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Abstract

The Coherent Point Drift (CPD) technique is applied for the first time to find pairs of particles between two
subsequent sets of particles in the context of 3D Particle Tracking Velocimetry. Contrary to conventional
method, CPD does not require any prior knowledge on the flow. The performances of this pairing method
are quantitatively assessed on sets of particles generated from a synthetic turbulent flow. The method is
found to provide consistent results for displacements up to two times the mean distance between particles,
even when the number of ghost particles is equal to the number of true particles. The displacements obtained
from the particle pairing are then successfully regularized to obtain velocity fields on a regular grid via an
interpolation based on radial basis functions with a constraint on the divergence of the field.

1 Introduction

The development of methods for three-dimensional flow diagnostics over the last decade has certainly taken
advantage of the emergence of new techniques for accurately identifying and determining particle posi-
tions from their projections on camera images Feng et al. (2007); Wieneke (2012); Schanz et al. (2016);
Ben Salah et al. (2018); Mohr et al. (2019); Jahn et al. (2021); Acher et al. (2022). With the most advanced
methods, particles can be localized in the images with an uncertainty in the order of 0.1 pixel for a density
higher than 0.1 ppp (particle per pixel). These new capabilities may make Particle Tracking Velocimetry
(PTV) more attractive than conventional Particle Image Velocimetry (PIV), even for two-dimensional cases
that would benefit from the higher spatial resolution of PTV.

Once particles have been detected, the main challenge in PTV is to match the particles detected in one
frame with the particles detected in a second subsequent frame. The pairing process is complex in itself,
and is further complicated by the entry and exit of particles from the illuminated region in 2D measure-
ments, and / or the detection of ghost particles in 3D measurements. A predictor that estimates the expected
displacement of particles is commonly used to address this difficulty. The displacements can be estimated
either from the local flow velocity determined with PIV techniques (Cowen et al. (1997)), or by extrapola-
tion of previous particle positions along its trajectory (Schanz et al. (2016)). Other approaches to address
the pairing problem which do not rely on any a priori knowledge are also under development (Zhang et al.
(2015); Nie et al. (2021); Yang and Heitz (2021)). In general, the aim of these methods is to estimate the
probability of a match between an arbitrary pair of particles in the two images. Likewise, we introduce in
this contribution the coherent point drift (CPD) (Myronenko and Song (2010)) method which is used for
the first time in the context of particle pairing for PTV. CPD belongs to the family of point set registration
techniques which are used in computer vision to match two clouds of points that have undergone non-rigid
deformations.

The following briefly describes the CPD method and provides an assessment of its limitations. In ad-
dition, a meshless regularization following principles described by Sperotto et al. (2022) with physical con-
strains is applied to the displacement fields obtained by CPD. The resultant velocity field is robust to noise
and can be evaluated on a regular grid. Finally, the developed method is applied to a three-dimensional
synthetic and realistic test case representing a turbulent mixing layer.
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Figure 1: Schematic view of the iterative EM algorithm to register dataset Y to X with CPD. In this example
the 7 pairs of particles are identified, and the four ghosts are discarded.

2 Coherent Point Drift

2.1 Principle of Coherent Point Drift

Coherent Point Drift (CPD) is a point-set registration algorithm which was first introduced by Myronenko et al.
(2006), and that is used to align two sets of points in space.

In the context of double-frame velocimetry, the two sets of points are respectively the M particles de-
tected in frame 1 (referred to as source points) and the N particles in frame 2 (referred to as target points),
both being represented by their coordinates Y ∈R

M×D and X ∈R
N×D, where D = 2 or 3 is the dimension of

the problem. The result of the coherent point drift is a geometrical transformation T (Y,θ) which maximizes

the match between the transformed source Ỹ = Y+T (Y,θ) and the target X, θ being the set of parame-
ters that defines the transformation. Myronenko and Song (2010) derived three distinct algorithms for rigid,
affine, and non-rigid deformations. The latter is the best suited for paring particles advected by a turbulent
flow. The non-rigid transformation is modeled by a gaussian mixture model which centroids are initially
aligned with the source points, and gaussian are weighted by the set of parameters θ that are computed by
minimizing the negative-likelihood function E(θ,σ) which in its simplest form is given by Eq. (1)

E(θ,σ) =−
N

∑
n=1

log
M

∑
m=1

e
−

||Xn−Ym−T (Ym,θ)||2

2σ2 . (1)

Myronenko and Song (2010) also add an additional term which accounts for noise and outliers. The problem
is solved by an iterative Expectation–Maximization (EM) algorithm. Namely, a value for σ is guessed for
the first iteration, and Equation (1) is minimized over θ under some constrains to enhance spatial coherence
in the deformation. A value for σ is computed for the next iteration as an image of the distance between

the coordinates of X and the updated coordinated Ỹ. The value of σ decreases after each iteration which
allows to decouple unpaired particles from the minimization problem. After convergence, particles source
that are found close to target particles with respect to the distance σ are likely to be paired, whereas particles
that have no close neighbors are outliers. An heuristic description of this process is proposed in Fig. 1,
nonetheless, the reader is invited to refer to Myronenko and Song (2010) for a comprehensive description of
the method.

In the original method proposed by Myronenko et al. (2006), the initial value for σ is set arbitrarily
to be similar to the spatial extent of the domain that contains the datasets. This arguably leads to slow
convergence, so an initialization step has been developed to allow calculation of a first relevant value for
σ. In this step, the first likelihood is estimated from the frozen turbulence assumption that states that local
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Figure 2: Map of the pairing error against the displacement ratio λ and the ghost to paired particles ratio
GR for 5% (a) and 20% (b) turbulent intensity. The contours show the corresponding ratio of found pairs to
total number of pairs. (Data are linearly interpolated from a coarser grid)

geometrical features that each particle depicts with its closest neighbors is hardly affected by the advection
of the particles. These features are angles or distance ratios, and depend only on the local topology of the
cloud of detected particles.

2.2 Performances of Coherent Point Drift

The robustness of the CPD for the pairing of particles is tested in the context of three-dimensional particle
tracking velocimetry in a turbulent flow. The data sets consist of virtual particles. These particles could
have been detected in a pair of images using standard methods, and therefore contain false detections. In the
following, The number of paired particles is set to 2000, and an additional number of ghost particles is added
in each frame of the data set at random position. The ghost ratio GR, defined as the number of ghosts divided
by the number of paired particles, determines the number of ghosts. GR varies between 0 and 120 %. Paired
particles are advected between the two frames in a synthetic velocity field implemented according to the
method proposed by Martinez-Sanchis et al. (2021). The velocity field is representative of an isotropic and
homogeneous turbulent flow with a mean velocity of u=5 m/s, a convective velocity of 2.5 m/s, an integral

length scale of 0.1 m and a Kolmogorov length scale of 1× 10−5 m. Two levels of turbulence intensity
u′

rms/u to assess the robustness of CPD with respect to the spatial decoherence of the pattern drawn by the

particles, one is 5%, the second intensity is 20%. The average distance between neighbor particles d is kept

equal to 0.4 mm and are advected in average by the distance dadv. The displacement ratio λ = dadv/d is
varied between 0.5 and 5 by changing the time interval between the frames. For instance, the corresponding

time interval for λ = 1 is 8×10−5 s, thus the corresponding frame rate is 12.5 kfps. Results are summarized
in Fig. 2 which displays the pairing error against λ and GR, and the ratio of found pairs to total number of
pairs. For both turbulence intensity, 90% of the pairs can be found with less than 1.5 % error up to a ghost
ratio of 120 % for λ ≤ 1. The pairing error, and the number of lost pairs, increase for higher λ, especially
for the 20 % turbulence intensity. In case there are few ghost particles in the data set, say less than 20%,
75% of the pairs can still be found up to λ = 4 for 5 % turbulence intensity, and up to λ = 2 for 20 % with
less than 1% of false pairing. For GR = 60 %, λ should remain under 3 for 5% of turbulence, and under 2
for 20%, yet with pairing errors remaining smaller than 2%.

3 Regularization

Displacement vectors obtained from particle pairing are inherently affected by the localization error of the
particles and are sparsely distributed in space. These two concerns can be addressed by the addition of a reg-
ularization step to the data processing in order to both reduce the amplitude of the noise and interpolate the



data onto a regular grid. The chosen regularization strategy is based on the radial basis function formulation
proposed by Sperotto et al. (2022).

3.1 Radial Basis Function formulation

The regularization proposed by Sperotto et al. (2022) consists in approximating the sparse displacement
(i.e. velocity) data by a continuous function defined by a weighted sum of radial basis functions (RBF)

ϕ(X,Xi
b,σreg), such that the displacement U(X) at the position of coordinates X is

U(X) = [u v w]t(X) =
nb

∑
i=1

[ωi
u ωi

v ωi
w]

t ϕ(X,Xi
b,σreg) (2)

where σreg sets the size of the RBF, and Xb ∈ R
nb×D are the coordinates of the nb centroids of the RBF.

Here, the RBF are Gaussians of the form:

ϕ(X,Xi
b,σreg) = exp

(

−
‖X−Xi

b‖
2

2σ2
reg

)

. (3)

The weighting coefficients ωu, ωv, and ωw are determined by minimizing the norms

||Φωu −vs||
2

||Φωv −vs||
2,

||Φωw −ws||
2,

(4)

evaluated for the ns points of coordinates Xs ∈ R
ns×D where the displacement Us ∈ R

ns×D were determined

by CPD. The matrix Φ ∈ R
ns×nb contains the RBF ϕ(Xs,X

i
b,σreg). If the flow is incompressible, and the

measurement domain is three-dimensional, a further constraint can be added in this formulation to ensure the
divergence of the velocity field is zero as described in Sperotto et al. (2022). This however involves building

and processing a matrix P ∈ R
3ns×3nb which can rapidly overwhelm the capabilities of the processing unit.

For that reason, the measurement domain must be divided in subdomains that contains a reasonable number
of displacement vectors.

3.2 Implementation with subdomains

Performing regularization on subdomains raises concerns at the boundaries between subdomains where
continuity of velocity fields must be preserved. To solve this problem, a method derived from Ratz et al.
(2022) is implemented. In practice, subdomains are overlapping with each other. In the overlap region, the
velocity is a weighted average of the velocity computed from the two subdomains, where the weight is a
function of the distance from the center of the sub-domain. Contrary to Ratz et al. (2022) who used circular
domains, we use square ones which are more efficient to tessellate a volume. We also add a buffer layer
outside the outer boundary of the subdomains, which is not considered by the weighting average, to account
for the possible lack of consistency of the velocity field calculated there.

4 Example with double-frame synthetic data

A first assessment of the CPD pairing performances is carried out on a set of virtual particles advected by
a synthetic flow. The flow which axial component is illustrated in Fig.3(a) over a surface at constant z. It
features the characteristics of a sheared layer with a velocity varying linearly from 0 m/s to 5 m/s, with a

turbulence intensity ratio of 10% and a Reynolds number of 104 based on the integral length scale of 10−2

m. The flow is seeded with 100,000 particles that are advected for 10×10−5 s (equivalent to a laser pulsing
at 10 kHz) to generate two sets of particles coordinates corresponding to the results of a particle detection in

two subsequent volumes of size 0.1×0.1×0.01m3. Additionally, 50 % more randomly distributed particles
are further added in each frame to simulate an imperfect detection and ghosts. In total, 150,000 particles are
considered in the measurement volume. They are in average 0.4 mm away from its closest neighbor, and
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Figure 3: (b-c-e-f) Synthetic velocity fields reconstructed from the base flow clean of noise (a) and with
noise (b).

their mean displacement is 0.18 mm between the two frames. The above described CPD and regularization
are applied to these sets of particles corresponding to the base flow in Fig.3(a), and to the same base flow
but with a random shift added to the positions of particles, resulting in the flow depicted in Fig.3(d). The
standard deviation of this error is 4% of the maximum displacement. It corresponds to a 0.2 pixel detection
error for a maximum displacement of 5 pixels in images. Figures 3(b) and (c) show the velocity field
reconstructed from the radial basis functions (RBF) only, while a divergence-free constraint is applied in
Figs 3(d) and (e). For these configurations, the RBF were supported by a regular grid with a spacing of
1 mm, thus approximately equal to twice the mean distance between particles. The value of σreg is set to
2.5 mm. Comparing noisy and clean cases leads to the first noticeable observation that the regularization is
robust against the noise. The noise indeed tends to drop due to the averaging over the fairly large number of
particles that lay within a distance of less than few σreg from the center of each RBF. Remarkably, despite
this averaging effect, the small structures are well preserved by the regularization if the divergence is not
constrained. This latter constrain indeed smoothes the reconstructed velocity fields, which may be beneficial
to compute derived quantities such as the vorticity or the pressure field.

The duration of the 150,000 particle pairing with CPD together with the regularization is 8 minutes in
total with a middle-end laptop (CPU I7-12850HX). The code is currently running on Matlab, thus better
performances are expected after it is implemented in C++ and integrated in the in-house framework.

5 Conclusions

Particle tracking velocimetry has benefited greatly from the development of techniques to identify particles
in images and to localize them in space. However, there has been no recent breakthrough in particle pairing
techniques between images in the context of double-pulse velocimetry as there has been with shake-the-box
for time-resolved data. This paper introduces the coherent point-drift particle pairing method with the aim of
providing such a breakthrough. The method is found to be robust with respect to spurious and ghost particles
for the displacements of the particles between two frames even for large displacements. A regularization
of the measured displacements was performed and allowed to reconstruct a velocity field constrained to
be divergence-free. Promising results are obtained for a realistic three-dimensional test case that includes
small-scale turbulence and detection noise. This test provides a convincing proof of concept of the CPD
method for PTV.

Future developments will aim to robustly handle the possible presence of masking objects in the mea-
surement volume. The method will then be integrated into a time-resolved framework.
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