for different frequencies of the magnetic field fB . The colors are the same as in (a). The equation of the dashed

line is y = avx
1.3e−bvx

1.35

, with av = 0.9 and bv = 0.75 and the dotted line represents a Rayleigh distribution. In both (a,b),
the control parameters are B = 0.0162 T and N = 25. (c) PDFs of the rescaled horizontal velocity vx/σvx for a different
number of magnets N : 10, 20, 30, and 40 (cold to hot colors). The corresponding volume fractions ϕ are equal to 0.045, 0.09,
0.135, and 0.18. The equations of the dashed and dotted lines are the same as in (a).

systems. As shown in Fig. 4c, the exponent 1.6 in the
stretched exponential is independent of N and is close
to the theoretical value 3/2 [10]. This differs from many
experimental studies of 3D boundary-driven dry granular
gases in which the value of this exponent depends on N
[11–20].

Measurements of the probability density functions of

the modulus of the velocity v =
√
v2x + v2y in Fig. 4b

illustrate that the distribution of v is very well fitted by
the expression

P (v) = av

(
v

σv

)1.3

exp

[
−bv

(
v

σv

)1.35
]

(3)

with σv =
√
⟨v2⟩t,N , av = 0.9 and bv = 0.75. Equation

(3) differs from the Rayleigh distribution observed in 2D
ideal gases, which is likely linked to the dissipation and
the inelastic collisions in this system.

To understand the coupling between the translational
and rotational motion of the magnets, we compute the
angle difference Θ between v and θ. In the absence of
correlations between v and θ, the PDF of Θ has to be
flat. Figure 5a illustrates that the PDF of Θ is indeed
flat for different frequencies of the magnetic field fB . The
absence of an orientational correlation is due to the en-
ergy injection mechanism. The transfer of linear momen-
tum during a collision between two magnets depends on
the angular and linear velocity of the magnets before the
collision. However, the angular momentum statistics are
independent of the energy transfer during collisions, be-
cause the magnets constantly receive a magnetic torque

and, therefore, quickly lose the information about the
angular momentum transferred after a collision. This
explains why the angular velocity is uncorrelated to the
linear velocity and why the collisions between the mag-
nets control the conversion of the rotational kinetic en-
ergy into linear kinetic energy.

Linear kinetic energy.— The measurements of the
standard deviation of the modulus of the velocity σv

suggest that the relationship between the linear kinetic
energy and the control parameters (fB , N, andB) is less
complex than for the standard deviation of the angular
velocity σω. Indeed, Fig. 5b shows the dependence of the
translational kinetic energy as a function of the control
parameters (fB , N,B). The top inset in Fig. 5b shows
the dependence of σv on N0.15 and the bottom inset in
Fig. 5b shows the dependence of σv on f0.2

B . The lin-
ear energy kinetic σ2

v is an increasing function of fB , B,
similar to the rotational kinetic energy. The power law
σv ∼ B1/2 is consistent with the power law measured in a
3D homogeneously forced granular gas without liquid in
the container [34]. The measurements also illustrate that
σv increases as a function of N . This suggests that a high
number of collisions between the magnets convert more
efficiently the rotational kinetic energy into translational
kinetic energy.

Nonequipartition of energy.— It is also important to
note that no equipartition of energy is observed in this
volume-forced granular gas. The measured ratio of the
rotational and linear kinetic energy is equal to 5 because
the dynamics of the magnets are driven by the input of
angular momentum. This means that the magnets do not
fully convert their angular momentum into linear momen-
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FIG. 5. (a) Probability density functions of the angle difference Θ for different frequencies of the magnetic field fB : 7, 10, 40,
and 50 Hz (cold to hot colors) for B = 0.0162 T and N = 25. (b) Main figure: Standard deviation of the linear velocity σv

as a function of the control parameters (fB , B,N). Top inset: σv as a function of the number of magnets N . The dashed line
represents a power law fit of σv as a function of N . Bottom inset: σv as a function of the frequency of the oscillating magnetic
field fB . The dashed line represents a power law fit of σv as a function of fB . Red squares correspond to B = 0.0162 T and
N = 25, green circles correspond to B = 0.0162 T and fB = 50 Hz, blue diamonds correspond to fB = 50 Hz and N = 25.

tum and that the kinetic energy is not equally distributed
to the degree of freedom of the gas. Figure 3c also sug-
gests that the conversion of the rotational kinetic energy
to linear kinetic energy is maximal at N = 16, which
corresponds to ϕ = 0.07. We do not observe equiparti-
tion of energy here because the energy is directly injected
into the magnets, which is an expected numerical result
[9, 16].

Collision statistics.— Since the linear kinetic energy
depends on the number of magnets N , one can assume
that the collision frequency also controls the dynamics
of the magnets. We, therefore, measure the frequency
of the collisions between the magnets, to compare the
volume-forced granular gas with ideal gases or boundary-
driven granular systems. Different dependencies on N
were reported. The collision frequency is proportional to
N in the case of ideal gases and proportional to N1/2 in
vibrated granular gases in low gravity [48].

Figure 6a shows that the collision frequency fcol solely
depends on the number of magnets N . The relationship
between the collision frequency and the number of mag-
nets is fcol ∼ N1.15, as illustrated by the dashed line in
Fig. 6a. This result is slightly different from the linear
relationship between fcol and N in the case of ideal gases.
The top and bottom insets in Fig. 6a show that the col-
lision frequency fcol is independent of both fB and B.
Such measurements imply that any change in the kinetic
energy does not affect the frequency of the collision. This
quantity is, therefore, solely controlled by the number of

magnets.
The average distance a particle travels between colli-

sions with other moving particles, the mean free path l,
can be estimated from the following expression

l = σv/fcol (4)

One would expect the mean free path to be propor-
tionate to l = f0.2

B B0.5/N because σv is proportionate to
f0.2
B N0.15B0.5 (Fig. 5b), and fcol ∼ N1.15 (Fig. 6a). Fig-
ure 6b shows that the mean free path l is indeed inversely
proportionate to the number of magnets N , as illustrated
by the dashed line. The top and bottom insets in Fig. 6b
show the weak dependences of the mean free path l on fB
and B. The Knudsen number can be defined as K = l/L,

with L =
√
dh ≈ 11 cm with d = 15 cm the length of

the container and h = 8 cm the height of the container.
The measurements show that the Knudsen number is in
the range of [0.05, 0.64] and is inversely proportional to
N for our range of parameters, implying that the gas is
in a kinetic regime. However, a slight departure from
the dashed line is observed for N < 10 (ϕ < 0.045) in
Fig. 5. The value of the Knudsen number illustrates
that the dynamics of the gas are solely dominated by the
collisions between the magnets and not by the collisions
between the magnets and the boundaries. This confirms
that the collisions between the magnets transfer linear
kinetic energy to the gas and control the dynamics. In
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FIG. 6. (a) Collision frequency fcol as a function of the number of magnets N . The equation of the dashed line is y = 0.87x.
Top inset: Collision frequency fcol as a function of the intensity of the magnetic field B. Bottom inset: Collision frequency fcol
as a function of the frequency of the oscillating magnetic field fB . (b) Mean free path l as a function of the number of magnets
N . The equation of the dashed line is y = 22/x. Top inset: mean free path l as a function of the intensity of the magnetic
field B. Bottom inset: mean free path l as a function of the frequency of the oscillating magnetic field fB . In both figures, red
squares correspond to B = 0.0162 T and N = 25, green circles correspond to B = 0.0162 T and fB = 50 Hz, blue diamonds
correspond to fB = 50 Hz and N = 25.

Volume forced Volume forced Ideal gas Boundary forced
3D gas (dissipative) 2D gas (dissipative) (non dissipative) granular gases (dissipative)

[34] Present study [49] [24, 48]

Injection of energy Volume Volume - Surface (Vwall)

Kinetic energy σ2
v Ek ∼ B Ek ∼ f0.4

B N0.3B Ek ∼ T Ek ∼ Vα(N)
wall

Equation of state PV ∼ NEkVp/V - PV ∼ NEk PV ∼ Ek

Equipartition of energy No No Yes Sometimes

Clustering No No No Yes

Linear velocity Exponential Stretched exponential Maxwell-Boltzmann Stretched exponential
distributions Independent of N with α = 1.6 Independent of N with α (N) ∈ [0, 2]

Independent of N Depends on N

Collision frequency fcol NB1/2 N1.15 NT 1/2
√
NVwall

Mean free path l - 1/N 1/N 1/
√
N

TABLE I. Comparison between volume-forced gases of magnets (3D or 2D), the ideal gas, and boundary-forced granular
gases.Volume-forced 3D gas: Measurements performed using an accelerometer clamped on the lid of a 3D granular gas [34].
Volume-forced 2D gas (present study): Measurements using Lagrangian tracking techniques in a quasi-2D water-filled cell. For
boundary-forced granular gases (fourth column) α (N) ∈ [0, 2] is a coefficient that depends on the number of particles N in the
granular gas. Vwall = 2πFA is the velocity of the walls of the container, with A the amplitude of the oscillations and F their
frequency.

addition, Fig. 4c illustrates that the shape of the distri-
bution of the horizontal velocity is independent of N and
also suggests no transition towards a Knudsen regime.

Discussion.— The results of the measurements per-
formed using Lagrangian tracking techniques in this

volume-forced granular gas are fundamentally different
from the ones performed using other 3D dry granular gas
systems, as summarized in table I. The results strongly
emphasize the difference in the dependence on the num-
ber of particles N between different experimental sys-
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tems, such as boundary-driven granular gases. Here,
even though the shape of the distribution of the angu-
lar velocity changes as a function of the magnetic field
frequency, the shape of the distribution of the linear ve-
locity does not change. The kinetic energy in the volume-
forced granular gas depends on N , and the linear veloc-
ity distributions also resemble the heavy-tailed distribu-
tions seen in boundary-forced granular gases. The col-
lision frequency depends on N with a larger exponent
in the volume forced granular gas than for ideal gases
or boundary-driven gases, probably because the kinetic
energy depends on N . The mean free path is measured
using the relationship between the linear kinetic energy
and the collision frequency and implies that the mean
free path depends on N but also on fB and B. How-
ever, we do not have an equation of state in this system
because we did not measure the pressure independently
from the trajectories.

Conclusion.— We present the first statistical mea-
surements of a 2D homogeneously-forced granular gas
driven stochastically by injecting rotational kinetic en-
ergy into magnets, extending the measurements per-
formed in 3D [34]. This system differs from previous
experimental studies of granular gas where the energy is
injected by vibrating the boundaries. We report the dif-
ferences between this homogeneously-forced granular gas,
ideal gas, and non-equilibrium boundary-forced dissipa-
tive granular gas. Here, we do not observe any cluster
formation, even for a large volume fraction ϕ = 0.21,
nor the equipartition of the energy. The velocity dis-
tributions are stretched exponentials, as for other 3D
boundary-forced dry granular gas systems, but the ex-
ponent does not depend on N and is close to the value
of 3/2 derived theoretically [10].

Even though the shape of the distributions of the
angular velocities changes, the gas dynamics are solely
controlled by the average linear kinetic energy. The
homogeneously-forced granular gas studied here presents
interesting physical properties which can be useful in
medical applications if the magnets are scaled down to a
nanometric scale [50, 51]. The generated flow also offers
opportunities for improved chemical mixing or studying
the pair dispersion, and diffusion of passive scalars in
turbulent flows [35, 36].
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Appendix: Angular velocity distributions for
different N

Measurements of the distributions of the angular veloc-
ity of the magnets as a function of the number of magnets
N are shown in Fig. 7. The double humps are observed
for N = 30 (ϕ = 0.135) but not for N = 45 (ϕ = 0.21).
This can be explained because of the high density of mag-
nets for N = 45, and, therefore, the high number of colli-
sions (Fig. 6a), prevents the magnets from synchronizing
with the vertical oscillating magnetic field.

FIG. 7. Probability density functions (PDFs) of the rescaled
angular velocity ω/σω for different number of magnets N : 11,
20, 30, and 45 (cold to hot colors). The frequency of the
magnetic field is equal to f = 50 Hz and the intensity of the
magnetic field to B = 0.0162 T.
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