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Abstract
Every directed graph 𝐺 induces a locally ordered metric space X𝐺 together with a local order X̃𝐺 that
is locally dihomeomorphic to the standard pospace R; both are related by a morphism 𝛽𝐺 : X̃𝐺→X𝐺

satisfying a universal property. The underlying set of X̃𝐺 admits a non-Hausdorff atlas A𝐺 equipped with
a non-vanishing vector field 𝑓𝐺 ; the latter is associated to X̃𝐺 through the correspondence between local
orders and cone fields on manifolds. The above constructions are compatible with cartesian products, so the
geometric model of a conservative program is lifted through 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
to a subset 𝑀 of the parallelized

manifold A𝐺1
× · · · × A𝐺𝑛

. By assigning the suitable norm to each tangent space of A𝐺1
× · · · × A𝐺𝑛

the
length of every directed smooth path 𝛾 on 𝑀 , i.e.

∫
|𝛾′ (𝑡) |

𝛾(𝑡)𝑑𝑡, corresponds to the execution time of
the sequence of multi-instructions associated to 𝛾. This induces a pseudometric 𝑑A whose restrictions to
sufficiently small open sets ofA𝐺1

× · · · × A𝐺𝑛
(we refer to the manifold topology, which is strictly finer than

the pseudometric topology) are isometric to open subspaces of R𝑛 with the 𝛼-norm for some 𝛼 ∈ [1,∞].
The transition maps of A𝐺 are translations, so the representation of a tangent vector does not depend on
the chart of A𝐺 in which it is represented; consequently, differentiable maps between open subsets of
A𝐺1

× · · · × A𝐺𝑛
are handled as if they were maps between open subsets of R𝑛. For every directed path 𝛾

on 𝑀 (possibly the representation of a sequence 𝜎 of multi-instructions) there is a shorter directed smooth
path on 𝑀 that is arbitrarily close to 𝛾, and that can replace 𝛾 as a representation of 𝜎.

Keywords: Concurrency; local order; cone field; directed path; execution time; multi-instruction.

1. Introduction
The concurrent programs we consider are made of finitely many sequential processes running
in parallel. The idea that such programs could be interpreted geometrically was already present
(yet not explicitly) in the work of Dijkstra (1968); which was quickly followed by publications
containing pictures of models that are subsets of R𝑛 (Coffman et al. (1971); Kung et al. (1979);
Lipski (1981)). The «geometry of concurrency» was formalized a bit later for programs 𝑃 whose
processes neither have branchings or loops: their representations are subsets of R𝑛 called progress
graphs with 𝑛 being the number of processes of 𝑃 (Carson & Reynolds, 1987, §4). We recall two
prototypical examples, both made of two processes 𝑃1 and 𝑃2. In the first one, both try to take (P(m))
and release (V(m)) the mutex 𝑚 concurrently (whereas mutexes cannot be held by more than one
process at the time). In the second one, both wait for each other (W(b)) behind the synchronization
barrier 𝑏. The corresponding progress graphs are R2 \ [1, 2]2 (up to subtleties at the boundary
of the square) and R2 \ ({𝑥 = 1; 𝑦 ≠ 1} ∪ {𝑥 ≠ 1; 𝑦 = 1}), i.e. {(𝑥, 𝑦) ∈ R2 | 𝑥 = 1⇔ 𝑦 = 1}, they are
displayed on Fig. 1. The motivation for progress graphs is the relation between their directed paths
(namely the componentwise order-preserving ones) and the execution traces of the programs they
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Figure 1. Progress graphs.

represent. For example, the dotted paths on Fig. 1 induce the following execution traces:

𝑃1

𝑃2

P(m) V(m)

P(m) V(m)
𝑃1

𝑃2

W(b)

W(b)

Conversely, any execution trace is induced by a directed path on the progress graph. Following this
principle, and according to the postulates a progress graph 𝑋 is submitted to (Carson & Reynolds,
1987, p.28), the by-product of 𝑋 we are really interested in is its collection 𝑑𝑋 of directed paths.

The «geometry of concurrency» described in (Carson & Reynolds (1987)) only applies to
programs without branchings or loops. At the price of some extra mathematical machinery, this
limitation can be overcome (Haucourt (2018)). The key feature of a progress graph of dimension
𝑛 is that its set of directed paths derives from the order and the metric inherited from R𝑛. Let 𝑃 be
a program made of the processes 𝑃1, . . . , 𝑃𝑛 :

i) In accordance with the standard representation of sequential programs used in compilers
(Aho et al., 2007, §9.2), each 𝑃𝑖 is given as an automaton which we associate with its
underlying directed graph 𝐺𝑖.

ii) Each directed graph 𝐺𝑖 induces a locally ordered metric graph |𝐺𝑖 | (Haucourt, 2018, §6.1).
An execution trace of 𝑃𝑖 is seen as a directed path on |𝐺𝑖 |, so the set of directed paths on
|𝐺1 | × · · · × |𝐺𝑛 | is an overapproximation of the set of execution traces of 𝑃.

The process 𝑃𝑖 is said to be conservative when for any directed path 𝛾 on |𝐺𝑖 | the amount of
resources held by 𝑃𝑖 after the execution of 𝛾 only depends on the point where 𝛾 stops; this property
is decided by a breadth first traversal of 𝐺𝑖 (Haucourt, 2018, §4.1, p. 1734-1735).

iii) If all the processes of 𝑃 are conservative, we define its geometric model as the complement
in |𝐺1 | × · · · × |𝐺𝑛 | of the forbidden region of 𝑃 (Carson & Reynolds, 1987, §4), (Haucourt,
2018, Def. 4.2).

Every directed path on a geometric model induces a sequence of multi-instructions that respect
the constraints imposed by the synchronization mechanisms (mutexes, semaphores, and barriers)
(Haucourt, 2018, Thm. 4.1). Moreover, directed paths that are metrically close to each other
represent sequences of multi-instructions having the same effect on the state of the abstract machine
(Haucourt, 2018, Thm. 6.1). Like progress graphs, geometric models are helpful abstractions of
their directed paths. In this perspective, we aim at proving that the local order and the metric of the
model of 𝑃 are by-products of a possibly non-Hausdorff parallelized manifold canonically defined
from 𝑃 (it is Hausdorff if, and only if, the program under consideration has no branchings).
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Figure 2. Replacing a directed path by a directed smooth path of lesser length.

Motivation. For now let us suppose that the geometric model 𝑋 is a subset of R𝑛 (we may as well
suppose that 𝑋 is one of the prototypical models on Fig. 1). We give some facts about 𝑋 that will
be proven later in the general setting of geometric models:

i) For any directed path 𝛾 on 𝑋 , there is a directed smooth path 𝛿 on 𝑋 that is arbitrarily close
to 𝛾, and whose length is at most that of 𝛾, see Fig. 2.

ii) If 𝛿 is close enough to 𝛾, then the sequence of multi-instructions they induce have the same
effect on the state of the system.

iii) The product metric on R𝑛 can be chosen so that the lengths of 𝛾 and 𝛿 correspond to execution
times, so a (directed) path of lesser length represents a faster execution trace.

iv) A smooth path on 𝑋 is directed (i.e. order-preserving in all coordinates) if, and only if, all
its tangent vectors belong to R𝑛

+ .

These properties suggest that the differential structure we expect is the standard manifold R𝑛

equipped with its standard parallelization (Ex. A.16). For a taste of what lies beyond progress
graphs, assume that 𝐺 represents an «if-then-else» instruction (see Ex. 2.21):

𝑣

𝐺

{𝑣}
|𝐺 | ∥𝐺∥

The underlying set of the locally ordered metric graph |𝐺 | is 𝑉 ∪ 𝐴×]0, 1[ with 𝐴 and 𝑉 denoting
the sets of arrows and vertices of the graph 𝐺. At every point except for the four vertices of 𝐺,
which form a ‘neglectable’ subset of |𝐺 |, the local order is locally isomorphic to R. In order to get
rid of these ‘singularities’, every vertex is ‘blown up’ into as many points as there are ways of going
through it in respect of the local order. Consequently, the vertex 𝑣 is duplicated and the extremities
of 𝐺 are removed. The resulting set ∥𝐺∥ equipped with the adhoc (non-Hausdorff) topology often
appears in textbooks as an undesirable 1-dimensional smooth manifold, see (Bishop & Crittenden,
1964, p. 5, 6), (Lee, 2012, p. 4), or (Benedetti, 2021, p. 58). Such oddities are precisely what we
need to consider in order to represent branchings.

Context. In geometry of concurrency, one associates every tuple of graphs (𝐺1, . . . , 𝐺𝑛) with
a local order X𝐺1

× · · · × X𝐺𝑛
(Def. 5.11) on the 𝛼-product of metric spaces |𝐺1 | × · · · × |𝐺𝑛 | with

𝛼 ∈ [1,∞] (Def. 4.17). A conservative program 𝑃 is a parallel composition 𝑃1 | · · · |𝑃𝑛 of sequen-
tial processes whose underlying graphs are 𝐺1, . . . , 𝐺𝑛. The model of 𝑃 is a subset |𝑃 | of
|𝐺1 | × · · · × |𝐺𝑛 |. Every directed path 𝛾 on |𝑃 | induces a sequence of multi-instructions 𝜎 which
has a certain effect on the state of the abstract machine on which 𝑃 is executed; by extension, the
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effect of 𝛾 is that of 𝜎. Two directed paths on |𝑃 | that are sufficiently close to each other have the
same effect (Haucourt, 2018, Thm. 6.1); we say that the model of 𝑃 is resilient.

Contribution. We introduce the blowup of a graph 𝐺 as a set map 𝛽𝐺 : ∥𝐺∥ → |𝐺 | (Def. 2.15)
together with a (non-Hausdorff) atlas A𝐺 on ∥𝐺∥ (Def. 3.3) and a non-vanishing vector field 𝑓𝐺
onA𝐺 (Def. 3.6). We relate the parallelized atlas (A𝐺1

× · · · × A𝐺𝑛
, 𝑓𝐺1, . . . , 𝑓𝐺𝑛

) to the local order
X𝐺1

× · · · × X𝐺𝑛
and its 𝛼-product metric by means of an intermediate local order X̃𝐺1

× · · · × X̃𝐺𝑛
on

∥𝐺1∥ × · · · × ∥𝐺𝑛∥ (Def. 5.15). More precisely, we prove that X̃𝐺1
× · · · × X̃𝐺𝑛

is the ‘best smooth
approximation’ of X𝐺1

× · · · × X𝐺𝑛
(Thm. 5.33), and that every directed path on the image of

𝛽𝐺1
× · · · × 𝛽𝐺𝑛

can be lifted to a directed path on X̃𝐺1
× · · · × X̃𝐺𝑛

(Thm. 5.29). Then we prove
that the local order X̃𝐺1

× · · · × X̃𝐺𝑛
and the cone field generated by ( 𝑓𝐺1, . . . , 𝑓𝐺𝑛

) can be deduced
from each other (Thm. 5.41). The vector fields 𝑓𝐺1, . . . , 𝑓𝐺𝑛

canonically induce a notion of length
for (piecewise) smooth paths on A𝐺1

× · · · × A𝐺𝑛
(Def. 4.22) from which we deduce the 𝛼-product

metric on |𝐺1 | × · · · × |𝐺𝑛 | (Thm. 4.26). If we take 𝛼 =∞, then the length of a directed path on |𝑃 | is
the execution time of its sequence of multi-instructions (§6.1). The resilience of |𝑃 | together with
Thm. 6.5 and Cor. 6.6 implies that every execution trace of 𝑃 can be represented by a piecewise
affine directed path.

Overview. The discrete and the continuous models of a conservative program 𝑃 are discussed in
§2. In particular, every directed graph 𝐺 comes with a set theoretic map 𝛽𝐺 : ∥𝐺∥ → |𝐺 | which
‘blows up’ every singularity of |𝐺 | (Def. 2.15). The manifold and the local order to which the title
refers are the standard atlas A𝐺1

× · · · × A𝐺𝑛
with its standard parallelization (Def. 3.3 and 3.6),

and the standard local order X𝐺1
× · · · × X𝐺𝑛

(Def. 5.11); their underlying sets are ∥𝐺1∥ × · · · × ∥𝐺𝑛∥
and |𝐺1 | × · · · × |𝐺𝑛 | respectively. The transition maps ofA𝐺1

× · · · × A𝐺𝑛
are translations (Lem. 3.2),

which makes the derivatives of smooth maps between standard atlases easy to represent (Rem. 3.9).
The standard parallelization of A𝐺1

× · · · × A𝐺𝑛
, which we denote by ( 𝑓1, . . . , 𝑓𝑛), induces a local

order X̃𝐺1
× · · · × X̃𝐺𝑛

on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥, and the parallelization can be recovered from the local
order (Def. 5.15 and Thm. 5.41); this result is based on an equivalence of categories due to
(Lawson, 1989, p. 283-284) (§5.4). The product map 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
satisfies a universal lifting

property relating the local orders X̃𝐺1
× · · · × X̃𝐺𝑛

and X𝐺1
× · · · × X𝐺𝑛

(Thm. 5.33).
From every map ℓ : {arrows of 𝐺} → R+ admitting a positive lower bound, one defines a metric

𝑑 |𝐺 | on the set |𝐺 |; metric spaces of this form are called metric graphs – see (Bridson & Haefliger,
1999, §1.9, p. 6-7) and (Papadopoulos, 2013, p. 43). As in (Haucourt, 2018, §6.2, p. 1745-1748)
they are meant to replace intervals of R in view of modeling programs with branchings. Due to their
prominent role (and because we have not found a presentation that fits our needs) we thoroughly
describe these spaces in §4. For our purpose we assume that |𝐺1 | × · · · × |𝐺𝑛 | is equipped with the
𝛼-product metric 𝑑 (𝛼) for some 𝛼 ∈ [1,∞] (Def. B.11). If we wish 𝛼 to be in accordance with the
parallel execution time principle (§6.1) we should take 𝛼 =∞. We transport the 𝛼-norm on R𝑛

to every tangent space of A𝐺1
× · · · × A𝐺𝑛

through ( 𝑓1, . . . , 𝑓𝑛) and define the smoothed 𝛼-length
L𝛼 (𝛾) of a piecewise smooth path 𝛾 as the sum of the lengths of its tangent vectors (Def. 4.22).
Assuming that 𝑝 and 𝑞 are the images of 𝑝′ and 𝑞′ under 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
, the distance 𝑑 (𝛼) (𝑝, 𝑞)

is the infimum of L𝛼 (𝛾) for 𝛾 piecewise smooth paths from 𝑝′ to 𝑞′ (Thm. 4.26). So for every
𝛼 ∈ [1,∞], the metric 𝑑 (𝛼) derives from L𝛼 which derives from ( 𝑓1, . . . , 𝑓𝑛).

From the computer science point of view, for 𝜀 > 0 sufficiently small, the sequences of mutli-
instructions induced by a directed path and its 𝜀-approximations (Def. 6.1) lead to the same
result (Haucourt, 2018, Thm. 6.1). Also, every directed path 𝛾 on a tile compatible subset 𝑀

of |𝐺1 | × · · · × |𝐺𝑛 | (resp. ∥𝐺1∥ × · · · × ∥𝐺𝑛∥) admits a piecewise affine 𝜀-approximation on 𝑀

(Thm. 6.5, Cor. 6.6, and Def. 2.11). Since the geometric and the smooth models of a conser-
vative program are tile compatible (Def. 2.13 and 2.22), any execution trace of the program to
model can be represented by a piecewise affine path.
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The main text is followed by two appendices. The first one (App. A) is dedicated to Non-
Hausdorff manifolds which are at the core of this article but rather unusual in mainstream
mathematics (see p. 39). The second one (App. B) gathers some facts about length spaces expressed
with the notations of this document, and taking into account its specifics.

2. Underlying sets of models
As we shall see in sections 3, 4, and 5, the continuous models of conservative programs inherit
their structures from atlases, metrics, and local orders. We explicitly describe their underlying sets.

For the rest of the article, we write ‘graph’ to mean ‘directed (multi)graph’; hence a graph is
a set 𝐺, whose elements are called points, together with three maps, namely dim : 𝐺→ {0, 1},
and src, tgt : 𝐺 (1) →𝐺 (0) with 𝐺 (𝜀) = {𝑥 ∈𝐺 | dim 𝑥 = 𝜀} for 𝜀 ∈ {0, 1}. These maps are respectively
called dimension, source, and target. A vertex (resp. an arrow) is a point of 𝐺 of dimension 0
(resp. 1). Given a vertex 𝑣, an arrow 𝑎 is said to be incoming (resp. outgoing) when tgt 𝑎 = 𝑣 (resp.
src 𝑎 = 𝑣). A vertex with no incoming or no outgoing arrow is called an endpoint. We use the same
denotation for the graph and its underlying set. A map 𝑓 : 𝐺→𝐺′ is a morphism of graphs when
it preserves dimensions, sources, and targets. The category of graphs is denoted by Grph.

The next definition is motivated by topological arguments (Haucourt, 2018, Lem. 6.1):

Definition 2.1 (Haucourt (2018), Def. 3.4). A directed path on a tuple of graphs (𝐺1, . . . , 𝐺𝑛) is
a finite sequence 𝑝0, . . . , 𝑝𝑘 of points of 𝐺1 × · · · ×𝐺𝑛 satisfying

pr
𝑖
(𝑝 𝑗) ≠ pr

𝑖
(𝑝 𝑗−1) ⇒ src(pr

𝑖
(𝑝 𝑗)) = pr

𝑖
(𝑝 𝑗−1), for every 𝑖 ∈ {1, . . . , 𝑛}

or

pr
𝑖
(𝑝 𝑗) ≠ pr

𝑖
(𝑝 𝑗−1) ⇒ pr

𝑖
(𝑝 𝑗) = tgt(pr

𝑖
(𝑝 𝑗−1)), for every 𝑖 ∈ {1, . . . , 𝑛}

(1)

for every 𝑗 ∈ {1, . . . , 𝑘} with pr
𝑖
: 𝐺1 × · · · ×𝐺𝑛→𝐺𝑖 denoting the 𝑖th projection. In the first (resp.

second) case of (1), we say that the 𝑗 th step of the directed path raises (resp. lowers) dimension.

Discrete models of conservative programs. The notion of a conservative program (Haucourt, 2018,
§4.1) is based on a virtual machine allowing parallel execution of multi-instructions i.e. partial
maps 𝜇 on {1, . . . , 𝑛} assigning to the 𝑖th process of the machine the instruction it has to execute (the
𝑖th process is inactive during the execution of 𝜇 if the latter is not defined at 𝑖). Every instruction
executed by 𝜇 is supposed to be atomic in the sense that «its execution should appear to take
effect instantaneously at some moment between its invocation and response» (Herlihy et al., 2020,
Principle 3.4.1, p.58).

Definition 2.2. A sequential process is a graph 𝐺 whose arrows are labeled with atomic instruc-
tions. We suppose that every vertex of 𝐺 with at least two outgoing (resp. incoming) arrows has
at least one incoming (resp. outgoing) arrow; this assumption is used exactly once, but crucially,
in the proof of Lem. 4.25. A program 𝑃 is an 𝑛-tuple (𝑛 ∈ N) of sequential processes running
concurrently (if 𝑛 = 1 then 𝑃 is just a sequential process). We write 𝑃 = 𝑃1 | · · · |𝑃𝑛 to mean that 𝑃𝑖

is the 𝑖th process of 𝑃 with 𝑖 ∈ {1, . . . , 𝑛}, and we denote by 𝐺𝑖 the underlying graph of 𝑃𝑖. Hence
𝑃 is associated with the 𝑛-tuple of graphs (𝐺1, . . . , 𝐺𝑛).

With the notation from Def. 2.2, the vertices of 𝐺 are possible positions of the instruction
pointer 𝑝. At each step 𝑝 moves from the source 𝑣 to the target 𝑣′ of the arrow 𝑎 carrying the next
instruction to execute. However, our setting does not allow 𝑝 to jump from 𝑣 to 𝑣′ without going
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through an intermediate stage, namely the arrow 𝑎 itself. The arrows of 𝐺 are thus legit positions
of the instruction pointer; we are in a setting where instruction executions, or more abstractly
‘events’, have duration (Pratt, 2000, §4, §5).

The virtual machine on which 𝑃 is executed comes with a pool of resources shared by the
processes of 𝑃. These resources are renewable in the sense that they can be restored after use: each
process can take and release them by means of atomic instructions.

Definition 2.3. Let 𝑝0, . . . , 𝑝𝑘 be a directed path on the tuple of graphs (𝐺1, . . . , 𝐺𝑛) (Def. 2.1)
associated to 𝑃 (Def. 2.2). For 𝑗 ∈ {1, . . . , 𝑘}, we denote by 𝜇𝑗 the multi-instruction that is executed
when the instruction pointer moves from 𝑝 𝑗 − 1 to 𝑝 𝑗 : if the 𝑗 th step raises (resp. lowers) dimension
(Def. 2.1), then the indices 𝑖 such that pr

𝑖
(𝑝 𝑗) ≠ pr

𝑖
(𝑝 𝑗−1) are those of the processes that start (resp.

finish) the execution of an atomic instruction. By an abuse of language, we write ‘the execution
of the directed path 𝑝0, . . . , 𝑝𝑘’ to refer to the execution of the sequence of multi-instructions
𝜇1, . . . , 𝜇𝑘 . An execution trace of 𝑃 is a directed path on (𝐺1, . . . , 𝐺𝑛) whose execution respects
conditional branchings (Haucourt, 2018, p. 1729).

Definition 2.4 (Haucourt (2018), Def. 4.1). The program 𝑃 is said to be conservative when the
amount of resources mobilized after the execution of any directed path 𝑝0, . . . , 𝑝𝑘 on (𝐺1, . . . , 𝐺𝑛)
only depends on 𝑝0 and 𝑝𝑘 .

A program 𝑃 is conservative if, and only if, so are its processes (Haucourt, 2018, Lem. 4.1).
Whether a sequential process is conservative is decided by a breadth first traversal of its underlying
graph (Haucourt, 2018, p. 1734-1735).

Definition 2.5. For the purposes of our study, we only need to know that the discrete model of a
conservative program 𝑃 (Haucourt, 2018, §4.2) is a subset J𝑃K

𝑑
of the product of sets𝐺1 × · · · ×𝐺𝑛

satisfying the following properties:

(1) If the virtual machine fulfills the resource requirements specified in 𝑃, then any directed
path on J𝑃K

𝑑
(Def. 2.1) induces a sequence of multi-instructions that the virtual machine can

execute without exhausting its pool of resources.
(2) For every execution trace of 𝑃, there exists a directed path on J𝑃K

𝑑
with the same sequence

of multi-instructions (Haucourt, 2018, Thm. 4.1).

In other words, the amount of resources required to execute a conservative program 𝑃 is
known at compile time. Moreover, according to the second point of Def. 2.5, the discrete model
of 𝑃 induces an overapproximation of all its possible behaviors (i.e. all the sequences of multi-
instructions associated with the execution traces of 𝑃); the subtlety is that multiple directed paths
on (𝐺1, . . . , 𝐺𝑛) may induce the same sequence of multi-instructions.

Continuum of states. We have already mentioned that the arrows of the graph of a sequential
process are intermediate positions of the instruction pointer (Def. 2.2). Pushing this principle
further, we specify where the pointer stands on a given arrow of 𝐺. Suppose that the map

ℓ : 𝐺 (1) → [𝑅,∞[

assigns to each arrow a length which is meant to be the execution time of the atomic instruction
it carries (§6). The real number 𝑅 is supposed to be positive because execution times should not
be arbitrarily small. This constraint has important consequences for the mathematical properties
of the models that will be defined later. We end up with a continuum of states:
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Definition 2.6. The underlying set of the metric graph of 𝐺 is the set

|𝐺 | = 𝐺 (0) ∪
⋃{

{𝑎} × ]0, ℓ(𝑎) [
�� 𝑎 ∈𝐺 (1)

}
.

The quotient map 𝜋𝐺 : |𝐺 | →𝐺 is defined by 𝜋𝐺 (𝑣) = 𝑣 on 𝐺 (0) and by 𝜋𝐺 (𝑎, 𝑡) = 𝑎 elsewhere. The
local order on |𝐺 | (Def. 5.11) encodes the constraints that force the pointer 𝑝 to move continuously
with respect to the direction imposed by the arrows. The source and the target of an arrow 𝑎 play
the role of (𝑎, 0) and (𝑎, ℓ(𝑎)) which are intentionally omitted. An arrow of |𝐺 | is a subset of the
form {𝑎} × ]0, ℓ(𝑎) [ for some 𝑎 ∈𝐺 (1); by extension its source and its target are those of 𝑎.

Definition 2.7. Subsets of the form {𝑎} × 𝐽 are said to be initial (resp. final) when 𝐽 is an initial
(resp. final) subinterval of ]0, ℓ(𝑎) [. A subset 𝑆 of |𝐺 | is said to be a star when it is of the form

𝑆(𝑣, 𝑖, 𝑓 ) =
⋃

tgt 𝑎=𝑣
{𝑎} × ]ℓ(𝑎) − 𝑓 (𝑎), ℓ(𝑎) [ ∪ {𝑣} ∪

⋃
src 𝑎=𝑣
{𝑎} × ]0, 𝑖(𝑎) [

with the functions 𝑖 : src−1{𝑣} → R+\{0}, 𝑓 : tgt−1{𝑣} → R+\{0} satisfying 𝑖(𝑎), 𝑓 (𝑎) ⩽ ℓ(𝑎)
whenever it makes sense. The vertex 𝑣 is called the center of the star. Moreover:

– we write 𝑆(𝑣) when 𝑖(𝑎) = ℓ(𝑎) and 𝑓 (𝑎) = ℓ(𝑎) whenever it makes sense.
– if both 𝑖 and 𝑓 are constant and equal to 𝑟 < 𝑅

2 , we write 𝑆(𝑣, 𝑟) instead of 𝑆(𝑣, 𝑖, 𝑓 ), and
call 𝑆(𝑣, 𝑟) the star centered at 𝑣 of radius 𝑟.

– the canonical star centered at 𝑣 is the set 𝑆(𝑣, ℓ2 ,
ℓ
2 ), i.e. 𝑖(𝑎) = ℓ(𝑎)/2 for every 𝑎 ∈ src−1{𝑣}

and 𝑓 (𝑎) = ℓ(𝑎)/2 for every 𝑎 ∈ tgt−1{𝑣}.

Definition 2.8. A segment of 𝐺 centered at (𝑎, 𝑡) with 𝑎 ∈𝐺 (1) and 𝑡 ∈ ]0, ℓ(𝑎) [, is a subset of |𝐺 |
of the form {𝑎} × ]𝑡 − 𝜀, 𝑡 + 𝜀[ with 𝜀 ⩽ min(𝑡, ℓ(𝑎) − 𝑡).

Remark 2.9. The intersection of two stars is either a star or a (possibly empty) disjoint union of
segments. The intersection of a segment with a star (resp. a segment) is either a segment, or the
union of two disjoint segments, or empty. Stars and segments thus form a base of a topology T on
|𝐺 |. The stars centered at 𝑣 (resp. the segments centered at (𝑎, 𝑡)) form a base of neighborhoods
of 𝑣 (resp. (𝑎, 𝑡)). We give some immediate consequences: the topology T is Hausdorff; for every
arrow 𝑎 the boundary of {𝑎} × ]0, ℓ(𝑎) [ is {src 𝑎, tgt 𝑎}; for every vertex 𝑣 the boundary of 𝑆(𝑣)
is the set {src(𝑎), tgt(𝑎) | 𝑎 ∈𝐺 (1), 𝑣 ∈ {src(𝑎), tgt(𝑎)}} \ {𝑣}; and the connected components of
|𝐺 | \𝐺 (0) are the segments {𝑎} × ]0, ℓ(𝑎) [ for 𝑎 arrow of 𝐺.

Definition 2.10. The topology of |𝐺 | is the topology T described in Rem. 2.9; the geometric
realization of 𝐺 is the topological space ( |𝐺 |, T).

A path on a topological space 𝑋 is a continuous map 𝛾 : [𝑎, 𝑏] → 𝑋 with 𝑎 ⩽ 𝑏. The endpoints
of 𝛾 are 𝛾(𝑎) and 𝛾(𝑏), more precisely its starting and finishing points. The opposite of 𝛾 is the
path 𝛾̄ : [𝑎, 𝑏] → 𝑋 with 𝛾̄(𝑡) = 𝛾(𝑎 + 𝑏 − 𝑡). Given a path 𝛿 : [𝑏, 𝑐] → 𝑋 with 𝛾(𝑏) = 𝛿(𝑏), the
concatenation 𝛾 · 𝛿 is the path defined on [𝑎, 𝑐] by 𝛾 · 𝛿(𝑡) = 𝛾(𝑡) if 𝑡 ⩽ 𝑏, and by 𝛾 · 𝛿(𝑡) = 𝛿(𝑡) if
𝑏 ⩽ 𝑡. If dom (𝛿) = [𝑏′, 𝑐] then we still write 𝛾 · 𝛿 to mean 𝛾 · (𝛿 ◦ 𝜏) with 𝜏 denoting the translation
𝑡 ↦→ 𝑡 + 𝑏′ − 𝑏 from [𝑏, 𝑐 − 𝑏′ + 𝑏] to [𝑏′, 𝑐].

Definition 2.11. The tile over 𝑝 ∈𝐺1 × · · · ×𝐺𝑛 is the set (𝜋𝐺1
× · · · × 𝜋𝐺𝑛

)−1{𝑝}, i.e. 𝜏1 × · · · × 𝜏𝑛
with 𝜏𝑖 = {𝑝𝑖} if 𝑝𝑖 is a vertex, and 𝜏𝑖 = {𝑝𝑖} × ]0, ℓ(𝑝𝑖) [ if 𝑝𝑖 is an arrow. Each 𝜏𝑖 admits a canonical
(total) order; the product of these total orders is the canonical partial order of the tile over 𝑝.
A path 𝛾 on |𝐺1 | × · · · × |𝐺𝑛 | is said to be directed when for every tile 𝜏 and every interval
𝐽 ⊆ 𝛾−1(𝜏), the restriction of 𝛾 to 𝐽 is order preserving; we say that 𝛾 crosses a tile 𝜏 if there exists
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[𝑎, 𝑏] ⊆ dom (𝛾) such that 𝛾( [𝑎, 𝑏]) ⊆ 𝜏 (the closure of 𝜏) and 𝛾( [𝑎, 𝑏]) \ 𝜏 = {𝛾(𝑎), 𝛾(𝑏)}. A
subset of |𝐺1 | × · · · × |𝐺𝑛 | is said to be tile compatible when it can be written as a (necessarily
disjoint) union of tiles. The middle of the tile over 𝑝 is the point (𝑥1, . . . , 𝑥𝑛) defined by

𝑥𝑖 =

{
𝑝𝑖 if 𝑝𝑖 is a vertex,(
𝑝𝑖,

1
2ℓ(𝑝𝑖)

)
if 𝑝𝑖 is an arrow,

for 𝑖 ∈ {1, . . . , 𝑛}. The lower corner and the upper corner of the tile over 𝑝 are the points
(𝑥1, . . . , 𝑥𝑛) and (𝑦1, . . . , 𝑦𝑛) defined, for 𝑖 ∈ {1, . . . , 𝑛}, by

𝑥𝑖 =

{
𝑝𝑖 if 𝑝𝑖 is a vertex,
src(𝑝𝑖) if 𝑝𝑖 is an arrow

and 𝑦𝑖 =

{
𝑝𝑖 if 𝑝𝑖 is a vertex,
tgt(𝑝𝑖) if 𝑝𝑖 is an arrow.

Note that if one of the components of 𝑝 is an arrow, then the source and the target of 𝑝 do not
belong to the tile over 𝑝.

Remark 2.12. With the notation from Def. 2.11, it follows from Def. 2.10 that the closure of a
tile 𝜏 over 𝑝, which we denote by 𝜏, is the set of points (𝑥1, . . . , 𝑥𝑛) such that for 𝑖 ∈ {1, . . . , 𝑛}
we have 𝑥𝑖 = 𝑝𝑖 if 𝑝𝑖 is a vertex, and 𝑥𝑖 ∈ {𝑝𝑖} × ]0, ℓ(𝑝𝑖) [ ∪ {src(𝑝𝑖), tgt(𝑝𝑖)} if 𝑝𝑖 is an arrow. In
particular 𝜏 is tile compatible; this property is related to the frontier condition in the theory of
stratified spaces (Pflaum, 2001, p. 15), (Nocera & Volpe, 2023, Def. 2.5).

The progress graphs shown on Fig. 1 are tile compatible, and more generally:

Definition 2.13. (Haucourt, 2018, Def. 6.3). The underlying set of the geometric model of 𝑃,
which we denote by |𝑃 |, is the set (𝜋𝐺1

× · · · × 𝜋𝐺𝑛
)−1J𝑃K

𝑑
with J𝑃K

𝑑
denoting the discrete model

of 𝑃 (Def. 2.5); it is tile compatible.

The notion of tile compatibility deserves some explanation. Every 𝑝 ∈ J𝑃K
𝑑

is (tacitly) labeled
by the multi-instruction 𝜇 that is defined at 𝑖 when 𝑝𝑖 is an arrow of 𝐺𝑖 (the underlying graph of
the 𝑖th process of 𝑃), in which case the (atomic) instruction 𝜇𝑖 is the label of 𝑝𝑖 – see Def. 2.2.
Denote by 𝜏𝑝 the tile over 𝑝, and let 𝛾 be a directed path (Def. 2.11) from the lower corner to
the upper corner of 𝜏𝑝 which only visits 𝜏𝑝 and its corners. Then 𝛾 represents an execution of
the multi-instruction 𝜇 in which the speeds of the processes may vary independently of each
other, with the only restriction that all the processes start and finish at the same time. From this
point of view, the tile over 𝑝 represent all the possible continuous schedules for the execution
of 𝜇 (by contrast, there is only one discrete schedule for the execution of 𝜇). A more elaborate
discussion should take into account all the directed paths 𝛾 that cross 𝜏𝑝 (Def. 2.11). Suppose
that [𝑎, 𝑏] ⊆ dom (𝛾) with 𝛾( [𝑎, 𝑏]) ⊆ 𝜏𝑝 and 𝛾( [𝑎, 𝑏]) \ 𝜏𝑝 = {𝛾(𝑎), 𝛾(𝑏)}. Also suppose that 𝛾
is written as the concatenation 𝛾1𝛾2𝛾3 with 𝛾2 the restriction of 𝛾 to [𝑎, 𝑏]. As long as one is only
concerned with the execution trace associated with 𝛾, one can ‘replace’ 𝛾 by 𝛿 = 𝛾1𝛾̃2𝛾3 provided
that 𝛾̃2 is a directed path defined on [𝑎, 𝑏] with 𝛾̃2(𝑎) = 𝛾(𝑎), 𝛾̃2(𝑏) = 𝛾(𝑏), and 𝛾̃2(]𝑎, 𝑏[) ⊆ 𝜏𝑝 –
see (Haucourt, 2018, Thm. 6.1 and Cor. 6.2) for a formal statement. It may be that 𝛿 is smooth
while 𝛾 is not, and the path 𝛿 may be of lesser length – see Fig. 2. If 𝑋 is a tile compatible subset of
|𝐺1 | × · · · × |𝐺𝑛 |, then we have img (𝛾) ⊆ 𝑋⇔ img (𝛿) ⊆ 𝑋 . Consequently, in a tile compatible set,
one can choose the directed path representing a given execution trace in order to optimize certain
parameters: the cases of smoothness and execution time are discussed in §6, and more specifically
in Thm. 6.5 and Cor. 6.6. Tile compatible subsets also play an crucial role in the preamble of §5.

Blowing up vertices. For every arrow 𝑎 of 𝐺 the canonical bijection {𝑎} × ]0, ℓ(𝑎) [→]0, ℓ(𝑎) [
induces a dihomeomorphism (i.e. a homeomorphism that is also an order isomorphism, see p. 21).
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Definition 2.14. A traversal at 𝑣 is an ordered pair of arrows (𝑎, 𝑏) such that tgt 𝑎 = 𝑣 = src 𝑏, we
say that 𝑣 is regular when there is exactly one traversal at 𝑣 in 𝐺; otherwise 𝑣 is said to be singular.
By extension, the traversal (𝑎, 𝑏) is said to be regular (resp. singular) when so is 𝑣.

From the topological and order theoretic points of view, the set |𝐺 | is ‘almost everywhere’
like R. The only possible exceptions are the singular vertices of 𝐺. As for curves in Algebraic
Geometry(1) we ‘resolve singularities’ by ‘blowing them up’, i.e. we replace each vertex 𝑣 by the
traversals at 𝑣:

Definition 2.15. The underlying set of the blowup of 𝐺, which we denote by ∥𝐺∥, is the union of
|𝐺 | \𝐺 (0) and the set of traversals of 𝐺, that is to say

∥𝐺∥ =
⋃{
{𝑎} × ]0, ℓ(𝑎) [

�� 𝑎 ∈𝐺 (1)
}
∪

{
(𝑎, 𝑏) ∈𝐺 (1) ×𝐺 (1)

�� tgt 𝑎 = src 𝑏
}
.

The blowup of 𝐺 is the map 𝛽𝐺 : ∥𝐺∥ → |𝐺 | defined by 𝛽𝐺 (𝑎, 𝑏) = tgt 𝑎 (or src 𝑏) for every
traversal (𝑎, 𝑏) of 𝐺, and by 𝛽𝐺 (𝑎, 𝑡) = (𝑎, 𝑡) for every 𝑎 ∈𝐺 (1) and 𝑡 ∈ ]0, ℓ(𝑎) [. A subset of
∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is said to be tile compatible when it is the inverse image under 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
of

some tile compatible set (Def. 2.11). From now on we write 𝛽𝑖 instead of 𝛽𝐺𝑖
.

Remark 2.16. The image of 𝛽𝐺 is precisely |𝐺 | \ {endpoints of 𝐺} (see p. 5).

Remark 2.17. The constructions |_| and ∥_∥ readily extend to functors from Grph to Set: given a
graph morphism 𝑓 : 𝐺→𝐺′, the maps | 𝑓 | and ∥ 𝑓 ∥ are defined by

| 𝑓 | (𝑣) = 𝑓 (0) (𝑣), ∥ 𝑓 ∥(𝑎, 𝑏) = ( 𝑓 (1) (𝑎), 𝑓 (1) (𝑏)), and | 𝑓 | (𝑎, 𝑡) = ∥ 𝑓 ∥(𝑎, 𝑡) = ( 𝑓 (1) (𝑎), 𝑡)
where 𝑣 ∈𝐺 (0), 𝑎 ∈𝐺 (1), 𝑡 ∈ ]0, ℓ(𝑎) [, (𝑎, 𝑏) is a traversal of 𝐺, and 𝑓 (0), 𝑓 (1) denote the vertex and
the arrow parts of 𝑓 . Moreover, the collection of blowups 𝛽𝐺 : ∥𝐺∥ → |𝐺 |, for 𝐺 running through
the class of graphs, forms a natural transformation from ∥_∥ to |_|. If |𝐺 | and |𝐺′ | are equipped
with the topologies from Rem. 2.9, then | 𝑓 | is continuous.

Remark 2.18. It is natural to define the topology of ∥𝐺∥ as the initial topology of the blowup 𝛽𝐺: a
base of this topology is given by the inverse images under 𝛽𝐺 of the stars and segments (Rem. 2.9).
By observing that 𝛽𝐺

−1(𝑆(𝑣, 𝑖, 𝑓 )) is the set⋃
tgt 𝑎=𝑣=src 𝑏

{𝑎} × ]ℓ(𝑎) − 𝑓 (𝑎), ℓ(𝑎) [ ∪ {(𝑎, 𝑏)} ∪ {𝑏} × ]0, 𝑖(𝑏) [

we conclude that if the graph 𝐺 has a singular traversal 𝜏 (Def. 2.14), then the topology of ∥𝐺∥
is not 𝑇1; indeed, the set {𝜏} is not closed. Conversely, if 𝐺 has no singular traversal, then the
topology of ∥𝐺∥ is Hausdorff (𝑇2).

Lemma 2.19. The image of a tile compatible set (in the sense of Def. 2.15) under 𝛽1 × · · · × 𝛽𝑛 is
tile compatible (in the sense of Def. 2.11).

Proof. Suppose that 𝑌 = (𝛽1 × · · · × 𝛽𝑛)−1𝑋 for some tile compatible set 𝑋 and that 𝑞 ∈𝑌 ∩
(𝛽1 × · · · × 𝛽𝑛)−1𝜏 for some tile 𝜏. Let 𝑝 ∈ 𝜏. We have (𝛽1 × · · · × 𝛽𝑛) (𝑞) ∈ 𝑋 therefore 𝜏 ⊆ 𝑋

because 𝑋 is tile compatible; hence 𝑝 ∈ 𝑋 . For 𝑖 ∈ {1, . . . , 𝑛} if 𝑞𝑖 is a traversal, then put 𝑞′
𝑖
= 𝑞𝑖 ;

otherwise 𝑞′
𝑖
= 𝑝𝑖. Then (𝛽1 × · · · × 𝛽𝑛) (𝑞′) = 𝑝.

(1)« The effect of blowing up is thus to separate out branches of curves passing through 𝑂 according to their slopes »
(Hartshorne, 1977, p.30). In our context, the traversals at 𝑣 play the role of the slopes of branches at 𝑂.
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𝑣
𝑎

𝑏

𝑐
𝐺

←[ ← [
𝜋𝐺 𝛽𝐺

{𝑣}
{𝑎} × [0, 1[

{𝑏} × ]0, 1]

{𝑐} × ]0, 1]
|𝐺 |

{(𝑎, 𝑏)}

{(𝑎, 𝑐)}

{𝑎} × ]0, 1[

{𝑏} × ]0, 1[

{𝑐} × ]0, 1[
∥𝐺∥

Figure 3. The blowup of a graph containing a branching point.

Example 2.20. We denote by 𝑍 the connected graph whose arrows (all of length 1) are (𝑛, 𝑛+1)
with 𝑛 ∈ Z, the source and the target being 𝑛 and 𝑛+1 respectively.

𝑛 𝑛+1
· · ·· · ·

Every vertex of 𝑍 has a unique traversal so the blowup of 𝑍 is a bijection. We obtain a canonical
bijection from ∥𝑍 ∥ to R by composing the blowup of 𝑍 with the following bijection:

|𝑍 | → R

𝑛 ↦→ 𝑛

((𝑛, 𝑛 + 1), 𝑡) ↦→ 𝑛 + 𝑡

Example 2.21. Fig. 3 describes the blowup of a graph 𝐺 whose arrows are of length 1, and which
contains a branching point 𝑣; for the sake of readability we have identified src 𝑎, tgt 𝑏, and tgt 𝑐
with (𝑎, 0), (𝑏, 1), and (𝑐, 1) in the representation of |𝐺 | (compare with Def. 2.6).

We will see that every set ∥𝐺∥ carries a ‘canonical’ atlas (Def. 3.3). Connectedness and non-
Hausdorffness of (the topology of) this atlas (Def. A.8) derive form the fact that any neighborhood
of a traversal (𝑎, 𝑏) meets any neighborhood of another traversal (𝑎′, 𝑏′) precisely when 𝑎 = 𝑎′ or
𝑏 = 𝑏′ (see the proof of Lem. 3.2).

We have already observed that the endpoints of 𝐺 are ‘forgotten’ by ∥𝐺∥. One may think of
this as an issue since the starting point of the automaton associated with a process is an endpoint.
We circumvent the difficulty taking advantage of the following control flow graph feature: the
starting point has a unique outgoing arrow 𝑎 (Def. 2.2). So we can harmlessly declare any point
on {𝑎} × ]0, ℓ(𝑎) [ to be the starting point instead of the source of 𝑎. Another (and more canonical)
way to solve the problem consists of adding a fresh arrow ending at the starting point we wish to
save. The same remarks hold (and the same tricks work) for the final points of the graph.

Definition 2.22. The underlying set ∥𝑃∥ of the smooth model of 𝑃 is the inverse image of |𝑃 |
(Def. 2.13) under 𝛽1 × · · · × 𝛽𝑛. Following Def. 2.15, the set ∥𝑃∥ is tile compatible.

3. Differential calculus on standard atlases
In differential geometry, manifolds are equivalence classes of atlases (Def. A.4). Such a class
contains a maximal element (with respect to inclusion) with which the manifold is usually identified.
However, each manifold we will meet in this article comes with a canonical representative that
is much more tractable than the maximal one. Indeed, the representation of any tangent vector
in a standard atlas (Def. 3.3) does not depend on the standard chart (Def. 3.1) in which it is
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represented. Consequently, smooth maps between standard atlases are handled (almost) as smooth
maps between open subsets of euclidean spaces. For this reason, we only deal with atlases (App. A).

We are not concerned with global properties of manifolds, so we can harmlessly let them be
non-Hausdorff.(2) This seemingly anodyne weakening is of crucial importance here for it allows
branchings (Ex. 2.21) which is precisely what we need to build manifolds from graphs, see Def. 3.3
and Rem. 3.5. The relation between non-Hausdorff manifolds, branching, non-determinism, and
bifurcation is well-known (Müller (2013)). Such manifolds naturally appear in the study of dynam-
ical systems (Goel (1987)), foliations of the plane (Haefliger & Reeb (1957)), (Hirsch, 1976, 11.,
p.15), (Gauld, 2014, Chap.9) and general relativity (Hájíček (1971𝑎,b); Luc & Placek (2020)).
The novelty is that we use non-Hausdorff manifolds to formalize the idea that a graph is a kind of
‘discrete vector field’ (Def. 3.6).

Standard atlases. Given a graph𝐺 with ℓ : 𝐺 (1) →]0,∞[, the set ∥𝐺∥ (Def. 2.15) admits a ‘natural’
atlas that we now describe. Given 𝑥 ∈𝐺 (1) we define

𝐼𝑥 = ]0, ℓ (𝑥 )2 [ , 𝐽𝑥 = ] ℓ (𝑥 )2 , ℓ(𝑥) [ , (2)

and keep in mind the bijection 𝑡 ↦→ 𝑡 − ℓ(𝑥) from 𝐽𝑥 to −𝐼𝑥.

Definition 3.1. The standard charts of 𝐺 are the bijections
𝜙𝑎 : {𝑎} × ]0, ℓ(𝑎) [ → ]0, ℓ(𝑎) [ and

𝜙𝑎𝑏 : {𝑎} × 𝐽𝑎 ∪ {(𝑎, 𝑏)} ∪ {𝑏} × 𝐼𝑏 → −𝐼𝑎 ∪ {0} ∪ 𝐼𝑏

with (𝑎, 𝑡) ↦→ 𝑡 − ℓ(𝑎) , (𝑎, 𝑏) ↦→ 0 , (𝑏, 𝑡) ↦→ 𝑡

for all arrows 𝑎 and all traversals (𝑎, 𝑏) of 𝐺. The standard charts of (𝐺1, . . . , 𝐺𝑛) are the products
𝜙1 × · · · × 𝜙𝑛 with 𝜙𝑖 a standard chart of 𝐺𝑖 for 𝑖 ∈ {1, . . . , 𝑛}.

Lemma 3.2. The collection of standard charts of (𝐺1, . . . , 𝐺𝑛) is an atlas on the set
∥𝐺1∥ × · · · × ∥𝐺𝑛∥, and the transition maps between its charts are translations (§A.1, p. 46).

Proof. The domains of the standard charts cover ∥𝐺∥. Given two arrows 𝑎 and 𝑎′ with 𝑎 ≠ 𝑎′ the
domains of 𝜙𝑎 and 𝜙𝑎′ are disjoint. By applying the distributivity of ∩ over ∪, and the fact that
𝐼𝑥 ∩ 𝐽𝑥 = ∅ – see (2), the intersection of dom 𝜙𝑎𝑏 and dom 𝜙𝑎′𝑏′ is the disjoint union

({𝑎} ∩ {𝑎′}) × (𝐽𝑎 ∩ 𝐽𝑎′) ∪
(
{(𝑎, 𝑏)} ∩ {(𝑎′, 𝑏′)}

)
∪ ({𝑏} ∩ {𝑏′}) × (𝐼𝑏 ∩ 𝐼𝑏′) .

The transition map 𝜙𝑎′𝑏′ ◦ 𝜙𝑎𝑏
−1 is an identity whose domain is cod (𝜙𝑎𝑏) if (𝑎, 𝑏) = (𝑎′, 𝑏′), the

interval 𝐽𝑎 if 𝑎 = 𝑎′ and 𝑏 ≠ 𝑏′, the interval 𝐼𝑏 if 𝑎 ≠ 𝑎′ and 𝑏 = 𝑏′, and empty otherwise. If
𝑐 ∉ {𝑎, 𝑏} then the domains of the charts 𝜙𝑎𝑏 and 𝜙𝑐 are disjoint. So the only nontrivial case is when
𝑐 ∈ {𝑎, 𝑏}. We take {𝑎} × 𝐽𝑎 as witness of compatibility of 𝜙𝑎𝑏 and 𝜙𝑎 since we have

𝜙𝑎𝑏 ◦ 𝜙𝑎

−1 : 𝑡 ∈ 𝐽𝑎 ↦→ 𝑡 − ℓ(𝑎) ∈ −𝐼𝑎 ,
and 𝐽𝑏 as witness of compatibility of 𝜙𝑎𝑏 and 𝜙𝑏 since 𝜙𝑎𝑏 ◦ 𝜙𝑏

−1 is just the identity map on 𝐽𝑏.
Hence the transition maps are translations. We readily deduce the higher dimensional case from
the description of the transition maps between the charts of a product of atlases (Def. A.5); in
particular, the transition maps are translations as products of such maps.

Definition 3.3. The standard atlas of the tuple of graphs (𝐺1, . . . , 𝐺𝑛) is the collection of standard
charts of (𝐺1, . . . , 𝐺𝑛) (Def. 3.1); following Def. A.5, it is the product atlasA𝐺1

× · · · × A𝐺𝑛
of the

standard atlases A𝐺𝑖
of 𝐺𝑖.

(2)« The concept of Hausdorffness is irrelevant for much of local differential geometry » (Hicks, 1965, p.3). A similar point
of view is adopted in (Lang, 1999, p.23).
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Example 3.4. The canonical bijection ∥𝐺Z∥ � R (Ex. 2.20) induces a smooth diffeomorphism
(Def. A.5) between the standard atlas of 𝐺Z and {idR} (Ex. A.7).

Remark 3.5. The topology of A𝐺 (Def. A.8) is Hausdorff if, and only if, the graph 𝐺 has no
singular traversal (Def. 2.14); in which case it is the topology of ∥𝐺∥ (Rem. 2.18). If 𝐺 has a
singular traversal, then the topology of A𝐺 (which is 𝑇1 by Lem. A.9) differs from that of ∥𝐺∥
(which is not 𝑇1 by Rem. 2.18).

Tangent vectors. For any standard charts 𝜙 and 𝜓 of (𝐺1, . . . , 𝐺𝑛), the derivative of 𝜓 ◦ 𝜙−1 at any
point of cod 𝜙 ∩ cod 𝜓 is the identity map idR𝑛 : R𝑛→ R𝑛 (Lem. 3.2). It follows from §A.3 (24)
that for all 𝑣 ∈ 𝑇𝑝 (A𝐺1

× · · · × A𝐺𝑛
) the representation J𝑣K𝜙

𝑝
does not depend on the standard chart

𝜙. So we may as well decide that the tangent space of A𝐺1
× · · · × A𝐺𝑛

at 𝑝 is

𝑇𝑝 (A𝐺1
× · · · × A𝐺𝑛

) = {𝑝} × R𝑛 (3)

with the obvious topological vector space structure.

Definition 3.6. A standard tangent chart of (𝐺1, . . . , 𝐺𝑛) is a product 𝜙 × idR𝑛 with 𝜙 a standard
chart of (𝐺1, . . . , 𝐺𝑛); it corresponds to the chart 𝑇𝜙 from §A.3 (25) provided that following (3)
we adopt ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ × R𝑛 as the underlying set of the tangent bundle A𝐺1

× · · · × A𝐺𝑛
:

𝑇𝜙 : dom 𝜙 × R𝑛 → cod 𝜙 × R𝑛

(𝑝, 𝑡) ↦→ (𝜙𝑝, 𝑡) .

The standard tangent atlas of (𝐺1, . . . , 𝐺𝑛) is the collection of its standard tangent charts. The
standard representation of the tangent bundle ofA𝐺1

× · · · × A𝐺𝑛
is the set ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ × R𝑛

equipped with the standard tangent atlas. The standard parallelization of (𝐺1, . . . , 𝐺𝑛) is the tuple
of vector fields ( 𝑓1, . . . , 𝑓𝑛) with

𝑓𝑖 : ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ → (∥𝐺1∥ × · · · × ∥𝐺𝑛∥) × R𝑛

𝑝 ↦→ 𝑝 , 𝑒𝑖

for 𝑖 ∈ {1, . . . , 𝑛} and 𝑒𝑖 the 𝑖th vector of the canonical basis of R𝑛. The standard basis of the
tangent space at 𝑝 is ( 𝑓1(𝑝), . . . , 𝑓𝑛 (𝑝)); its positive cone is the set of vectors whose coordinates
in the standard basis are non-negative.

Remark 3.7. Strictly speaking, even if ( 𝑓1, . . . , 𝑓𝑛) and (𝑔1, . . . , 𝑔𝑚) are standard parallelizations
(Def. 3.6), the tuple of vector fields ( 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚) is not. Yet, the latter is related to a
standard parallelization by the obvious smooth diffeomorphism (Def. A.5)

(A𝐺1
× R) × · · · × (A𝐺𝑛

× R) � (A𝐺1
× · · · × A𝐺𝑛

) × R𝑛 .

Derivatives. Let 𝑓 :A𝐺1
× · · · × A𝐺𝑛

→A𝐺′1
× · · · × A𝐺′𝑚 be a smooth map (Def. A.5) between stan-

dard atlases (Def. 3.3). The transition maps between standard charts are translations (Lem. 3.2)
so we have D(𝜙0 ◦ 𝜙1

−1)𝜙1 (𝑝) = idR𝑛 and D(𝜓1 ◦ 𝜓0
−1)𝜓0 ( 𝑓𝑝) = idR𝑚 for all 𝜙0, 𝜙1 ∈ A𝐺1

× · · · × A𝐺𝑛

and 𝜓0, 𝜓1 ∈ A𝐺′1
× · · · × A𝐺′𝑚 , with 𝑝 ∈ dom (𝜙0) ∩ dom (𝜙1) – see §A.1, p. 46. From Lem. A.6, we

deduce that the representation of Df𝑝 (Def. A.14) does not depend on the standard charts in which
it is represented, so it can be identified with an 𝑛 ×𝑚 matrix with entries in R which we just denote
by 𝑓 ′𝑝 without mentioning any chart:

Definition 3.8. The matrix 𝑓 ′𝑝 is called the standard representation of Df𝑝 and we have

Df𝑝 (𝑝, 𝑡) = 𝑇𝑓 (𝑝, 𝑡) =
(
𝑓𝑝 , 𝑓 ′𝑝 · 𝑡

)
with 𝑓 ′𝑝 · 𝑡 being the product of the standard representation of Df𝑝 and the vector 𝑡 ∈ R𝑛.
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Remark 3.9. The standard representation 𝑓 ′𝑝 (Def. 3.8) is the matrix of the linear map Df𝑝 in the
standard bases (Def. 3.6) of the tangent spaces at 𝑝 and 𝑓𝑝.

Remark 3.10. If 𝛾 is a curve on the standard atlasA𝐺1
× · · · × A𝐺𝑛

, then for every standard chart 𝜙
whose domain contains 𝛾(𝑡0), we have the curve 𝜙 ◦ 𝛾 in R𝑛. By Rem. 3.9, the coordinates of the
‘speed’ vector (𝜙 ◦ 𝛾)′ (𝑡0) in the canonical basis of R𝑛 are the coordinates of the tangent vector
𝛾′ (𝑡0) in the standard basis at 𝛾(𝑡0).
Functoriality. We denote by Grphℓ the category whose objects are graphs equipped with a map
ℓ : 𝐺 (1) →]0,∞[ such that inf (ℓ) ≠ 0, and whose morphisms are 2-tuples (𝑔, 𝑟𝑔) with 𝑔 : 𝐺→𝐺′

a graph morphism such that ℓ′ (𝑔1(𝑎)) = 𝑟𝑔 · ℓ(𝑎) for every arrow 𝑎. We would like to extend the
construction 𝐺 ↦→ A𝐺 (Def. 3.3) to a functor A∗ : Grphℓ→Atl. To every morphism (𝑔, 𝑟𝑔) of
Grphℓ we associate the map 𝑓 : ∥𝐺∥ → ∥𝐺′∥ defined by 𝑓 (𝑎, 𝑡) = (𝑔1𝑎, 𝑟𝑔𝑡) for every arrow 𝑎 of
𝐺 and 𝑡 ∈ ]0, ℓ(𝑎) [, and by 𝑓 (𝑎, 𝑏) = (𝑔1𝑎, 𝑔1𝑏) for every traversal (𝑎, 𝑏) of 𝐺. Such a map 𝑓 is
called a dilation. Denoting by 𝜓𝑎′ and 𝜓𝑎′𝑏′ the charts of the standard atlas of A𝐺′ associated with
𝑎′ = 𝑔1𝑎 and (𝑎′, 𝑏′) = 𝑓 (𝑎, 𝑏) = (𝑔1𝑎, 𝑔1𝑏), we have

𝜓𝑎′ ◦ 𝑓 ◦ 𝜙𝑎
−1 : 𝑡 ∈ ]0, ℓ(𝑎) [ ↦→ 𝑟𝑔𝑡 ∈ ]0, ℓ(𝑎′) [

𝜓𝑎′𝑏′ ◦ 𝑓 ◦ 𝜙𝑎𝑏
−1 : 𝑡 ∈ ] −ℓ (𝑎)2 ,

ℓ (𝑏)
2 [ ↦→ 𝑟𝑔𝑡 ∈ ] −ℓ (𝑎

′ )
2 ,

ℓ (𝑏′ )
2 [

so the map 𝑓 is smooth, and with the notation from Def. 3.8 we have 𝑓 ′𝑝 = 𝑟𝑔 ∈ R for all 𝑝 ∈ ∥𝐺∥.

4. Metrics on standard atlases
Given a map ℓ : 𝐺 (1) → R+ assigning a length to every arrow of a graph 𝐺, there is a pseudometric
𝑑 |𝐺 | on the set |𝐺 | (Def. 4.5) in which every arrow 𝑎 induces a path of length ℓ(𝑎), and the distance
between two points is the greatest lower bound of the lengths of the paths joining them. Such a
space is called a metric graph (Def. 4.13), it can be defined as the quotient of a disjoint union
of intervals (Bridson & Haefliger, 1999, 5.21(3)). If inf (ℓ) ≠ 0, then the pseudometric 𝑑 |𝐺 | is an
intrinsic metric (Bridson & Haefliger, 1999, 5.20, 5.28); this is what motivates the constraint
imposed on the objects of Grphℓ . The elementary construction given here is standard; we have
slightly adapted the presentation of (Bridson & Haefliger, 1999, §1.9, p. 6) to our needs.

The pseudometric 𝑑∥𝐺∥ on the set ∥𝐺∥ is the (only) one that makes the blowup map 𝛽𝐺 an
isometry (Def. 4.14). For 𝛼 ∈ [1,∞], the 𝛼-standard pseudometric on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ (Def. 4.17)
and the standard parallelization on A𝐺1

× · · · × A𝐺𝑛
(together with the 𝛼-norm on R𝑛) induce two

natural definition of the length of a piecewise smooth path (Def. 4.18 and 4.22); they coincide
(Lem. 4.24) and determine the pseudometrics on |𝐺1 | × · · · × |𝐺𝑛 | and ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ (Lem. 4.20
and Thm. 4.26).

Let 𝐺 be a graph together with a map ℓ : 𝐺 (1) → [𝑅,∞[ with 𝑅 > 0. Each arrow 𝑎 comes with
the canonical map (see Def. 2.6 for |𝐺 |)

𝜒𝑎 : 𝑡 ∈ [0, ℓ(𝑎)] ↦→


src 𝑎 if 𝑡 = 0

tgt 𝑎 if 𝑡 = ℓ(𝑎)

(𝑎, 𝑡) otherwise

∈ |𝐺 | . (4)

Remark 4.1. The finest topology making all the maps 𝜒𝑎 continuous is that of |𝐺 | (Def. 2.10).
Indeed, if 𝑉 is an open set of the latter topology containing the vertex 𝑣, and if 𝑎 is an arrow of 𝐺
such that src(𝑎) = 𝑣 (resp. tgt(𝑎) = 𝑣), then 𝜒𝑎

−1(𝑉) contains [0, 𝜀[ (resp. ]ℓ(𝑎) − 𝜀, ℓ(𝑎)]).
Remark 4.2. Given an arrow 𝑎 and a traversal (𝑎, 𝑏) of 𝐺 (Def. 2.14), the standard charts 𝜙𝑎 and
𝜙𝑎𝑏 (Def. 3.1) are related to the mappings 𝜒𝑎 and 𝜒𝑏 : for every 𝑡 ∈ cod 𝜙𝑎 we have 𝛽𝐺 ◦ 𝜙𝑎

−1(𝑡) =
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𝜒𝑎 (𝑡) = (𝑎, 𝑡), and for every 𝑡 ∈ cod 𝜙𝑎𝑏 we have

𝛽𝐺 ◦ 𝜙𝑎𝑏

−1(𝑡) =


𝜒𝑎 (ℓ(𝑎) + 𝑡) = (𝑎, ℓ(𝑎) + 𝑡) if 𝑡 < 0

𝜒𝑎 (ℓ(𝑎)) = tgt 𝑎 = src 𝑏 = 𝜒𝑏 (0) if 𝑡 = 0

𝜒𝑏 (𝑡) = (𝑏, 𝑡) if 𝑡 > 0

with 𝛽𝐺 denoting the blowup of 𝐺 (Def. 2.15).

A path 𝛾 on a topological space 𝑋 (p. 7) is said to be an arc (resp. a pseudo-arc) when 𝛾−1{𝑝}
contains at most one element (resp. when 𝛾−1{𝑝} is connected) for every 𝑝 ∈ 𝑋 .

Definition 4.3. A step 𝑠 is a path of the form 𝜒𝑎 ◦ 𝜃 with 𝜃 an arc on [0, ℓ(𝑎)]; it is said to be
affine when so is 𝜃; directed or antidirected according to whether 𝜃 is increasing or decreasing;
standard if 𝜃 is an inclusion [𝑥, 𝑦] ↩→ [0, ℓ(𝑎)] or its opposite, in which case the step 𝑠 is denoted
by (𝑎, 𝑥, 𝑦) or (𝑎, 𝑦, 𝑥) accordingly. We define the length of 𝑠, denoted by ℓ(𝑠), as the length of
the interval img 𝜃. The support of 𝑠 is the arrow 𝑎. The steps 𝜒𝑎 ◦ 𝜃 and 𝜒𝑏 ◦ 𝜃′ are said to be
overlapping when 𝑎 = 𝑏 and the interior of img 𝜃 ∩ img 𝜃′ is nonempty. In higher dimensions, a
step of |𝐺1 | × · · · × |𝐺𝑛 | is a product 𝑠1 × · · · × 𝑠𝑛 of steps 𝑠𝑖 of |𝐺𝑖 |.

Definition 4.4. A path 𝛾 on |𝐺 | is said to be admissible (resp. piecewise affine) when it can be
written as a (finite) concatenation of steps (resp. affine steps) 𝑠1, . . . , 𝑠𝑛 (Def. 4.3); the length of 𝛾
is ℓ(𝛾) = ℓ(𝑠1)+ · · · +ℓ(𝑠𝑛) (this sum does not depend on 𝑠1, . . . , 𝑠𝑛 – see Lem. B.17). A path on
|𝐺1 | × · · · × |𝐺𝑛 | is said to be admissible (resp. piecewise affine) when so are all its components. A
path on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is said to be piecewise affine when so is its image under the product of
blowups 𝛽1 × · · · × 𝛽𝑛 (Def. 2.15).

A weak reparametrization is a non-decreasing path onto an interval (i.e. a non-decreasing
surjection between two intervals). A reparametrization is an increasing path onto an interval (i.e.
an increasing surjection between two intervals). The class of admissible paths is stable under
reparametrization; the image and the length of an admissible path are left unchanged under
reparametrization, every step is admissible and for every arrow 𝑎, we have ℓ(𝑎) = ℓ(𝜒𝑎), see (4).

Definition 4.5. The standard pseudometric (one readily checks that it is a pseudometric) on |𝐺 |
(Def. 2.6) is the map 𝑑 |𝐺 | : |𝐺 | × |𝐺 | → R+ ∪ {∞} defined by

𝑑 |𝐺 | (𝑝, 𝑞) = inf
{
ℓ(𝛾)

�� 𝛾 : admissible path from 𝑝 to 𝑞
}

with the convention that inf ∅ =∞; 𝑝 and 𝑞 are said to be neighbors when 𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅
2 .

Remark 4.6. Let 𝛾 be an admissible path from 𝑝 to 𝑞. The topology of |𝐺 | (Def. 2.10) is Hausdorff
(Rem. 2.9) so we have an arc 𝛼 from 𝑝 to 𝑞 such that img (𝛼) ⊆ img (𝛾) (Lem. B.2). By Lem. B.18
and B.19 we have ℓ(𝛼) ⩽ ℓ(𝛾), so we can write ‘arc’ instead of ‘admissible path’ in Def. 4.5.

In the (discrete) context of a graph, one usually says that two vertices are neighbors when they
are the extremities of an arrow; the idea is that an arrow is a geodesic between two vertices. On
the contrary, no two vertices of 𝐺 are neighbors in the sense of Def. 4.5 because the length of
any admissible path joining them is at least 𝑅. The description of the unique geodesic joining two
neighbors (Lem. 4.10) requires some extra notions which we now introduce.

Let 𝑝 = 𝜒𝑎 (𝑠) and 𝑞 = 𝜒𝑎 (𝑡) with {𝑠, 𝑡} ⊈ {0, ℓ(𝑎)}, which amounts to say that at least one of
the points 𝑝 and 𝑞 is not a vertex.

i) If {𝑠, 𝑡} ⊆ ]0, ℓ(𝑎) [ or src 𝑎 ≠ tgt 𝑎, then (𝑎, 𝑠, 𝑡) is the unique standard step from 𝑝 to 𝑞

(Def. 4.3),
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ii) If {𝑠, 𝑡} ⊈ ]0, ℓ(𝑎) [ and src 𝑎 = tgt 𝑎, then we have exactly two standard steps 𝜎 and 𝜎′ from
𝑝 to 𝑞, namely:

– (𝑎, 𝑠, 0) and (𝑎, 𝑠, ℓ(𝑎)) if 𝑡 ∈ {0, ℓ(𝑎)}, or
– (𝑎, 0, 𝑡) and (𝑎, ℓ(𝑎), 𝑡) if 𝑠 ∈ {0, ℓ(𝑎)}. 𝑝

𝑞
>

<

𝜎′

𝜎

In both cases the sum of their lengths is ℓ(𝑎), and only one of them is directed. From the extra
assumption that ℓ (𝑎)

2 ∉ {𝑠, 𝑡} (i.e. neither 𝑝 nor 𝑞 stands on the midpoint of {𝑎} × ]0, 𝑎[) we deduce
that one of the steps 𝜎 and 𝜎′ is strictly shorter than the other.

Definition 4.7. Let 𝑝, 𝑞 ∈ img (𝜒𝑎), one of them not being a vertex. The dash from 𝑝 to 𝑞, denoted
by 𝑝→ 𝑞, is the shortest standard step from 𝑝 to 𝑞 (Def. 4.3) with the convention that if there
are two such steps, then 𝑝→ 𝑞 is the directed one. When it is not the only step from 𝑝 to 𝑞,
the other one is called the complement of 𝑝→ 𝑞. In higher dimensions, for 𝑝 = (𝑝1, . . . , 𝑝𝑛) and
𝑞 = (𝑞1, . . . , 𝑞𝑛) in |𝐺1 | × · · · × |𝐺𝑛 |, if the dash 𝑝𝑘→ 𝑞𝑘 exists for every 𝑘 ∈ {1, . . . , 𝑛}, then we
write 𝑝→ 𝑞 to denote the product (𝑝1→ 𝑞1) × · · · × (𝑝𝑛→ 𝑞𝑛).

Remark 4.8. Let 𝛾 be an admissible path (Def. 4.4) from (𝑎, 𝑡) to some vertex. By a connectedness
argument, we have 𝜒𝑎 [0, 𝑡] ⊆ img (𝛾) or 𝜒𝑎 [𝑡, ℓ(𝑎)] ⊆ img (𝛾). In particular the restrictions of 𝜒𝑎

to [0, 𝑡] and [𝑡, ℓ(𝑎)] are arcs (Lem. B.14). It follows from Lem. B.19 that ℓ(𝛾) ⩾ min{𝑡, ℓ(𝑎) − 𝑡}.
If 𝛾 visits two distinct vertices, then by a connectedness argument we have img (𝜒𝑎) ⊆ img (𝛾) for
some arrow 𝑎, so ℓ(𝛾) ⩾ ℓ(𝑎) ⩾ 𝑅.

Remark 4.9. The step 𝜒𝑎 ◦ 𝜃 is an arc if, and only if, src(𝑎) ≠ tgt(𝑎) or img 𝜃 ≠ dom (𝜒𝑎). It follows
that every dash is an arc.

Lemma 4.10. Suppose that 𝑝 = 𝜒𝑎 (𝑠) and 𝑞 = 𝜒𝑏 (𝑡) with 𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅
2 and 𝑝 ≠ 𝑞.

1) If 𝑎 = 𝑏 and (src 𝑎 ≠ tgt 𝑎 or |𝑡 − 𝑠 | < 1
2ℓ(𝑎)), then ℓ(𝑝→ 𝑞) = 𝑑 |𝐺 | (𝑝, 𝑞) = |𝑡 − 𝑠 |.

2) If 𝑎 = 𝑏 and src 𝑎 = tgt 𝑎 and |𝑡 − 𝑠 | ⩾ 1
2ℓ(𝑎), or if 𝑎 ≠ 𝑏, then there is a unique vertex 𝑣 (which

is an endpoint shared by 𝑎 and 𝑏) such that ℓ(𝑝→ 𝑣→ 𝑞) = 𝑑 |𝐺 | (𝑝, 𝑞), i.e. ℓ(𝑎) − |𝑡 − 𝑠 | in the case
where 𝑎 = 𝑏.

Moreover, the only admissible path of length 𝑑 |𝐺 | (𝑝, 𝑞) from 𝑝 to 𝑞 is, up to reparametrization
(p. 4), the arc 𝑝→ 𝑞 or the arc 𝑝→ 𝑣→ 𝑞 accordingly.

Proof. The arrows 𝑎 and 𝑏 share at least one endpoint, and one (at least) of the points 𝑝 and 𝑞

is not a vertex (Rem. 4.8). We have an admissible path 𝛾 from 𝑝 to 𝑞 with ℓ(𝛾) < 𝑅/2 because
𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅/2 (Def. 4.5). There are three cases to examine:

Case 1. Assume that 𝑎 ≠ 𝑏.
By Rem. 4.8 and because ℓ(𝛾) < 𝑅/2 we have img (𝑝→ 𝑣) ⊆ img (𝛾) for some 𝑣 ∈ {src 𝑎, tgt 𝑎}
(Def. 4.7). Similarly we have img (𝑣′→ 𝑞) ⊆ img (𝛾) for some 𝑣′ ∈ {src 𝑏, tgt 𝑏}. We deduce
that 𝑣 = 𝑣′ from Rem. 4.8. The admissible path 𝛼 = (𝑝→ 𝑣→ 𝑞) is an arc because so are the
dashes 𝑝→ 𝑣 and 𝑣→ 𝑞 (Rem. 4.9) and img (𝑝→ 𝑣) ∩ img (𝑣→ 𝑞) = {𝑣}. We apply Lem. B.19
to conclude that ℓ(𝛼) ⩽ ℓ(𝛾) with equality if, and only if, 𝛾 is an arc having the same image as
𝛼, in which case 𝛾 and 𝛼 are equal up to reparametrization (Rem. B.1). By Def. 4.5 we have
ℓ(𝛼) = 𝑑 |𝐺 | (𝑝, 𝑞).

The two remaining cases share the assumption that 𝑎 = 𝑏. Up to exchanging the roles of 𝑠 and
𝑡 we can suppose that 𝑠 ⩽ 𝑡. By Rem. 4.8, the image of 𝛾 either contains the set 𝐵 = {𝑎} × [𝑠, 𝑡] or
the set 𝐶 = {𝑎} × ([0, 𝑠] ∪ [𝑡, ℓ(𝑎)]).

Case 2. Assume that src 𝑎 = tgt 𝑎 = 𝑣, and 𝑡 − 𝑠 ⩾ 1
2ℓ(𝑎).

The standard steps (𝑎, 𝑠, 0) and (𝑎, ℓ(𝑎), 𝑡) are 𝑝→ 𝑣 and 𝑣→ 𝑞 (Def. 4.7). The path 𝛾 does not
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cover 𝐵, otherwise we would have ℓ(𝛾) ⩾ 𝑅/2 (Lem. B.19). Therefore img (𝛾) contains 𝐶 which
is the image of 𝑝→ 𝑣→ 𝑞. We have img (𝑝→ 𝑣) ∩ img (𝑣→ 𝑞) = {𝑣}, from which we deduce,
as in the first case, that ℓ(𝑝→ 𝑣→ 𝑞) ⩽ ℓ(𝛾) with equality if, and only if, 𝛾 and 𝑝→ 𝑣→ 𝑞 are
equal up to reparametrization.

Case 3. Assume that src 𝑎 ≠ tgt 𝑎 or 𝑡 − 𝑠 < 1
2ℓ(𝑎).

The dash 𝑝→ 𝑞 is well-defined (Def. 4.7), and its length is 𝑡 − 𝑠. If 𝐶 ⊆ img (𝛾) then one of the
following situations occurs:

– 𝛾 visits src 𝑎 and tgt 𝑎 (which are distinct), so ℓ(𝛾) > 𝑅 (Rem. 4.8), or
– ℓ(𝛾) ⩾ ℓ(𝑎) − (𝑡 − 𝑠) > 1

2ℓ(𝑎) (Lem. B.19).

In both situations the inequality ℓ(𝛾) < 𝑅/2 is not satisfied, therefore img (𝛾) contains 𝐵 which is
the trace of the arc 𝑝→ 𝑞 (Rem. 4.9). With the same arguments as in the two first cases, we deduce
that ℓ(𝑝→ 𝑞) ⩽ ℓ(𝛾) with equality if, and only if, 𝛾 and 𝑝→ 𝑞 are equal up to reparametrization.

Remark 4.11. As an immediate consequence of Lem. 4.10, the pseudometric 𝑑 |𝐺 | is a metric.

Lemma 4.12. The metric 𝑑 |𝐺 | is intrinsic (Def. B.10).

Proof. Given 𝑝, 𝑞 ∈ |𝐺 | we have

𝑑 |𝐺 | (𝑝, 𝑞) = inf
{
ℓ(𝛾)

�� 𝛾 : admissible path from 𝑝 to 𝑞
}

(Def. 4.5)

= inf
{
ℓ(𝛾)

�� 𝛾 : arc from 𝑝 to 𝑞
}

(Rem. 4.6)

= inf
{
𝐿 (𝛾)

�� 𝛾 : arc from 𝑝 to 𝑞
}

(Lem. B.18 and B.20)

= inf
{
𝐿 (𝛾)

�� 𝛾 : path from 𝑝 to 𝑞
}

(Lem. B.21) .

If we allow the lengths of arrows to be taken in R+ (or even ]0,∞[) instead of [𝑅,∞[, then
there might be arbitrarily short paths joining two distinct points, resulting in a pseudometric space
instead of a metric one.

Definition 4.13. The metric graph associated with 𝐺 is the metric space ( |𝐺 |, 𝑑 |𝐺 | ).

We lift the distance 𝑑 |𝐺 | along the blowup 𝛽𝐺 (Def. 2.15):

Definition 4.14. The standard pseudometric on ∥𝐺∥ is 𝑑 |𝐺 | ◦ (𝛽𝐺 × 𝛽𝐺), we denote it by 𝑑∥𝐺∥.

Remark 4.15. A map 𝑓 from a topological space 𝑋 to ∥𝐺∥ (equipped with the pseudometric
topology) is continuous if, and only if, so is the composite 𝛽𝐺◦ 𝑓 . Suppose that 𝛽𝐺◦ 𝑓 is continuous
at 𝑥0 ∈ 𝑋 , and let 𝜀 > 0. We have a neighborhood 𝑉 of 𝑥0 such that 𝛽𝐺 ( 𝑓 (𝑉)) ⊆ 𝐵(𝛽𝐺 ( 𝑓 (𝑥0)), 𝜀).
Given 𝑥 ∈𝑉 we have 𝑑∥𝐺∥ ( 𝑓 (𝑥0), 𝑓 (𝑥)) = 𝑑 |𝐺 | (𝛽𝐺 ( 𝑓 (𝑥0)), 𝛽𝐺 ( 𝑓 (𝑥))) (Def. 4.14) therefore 𝑓 (𝑉) ⊆
𝐵( 𝑓 (𝑥0), 𝜀), and 𝑓 is continuous. The converse is immediate. In particular every path on img (𝛽𝐺)
can be lifted to a path on (∥𝐺∥, 𝑑∥𝐺∥) of the same length. Moreover, every arc on ( |𝐺 |, 𝑑 |𝐺 | ) whose
extremities belong to img (𝛽𝐺) is included in img (𝛽𝐺): indeed, if an arc on ( |𝐺 |, 𝑑 |𝐺 | ) visits an
endpoint 𝑝 of 𝐺 (that is to say 𝑝 ∉ img (𝛽|𝐺 | ) by Rem. 2.16), then 𝑝 is an extremity of this arc. We
conclude from Rem. 4.6 and Lem. 4.12 that 𝑑∥𝐺∥ is intrinsic (Def. B.10).

Remark 4.16. By Def. 4.14, the inverse image of an open ball of ( |𝐺 |, 𝑑 |𝐺 | ) under 𝛽𝐺 is an open
ball of (∥𝐺∥, 𝑑∥𝐺∥). From the description of the small open balls of ( |𝐺 |, 𝑑 |𝐺 | ) given in Prop. B.22,
and the fact that 𝛽𝐺

−1({𝑎} × ]𝑡 − 𝑟, 𝑡 + 𝑟 [) = {𝑎} × ]𝑡 − 𝑟, 𝑡 + 𝑟 [ and 𝛽𝐺
−1 (𝑆(𝑣, 𝑟)) = (𝑆(𝑣, 𝑟) \ {𝑣}) ∪
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𝛽𝐺
−1({𝑣}), we deduce that the topology of the standard atlas A𝐺 (Def. 3.3 and A.8) is finer than

the topology of the standard pseudometric on ∥𝐺∥; it is in fact strictly finer if, and only if, 𝐺 has
a singular traversal (Def. 2.14) which is the case for most of the graphs we are interested in.

For the rest of §4 we fix 𝛼 ∈ [1,∞] and a tuple of graphs (𝐺1, . . . , 𝐺𝑛).

Definition 4.17. The standard 𝛼-distance on (𝐺1, . . . , 𝐺𝑛) refers to both the 𝛼-product 𝑑 (𝛼) of
the standard metrics 𝑑 |𝐺𝑖 | (Def. 4.5), and to the 𝛼-product 𝑑 (𝛼) of the standard pseudometrics 𝑑∥𝐺𝑖 ∥

(Def. 4.14), with the notion of 𝛼-product given in Def. B.11.

A subdivision of the interval [𝑎, 𝑏] ⊆ R (with 𝑎 ⩽ 𝑏) is a finite increasing sequence of elements
of [𝑎, 𝑏] whose first and last elements are 𝑎 and 𝑏.

Definition 4.18 (Special instance of Def. B.5). The 𝛼-length of a path 𝛾 on |𝐺1 | × · · · × |𝐺𝑛 |
(resp. ∥𝐺1∥ × · · · × ∥𝐺𝑛∥) which we denote by 𝐿𝛼 (𝛾), is the least upper bound of the sums∑𝑘

𝑖=1 𝑑
(𝛼)
(
𝛾(𝑡𝑖−1), 𝛾(𝑡𝑖)

)
for 𝑡0< · · · <𝑡𝑘 subdivisions of dom 𝛾.

Remark 4.19. Every path 𝛾 on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is continuous with respect to the pseudometric
from Def. 4.14, which is equivalent to have 𝛽𝐺𝑖

◦ 𝛾𝑖 continuous on the metric graph |𝐺𝑖 | for every
𝑖 ∈ {1, . . . , 𝑛} (Rem. 4.15), and we have 𝐿𝛼 (𝛾) = 𝐿𝛼 ((𝛽𝐺1

× · · · ×𝛽𝐺𝑛
)◦𝛾).

Lemma 4.20. The 𝛼-products 𝑑 (𝛼) and 𝑑
(𝛼) (Def. 4.17) are intrinsic (Def. B.10).

Proof. By Lem. 4.12, Rem. 4.15, and Prop. B.12.

Each standard chart induces a ‘local isometry’, the codomain being understood as a subspace
of R𝑛 equipped with the 𝛼-norm (Def. B.11):

Proposition 4.21. For every standard chart 𝜙 of 𝐺1 × · · · ×𝐺𝑛 (Def. 3.1) and all 𝑝, 𝑞 ∈ dom 𝜙, if
|𝜙(𝑝) − 𝜙(𝑞) |

𝛼
< 𝑅

2 , then 𝑑
(𝛼) (𝑝, 𝑞) = |𝜙(𝑝) − 𝜙(𝑞) |

𝛼
.

Proof. We deal with the one-dimensional case first, so we have 𝜙 = 𝜙𝑎 with 𝑎 arrow of𝐺, or 𝜙 = 𝜙𝑎𝑏

with (𝑎, 𝑏) traversal of 𝐺. Let 𝑝 = 𝛽𝐺 (𝑝) and 𝑞 = 𝛽𝐺 (𝑞). As a consequence of Rem. 4.2, we have
one of the following situations (omitting those obtained by swapping the roles of 𝑝 and 𝑞):

1) (𝑎, 𝜙𝑎 (𝑝), 𝜙𝑎 (𝑞)) is a standard step (Def. 4.3) from 𝑝 = 𝜒𝑎 (𝜙𝑎 (𝑝)) to 𝑞 = 𝜒𝑎 (𝜙𝑎 (𝑞)).
2) (𝑏, 𝜙𝑎𝑏 (𝑝), 𝜙𝑎𝑏 (𝑞)) is a standard step from 𝑝 = 𝜒𝑏 (𝜙𝑎𝑏 (𝑝)) to 𝑞 = 𝜒𝑏 (𝜙𝑎𝑏 (𝑞)).
3) (𝑎, ℓ(𝑎) + 𝜙𝑎𝑏 (𝑝), ℓ(𝑎) + 𝜙𝑎𝑏 (𝑞)) is a standard step from 𝑝 = 𝜒𝑎 (ℓ(𝑎) + 𝜙𝑎𝑏 (𝑝)) to 𝑞 =

𝜒𝑎 (ℓ(𝑎) + 𝜙𝑎𝑏 (𝑞)).
4) (𝑎, ℓ(𝑎) + 𝜙𝑎𝑏 (𝑝), ℓ(𝑎)), (𝑏, 0, 𝜙𝑎𝑏 (𝑞)) is an admissible path from 𝑝 = 𝜒𝑎 (ℓ(𝑎) + 𝜙𝑎𝑏 (𝑝)) to

𝑞 = 𝜒𝑏 (𝜙𝑎𝑏 (𝑞)) made of two standard steps.
The paths from 𝑝 to 𝑞 described above are of length |𝜙(𝑝) − 𝜙(𝑞) | < 𝑅

2 , so 𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅
2 (Def. 4.5)

and the steps appearing in them are dashes (Def. 4.7). In particular Lem. 4.10 applies (because
𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅

2 ) and each of these paths is the geodesic from 𝑝 to 𝑞 (according to the case under
consideration), therefore 𝑑 |𝐺 | (𝑝, 𝑞) = |𝜙(𝑝) − 𝜙(𝑞) |. Since 𝑑∥𝐺∥ (𝑝, 𝑞) = 𝑑 |𝐺 | (𝑝, 𝑞) (Def. 4.14) we
have 𝑑∥𝐺∥ (𝑝, 𝑞) = |𝜙(𝑝) − 𝜙(𝑞) |. The higher dimension case immediately follows from Def. 4.17.

Definition 4.22 (Special instance of Def. B.13). Let ( 𝑓1, . . . , 𝑓𝑛) be the standard parallelization of
A𝐺1

× · · · × A𝐺𝑛
(Def. 3.6). The smoothed 𝛼-length of a smooth path 𝛾 : [𝑥, 𝑦] →A𝐺1

× · · · × A𝐺𝑛

is given by

L𝛼 (𝛾) =

∫
𝑦

𝑥

|𝛾′ (𝑡) |
𝛼
𝑑𝑡
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𝑎 𝑏

𝑐 𝑑

𝑣

Neighbourhood of 𝑣

𝑎

𝑐

𝑏

𝑑

(𝑎, 𝑏)

(𝑎, 𝑑)

(𝑐, 𝑏)

(𝑐, 𝑑)

Traversals at 𝑣

(𝑎, 𝑏)(𝑎, 1−𝜀)

(𝑎, 𝑑)

(𝑑, 𝜀)(𝑐, 𝑑)

Path in the atlas topology
(piecewise smooth)

Path in the metric topology
(not in the atlas topology)

Figure 4. Illustration of Ex. 4.23.

with |𝛾′ (𝑡) |
𝛼
= ( |𝑎1 |𝛼 + · · · + |𝑎𝑛 |𝛼)

1
𝛼 and 𝛾′ (𝑡) = 𝑎1 𝑓1(𝛾(𝑡)) + · · · + 𝑎𝑛 𝑓𝑛 (𝛾(𝑡)). The length of a

piecewise smooth path 𝛾1 · · · 𝛾𝑘 isL𝛼 (𝛾1)+ · · · +L𝛼 (𝛾𝑘). We just writeL when𝛼 = 1. The distance
between points 𝑝 and 𝑞 is 𝑑 (𝛼)A (𝑝, 𝑞) = inf{L𝛼 (𝛾) | 𝛾 (piecewise) smooth path from 𝑝 to 𝑞}.

Example 4.23. Let 𝐺 be a graph with (𝑎, 𝑏) and (𝑐, 𝑑) two traversals at 𝑣 with 𝑎, 𝑏, 𝑐, and
𝑑 pairwise distinct. There is a piecewise smooth path on the standard atlas A𝐺 from (𝑎, 𝑏) to
(𝑐, 𝑑) of arbitrarily small length. It suffices to consider the path (𝑎, 𝑏) → (𝑎, 1 − 𝜀) → (𝑎, 𝑑) →
(𝑑, 𝜀) → (𝑐, 𝑑) on Fig. 4 with 𝜀 > 0 arbitrarily small. In particular 𝑑 ((𝑎, 𝑏), (𝑐, 𝑑)) = 0 and the
greatest lower bound defining the distance between (𝑎, 𝑏) and (𝑐, 𝑑) is not reached.

Lemma 4.24. For every smooth path 𝛾 on A𝐺1
× · · · × A𝐺𝑛

we have L𝛼𝛾 = 𝐿𝛼𝛾.

Proof. First observe that 𝛾 is continuous with respect to the topology of A𝐺1
× · · · × A𝐺𝑛

which is
finer than the topology of the pseudometric 𝑑 (𝛼) (Rem. 4.16). Assume that img (𝛾) ⊆ dom (𝜙) for
some standard chart 𝜙, by Rem. 3.10 we have∫

𝑦

𝑥

|𝛾′ (𝑡) |
𝛼
𝑑𝑡 =

∫
𝑦

𝑥

| (𝜙 ◦ 𝛾)′ (𝑡) |
𝛼
𝑑𝑡 . (5)

For a sufficiently fine subdivision 𝑡0< · · · <𝑡𝑘 of dom (𝛾) we have (Prop. 4.21)
𝑘∑︁
𝑖=1

𝑑 (𝛼) (𝛾(𝑡𝑖), 𝛾(𝑡𝑖 − 1)) =

𝑘∑︁
𝑖=1
|𝜙 ◦ 𝛾(𝑡𝑖) − 𝜙 ◦ 𝛾(𝑡𝑖 − 1) |𝛼 . (6)

By a standard result about smooth paths on R𝑛, the sum
∫

𝑦

𝑥
| (𝜙 ◦ 𝛾)′ (𝑡) |

𝛼
𝑑𝑡 (right member of

(5)) is the least upper bound of the sums
∑𝑘

𝑖=1 |𝜙 ◦ 𝛾(𝑡𝑖) − 𝜙 ◦ 𝛾(𝑡𝑖 − 1) |𝛼 (right member of (6)) for
𝑡0< · · · <𝑡𝑘 running through the set of subdivisions of dom (𝛾). The above-mentioned result is
given in (Papadopoulos, 2013, Prop. 1.3.1) for 𝛼 = 2, although the proof is obviously valid for
any 𝛼 ∈ [1,∞]. We no longer assume that dom (𝛾) is contained in the domain of a standard
chart. Since dom (𝛾) is compact and the domains of the standard charts form an open covering of
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∥𝐺1∥ × · · · × ∥𝐺𝑛∥, we have a subdivision 𝑡0< · · · <𝑡𝑘 of dom (𝛾) such that for all 𝑖 ∈ {1, . . . , 𝑘} the
restriction of 𝛾 to [𝑡𝑖, 𝑡𝑖 − 1] is contained in the domain of some standard chart.

We suppose that the graphs 𝐺1, . . . , 𝐺𝑛 in the statements of Lem. 4.25 and Thm. 4.26 are
associated with the sequential processes of some program 𝑃 (Def. 2.2), which means that they all
satisfy the following property: every vertex with at least two outgoing (resp. incoming) arrows has
at least one incoming (resp. outgoing) arrow.

Lemma 4.25. For every piecewise affine map 𝛾 from 𝑝 to 𝑞 on |𝐺1 | × · · · × |𝐺𝑛 | (Def. 4.4) and
every 𝜀 > 0, there exists a piecewise smooth path 𝛿 from 𝑝′ to 𝑞′ on A𝐺1

× · · · × A𝐺𝑛
(Def. A.7)

such that the images of 𝑝 and 𝑞 under 𝛽𝐺1
× · · · × 𝛽𝐺𝑛

are 𝑝′ and 𝑞′, and L𝛼 (𝛿) ⩽ 𝐿𝛼 (𝛾) + 𝜀. If 𝛾 is
directed (Def. 2.11), then we can suppose that L𝛼 (𝛿) = 𝐿𝛼 (𝛾).

Proof. Without loss of generality, we assume that all the steps appearing in 𝛾 are non-constant.
Fix 𝑡0 ∈ dom (𝛾) and choose a compact interval 𝐼, neighborhood of 𝑡0, such that 𝛾(𝐼 \{𝑡0}) does

not contain any vertex.
If 𝛾(𝑡0) is not a vertex, then for every 𝑡 ∈ 𝐼 both |𝐺 | and ∥𝐺∥ contains 𝛾(𝑡), which is the only

element of ∥𝐺∥ satisfying 𝛽𝐺 (𝛾(𝑡)) = 𝛾(𝑡). Hence the mapping 𝛿 : 𝑡 ∈ 𝐼 ↦→ 𝛾(𝑡) ∈ ∥𝐺∥ is smooth
(because it is affine) and satisfies 𝛽𝐺 ◦ 𝛿 = 𝛾 |

𝐼
.

Now suppose that 𝛾(𝑡0) is a vertex. It occurs at the junction between two consecutive steps 𝑠

and 𝑠′ of the piecewise affine path 𝛾. Hence the supports 𝑎 and 𝑎′ of 𝑠 and 𝑠′ are uniquely defined,
and each of the steps 𝑠 and 𝑠′ is either directed or antidirected (Def. 4.3).

If both 𝑠 and 𝑠′ are directed (resp. antidirected.), then tgt 𝑎 = src 𝑎′ (resp. src 𝑎 = tgt 𝑎′). The
mapping 𝛿 : 𝐼→ ∥𝐺∥ sending 𝑡 ≠ 𝑡0 to the unique lifting of 𝛾(𝑡), and 𝑡0 to the traversal (𝑎, 𝑎′) (resp.
(𝑎′, 𝑎)) is piecewise smooth. As before we have 𝛽𝐺 ◦ 𝛿 = 𝛾 |

𝐼
.

If 𝑠 is directed while 𝑠′ is antidirected (the dual case is dealt with in the same way), then we
have tgt 𝑎 = tgt 𝑠 = src 𝑠′ = tgt 𝑎′. If 𝑎 = 𝑎′ then we can shorten both 𝑠 and 𝑠′ so that they no longer
visit tgt 𝑎, this shortens the path 𝛾 without changing its source or its target. If 𝑎 ≠ 𝑎′ then the vertex
tgt 𝑎 has at least two in incoming arrows, and by the assumption made in Def. 2.2, it also has
an outgoing arrow 𝑏. On 𝐼− = 𝐼 ∩ ]−∞, 𝑡0] we define 𝛿1 to be the path sending 𝑡 to 𝛾(𝑡) for 𝑡 ≠ 𝑡0;
and 𝑡0 to (𝑎, 𝑏). We have 𝛽𝐺 ◦ 𝛿1 = 𝛾 |

𝐼−
. On 𝐼+ = 𝐼 ∩ [𝑡0,∞[ we define the path 𝛿3 sending 𝑡 to 𝛾(𝑡)

for 𝑡 ≠ 𝑡0; and 𝑡0 to (𝑎′, 𝑏). We have 𝛽𝐺 ◦ 𝛿3 = 𝛾 |
𝐼+
. The paths 𝛿1 and 𝛿3 are smooth and we have

(𝛽𝐺 ◦ 𝛿1) · (𝛽𝐺 ◦ 𝛿3) = 𝛾 |
𝐼
.

As in Ex. 4.23, we have an arbitrarily short piecewise smooth path 𝛿2 joining the traversals
(𝑏, 𝑎) and (𝑏, 𝑎′) (apart from these traversals, 𝛿2 covers {𝑏} × ]0, 𝜀′/2[ with 𝜀′ being the length
of 𝛿2). A path arising in that context is called a patch.

We have thus one of three situations: i) 𝛾(𝑡0) is not a vertex, ii) 𝛾(𝑡0) is a vertex and 𝑎 and 𝑎′

go in the same direction, and iii) 𝛾(𝑡0) is a vertex and 𝑎 and 𝑎′ go in opposite directions. Note that
if 𝛾 is directed, then the case iii) does not occur. In cases i) and ii) we define 𝛿1 = 𝛿 |

𝐼−
and 𝛿3 = 𝛿 |

𝐼+
,

so the concatenation 𝛿1𝛿3 = 𝛿 makes sense. In case iii) we need a patch 𝛿2 to form the piecewise
smooth concatenation 𝛿1𝛿2(𝛿3 ◦ (𝑡 ∈ 𝐽 ↦→ 𝑡 − 𝜀′ ∈ 𝐼+)) with 𝐽 = 𝐼+ + 𝜀′. Hence we have piecewise
smooth paths 𝛿1, 𝛿2, and 𝛿3 such that

(1) (𝛽𝐺 ◦ 𝛿1) = 𝛾 |
𝐼−

and (𝛽𝐺 ◦ 𝛿3) = 𝛾 |
𝐼+
,

(2) in cases i) and ii), dom (𝛿2) = {𝑡0} and 𝛿 = 𝛿1𝛿3 is piecewise smooth, and
(3) in case iii), L𝛼 (𝛿2) is arbitrarily small and 𝛿 = 𝛿1𝛿2(𝛿3◦ 𝜃)) is piecewise smooth with 𝐽 =

𝐼+ + L𝛼 (𝛿2) and 𝜃 : 𝑡 ∈ 𝐽 ↦→ 𝑡 − L𝛼 (𝛿2) ∈ 𝐼+.

In higher dimensions, we have 𝛾 = 𝛾1 × · · · × 𝛾𝑛. We can choose 𝐼 so that for every 𝑘 ∈ {1, . . . , 𝑛}
the set 𝛾𝑘 (𝐼 \{𝑡0}) does not contain any vertex. By applying the above reasoning for every
𝑘 ∈ {1, . . . , 𝑛} we obtain the piecewise smooth paths 𝛿

(𝑘)
1 , 𝛿 (𝑘)2 , 𝛿 (𝑘)3 satisfying 1), 2), and 3) with
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respect to 𝛾𝑘 . We form the products 𝛿1 = 𝛿
(1)
1 × · · · × 𝛿 (𝑛)1 , 𝛿2 = 𝛿

(1)
2 × · · · × 𝛿 (𝑛)2 , and 𝛿3 = 𝛿

(1)
3 × · · · × 𝛿 (𝑛)3 .

We have (𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) ◦ 𝛿1 = 𝛾 |
𝐼−

and (𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) ◦ 𝛿3 = 𝛾 |
𝐼+

because the equalities hold com-
ponentwise. We have 𝐿𝛼 ((𝛽𝐺1

× · · · × 𝛽𝐺𝑛
) ◦ 𝛿𝑗) = 𝐿𝛼 (𝛿𝑗) =L𝛼 (𝛿𝑗) for 𝑗 ∈ {1, 2, 3} (Rem. 4.19 and

Lem. 4.24). Therefore 𝐿𝛼 (𝛾 |
𝐼
) =L𝛼 (𝛿1) + L𝛼 (𝛿3). If 𝛾 is directed then so are all the paths 𝛾𝑘 , con-

sequently the case iii) does not occur, and we have 𝐿𝛼 (𝛾 |
𝐼
) =L𝛼 (𝛿1𝛿3). Otherwise the case iii) may

occur so we cannot ignore the patch 𝛿2. Yet, in each coordinate, L𝛼 (𝛿 (𝑘)2 ) can be made arbitrarily
small. We choose a domain of definition common to all the patches 𝛿 (𝑘)2 (some of them are ‘useless’
loops if we are not in the case iii) for 𝛾𝑘 at 𝑡0). In particular we have the shift 𝜃 = 𝜃1 × · · · × 𝜃𝑛, and
L𝛼 (𝛿1𝛿2(𝛿3 ◦ 𝜃)) = 𝐿𝛼 (𝛾 |

𝐼
) + L𝛼 (𝛿2) (keeping in mind thatL𝛼 (𝛿3 ◦ 𝜃) =L𝛼 (𝛿3), see Rem. B.7). We

have L𝛼 (𝛿2) ⩽ L(𝛿2) as an immediate consequence of the Jensen inequality (Brokate & Kersting,
2015, 5.7) so making each component 𝛿 (𝑘)2 arbitrarily small guarantees that so is L𝛼 (𝛿2).

Theorem 4.26. Let 𝑝 and 𝑞 be the images under 𝛽𝐺1
× · · · × 𝛽𝐺𝑛

of 𝑝′ and 𝑞′, we have

𝑑 (𝛼) (𝑝, 𝑞) = inf
{
L𝛼 (𝛿)

�� 𝛿 piecewise smooth path from 𝑝′ to 𝑞′
}
.

Proof. We have 𝑑 (𝛼) (𝑝, 𝑞) = inf
{
𝐿𝛼 (𝛾)

�� 𝛾 path from 𝑝 to 𝑞
}

because 𝑑 (𝛼) is intrinsic (Lem. 4.20).
We have 𝐿𝛼 ((𝛽𝐺1

× · · · × 𝛽𝐺𝑛
) ◦ 𝛿) = 𝐿𝛼 (𝛿) =L𝛼 (𝛿) for every piecewise smooth path 𝛿 from 𝑝′ to

𝑞′ (Rem. 4.19 and Lem. 4.24). Therefore 𝑑 (𝛼) (𝑝, 𝑞) is less than the infimum of the values L𝛼 (𝛿);
the converse inequality holds by Lem. 4.25.

5. Local orders
Local orders (§5.2) are based on ordered spaces (§5.1) as atlases on charts; see (Coursolle &
Haucourt, 2024, §3) for a detailed study. They are used in concurrency theory (Fajstrup et al.
(2006)) in a manner similar to that in which ‘finite causal orientations’(3) are used in cosmology
(Segal, 1976, p. 23). The importance of local antisymmetry and corresponding technical difficulties
are coined in (Lawson, 1989, p. 277): «We will be particularly interested in the case that the conal
order is antisymmetric [...] determining whether or not it [the conal order] is antisymmetric can
be quite delicate», see also §5.4.

For every graph 𝐺, we equip the sets |𝐺 | and ∥𝐺∥ (Def. 2.6 and 2.15) with the standard local
orders X𝐺 and X̃𝐺 (Def. 5.11 and 5.15). It follows that the geometric model |𝑃 | of a conservative
program 𝑃 (Def. 2.13) is a tile-compatible sub-local order of the product X𝐺1

× · · · × X𝐺𝑛
, with 𝐺𝑖

denoting the underlying graph of the 𝑖th sequential process of 𝑃 (Def. 2.2). Similarly, the smooth
model of 𝑃 (Def. 2.22) induces a sub-local order ∥𝑃∥ of the product X̃𝐺1

× · · · × X̃𝐺𝑛
.

On the one hand, the product of blowups 𝛽𝐺1
× · · · × 𝛽𝐺1 : ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ → |𝐺1 | × · · · × |𝐺𝑛 |

(Def. 2.15) induces a euclidean local embedding (Def. 5.6) from X̃𝐺1
× · · · × X̃𝐺𝑛

toX𝐺1
× · · · × X𝐺𝑛

which is universal (Thm. 5.33). On the other hand, Lawson’s correspondence (Thm. 5.41) relates
X̃𝐺1

× · · · × X̃𝐺𝑛
to the standard parallelized atlas (A𝐺1

× · · · × A𝐺𝑛
, ( 𝑓1, . . . , 𝑓𝑛)) (Def. 3.3 and 3.6).

What makes |𝑃 | relevant to concurrency theory is the relation between the execution traces of
𝑃 (Def. 2.3) and the directed paths on |𝑃 | (Def. 5.7):

(1) We can always assume that an execution trace 𝑝0, . . . , 𝑝𝑘 of 𝑃 is contained in its discrete
model J𝑃K

𝑑
(Def. 2.5 (2)).

(2) By ‘joining’ the middles of the tiles 𝜏0, . . . , 𝜏𝑘 corresponding to 𝑝0, . . . , 𝑝𝑘 (Def. 2.11) we
obtain 𝛾 a piecewise linear lifting of 𝑝0, . . . , 𝑝𝑘 on |𝑃 | (Haucourt, 2018, Def. 6.2).

(3)In this article ‘finite causal orientations’ would be called ‘local preorders’.
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This relation extends to the directed paths on ∥𝑃∥ (i.e. the piecewise smooth maps 𝜎 from some
compact interval to A𝐺1

× · · · × A𝐺𝑛
with values in ∥𝑃∥, and whose derivative at every 𝑡 has

non-negative coordinates in the basis ( 𝑓1 ◦ 𝜎(𝑡), . . . , 𝑓𝑛 ◦ 𝜎(𝑡))):

(3) The directed path 𝛾 from (2) is lifted along 𝛽𝐺1
× · · · × 𝛽𝐺1 to 𝛾̃ a piecewise linear directed

path on X̃𝐺1
× · · · × X̃𝐺𝑛

(Thm. 5.29); in particular img (𝛾̃) ⊆ ∥𝑃∥.
(4) By the Lawson’s correspondence (Thm. 5.41), the path 𝛾̃ is directed on the standard

parallelized atlas (A𝐺1
× · · · × A𝐺𝑛

, ( 𝑓1, . . . , 𝑓𝑛)).

To sum up, every execution trace of a conservative program 𝑃 is represented by a piecewise
linear (therefore piecewise smooth) directed path on (A𝐺1

× · · · × A𝐺𝑛
, ( 𝑓1, . . . , 𝑓𝑛)) whose image

is included in the smooth model of 𝑃.

5.1 Ordered spaces and pospaces
An ordered space is a topological space 𝑋 together with a partial order ⩽ on its underlying set
|𝑋 |; the partial order ⩽ is said to be closed when so is the subset {(𝑎, 𝑏) ∈ 𝑋 × 𝑋 | 𝑎 ⩽ 𝑏} of the
product space 𝑋 × 𝑋 . A chain of (𝑋, ⩽) is a totally ordered subposet of (𝑋, ⩽), it is said to be
unbounded when it has neither greatest nor least element. A Nachbin ordered space, or pospace,
is a topological space with a closed partial order on it; the closedness condition follows (Nachbin,
1965, p. 25) although the term ‘pospace’ appeared later (Gierz et al., 1980, VI-1.1, p. 271-272).
The real line R with its standard topology and order is a prototypical example of a pospace. A
pospace 𝑋 ′ such that |𝑋 ′ | ⊆ |𝑋 | is said to be a subpospace of 𝑋 when 𝑋 ′ is both a subspace and a
subposet of 𝑋, i.e.

– the open subsets of 𝑋 ′ are the restrictions to 𝑋 ′ of the open subsets of 𝑋, and
– the partial order of 𝑋 ′ is the restriction to 𝑋 ′ of the partial order of 𝑋.

Every subset of |𝑋 | induces a subpospace of 𝑋. If this subset is open in 𝑋, then the subpospace
is said to be open. A subset 𝐶 of a poset (𝑋, ⩽) is said to be order convex when for all 𝑎, 𝑏 ∈𝐶,
we have {𝑥 ∈ 𝑋 | 𝑎 ⩽ 𝑥 ⩽ 𝑏} ⊆ 𝐶. A pospace (𝑋, ⩽) is said to be locally order convex when its
underlying topology has a basis of order convex open subset, see (Nachbin, 1965, p.26), or (Gierz
et al., 1980, VI-1.5, p. 273).

A morphism of ordered spaces is an order preserving continuous map. An isomorphism of
ordered spaces is called a dihomeomorphism. The product of two ordered spaces 𝑋 and 𝑌 is the
product of their topological spaces together with the product order; if 𝑋 and 𝑌 are pospaces, then
so is their product.

An embedding of ordered spaces is a morphism of ordered spaces that induces a dihomeomor-
phism on its image.

Definition 5.1. The left action of the 𝑛th symmetric group 𝔖𝑛 on 𝑛-tuples is defined by

𝜎 · (𝑡1, . . . , 𝑡𝑛) = (𝑡𝜎−11, . . . , 𝑡𝜎−1𝑛) .
By extension, for every 𝑛-tuple of sets (𝐴1, . . . , 𝐴𝑛), we define the set 𝜎 · (𝐴1 × · · · × 𝐴𝑛) as the
product 𝐴𝜎−11 × . . . × 𝐴𝜎−1𝑛 and the map 𝜋𝜎 : 𝐴1 × · · · × 𝐴𝑛→ 𝜎 · (𝐴1 × · · · × 𝐴𝑛) by 𝜋𝜎 (𝑡) =
𝜎 · 𝑡. In particular, for every 𝑛-tuple of mappings ( 𝑓1, . . . , 𝑓𝑛) we have

𝜋𝜎 ◦ ( 𝑓1 × · · · × 𝑓𝑛) = ( 𝑓𝜎−11 × · · · × 𝑓𝜎−1𝑛) ◦ 𝜋𝜎 (7)

taking care that 𝜋𝜎 on the right hand side of (7) permutes the domains of the mappings 𝑓𝑘 while
𝜋𝜎 on the left hand side permutes their codomains.
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The next result is an immediate consequence of the second point of (Schröder, 2003, 10.4.10),
which is about (possibly infinite) products of posets.

Lemma 5.2. Every poset automorphism of R𝑛 can be written as (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 with 𝜎 ∈𝔖𝑛

and 𝑥𝑘 ∈Aut(R) for 𝑘 ∈ {1, . . . , 𝑛}.

Remark 5.3. The groups (Aut R)𝑛 and 𝔖𝑛 are canonically identified with the subgroups 𝐴 =

{𝑥1 × · · · × 𝑥𝑛 | 𝑥𝑘 ∈Aut R; 𝑘 ∈ {1, . . . , 𝑛}} and 𝐵 = {𝜋𝜎 | 𝜎 ∈𝔖𝑛} of Aut(R𝑛). Lem. 5.2 exactly
states that 𝐴 ◦ 𝐵 =Aut(R𝑛) and it is clear that 𝐴 ∩ 𝐵 = {idR𝑛}. We deduce from (7) and (Grillet,
2007, Prop. 4.5, p. 19) that the subgroup 𝐴 is normal. Hence Aut(R𝑛) is the semidirect product
(Aut R)𝑛 ⋊𝔖𝑛 (Grillet, 2007, Prop. 11.2, p. 93); so the decomposition given by Lem. 5.2 is unique.

The binary greatest lower bound operator in R𝑛 is denoted by ∧ and its dual by ∨. For every 𝑖 ∈
{1, . . . , 𝑛} the map pr

𝑖
: R𝑛→ R is the 𝑖th projection. For every 𝑥 ∈ R𝑛 we set ↓ 𝑥 = {𝑦 ∈ R𝑛 | 𝑦 ⩽ 𝑥}

and ↑ 𝑥 = {𝑦 ∈ R𝑛 | 𝑥 ⩽ 𝑦} with ⩽ the usual product order on R𝑛.

Definition 5.4. A map 𝑓 : 𝑋→𝑌 between topological spaces 𝑋 and𝑌 is said to be open when 𝑓 (𝑈)
is open in𝑌 for every𝑈 open in 𝑋; an embedding (of 𝑋 into𝑌 ) when it induces a homeomorphism
onto its image; a local embedding when for every 𝑥 ∈ 𝑋 , it induces an embedding of some open
neighborhood 𝑈 of 𝑥 into 𝑌 ; a local homeomorphism when it is an open local embedding.

Lemma 5.5. A pospace embedding 𝜃 : R𝑛→ R𝑛 preserves existing least upper bounds (resp.
greatest lower bounds) and its image is a set product of open intervals of R.

Proof. The map 𝜃 is open (Def. 5.4) by invariance of domain (Hatcher, 2002, Thm. 2B.3, p.172).
Moreover, for every 𝑡 ∈ R𝑛 we have a tuple (𝐽1, . . . , 𝐽𝑛) of open intervals of R such that 𝜃 (𝑡) ∈
𝐽1 × · · · × 𝐽𝑛 ⊆ img (𝜃). Given 𝑢 ∈ R𝑛 such that 𝜃 (𝑡) < 𝑢 we have 𝑥 ∈ 𝐽1 × · · · × 𝐽𝑛 such that 𝜃 (𝑡) <
𝑥 < 𝑢 (by definition of the product order on R𝑛). Since 𝑥 ∈ 𝐽1 × · · · × 𝐽𝑛 ⊆ img (𝜃) and 𝜃 is an
embedding, we have 𝑡 < 𝜃−1(𝑥). We have proven that:

for every 𝑡, 𝑢 ∈ R𝑛 such that 𝜃 (𝑡) < 𝑢, there exists 𝑡′ > 𝑡 such that 𝜃 (𝑡) < 𝜃 (𝑡′) < 𝑢 . (8)
The dual statement (obtained by exchanging the roles of < and >) is also valid, for similar reasons.

Let F be a subset of R𝑛 with a least upper bound. Then 𝜃 (sup F ) is an upper bound of 𝜃 (F )
because 𝜃 is order-preserving, so 𝜃 (F ) has a least upper bound and we have 𝜃 (sup F ) ⩾ sup 𝜃 (F ).
Suppose that 𝜃 (sup F ) ≠ sup 𝜃 (F ). By applying the dual of (8) we have 𝑡 < sup F such that
𝜃 (sup F ) > 𝜃 (𝑡) > sup 𝜃 (F ). From the latter inequalities and the fact that 𝜃 is a pospace embedding,
we deduce that 𝑡 is an upper bound of F , which contradicts the fact that 𝑡 < sup F . Similarly, we
prove that 𝜃 preserves existing greatest lower bounds.

For every 𝑘 ∈ {1, . . . , 𝑛}, let 𝜃𝑘 = pr
𝑘
◦ 𝜃 and 𝐼𝑘 = img (𝜃𝑘). Each 𝜃𝑘 is thus an open continuous

map as a composite of such maps, hence each 𝐼𝑘 is an open interval. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈
𝐼1 × · · · × 𝐼𝑛 and F = 𝜃−1(↓𝑥). For every 𝑘 ∈ {1, . . . , 𝑛} there exists 𝑡 (𝑘) ∈ R𝑛 such that 𝜃𝑘 (𝑡 (𝑘)) = 𝑥𝑘 ,
from which we deduce that{

𝜃𝑘 (𝑡 (1) ∧ · · · ∧ 𝑡 (𝑛)) ⩽ 𝜃𝑘 (𝑡 (1)) ∧ · · · ∧ 𝜃𝑘 (𝑡 (𝑛)) ⩽ 𝑥𝑘

𝜃𝑘 (𝑡 (1) ∨ · · · ∨ 𝑡 (𝑛)) ⩾ 𝜃𝑘 (𝑡 (1)) ∨ · · · ∨ 𝜃𝑘 (𝑡 (𝑛)) ⩾ 𝑥𝑘

It follows that 𝑡 (1) ∨ · · · ∨ 𝑡 (𝑛) is an upper bound of F which is nonempty because it contains
𝑡 (1) ∧ · · · ∧ 𝑡 (𝑛); therefore sup F exists. By definition ofF we have 𝜃 (F ) ⊆ ↓ 𝑥, hence sup(𝜃 (F )) ⩽ 𝑥.
We deduce that 𝜃 (sup F ) ⩽ 𝑥 because (we have already proven that) 𝜃 (sup(F )) = sup(𝜃 (F )).
Suppose that 𝜃 (sup(F )) ≠ 𝑥. By applying (8) we have 𝑡 > sup F such that 𝜃 (sup(F )) < 𝜃 (𝑡) < 𝑥.
From the latter inequalities and the fact that 𝜃 is a pospace embedding, we deduce that 𝑡 belongs
to 𝜃−1(↓ 𝑥) = F , which contradicts the fact that 𝑡 > sup F .
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5.2 Local orders
A witness of compatibility of the ordered spaces 𝑋 and 𝑋 ′ around 𝑝 ∈ 𝑋 ∩ 𝑋 ′ is a set𝑊 containing
𝑝 that is open in both 𝑋 and 𝑋 ′, and on which both 𝑋 and 𝑋 ′ induce the same ordered space. We
say that 𝑋 and 𝑋 ′ are compatible around the point 𝑝, which we denote by 𝑋∼𝑝 𝑋 ′, when 𝑝 ∉ 𝑋 ∩ 𝑋 ′

or such a witness exists. We say that 𝑋 and 𝑋 ′ are compatible when they are so around every point,
in that case we write 𝑋 ∼ 𝑋 ′.

A local order (resp. Nachbin local order) X is a collection of pairwise compatible ordered
spaces (resp. pospaces); its underlying set |X| is the union of the underlying sets of the elements
of X. A local order X is said to be euclidean of dimension 𝑛 when for every 𝑝 ∈ |X| there exists
𝑋 ∈ X in which 𝑝 has a neighbourhood that is dihomeomorphic to R𝑛. The canonical local order
induced by an ordered space 𝑋 is the one element set {𝑋}.

Definition 5.6. A morphism (resp. local embedding) of local orders from X to Y is a mapping
𝑓 : |X| → |Y| such that for every 𝑝 ∈ |X|, every 𝑌 ∈ Y and every open subset 𝑉 of 𝑌 containing
𝑓 (𝑝), there exists 𝑋 ∈ X and an open subset 𝑈 of 𝑋 containing 𝑝 such that 𝑓 (𝑈) ⊆ 𝑉 , and
the restriction 𝑓 |

𝑈
:𝑈→𝑉 is order preserving, i.e. for all 𝑎, 𝑏 ∈𝑈, 𝑎 ⊑𝑋 𝑏 ⇒ 𝑓 𝑎 ⊑𝑌 𝑓 𝑏 (resp.

𝑓 |
𝑈

:𝑈→𝑉 is an embedding). We say that 𝑓 is euclidean of dimension 𝑛 ∈ N when so is X. A
local dihomeomorphism is an open local embedding. Given 𝑋 ∈ X, the inclusion |𝑋 | ⊆ |X| induces
a local dihomeomorphism {𝑋} ↩→X. Local orders and their morphisms form the category L.

The cartesian product of X and Y in L is the local order

X×Y =
{
𝑋 ×𝑌

�� 𝑋 ∈ X ; 𝑌 ∈ Y
}
.

The topology (on the underlying set) of the local order X is generated by the subsets 𝑈 that are
open in some ordered space of the collection X. The category of topological spaces is denoted by
Top, the forgetful functor Sp : L→Top sends every local order to its underlying topological space.

Two local orders X and Y are said to be equivalent, which we denote by X∼Y, when they
have the same underlying set 𝑆 and the identity map id𝑆 induces an isomorphism between them.
Assuming that X and Y have the same underlying set, we have X∼Y if, and only if, the union
X∪Y is still a local order, which amounts to say that every 𝑋 ∈ X is compatible with every 𝑌 ∈ Y
(Coursolle & Haucourt, 2024, Prop. 3.25).

Definition 5.7. A directed path on X is a local order morphism from {[𝑎, 𝑏]} to X, with 𝑎 ⩽ 𝑏.

Standard local orders. The sets |𝐺 | and ∥𝐺∥ respectively come with the standard local orders X𝐺

and X̃𝐺 which we describe in this section.

Definition 5.8. For every vertex 𝑣, we define 𝑈𝑣 as the canonical star centered at 𝑣 (Def. 2.7), i.e.

𝑈𝑣 =
⋃

tgt 𝑎=𝑣
{𝑎} × 𝐽𝑎 ∪ {𝑣} ∪

⋃
src 𝑏=𝑣

{𝑏} × 𝐼𝑏 (9)

with the intervals 𝐽𝑎 = ] ℓ (𝑎)2 , ℓ(𝑎) [ and 𝐼𝑏 = ]0, ℓ (𝑏)2 [ (as in (2) p. 11). The set 𝑈𝑣 is provided with
the greatest topology and the least partial order ⊑𝑣 making the maps

𝛾𝑎 : 𝑡 ∈ −𝐼𝑎 ∪ {0} ↦→

(𝑎, 𝑡 + ℓ(𝑎)) if 𝑡 ≠ 0

𝑣 if 𝑡 = 0
∈ 𝑈𝑣

𝛿𝑏 : 𝑡 ∈ {0} ∪ 𝐼𝑏 ↦→

(𝑏, 𝑡) if 𝑡 ≠ 0

𝑣 if 𝑡 = 0
∈ 𝑈𝑣
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continuous and order-preserving for all arrows 𝑎 such that tgt(𝑎) = 𝑣 and all arrows 𝑏 such that
src(𝑏) = 𝑣. In particular, the maps 𝛾𝑎 and 𝛿𝑏 are pospace embeddings. Note that for every traversal
(𝑎, 𝑏) at 𝑣 the union of the mappings 𝛾𝑎 and 𝛿𝑏 is the pospace embedding

𝜉𝑎𝑏 : 𝑡 ∈ −𝐼𝑎 ∪ {0} ∪ 𝐼𝑏 ↦→


(𝑎, 𝑡 + ℓ(𝑎)) if 𝑡 < 0

𝑣 if 𝑡 = 0

(𝑏, 𝑡) if 𝑡 > 0

∈ 𝑈𝑣 . (10)

The set 𝑈𝑣 comes with the map 𝜏𝑣 :𝑈𝑣→ R defined by 𝜏𝑣 (𝑣) = 0, and

𝜏𝑣 (𝑥, 𝑡) =


𝑡 − ℓ(𝑥) if 𝑡 ∈ 𝐽𝑥

𝑡 if 𝑡 ∈ 𝐼𝑥
.

We observe that 𝜏𝑣 (𝑝) ⩽ 0 (resp. ⩾ 0) iff 𝑝 ⊑𝑣 𝑣 (resp. 𝑣 ⊑𝑣 𝑝), and that 𝜏𝑣 induces poset isomor-
phisms from {𝑎} × 𝐼𝑎 (resp. {𝑎} × 𝐽𝑎) to dom (𝛿𝑎) \ {0} (resp. dom (𝛾𝑎) \ {0}). It follows that for
every 𝑝, 𝑞 ∈𝑈𝑣, we have 𝑝 ⊑𝑣𝑞 if, and only if (with the map 𝜋𝐺 from Def. 2.6)

𝜏𝑣 𝑝 ⩽ 0 ⩽ 𝜏𝑣𝑞 or 𝜋𝐺 𝑝 = 𝜋𝐺𝑞 and 𝜏𝑣 𝑝 ⩽ 𝜏𝑣𝑞 . (11)
In the first case 𝑝 is before 𝑣 while 𝑞 is after 𝑣. In the second one, we have 𝑝 = 𝑞 = 𝑣, or both 𝑝

and 𝑞 belong to {𝑎} × 𝐼𝑎 or {𝑎} × 𝐽𝑎 with 𝑎 = 𝜋𝐺 𝑝. The relation ⊑𝑣 is a closed partial order on 𝑈𝑣

(closedness of this partial order is proven from an easy – but tedious – case disjunction readily
obtained from the negation of the formula (11)). The standard pospace at 𝑣 is (𝑈𝑣, ⊑𝑣).

Remark 5.9. The stars centered at a vertex (Def. 2.7) and the sets of the form {𝑎} × ]𝑡 − 𝜀, 𝑡 + 𝜀[
are order convex in (𝑈𝑣, ⊑𝑣), which is thus locally order convex (p. 21) by Rem. 2.9.

Lemma 5.10. The collection of pospaces (𝑈𝑣, ⊑𝑣) and {𝑎} × ]0, ℓ(𝑎) [ (equipped with the obvious
pospace structure) with 𝑣 ∈𝐺 (0) and 𝑎 ∈𝐺 (1) is a local order whose underlying set is |𝐺 |.

Proof. Every vertex and every middle point (𝑎, ℓ(𝑎)/2) belongs to a single element of the col-
lection. Every point (𝑎, 𝑡) with 𝑡 ≠ ℓ(𝑎)/2 only belongs to {𝑎} × ]0, ℓ(𝑎) [ and 𝑈𝑣 with 𝑣 = src(𝑎)
or 𝑣 = tgt(𝑎) depending on whether 𝑡 < ℓ(𝑎)/2 or 𝑡 > ℓ(𝑎)/2. Hence the (nontrivial) witnesses of
compatibility are the open sets {𝑎} × ]0, ℓ(𝑎)/2[ and {𝑎} × ]ℓ(𝑎)/2, ℓ(𝑎) [.

Definition 5.11. (Haucourt, 2018, §6.1). The standard local order on |𝐺 | (resp. |𝐺1 | × · · · × |𝐺𝑛 |)
is the collection X𝐺 described in Lem. 5.10 (resp. the product X𝐺1

× · · · × X𝐺𝑛
of such collections).

Remark 5.12. The notion of a directed path on |𝐺1 | × · · · × |𝐺𝑛 | (Def. 2.11), and that of a directed
path on X𝐺1

× · · · × X𝐺𝑛
(Def. 5.7), are equivalent – see (Haucourt, 2012, §6.2).

Remark 5.13. Every open ball 𝐵 of |𝐺1 | × · · · × |𝐺𝑛 | equipped with the 𝑑 (∞) metrics (Def. 4.17) is
a product 𝐵1 × · · · × 𝐵𝑛 of open balls 𝐵𝑖 ⊆ |𝐺𝑖 | for 𝑖 ∈ {1, . . . , 𝑛}. If 𝑟 ⩽ 𝑅

4 with 𝑟 the radius of 𝐵,
then we have 𝑋 ∈ X𝐺1

× · · · × X𝐺𝑛
such that 𝐵 ⊆ 𝑋 . Indeed, for each 𝑖 ∈ {1, . . . , 𝑛}, if 𝐵𝑖 contains

the vertex 𝑣𝑖, then it is included in the standard pospace at 𝑣𝑖 (Def. 5.8 and Prop. B.22), otherwise
𝐵𝑖 ⊆ {𝑎𝑖} × ]0, ℓ(𝑎𝑖) [ for some arrow 𝑎𝑖 of 𝐺𝑖.

For our purpose, the only relevant local order on |𝐺 | is the standard one (Def. 5.11); the case of
∥𝐺∥ is a little subtler because the properties of the local order morphism induced by the blowup
𝛽𝐺 : ∥𝐺∥ → |𝐺 | (Def. 2.15) strongly depend on the local order on ∥𝐺∥.
Remark 5.14. A directed path 𝛾 (Def. 5.7) is a local embedding (in the sense of Def. 5.6) if,
and only if, the path Sp(𝛾) (p. 23) is a local embedding (in the sense of Def. 5.4); moreover it is
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euclidean. In particular, if 𝑗 : [0, 1] → dom (𝛾) is an increasing map such that 𝛾 ◦ 𝑗 is an arc (such
a 𝑗 exists by Lem. B.2), then 𝛾 ◦ 𝑗 is a local embedding.

The standard charts 𝜙𝑎 and 𝜙𝑎𝑏 (Def. 3.1) with 𝑎 and (𝑎, 𝑏) arrows and traversals, are bijections
towards open subintervals of R. Their domains, namely dom 𝜙𝑎 and dom 𝜙𝑎𝑏, are equipped with the
pospace structures so that 𝜙𝑎 and 𝜙𝑎𝑏 become dihomeomorphisms. All these pospaces are locally
order convex (p. 21) because so are the open intervals of R.

Definition 5.15. The collection of pospaces dom 𝜙𝑎 and dom 𝜙𝑎𝑏 (Def. 3.1), denoted by X̃𝐺 , forms
the standard local order on ∥𝐺∥; the witnesses of compatibility are of the form {𝑎} × 𝐽𝑎 and {𝑏} × 𝐼𝑏
with 𝑎, 𝑏 arrows of 𝐺. The standard local order on the set ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is X̃𝐺1

× · · · × X̃𝐺𝑛
.

Remark 5.16. Given a traversal (𝑎, 𝑏) at 𝑣, 𝜀 ∈ ]0, ℓ(𝑎) [, and 𝜀′ ∈ ]0, ℓ(𝑏) [, the blowup 𝛽𝐺 induces
the canonical pospace isomorphism

{𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {(𝑎, 𝑏)} ∪ {𝑏} × ]0, 𝜀′ [

{𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} ∪ {𝑏} × ]0, 𝜀′ [

�

hence a pospace embedding from dom 𝜙𝑎𝑏 to (𝑈𝑣, ⊑𝑣) (Def. 3.1 and 5.8). The domains of these
embeddings together with the sets {𝑎} × 𝐼 with 𝐼 an open interval of ]0, ℓ(𝑎) [ form a base of the
topology of X̃𝐺 , so 𝛽𝐺 induces a euclidean local embedding of X̃𝐺 into X𝐺 (Def. 5.6).

Definition 5.17. For every vertex 𝑣 ∈ ∥𝐺∥, the standard partial order ⩽𝑣 on 𝛽𝐺
−1𝑈𝑣 is the one such

that 𝑥 ⩽𝑣 𝑦 if, and only if, 𝜙𝑎𝑏 (𝑥) ⩽ 𝜙𝑎𝑏 (𝑦) for some traversal (𝑎, 𝑏) at 𝑣.

Remark 5.18. Given a vertex 𝑣 ∈ ∥𝐺∥, the collection of sets dom (𝜙𝑎𝑏) for (𝑎, 𝑏) traversal at 𝑣 form
an open covering of 𝛽𝐺

−1𝑈𝑣 so the inclusion of dom (𝜙𝑎𝑏) into (𝛽𝐺
−1𝑈𝑣, ⩽𝑣) is an open embedding

of ordered spaces for every traversal (𝑎, 𝑏) at 𝑣. Moreover the map 𝛽𝐺 induces a euclidean local
embedding (Def. 5.6) of {(𝛽𝐺

−1𝑈𝑣, ⩽𝑣)} into {(𝑈𝑣, ⊑𝑣)} (Def. 5.8).

If the graph 𝐺 contains a singular traversal (𝑎, 𝑏) (Def. 2.14), then 𝛽𝐺 : X̃𝐺→X𝐺 is not open
because, for 𝜀 > 0 sufficiently small, 𝛽𝐺 (𝜙𝑎𝑏

−1(]−𝜀, 𝜀[)) is not open (Def. 3.1). However, we observe
that for every traversal 𝜏 at a vertex 𝑣, the blowup 𝛽𝐺 induces a bijection from (𝑈𝑣 \ {𝑣}) ∪ {𝜏} to
𝑈𝑣; we have an analog of Lem. 5.10:

Lemma 5.19. The collection of subspaces (𝑈𝑣 \ {𝑣}) ∪ {𝜏} equipped with the partial orders
induced by (𝛽𝐺 × 𝛽𝐺)−1(⊑𝑣) with 𝜏 a traversal at 𝑣, and (𝑈𝑣, ⊑𝑣) given by Def. 5.8, along with the
subspaces {𝑎} × ]0, ℓ(𝑎) [ equipped with the obvious total orders, is a local order on ∥𝐺∥.

Proof. Given two traversals 𝜏 and 𝜏′ at vertices 𝑣 and 𝑣′, the intersection of 𝑉 = (𝑈𝑣 \ {𝑣}) ∪ {𝜏}
and 𝑉 ′ = (𝑈𝑣′ \ {𝑣′}) ∪ {𝜏′} is nonempty iff 𝑣 = 𝑣′. So the partial orders of 𝑉 and 𝑉 ′ coincide
because they are induced by ⊑𝑣 and ⊑𝑣′ . The rest of the proof follows the one of Lem. 5.10.

Definition 5.20. The étale local order on ∥𝐺∥ is the collection described in Lem. 5.19, we denote
it by E𝐺 . The underlying topology of E𝐺 is called the étale topology on ∥𝐺∥, it is generated by the
subsets {𝑎} × ]𝑡 − 𝜀, 𝑡 + 𝜀[ and (𝑆𝑣 \ {𝑣}) ∪ {𝜏}with 𝑎 ∈𝐺 (1), 0 < 𝜀 < min{𝑡, ℓ(𝑎) − 𝑡}, 𝜏 a traversal
at 𝑣 ∈𝐺 (0), and 𝑆𝑣 a star centered at 𝑣 (Def. 2.7). The blowup 𝛽𝐺 induces a local dihomeomorphism
𝑒𝐺 : E𝐺→X𝐺 which is not euclidean (Def. 5.6).
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Remark 5.21. The relation between local homeomorphisms and sheaves is explained in (Mac
Lane & Moerdijk, 1994, Thm. 2, p. 89). A section of the local homeomorphism Sp(𝑒𝐺) on an open
subset 𝑈 of Sp(X𝐺) is a continuous map 𝑠 :𝑈→ Sp(E𝐺) such that Sp(𝑒𝐺) |𝑈 ◦ 𝑠 = id𝑈; the map 𝑠 is
entirely determined by 𝑈 and a function 𝜙 which ‘chooses’ a traversal at 𝑣 for every vertex 𝑣 ∈𝑈
(if 𝑈 contains no vertex, then 𝜙 is the empty map ∅→ ∅). The sheaf 𝐹 associated with 𝑒𝐺 assigns
the set of sections of 𝑒𝐺 on 𝑈 to every open subset 𝑈 of Sp(X𝐺), i.e.

𝐹 (𝑈) =
∏

𝑣∈𝑈∩𝐺 (0)
{𝜏 traversal of 𝐺 at 𝑣}.

If we equip the underlying set of 𝐺 with the topology generated by the sets {𝑎} for 𝑎 arrow of 𝐺,
and {𝑣} ∪ src−1{𝑣} ∪ tgt−1{𝑣} for 𝑣 vertex of 𝐺 (which is an Alexandrov discrete topology (Arenas
(1999))), then 𝜋𝐺 : |𝐺 | →𝐺 (Def. 2.6) induces an open continuous map. One defines a sheaf 𝐹̃ on
the Alexandrov discrete space 𝐺 by setting

𝐹̃ (𝐴) =
∏

𝑣∈𝐴∩𝐺 (0)
{𝜏 traversal of 𝐺 at 𝑣}

for every open subset 𝐴 of 𝐺, so we have 𝐹 (𝑈) = 𝐹̃ (𝜋𝐺 (𝑈)) for every open subset 𝑈 of Sp(X𝐺).

Remark 5.22. Denote H ⊆ Top (p. 23) the full subcategory of Hausdorff spaces. Denote by
𝐻 : Top→H and ℎ : idTop→ 𝐼𝐻 the left adjoint to the inclusion functor 𝐼 : H ↩→Top and its unit.
Given a topological space 𝑋 , the Hausdorff space 𝐻 (𝑋) is the quotient of 𝑋 by the smallest
equivalence relation ∼ such that {(𝑥, 𝑦) ∈ 𝑋 × 𝑋 | 𝑥 ∼ 𝑦} is closed in 𝑋 × 𝑋 , and ℎ𝑋 is the associated
quotient map; the latter should be understood as ‘the best Hausdorff approximation under 𝑋’.
Assume that 𝑋 is the underlying topological space of X̃𝐺 (resp. E𝐺). By Def. 5.15 (resp. 5.20), for
all 𝑥, 𝑥′ ∈ 𝑋 with 𝑥 ≠ 𝑥′, we have 𝑥 ∼ 𝑥′ if, and only if, 𝑥 and 𝑥′ are traversals at the same vertex of
𝐺. Hence the corestriction of 𝛽𝐺 to its image (Rem. 2.16) is the quotient map related to ∼, i.e. the
underlying map of ℎ𝑋 (see Fig. 3).

5.3 The lifting properties of blowups
Lifting directed paths. Every directed path on the image of 𝛽𝐺 can be lifted along it (Thm. 5.29).
Nevertheless, such liftings may not be unique when the starting or the finishing point is a vertex.
We begin with a simple yet useful observation:

Remark 5.23. Given a vertex 𝑣 we have 𝑥 ⊑𝑣𝑣 or 𝑣 ⊑𝑣 𝑥 for every 𝑥 ∈𝑈𝑣 (Def. 5.8). Let 𝐶 be a
chain of 𝑈𝑣 containing at least two elements. If 𝑣 is an upper bound of 𝐶, then we have a unique
arrow 𝑎 of 𝐺 such that 𝐶 \ {𝑣} ⊆ {𝑎} × 𝐽𝑎 (Def. 5.8). Moreover tgt 𝑎 = 𝑣. Similarly, if 𝑣 is a lower
bound of 𝐶, then we have a unique arrow 𝑏 of 𝐺 such that 𝐶 \ {𝑣} ⊆ {𝑏} × 𝐼𝑏 (Def. 5.8). Moreover
src 𝑏 = 𝑣. If 𝑣 is neither a lower nor an upper bound of 𝐶, then 𝑣 is both an upper bound of ↓𝑣 ∩𝐶,
and a lower bound of ↑𝑣 ∩𝐶. Therefore we have a unique traversal (𝑎, 𝑏) of 𝐺 at 𝑣 such that 𝐶 is
entirely contained in the image of 𝜉𝑎𝑏 (Def. 5.8 (10)). In addition, if 𝐶 is unbounded and connected
(as a subset of 𝑈𝑣 which carries a topology), then it is isomorphic to the pospace R.

Given a path 𝛾 and 𝑡 ∈ dom 𝛾, we say that 𝛾 is constant before (resp. after) 𝑡 when 𝛾(𝑠) = 𝛾(𝑡)
for every 𝑠 ∈ dom (𝛾) such that 𝑠 ⩽ 𝑡 (resp. 𝑡 ⩽ 𝑠).

Lemma 5.24. Let 𝛾 be a directed path on X𝐺 (Def. 5.7 and 5.11) and 𝑡 ∈ dom 𝛾 such that 𝛾(𝑡)
is a vertex 𝑣. Suppose that [𝑡′, 𝑡′′] is the connected component of 𝛾−1{𝑣} containing 𝑡. If 𝛾 is not
constant before 𝑡 (i.e. 𝑡′ is not the least element of dom 𝛾) then we have a unique arrow 𝑎 such that for
every 𝜀 ∈ ]0, ℓ(𝑎) [ there exists 𝑠 ∈ dom 𝛾 such that 𝑠 < 𝑡′ and 𝛾 [𝑠, 𝑡] \ {𝑣} ⊆ {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [.
Moreover tgt 𝑎 = 𝑣. Similarly, if 𝛾 is not constant after 𝑡 (i.e. 𝑡′′ is not the greatest element of dom 𝛾)
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then we have a unique arrow 𝑏 such that for every 𝜀 ∈ ]0, ℓ(𝑏) [ there exists 𝑠 ∈ dom 𝛾 such that
𝑡′′ < 𝑠 and 𝛾 [𝑡, 𝑠] \ {𝑣} ⊆ {𝑏} × ]0, 𝜀[. Moreover src 𝑏 = 𝑣.

Proof. We have an open interval 𝐼 ′ containing 𝑡′ such that 𝛾 induces a pospace morphism from
𝐼 ′ to 𝑈𝑣 because 𝛾 is a local order morphism. Let 𝐼 = {𝑠 ∈ 𝐼 ′ |𝑠 ⩽ 𝑡} so 𝑣 is an upper bound of the
chain 𝛾(𝐼) of 𝑈𝑣. We readily deduce from the definition of 𝑡′ that 𝛾(𝐼) is not reduced to {𝑣}, so
Rem. 5.23 applies and we have a unique arrow 𝑎 such that 𝛾(𝐼) \ {𝑣} ⊆ {𝑎} × ]0, ℓ(𝑎) [, moreover
tgt 𝑎 = 𝑣. For 𝜀 ∈ ]0, ℓ(𝑎)/2[ the star 𝑆(𝑣, 𝜀) (Def. 2.7) is an open subset of𝑈𝑣 (Rem. 2.9). Since 𝛾 is
continuous, we have a neighborhood 𝐽 of 𝑡′ (with 𝐽 ⊆ 𝐼 ′) such that 𝛾(𝐽) ⊆ 𝑆(𝑣, 𝜀). Given 𝑠 ∈ 𝐼 ∩ 𝐽
such that 𝑠 < 𝑡′ (which exists because 𝑡′ ≠ min(dom (𝛾))) we have 𝛾 [𝑠, 𝑡′ [ ⊆ {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [.
The case where 𝛾 is not constant after 𝑡 is deduced from the previous one by reversing the local
order, or by a direct similar proof.

Definition 5.25. The arrows 𝑎 and 𝑏 given by Lem. 5.24 are referred to as the last arrow visited
before 𝑡, and the first arrow visited after 𝑡 (by 𝛾). If dom 𝛾 = [𝑡0, 𝑡1], then the first arrow visited by 𝛾

is the first one it visits after 𝑡0. Similarly, the last arrow visited by 𝛾 is the last one it visits before 𝑡1.
If 𝛾(𝑡) is a vertex, then the traversal (𝑎, 𝑏) at 𝛾(𝑡) is said to be compatible with 𝛾 at 𝑡 when

the following are satisfied: i) if the last arrow visited before 𝑡 exists, then it is 𝑎; and ii) if the first
arrow visited after 𝑡 exists, then it is 𝑏.

Remark 5.26. If 𝛾 is a constant path standing on a vertex 𝑣, then any traversal at 𝑣 is compatible
with 𝛾 at every 𝑡 ∈ dom 𝛾. If 𝛾 is not constant and starts on a vertex at 𝑡0, then any traversal (𝑎, 𝑏)
such that 𝑏 is the first arrow visited by 𝛾 is compatible at 𝑡0. Dually, if 𝛾 finishes on a vertex at 𝑡1,
then any traversal (𝑎, 𝑏) such that 𝑎 is the last arrow visited by 𝛾 is compatible at 𝑡1.

Lemma 5.27. Suppose that 𝛾(𝑡) is a vertex 𝑣 with 𝛾 a directed path onX𝐺 . For any traversal (𝑎, 𝑏)
compatible with 𝛾 at 𝑡, and any 𝜀 ∈ ]0, 𝑅[, there exists an interval 𝐼 open in dom 𝛾, containing 𝑡,
and such that 𝛾 induces a pospace morphism

𝛾̃ : 𝐼 → {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} ∪ {𝑏} × ]0, 𝜀[
whose codomain is an ordered subspace of (𝑈𝑣, ⊑𝑣) (Def. 5.8). Moreover, if 𝛾 is not constant before
(resp. after) 𝑡, then 𝛾̃ visits {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ (resp. {𝑏} × ]0, 𝜀[).

Proof. Let 𝑡′ be the least element of the connected component of 𝛾−1{𝑣} containing 𝑡. Note that
𝛾 [𝑡′, 𝑡] = {𝑣}. If 𝛾 is constant before 𝑡 then 𝑡′ is the least element of dom 𝛾. In that case we can
suppose that 𝑡′ is also the least element of 𝐼. Otherwise 𝑎 is the last arrow visited by 𝛾 before
𝑡 (Def. 5.25). By Lem. 5.24 we have 𝑠 < 𝑡′ such that 𝛾(]𝑠, 𝑡′]) \ {𝑣} ⊆ {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [. By
definition of a local order morphism (Def. 5.6) the map 𝛾 induces a pospace morphism from ]𝑠, 𝑡]
to {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} for 𝑠 sufficiently close to 𝑡. From the definition of 𝑡′ we deduce that
𝛾(]𝑠, 𝑡′]) is not reduced to {𝑣}, therefore it meets {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [. Whether 𝛾 is constant
before 𝑡 or not, we found an interval 𝐼0 whose greatest element is 𝑡, that is not reduced to a single
element unless 𝑡 is the least element of dom 𝛾, and such that 𝛾 induces a pospace morphism from 𝐼0

to {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣}. By similar arguments we obtain an interval 𝐼1 whose least element
is 𝑡, that is not reduced to a single element unless 𝑡 is the greatest element of dom 𝛾, and such
that 𝛾 induces a pospace morphism from 𝐼1 to {𝑣} ∪ {𝑏} × ]ℓ(𝑏) − 𝜀, ℓ(𝑏) [. The interval 𝐼 = 𝐼0 ∪ 𝐼1

matches the requirements.

Proposition 5.28. Let 𝛾 be a directed path onX𝐺 . Given a set map 𝛿 from dom 𝛾 to ∥𝐺∥ (Def. 2.15)
the following are equivalent:

(1) The map 𝛿 is a directed path and satisfies 𝛽𝐺 ◦ 𝛿 = 𝛾.
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(2) The map 𝛿 is continuous and satisfies 𝛽𝐺 ◦ 𝛿 = 𝛾.
(3) For every 𝑡 ∈ dom 𝛾, if 𝛾(𝑡) is not a vertex, then 𝛿(𝑡) = 𝛾(𝑡), otherwise 𝛿(𝑡) is a traversal

compatible with 𝛾 at 𝑡 (Def. 5.25).

Proof. The first point implies the second one because a directed path is (in particular) a local order
morphism (Def. 5.7), and every such morphism is continuous (Def. 5.6). Assume the second point
is satisfied. Since 𝛽𝐺 ◦ 𝛿 = 𝛾, we have 𝛾(𝑡) = 𝛿(𝑡) each time 𝛾(𝑡) is not a vertex (Def. 2.15). For the
same reason, if 𝛾(𝑡) is a vertex 𝑣, then 𝛿(𝑡) is a traversal (𝑎, 𝑏) at 𝑣. Assume we are in the latter
case. Since 𝛿 is continuous, and according to the topology of the local order X̃𝐺 (Rem. 5.16), we
have an open interval 𝐼 containing 𝑡 and satisfying

𝛿(𝐼) ⊆ ({𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [) ∪ {(𝑎, 𝑏)} ∪ ({𝑏} × ]0, 𝜀[) .

If 𝛾 is not constant before 𝑡, then let 𝑎′ be the last arrow visited by 𝛾 before 𝑡 (Lem. 5.24).
We have 𝑠 < 𝑡 such that 𝛾 [𝑠, 𝑡] \ {𝑣} is nonempty and included in {𝑎′} × ]ℓ(𝑎′) − 𝜀, ℓ(𝑎′) [. Since
𝛾(𝑠) = 𝛿(𝑠) when 𝛾(𝑠) is not a vertex, we have 𝑎 = 𝑎′. Similarly, if 𝛾 is not constant after 𝑡, then 𝑏

is the first arrow visited by 𝛾 after 𝑡. Hence (𝑎, 𝑏) is compatible with 𝛾 at 𝑡.
Assume the third point is satisfied. One readily deduces that 𝛽𝐺 ◦ 𝛿 = 𝛾 from Def. 2.15 and

5.25. It remains to check that 𝛿 is a local order morphism. The mappings 𝛾 and 𝛿 agree on
𝛿−1(∥𝐺∥ \𝐺 (0)) because 𝛽𝐺 leaves unchanged any point of ∥𝐺∥ that is not a traversal (Def. 2.15).
Let 𝑡 be an element of dom 𝛾.

If 𝛾(𝑡) is not a vertex, then 𝛾(𝑡) belongs to {𝑎} × ]0, ℓ(𝑎) [ for a unique arrow 𝑎. Since 𝛾 is a local
order morphism, we have an open interval 𝐼 containing 𝑡 such that the restriction of 𝛾 to 𝐼 induces
a pospace morphism from 𝐼 to {𝑎} × ]0, ℓ(𝑎) [. Hence the restriction of 𝛿 to 𝐼 coincides with the
restriction of 𝛾 to 𝐼, therefore it is a pospace morphism (the standard pospace {𝑎} × ]0, ℓ(𝑎) [
belongs to both X𝐺 and X̃𝐺).

If 𝛾(𝑡) is a vertex 𝑣, then 𝛿(𝑡) is a traversal (𝑎, 𝑏) compatible with 𝛾 at 𝑡 (we have supposed that
the third point is satisfied). Let 𝜀 > 0 be small enough so that we can apply Lem. 5.27 (with the
traversal (𝑎, 𝑏)) to obtain the pospace morphism

𝛾̃ : 𝐼 → {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} ∪ {𝑏} × ]0, 𝜀[
induced by 𝛾 with 𝐼 an open interval of dom 𝛾 containing 𝑡. We denote by 𝛽

𝐺
the isomorphism

of pospaces induced by the restriction of 𝛽𝐺 to {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {(𝑎, 𝑏)} ∪ {𝑏} × ]0, 𝜀[
(Rem. 5.16). Then 𝛽

𝐺

−1◦ 𝛾̃ is a local order morphism defined on 𝐼 satisfying 𝛽𝐺 ◦ 𝛽𝐺

−1◦ 𝛾̃ = 𝛾̃. The
only vertex that 𝛾̃ reaches is 𝑣, and the maps 𝛿 and 𝛽

𝐺

−1◦ 𝛾̃ agree on {𝑠 ∈ 𝐼 | 𝛾(𝑠) ≠ 𝑣}. If 𝛾̃(𝑠) = 𝑣

then 𝛾(𝑠) = 𝛾̃(𝑠) = 𝑣 and 𝛽
𝐺

−1(𝑣) = (𝑎, 𝑏) = 𝛿(𝑠). Hence 𝛿 and 𝛽
𝐺

−1◦ 𝛾̃ agree on 𝐼.

Theorem 5.29. Every directed path 𝛾 on the image of 𝛽𝐺1
× · · · × 𝛽𝐺𝑛

(seen as a sub-local order of
X𝐺1

× · · · × X𝐺𝑛
) admits a lifting (i.e. a directed path 𝛿 on the local order X̃𝐺1

× · · · × X̃𝐺𝑛
such that

(𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) ◦ 𝛿 = 𝛾).

Proof. Let 𝑡 ∈ dom 𝛾. If 𝛾(𝑡) is not a vertex put 𝛿(𝑡) = 𝛾(𝑡). Otherwise, there is at least one traversal
(𝑎, 𝑏) at 𝛾(𝑡) (Def. 2.15). If 𝛾 is not constant before 𝑡 then we can suppose that 𝑎 is the last arrow
visited by 𝛾 before 𝑡 (Def. 5.25). Similarly, if 𝛾 is not constant after 𝑡 then we can suppose that
𝑏 is the first arrow visited by 𝛾 after 𝑡. Put 𝛿(𝑡) = (𝑎, 𝑏). The map 𝛿 is a lifting of 𝛾 by the third
point of Prop. 5.28. The lifting of 𝛾1 × · · · × 𝛾𝑛 is obtained by applying the above reasoning to 𝛾𝑖

for every 𝑖 ∈ {1, . . . , 𝑛}.

Universal lifting property. Let 𝑋 ∈ X𝐺 and let 𝑥 : R→ 𝑋 be a continuous map whose image does
not contain any vertex of 𝐺 (the underlying set of X𝐺 is |𝐺 |, see Def. 2.6). The map 𝑥 thus takes
its values in the space |𝐺 | \𝐺 (0), whose connected components are the segments {𝑎} × ]0, ℓ(𝑎) [.
Consequently, there is a unique arrow 𝑎 such that img (𝑥) ⊆ dom (𝜙𝑎), see Def. 3.1. Also the
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blowup 𝛽𝐺 induces the identity on |𝐺 | \𝐺 (0) (Def. 2.15), therefore we have a unique continuous
map 𝑥 : R→ {𝑎} × ]0, ℓ(𝑎) [ such that 𝑥(𝑡) = 𝛽𝐺 (𝑥(𝑡)) for all 𝑡 ∈ R. If 𝑥 is a pospace embedding,
then so is 𝑥, and its image is an open subset of {𝑎} × ]0, ℓ(𝑎) [. Extending the codomain of 𝑥 to the
whole domain of 𝛽𝐺 , we obtain an embedding 𝑦 such that 𝑥 = 𝛽𝐺 ◦ 𝑦 and img (𝑦) is open. The next
result deals with the case where the image of 𝑥 contains a vertex; we need to introduce (and recall)
some notations:

Given a traversal (𝑎, 𝑏) at 𝑣, we denote by 𝜄𝑎𝑏 and 𝛽(𝑣)
𝐺

the open embedding of ordered spaces
dom (𝜙𝑎𝑏) ↩→ (𝛽𝐺

−1𝑈𝑣, ⩽𝑣) and the local embedding of {(𝛽𝐺
−1𝑈𝑣, ⩽𝑣)} into {(𝑈𝑣, ⊑𝑣)} induced by

𝛽𝐺 (Rem. 5.18). The composite 𝛽(𝑣)
𝐺
◦ 𝜄𝑎𝑏 is the pospace embedding of dom (𝜙𝑎𝑏) into𝑈𝑣 induced by

𝛽𝐺 (Rem. 5.16). The pospace embedding 𝜉𝑎𝑏 is described in Def. 5.8 (10).

Proposition 5.30. For every𝑈𝑣 ∈ X𝐺 (with 𝑣 a vertex of 𝐺) and every pospace embedding 𝑥 : R→
𝑈𝑣 with 𝑣 ∈ img (𝑥), there is a unique traversal (𝑎, 𝑏) at 𝑣 such that img (𝑥) ⊆ img (𝜉𝑎𝑏). The map

𝑦 : 𝑡 ∈ R ↦→

(𝑎, 𝑏) if 𝑥(𝑡) = 𝑣

𝑥(𝑡) if 𝑥(𝑡) ≠ 𝑣

∈ dom (𝜙𝑎𝑏) (12)

is the only set map 𝑓 from R to dom (𝜙𝑎𝑏) such that 𝑥 = 𝛽(𝑣)
𝐺
◦ 𝜄𝑎𝑏 ◦ 𝑓 . Moreover the open embedding

of ordered spaces 𝜄𝑎𝑏 ◦ 𝑦 is the only continuous map 𝑥 from R to 𝛽𝐺
−1𝑈𝑣 satisfying 𝑥 = 𝛽(𝑣)

𝐺
◦ 𝑥.

Proof. The map 𝑥 induces a pospace isomorphism on its image therefore img (𝑥) is an unbounded
connected chain of 𝑈𝑣. So we have a unique traversal (𝑎, 𝑏) at 𝑣 such that img (𝑥) ⊆ img (𝜉𝑎𝑏)
(Rem. 5.23). The map 𝑦 readily satisfies the equality 𝑥 = 𝛽(𝑣)

𝐺
◦ 𝜄𝑎𝑏 ◦ 𝑦; it is the only one because

𝛽(𝑣)
𝐺
◦ 𝜄𝑎𝑏 = 𝜉𝑎𝑏 ◦ 𝜙𝑎𝑏 and both 𝜉𝑎𝑏 and 𝜙𝑎𝑏 (Def. 3.1 and 5.8 (10)) are one-to-one.
Denote by 𝑡 the only element of R such that 𝑥(𝑡) = 𝑣. By definition of 𝛽(𝑣)

𝐺
(Def. 2.15 and

Rem. 5.16), we have 𝑥(𝑠) = 𝑥(𝑠) for every 𝑠 ∈ R \ {𝑡}, and 𝑡 is the only element of R such that
𝑥(𝑡) is a traversal (𝑎′, 𝑏′). We deduce that the inverse image of dom (𝜙𝑎′𝑏′) under 𝑥 contains its
greatest lower bound (resp. its least upper bound) if 𝑎′ ≠ 𝑎 (resp. 𝑏′ ≠ 𝑏). Since 𝑥 is continuous and
dom (𝜙𝑎′𝑏′) is open in 𝛽𝐺

−1(𝑈𝑣) (Rem. 5.18), we have 𝑎 = 𝑎′ and 𝑏 = 𝑏′. We conclude that 𝑦 is the
underlying set map of 𝑥. The map 𝜄𝑎𝑏 ◦ 𝑦 is an open embedding of ordered spaces as a composite
of such maps (the map 𝑦 is even a dihomeomorphism).

Lemma 5.31. If 𝜃 : R𝑛→ 𝑋1 × · · · × 𝑋𝑛 is a pospace embedding with 𝑋𝑘 ∈ X𝐺𝑘
for every 𝑘 ∈

{1, . . . , 𝑛}, then img (𝜃) =𝐶1 × · · · ×𝐶𝑛 with each 𝐶𝑘 an unbounded connected chain of 𝑋𝑘 .

Proof. Write 𝜃𝑘 = pr
𝑘
◦ 𝜃 for the composite of 𝜃 followed by the 𝑘 th projection. Assume that 𝑋𝑘 =𝑈𝑣

(Def. 5.8 (9)) for some 𝑘 and some vertex 𝑣 of 𝐺𝑘 . Any element 𝑥 ∈𝑈𝑣 with 𝑥 ≠ 𝑣 is either smaller
or greater than 𝑣 (Rem. 5.23). Moreover, given two elements of 𝑈𝑣 that are strictly smaller (resp.
greater) than 𝑣 the following are equivalent:

– they are comparable in 𝑈𝑣 (i.e. one of them is smaller than the other),
– they have a lower bound (resp. an upper bound) in 𝑈𝑣, and
– they belong to {𝑎} × ] 1

2ℓ(𝑎), ℓ(𝑎) [ for some arrow 𝑎 of 𝐺𝑘 such that tgt 𝑎 = 𝑣 (resp.
{𝑏} × ]0, 1

2ℓ(𝑏) [ for some arrow 𝑏 of 𝐺𝑘 such that src 𝑏 = 𝑣).

Given 𝑡 and 𝑡′ in R𝑛 we have 𝜃𝑘 (𝑡 ∧ 𝑡′) ⩽ 𝜃𝑘 (𝑡), 𝜃𝑘 (𝑡′) ⩽ 𝜃𝑘 (𝑡 ∨ 𝑡′) because 𝜃 and the projections
are order preserving. It follows that either

– 𝜃𝑘 (𝑡) and 𝜃𝑘 (𝑡′) belong to {𝑎𝑘} × ]0, ℓ(𝑎𝑘) [ for a unique arrow 𝑎𝑘 of 𝐺𝑘 , or
– we have 𝜃𝑘 (𝑡) ⩽ 𝑣 ⩽ 𝜃𝑘 (𝑡′) or 𝜃𝑘 (𝑡′) ⩽ 𝑣 ⩽ 𝜃𝑘 (𝑡).
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We deduce that img (𝜃𝑘) ⊆ 𝐽𝑘 with 𝐽𝑘 either of the form {𝑎𝑘} × ]0, ℓ(𝑎𝑘) [ for some arrow 𝑎𝑘 , or
{𝑎𝑘} × ]0, ℓ(𝑎𝑘) [ ∪ {𝑣} ∪ {𝑏𝑘} × ]0, ℓ(𝑏𝑘) [ for some traversal (𝑎𝑘, 𝑏𝑘) at 𝑣. We have a dihome-
omorphism 𝜓 : 𝐽1 × · · · × 𝐽𝑛 � R𝑛 obtained as a product of dihomeomorphisms 𝜓𝑘 : 𝐽𝑘 � R. The
corestriction 𝜃 of 𝜃 to img (𝜃) is a dihomeomorphism. Hence the composite

R𝑛 img (𝜃) 𝐽1 × · · · × 𝐽𝑛 R𝑛𝜃 𝜓

is a pospace embedding, so its image is a product of open intervals 𝐼1 × · · · × 𝐼𝑛 (Lem. 5.5) and for
every 𝑘 ∈ {1, . . . , 𝑛}, the chain 𝐶𝑘 is 𝜓𝑘

−1(𝐼𝑘).

Proposition 5.32. If 𝜃 is a pospace embedding as in Lem. 5.31, then there is a unique permutation
𝜎 ∈𝔖𝑛 and a unique tuple of pospace embeddings (𝑥1, . . . , 𝑥𝑛) with 𝑥𝑘 : R→ 𝑋𝑘 for 𝑘 ∈ {1, . . . , 𝑛}
such that 𝜃 = (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 – see Def. 5.1.

Proof. From Lem. 5.31 we know that the corestriction of 𝜃 to its image is a pospace isomor-
phism of the form 𝜃 : R𝑛→𝐶1 × · · · ×𝐶𝑛 with each 𝐶𝑘 a connected unbounded chain of 𝑋𝑘 .
Then for every 𝑘 ∈ {1, . . . , 𝑛} we have a pospace isomorphism 𝜓𝑘 :𝐶𝑘 � R. Denoting by 𝜓 the
pospace isomorphism 𝜓1 × · · · × 𝜓𝑛, the composite 𝜓 ◦ 𝜃 is a pospace automorphism of R𝑛. From
Lem. 5.2 and Rem. 5.3 we deduce that 𝜓 ◦ 𝜃 = (𝜉1 × · · · × 𝜉𝑛) ◦ 𝜋𝜎 for a unique family 𝜉1, . . . , 𝜉𝑛
of automorphisms of the poset R and a unique 𝜎 ∈𝔖𝑛. It follows from Def. 5.1 (7) that

𝜃 =

( (
𝜓1
−1 ◦ 𝜉1︸  ︷︷  ︸
𝑦1

)
× · · · ×

(
𝜓𝑛

−1 ◦ 𝜉𝑛︸  ︷︷  ︸
𝑦𝑛

) )
◦ 𝜋𝜎 .

We conclude by setting 𝑥𝑘 = (𝐶𝑘 ↩→ 𝑋𝑘) ◦ 𝑦𝑘 for every 𝑘 ∈ {1, . . . , 𝑛}. The uniqueness of the
decomposition of 𝜃 is deduced from the uniqueness of the decomposition of 𝜓 ◦ 𝜃.

Theorem 5.33. For every euclidean local embedding of local orders 𝑓 :M→X𝐺1
× · · · × X𝐺𝑛

of dimension 𝑛 (Def. 5.6), there is a unique continuous map 𝑔 :M→X̃𝐺1
× · · · × X̃𝐺𝑛

such that
𝑓 = 𝛽 ◦ 𝑔 with 𝛽 = 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
; moreover 𝑔 is a euclidean local dihomeomorphism.

Proof. We say that 𝐸 ⊆M is admissible when it is dihomeomorphic to R𝑛 and there exists
𝑋 ∈ X𝐺1

× · · · × X𝐺𝑛
(Def. 5.11) such that 𝑓 (𝐸) ⊆ 𝑋 and the restriction of 𝑓 to 𝐸 with values in 𝑋 ,

which we denote by 𝑓 𝑋

𝐸
, is a pospace embedding. We have 𝑋 = 𝑋1 × · · · × 𝑋𝑛 with 𝑋𝑘 ∈ X𝐺𝑘

for 𝑘 ∈
{1, . . . , 𝑛}. Given a dihomeomorphism 𝜑𝐸 : 𝐸 � R𝑛, we apply Prop. 5.32 to the embedding 𝑓 𝑋

𝐸
◦ 𝜑𝐸

−1

to obtain 𝑓 𝑋

𝐸
= (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 ◦ 𝜑𝐸 with 𝜎 ∈𝔖𝑛 and 𝑥𝑘 : R→ 𝑋𝑘 a pospace embedding for

every 𝑘 ∈ {1, . . . , 𝑛}. We can suppose that 𝜎 is the identity even if it means replacing 𝜑𝐸 by
𝜋𝜎 ◦ 𝜑𝐸 , in other words we can suppose that

𝑓 𝑋

𝐸
= (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 . (13)

Let 𝑘 ∈ {1, . . . , 𝑛}. We prove that there is a unique continuous map 𝑥𝑘 : R→ 𝛽𝐺𝑘

−1𝑋𝑘 such that

𝑥𝑘 = 𝛽𝑋𝑘
◦ 𝑥𝑘 (14)

with 𝛽𝑋𝑘
denoting the restriction of 𝛽𝐺𝑘

to 𝛽𝐺𝑘

−1𝑋𝑘 with values in 𝑋𝑘 . If 𝑋𝑘 = {𝑎} × ]0, ℓ(𝑎) [, then 𝑥𝑘

is the identity map on {𝑎} × ]0, ℓ(𝑎) [. If 𝑋𝑘 = (𝑈𝑣, ⊑𝑣), then 𝑥𝑘 is obtained by applying Prop. 5.30
to the pospace embedding 𝑥𝑘 . In both cases 𝑥𝑘 is an open embedding of ordered spaces, so the map

𝑔𝑋

𝐸
= (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 (15)

which we call a canonical local lifting of 𝑓 on 𝐸 , is also an open embedding of ordered spaces.
As a consequence of (13), (14) and (15) we have

𝑓 𝑋

𝐸
= 𝛽𝑋 ◦ (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 = 𝛽𝑋 ◦ 𝑔𝑋

𝐸
with 𝛽𝑋 = 𝛽𝑋1

× · · · × 𝛽𝑋𝑛
. (16)
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Given 𝑘 ∈ {1, . . . , 𝑛} we postcompose the 𝑘 th projection (pr
𝑘
) on both side of the equalities (13)

and (16); we obtain

pr
𝑘
◦ 𝑓 𝑋

𝐸
= 𝑥𝑘 ◦ pr

𝑘
◦ 𝜑𝐸 = 𝛽𝑋𝑘

◦ 𝑥𝑘 ◦ pr
𝑘
◦ 𝜑𝐸 . (17)

By doing the same to the relation (15) we obtain

pr
𝑘
◦ 𝑔𝑋

𝐸
= 𝑥𝑘 ◦ pr

𝑘
◦ 𝜑𝐸 . (18)

Given 𝑒 ∈ 𝐸 , in order to prove that 𝑔𝑋

𝐸
(𝑒) only depends on 𝑓 and 𝑒, it suffices to prove that so

does 𝑥𝑘 ◦ pr
𝑘
◦ 𝜑𝐸 (𝑒) for every 𝑘 ∈ {1, . . . , 𝑛}. If pr

𝑘
( 𝑓 (𝑒)) is not a vertex, then 𝑥𝑘 (pr

𝑘
(𝜑𝐸 (𝑒))) =

pr
𝑘
( 𝑓 (𝑒)) by (17) and Def. 2.15. If pr

𝑘
( 𝑓 (𝑒)) is a vertex, then 𝑥𝑘 (pr

𝑘
(𝜑𝐸 (𝑒))) is the unique traversal

(𝑎, 𝑏) of the graph 𝐺𝑘 such that img (𝑥𝑘) ⊆ img (𝜉𝑎𝑏) – see Prop. 5.30 which was applied to define
𝑥𝑘 . Since pr

𝑘
◦ 𝜑𝐸 is onto, we deduce from (17) that img (𝑥𝑘) = pr

𝑘
( 𝑓 (𝐸)). Hence 𝑥𝑘 (pr

𝑘
(𝜑𝐸 (𝑒)))

is the only traversal (𝑎, 𝑏) such that pr
𝑘
( 𝑓 (𝐸)) ⊆ img (𝜉𝑎𝑏). So far the traversal (𝑎, 𝑏) depends

on 𝑓 and 𝐸 . Nevertheless, if 𝑒 ∈ 𝐸 ′ ⊆ 𝐸 with 𝐸 ′ dihomeomorphic to R𝑛 then we have 𝑓 𝑋

𝐸 ′ the
restriction of 𝑓 to 𝐸 ′ with values in 𝑋 , and by the same reasoning as above with 𝐸 ′ instead of 𝐸 ,
we prove that we have a unique traversal (𝑎′, 𝑏′) such that pr

𝑘
( 𝑓 (𝐸 ′)) ⊆ img (𝜉𝑎′𝑏′). Then we have

(𝑎′, 𝑏′) = (𝑎, 𝑏) because pr
𝑘
( 𝑓 (𝐸 ′)) ⊆ pr

𝑘
( 𝑓 (𝐸)) ⊆ img (𝜉𝑎𝑏). Hence 𝑔𝑋

𝐸
(𝑒) only depends on 𝑓 and

𝑒. In particular, two canonical local liftings 𝑔𝑋

𝐸
and 𝑔𝑋 ′

𝐸 ′ agree on 𝐸 ∩ 𝐸 ′. By hypothesisM is covered
by its admissible subsets so we can define 𝑔 :M→X̃𝐺1

× · · · × X̃𝐺𝑛
by setting 𝑔(𝑝) = 𝑔𝑋

𝐸
(𝑝) for

any canonical local lifting 𝑔𝑋

𝐸
of 𝑓 with 𝑝 ∈ 𝐸 . We have 𝑓 = 𝛽 ◦ 𝑔 by (16), and 𝑔 is a euclidean

local dihomeomorphism because the maps 𝑔𝑋

𝐸
are open embeddings of ordered spaces.

Let ℎ :M→X̃𝐺1
× · · · × X̃𝐺𝑛

be a continuous map satisfying 𝛽 ◦ ℎ = 𝛽 ◦ 𝑔. Given 𝑝 ∈M we
have a canonical local lifting 𝑔𝑋

𝐸
with 𝑝 ∈ 𝐸 . Since dom (𝛽𝑋) = (𝛽)−1

𝑋 , we have 𝛽𝑋 ◦ 𝑔𝑋

𝐸
= 𝛽𝑋 ◦ ℎ𝑋

𝐸

with ℎ𝑋

𝐸
denoting the restriction of ℎ to 𝐸 with values in dom (𝛽𝑋). From the latter equality and

the definition of 𝑔𝑋

𝐸
(15) we deduce that 𝛽𝑋𝑘

◦ 𝑥𝑘 ◦ pr
𝑘
= 𝛽𝑋𝑘

◦ pr
𝑘
◦ ℎ𝑋

𝐸
◦ 𝜑𝐸
−1 with 𝑘 ∈ {1, . . . , 𝑛}

and pr
𝑘

denoting the 𝑘 th projection. Given any continuous map 𝛾 : R→ R𝑛 such that pr
𝑘
◦ 𝛾 = idR

we have 𝛽𝑋𝑘
◦ 𝑥𝑘 = 𝛽𝑋𝑘

◦ pr
𝑘
◦ ℎ𝑋

𝐸
◦ 𝜑𝐸
−1 ◦ 𝛾. We deduce from the uniqueness property in Prop. 5.30

that 𝑥𝑘 = pr
𝑘
◦ ℎ𝑋

𝐸
◦ 𝜑𝐸
−1 ◦ 𝛾. We can suppose that 𝛾(𝑡) = 𝜑𝐸 (𝑝) for some 𝑡 ∈ R so we have 𝑥𝑘 (𝑡) =

𝑥𝑘 ◦ pr
𝑘
◦ 𝜑𝐸 (𝑝) = pr

𝑘
◦ ℎ𝑋

𝐸
(𝑝), that is to say pr

𝑘
◦ 𝑔𝑋

𝐸
(𝑝) = pr

𝑘
◦ ℎ𝑋

𝐸
(𝑝) by (18).

The identity map id∥𝐺∥ induces a 1-dimensional euclidean local embedding of local orders
𝜄𝐺 : X̃𝐺→E𝐺 which is not open (Def. 5.6, 5.15, and 5.20). Given a tuple of graphs (𝐺1, . . . , 𝐺𝑛),
we write 𝑒 and 𝜄 to denote the products 𝑒𝐺1

× · · · × 𝑒𝐺𝑛
and 𝜄𝐺1

× · · · × 𝜄𝐺𝑛
. If 𝑓 :M→E𝐺1

× · · · × E𝐺𝑛

is a euclidean local embedding of dimension 𝑛, then so is 𝑒 ◦ 𝑓 , and we have 𝑒 ◦ 𝑓 = 𝛽 ◦ 𝑔 = 𝑒 ◦ 𝜄 ◦ 𝑔
with 𝑔 given by Thm. 5.33; however, in general, we cannot deduce that 𝑓 = 𝜄 ◦ 𝑔:

Example 5.34. Consider the graph 𝐺 on the left hand part of Fig. 3 (p. 10) and let 𝑓 be the
directed arc on the étale local order E𝐺 covering {𝑎} × ]0, 1[ ∪ {(𝑎, 𝑐)} ∪ {𝑏} × ]0, 1[, see the right
hand part of Fig. 3. The map 𝑓 is not even continuous on the underlying topological space of the
standard local order X̃𝐺 . The unique continuous map 𝑔 such that 𝑒 ◦ 𝑓 = 𝛽 ◦ 𝑔 is the directed arc
on X̃𝐺 covering {𝑎} × ]0, 1[ ∪ {(𝑎, 𝑏)} ∪ {𝑏} × ]0, 1[; hence 𝑓 and 𝜄 ◦ 𝑔 differ in only one point.
Such a pathology is possible because the underlying space of E𝐺 is not Hausdorff.

5.4 Cone fields and local orders
For any manifold 𝑀 , there is an equivalence (in the categorical sense) between the local orders
on (the underlying set of) 𝑀 whose elements are locally order convex (p. 21), and the upper
semi-continuous cone fields on 𝑀 admitting sections at every point (Lawson, 1989, 2.7). The
above statement involves a manifold instead of an atlas, and Lawson (1989) does not make the
topological properties required on 𝑀 explicit. However, this statement is local by nature, and its
proof does not require the topology of 𝑀 to be Hausdorff or second countable. If it holds for the
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Figure 5. A cone field on the plane.

atlasA𝐺1
× · · · × A𝐺𝑛

, then the cone field associated to the standard parallelization and the standard
local order on X̃𝐺1

× · · · × X̃𝐺𝑛
are related by this equivalence (Prop. 5.38 and Thm. 5.41). Except

for the latter results, this section is entirely based on (Lawson, 1989, §1 and §2).

A wedge is a topologically closed subset 𝑊 of a finite-dimensional real vector space such that
R+𝑊 ⊆𝑊 and 𝑊 +𝑊 ⊆𝑊 . A cone is a wedge 𝐶 such that 𝐶 ∩ −𝐶 = {0}. A cone field on an atlas
A is a map assigning a cone 𝐶 (𝑝) of the tangent space 𝑇𝑝A to every point 𝑝 ofA, see Fig. 5 and
Ex. 5.35. A conal atlas is an atlas together with a cone field. If 𝐶 and 𝐷 are cone fields on the
atlases A and B then the mapping 𝐶 × 𝐷 is a cone field on A ×B.

Example 5.35. Any parallelization ( 𝑓1, . . . , 𝑓𝑛) (§A.3, p. 49) canonically induces a cone field:

𝐶 (𝑝) =
{
𝜆1 𝑓1(𝑝) + · · · + 𝜆𝑛 𝑓𝑛 (𝑝)

�� 𝜆𝑖 ⩾ 0 for all 𝑖 ∈ {1, . . . , 𝑛}
}
.

Such cone fields are said to be cartesian. If 𝐶 and 𝐷 are the cartesian cones induced by the
parallelizations ( 𝑓1, . . . , 𝑓𝑛) and (𝑔1, . . . , 𝑔𝑚), then 𝐶 × 𝐷 is the cartesian cone induced by the
parallelization ( 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚).

Definition 5.36. The standard cone field 𝐶𝐺 on A𝐺 is the cartesian cone field induced by its
standard parallelization (Def. 3.6), that is to say:

𝐶𝐺 : 𝑝 ∈ ∥𝐺∥ ↦→
{
(𝑝, 𝑡)

�� 𝑡 ∈ R+
}

cone of {𝑝} × R .

Conal preorder. For every curve 𝑐 extending a smooth path 𝛾 (Def. A.7) and every 𝑡 ∈ dom (𝛾)
we have the left hand and the right hand derivatives of 𝛾 at 𝑡, namely

lim
𝑥→𝑡−
(D𝛾)𝑥 = Dc𝑡 and lim

𝑥→𝑡+
(D𝛾)𝑥 = Dc𝑡 ;

which we denote by D𝛾𝑡− and D𝛾𝑡+ . A piecewise smooth path admits derivatives on both sides at
every 𝑡, although there are finitely many 𝑡’s at which they may not coincide.

A piecewise smooth path 𝛾 is said to be conal on (A, 𝐶) if D𝛾𝑡+ ∈𝐶 (𝛾(𝑡)) for every 𝑡 ∈ dom (𝛾).
Given the points 𝑝 and 𝑞 of an open subset 𝑈 of A, we write 𝑝 ≼𝑈 𝑞 when there exists a conal
curve on 𝑈 from 𝑝 to 𝑞. The relation ≼𝑈 thus defined is the conal preorder on 𝑈.

Infinitesimal preorder. A partial curve on an atlas A is a map 𝛾 : 𝐷→ |A| with 0 ∈ 𝐷 ⊆ R+ and
0 a cluster point of 𝐷 (Munkres, 2000, §17, p. 97). Given 𝑋 ⊆ |A|, we say that 𝑣 ∈ 𝑇𝑝A is a
subtangent vector of 𝑋 at 𝑝 when there exists a partial curve 𝛾 : 𝐷→ |A| with 𝛾(0) = 𝑝 and
𝛾(𝐷 \ {0}) ⊆ 𝑋 , and a chart 𝜙 ∈ A such that 𝑝 ∈ dom (𝜙) and

J𝑣K𝜙

𝑝
= lim

0←𝑡∈𝐷
1
𝑡

(
𝜙(𝛾(𝑡)) − 𝜙(𝑝)

)
.

Given 𝜓 ∈ A with 𝑝 ∈ dom 𝜓, it suffices to write 𝜓 ◦ 𝛾 = (𝜓 ◦ 𝜙−1) ◦ (𝜙 ◦ 𝛾) and apply the chain
rule (i.e. a form of the chain rule adapted to partial curves) to check that the above equality still
holds with 𝜓 instead of 𝜙.

Assume that the local order X and the atlas A are based on the same topological space. The
infinitesimal preorder ofX is the map assigning to each point 𝑝 ∈ A the smallest wedge𝑊𝑝 of 𝑇𝑝A
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containing all the subtangent vectors of the set {𝑝 ⩽𝑈 𝑢 | 𝑢 ∈𝑈} at 𝑝 for some (𝑈, ⩽) ∈ X such that
𝑝 ∈𝑈. Because of the coherence condition satisfied by a local order, the wedge𝑊𝑝 does not depend
on (𝑈, ⩽). In the context of this article, 𝑊𝑝 is roughly the set of speed vectors 𝛾′ (𝑡) for curves 𝛾
on A that are directed on X and satisfy 𝛾(𝑡) = 𝑝 with 𝑡 ∈ dom (𝛾).

Example 5.37. Assume that X is the local order on the punctured plane (at the origin) whose
directed paths are of the form 𝑡 ∈ 𝐽 ↦→ 𝜌(𝑡)𝑒𝑖 𝜃 (𝑡 ) ∈ R2 \ {0}with 𝐽 interval of R, and 𝜌 : 𝐽→]0,∞[,
𝜃 : 𝐽→ R non decreasing continuous maps. The inifinitesimal preorder of X is the one shown on
Fig. 5, i.e. 𝑊(𝑥, 𝑦) = {𝑎(𝑥, 𝑦) + 𝑏(−𝑦, 𝑥) | 𝑎, 𝑏 ∈ R+}.

The correspondence between conal preorders and infinitesimal preorders (which is the subject
of the next paragraph) is dealt with in (Lawson (1989)) by means of partial curves.

Lawson correspondence. We say that the cone 𝐶′ surrounds the cone 𝐶 when 𝐶 \ {0} is contained
in the interior of 𝐶′ (Hilgert et al., 1989, IV.2.10, p. 304). Given a chart 𝜙 ∈ A and 𝑝, 𝑞 ∈ dom 𝜙,
the composite (J_K𝜙

𝑞
)−1◦ J_K𝜙

𝑝
:𝑇𝑝A→𝑇𝑞A is a topological vector space isomorphism (Def. A.12)

which we denote by J_K𝜙

𝑝𝑞
; its inverse is J_K𝜙

𝑞𝑝
, and J_K𝜙

𝑝𝑝
is the identity map.

A cone field 𝐶 onA is said to be upper semi-continuous at 𝑝 when for every chart 𝜙 ∈ A such
that 𝑝 ∈ dom (𝜙), and every cone 𝐶′ that surrounds 𝐶 (𝑝), there exists a neighborhood𝑈 of 𝑝 such
that 𝐶′ surrounds J𝐶 (𝑞)K𝜙

𝑞𝑝
for every 𝑞 ∈𝑈. We say that 𝐶 admits sections at 𝑝 when for every

𝑣 ∈𝐶 (𝑝) there exists a vector field 𝑓 on A such that 𝑓 (𝑝) = 𝑣.
An open coverU of the atlasA is said to be admissible for a cone field 𝐶 onA when for every

𝑈 ∈U the conal preorder ≼𝑈 is antisymmetric, the pospace (𝑈, ≼𝑈) is locally order convex (§5.1,
p. 21), and the collection {(𝑈, ≼𝑈) |𝑈 ∈U} is a local order. Given an atlas A, Lawson’s result
(Lawson, 1989, 2.7) states that:

(1) For every upper semi-continuous cone field 𝐶 onA admitting sections at every point, there
exists an open coverU admissible for 𝐶. Moreover, for every open coverU admissible for
𝐶, the infinitesimal preorder of {(𝑈, ≼𝑈) |𝑈 ∈U} is 𝐶.

(2) For every local order X made of locally convex pospaces, the infinitesimal preorder of X is
an upper semi-continous cone field 𝐶 onA admitting sections at every point. Moreover, the
local order X is equivalent (in the sense of §5.2, p. 23) to {(𝑈, ≼𝑈) |𝑈 ∈U} for every open
coverU admissible for 𝐶.

Proposition 5.38. The standard local order X̃𝐺 on ∥𝐺∥ (Def. 5.15) and the standard cone field 𝐶𝐺

on A𝐺 (Def. 5.36) are deduced from each other along Lawson’s correspondence.

Proof. The fact that 𝐶𝐺 is upper semi-continuous and admits sections at every point is immediate.
Denote by ⊑𝑎𝑏 the partial order of the pospace dom (𝜙𝑎𝑏) ∈ X̃𝐺 . Denote by ≼𝑎𝑏 the conal preorder
on dom (𝜙𝑎𝑏) induced by 𝐶𝐺 . Let 𝑝, 𝑞 ∈ dom 𝜙𝑎𝑏. The inequality 𝑝 ⊑𝑎𝑏𝑞 amounts to 𝜙𝑎𝑏 𝑝 ⩽ 𝜙𝑎𝑏𝑞

in R. The restriction of 𝜙𝑎𝑏
−1 to the segment [𝜙𝑎𝑏 𝑝, 𝜙𝑎𝑏𝑞] is a conal curve on dom 𝜙𝑎𝑏, which

implies that 𝑝 ≼𝑎𝑏𝑞. The other way round, if 𝑝 ≼𝑎𝑏𝑞, then we have a piecewise smooth conal curve
𝛾 on dom 𝜙𝑎𝑏 from 𝑝 to 𝑞. The fact that 𝛾 is conal means that for every 𝑡 ∈ dom (𝛾) we have
D𝛾𝑡 (1) = 𝑟𝐶𝐺 (𝑝) with 𝑟 > 0, and therefore the map 𝜙𝑎𝑏

−1 ◦ 𝛾 is a piecewise derivative map between
intervals of R whose derivative is non-negative; it is thus non-decreasing. The map 𝜙𝑎𝑏 (Def. 3.1)
is a dihomeomorphism (Def. 5.15 and its preamble), hence 𝛾 is a pospace morphism; we deduce
that 𝑝 ⊑𝑎𝑏𝑞. Given 𝜙𝑎 ∈ X̃𝐺 the same reasoning holds for the partial order ⊑𝑎 on dom (𝜙𝑎), and ≼𝑎

the conal preorder on dom (𝜙𝑎) induced by 𝐶𝐺 . So we have proven that ⊑𝑎𝑏 (resp. ⊑𝑎) is the conal
preorder on dom (𝜙𝑎𝑏) (resp. dom (𝜙𝑎)) induced by 𝐶𝐺 . It follows that the collection

U =
{
dom (𝜙𝑎)

�� 𝑎 arrow of 𝐺
}
∪

{
dom (𝜙𝑎𝑏)

�� (𝑎, 𝑏) traversal of 𝐺
}
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is admissible for 𝐶𝐺 , and that the local order {(𝑈, ≼𝑈) |𝑈 ∈U} is X̃𝐺 . From the first point of
Lawson’s result, we deduce that the infinitesimal preorder of X̃𝐺 is 𝐶𝐺 .

The following lemmas derive from the fact that given atlases A and B, partial curves (resp.
piecewise smooth paths) onA ×B are of the form 𝛼 × 𝛽with 𝛼 and 𝛽 partial curves (resp. piecewise
smooth paths) on A and B.

Lemma 5.39. If 𝐶 and 𝐷 are the infinitesimal preorders of local orders X and Y, then 𝐶 × 𝐷 is
the infinitesimal preorder of the local order X×Y.

Proof. Let 𝑈 ∈ X, 𝑉 ∈ Y, and (𝑝, 𝑞) ∈𝑈 ×𝑉 . A tangent vector 𝑣 ∈ 𝑇(𝑝, 𝑞) (A × B) is a subtangent
vector of {(𝑝, 𝑞) ≼𝑈×≼𝑉 (𝑢, 𝑣) | (𝑢, 𝑣) ∈𝑈 ×𝑉} when there exists a partial curve 𝛾 : 𝐷→ |A| × |B|
with 𝛾(0) = (𝑝, 𝑞), 𝛾(0) ≼𝑈×≼𝑉 𝛾(𝑡) for every 𝑡 ∈ 𝐷 \ {0} and

J𝑣K𝜙 × 𝜓

(𝑝, 𝑞) = lim
0←𝑡∈𝐷

1
𝑡

(
(𝜙 × 𝜓) (𝛾(𝑡)) − (𝜙 × 𝜓) (𝑝, 𝑞)

)
.

The vector space 𝑇(𝑝, 𝑞) (A × B) is isomorphic to 𝑇𝑝A ×𝑇𝑞B so we can suppose that J_K𝜙 × 𝜓

(𝑝, 𝑞) =

J_K𝜙

𝑝
× J_K𝜓

𝑞
and 𝑣 = (𝑎, 𝑏) with 𝑎 ∈ 𝑇𝑝A and 𝑏 ∈ 𝑇𝑞B. It follows that 𝛾 = 𝛼 × 𝛽 with 𝛼 : 𝐷→ |A|

and 𝛽 : 𝐷→ |A| partial curves satisfying 𝛼(0) = 𝑝, 𝛽(0) = 𝑞, 𝛼(0) ≼𝑈 𝛼(𝑡) and 𝛽(0) ≼𝑉 𝛽(𝑡) for
every 𝑡 ∈ 𝐷 \ {0}, and

J𝑎K𝜙

𝑝
= lim

0←𝑡∈𝐷
1
𝑡

(
𝜙(𝛼(𝑡)) − 𝜙(𝑝)

)
and J𝑏K𝜓

𝑞
= lim

0←𝑡∈𝐷
1
𝑡

(
𝜓(𝛽(𝑡)) − 𝜓(𝑞)

)
.

This is equivalent to having 𝑎 and 𝑏 subtangent vectors of {𝑝 ≼𝑈 𝑢 | 𝑢 ∈𝑈} and {𝑞 ≼𝑉 𝑣 | 𝑣 ∈𝑉}.

Lemma 5.40. If X and Y are local orders associated with upper semi-continuous cone fields 𝐶
and 𝐷, then the local order X×Y is associated with the cone field 𝐶 × 𝐷.

Proof. Having a smooth path 𝛾 on A ×B from (𝑝, 𝑞) to (𝑢, 𝑣) satisfying 𝑑 (𝛾) (𝑡) ∈
𝐶 (𝛼(𝑡)) × 𝐷 (𝛽(𝑡)) for every 𝑡 ∈ dom (𝛾), is equivalent to having smooth paths 𝛼 and 𝛽 on A and
B (both defined on dom (𝛾)), respectively from 𝑝 to 𝑢 and from 𝑞 to 𝑣, such that 𝑑𝛼(𝑡) ∈𝐶 (𝛼(𝑡))
and 𝑑𝛽(𝑡) ∈ 𝐷 (𝛽(𝑡)) for every 𝑡 ∈ dom (𝛾). In other words we have (𝑝, 𝑞) ≼𝑈×𝑉 (𝑢, 𝑣) if, and only
if, 𝑝 ≼𝑈 𝑢 and 𝑞 ≼𝑉 𝑣, i.e. (𝑝, 𝑞) ≼𝑈×≼𝑉 (𝑢, 𝑣).

Let (𝐺1, . . . , 𝐺𝑛) be a tuple of graphs. For each 𝑘 ∈ {1, . . . , 𝑛} we have the standard local order
X̃𝐺𝑘

(Def. 5.15) and the standard cone field 𝐶𝐺𝑘
(Def. 5.36) on the set ∥𝐺𝑘 ∥. As an immediate

consequence of Prop. 5.38 and Lem. 5.39 and 5.40, we have:

Theorem 5.41. The cone field 𝐶𝐺1
× · · · ×𝐶𝐺𝑛

and the local order X̃𝐺1
× · · · × X̃𝐺𝑛

are deduced
from each other along Lawson’s correspondence.

6. Execution time
The smooth model ∥𝑃∥ of a program 𝑃 (Def. 2.22) is equipped with a pseudometric inherited
from that of ∥𝐺1∥ × · · · × ∥𝐺𝑛∥, while the pseudometric of each ∥𝐺𝑖∥ is derived from ℓ𝑖 : 𝐺 (1)

𝑖 →
[𝑅,∞[ (Def. 4.14). The pseudometric of ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ also depends on a parameter 𝛼 ∈ [1,∞]
(Def. 4.17). In order that the length of a directed path on ∥𝑃∥ coincides with the execution time
of its sequence of multi-instructions, we should take 𝛼 =∞. We explain why in §6.1 and prove in
§6.2 that directed paths admit piecewise affine approximations (Thm. 6.5 and Cor. 6.6). A similar
discussion can be found in (Dang & Gerner, 2004, §3.4).
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6.1 The parallel execution time principle
If several tasks that have started at the same time are executed in parallel (i.e. simultaneously and
independently of each other) then the time required to complete all of them is the time required
to complete the longest one; we refer to this claim as the parallel execution time principle. As a
consequence of it, the time required to execute a multi-instruction 𝜇 on a machine allowing parallel
execution (we call it the parallel execution time of 𝜇) is

max
{
𝑇𝑖

�� 𝑖 ∈ dom 𝜇
}

(19)

with 𝑇𝑖 being the time required by the 𝑖th process to execute the instruction 𝜇(𝑖) (for 𝑖 ∈ dom 𝜇).
In comparison, if several tasks are performed sequentially (i.e. one task starts the moment the

previous one ends) then the time required to complete all of them is the sum of the times required
to complete each of them; we refer to this claim as the sequential execution time principle.
Consequently, the time required to execute a multi-instruction 𝜇 on a sequential machine (we call
it the sequential execution time of 𝜇) is ∑︁

𝑖∈dom 𝜇

𝑇𝑖 . (20)

Consider a directed smooth path 𝛾 (Def. 5.7 and A.7) representing an execution trace (see the end
of the preamble of §5, p. 21). On an infinitesimal scale, the path 𝛾 at 𝑡 is identified with the segment
from 𝛾(𝑡) to 𝛾(𝑡) + 𝛾′ (𝑡) which represents the execution of an ‘infinitesimal multi-instruction’ 𝑑𝜇.
Put 𝛾′ (𝑡) = (𝛾′1(𝑡), . . . , 𝛾′𝑛 (𝑡)) and assume that |𝛾′

𝑖
(𝑡) | is the time spent by the 𝑖th process to execute

the 𝑖th component of 𝑑𝜇 (with the convention that |𝛾′
𝑖
(𝑡) | = 0 when 𝑖 ∉ dom (𝑑𝜇)). As a consequence

of (19) and (20), the parallel execution time of 𝑑𝜇 is |𝛾′ (𝑡) |∞ = max
{
|𝛾′

𝑖
(𝑡) |

�� 𝑖 ∈ {1, . . . , 𝑛} }, while
the sequential execution time of 𝑑𝜇 is |𝛾′ (𝑡) |1 = |𝛾′1(𝑡) | + · · · + |𝛾′𝑛 (𝑡) |. Hence the parallel and the
sequential execution times of the sequence of multi-instructions represented by 𝛾 are respectively

L∞(𝛾) =
∫

𝑦

𝑥

|𝛾′ (𝑡) |∞ 𝑑𝑡 and L1(𝛾) =
∫

𝑦

𝑥

|𝛾′ (𝑡) |1 𝑑𝑡

with [𝑥, 𝑦] = dom (𝛾) – see Def. 4.22. We observe that∫ 𝑦

𝑥

|𝛾′ (𝑡) |1𝑑𝑡 =

∫ 𝑦

𝑥

( 𝑛∑︁
𝑖=1
|𝛾′𝑖 (𝑡) |𝑑𝑡

)
=

𝑛∑︁
𝑖=1

( ∫ 𝑦

𝑥

|𝛾′𝑖 (𝑡) |𝑑𝑡
)

which confirms that the sequential execution time does not depend on the schedule (see the
discussion that follows Def. 2.13, p. 8). This is wrong for the parallel execution time principle: by
considering the directed (piecewise) smooth paths 𝛾 : 𝑡 ∈ [0, 1] ↦→ (𝑡, 𝑡) ∈ [0, 1]2 and

𝛿 : 𝑡 ∈ [0, 1] ↦→
{
(0, 2𝑡) if 0 ⩽ 𝑡 ⩽ 1

2

(2𝑡 − 1, 1) if 1
2 ⩽ 𝑡 ⩽ 1

we have L1(𝛾) =L1(𝛿) =L∞(𝛿) = 2 while L∞(𝛾) = 1. The ratio L1 (𝛾)
L∞ (𝛾) indicates the efficiency

of the schedule corresponding to a directed smooth path 𝛾 on the smooth model of a program
(the greater the better). See (Cormen et al., 2022, p. 757-759) and (Herlihy et al., 2020, §16.2,
p. 384-386) for related discussions.

Let 𝑀 be the model of a program 𝑃. We denote by 𝑑𝑀 the set of directed paths on 𝑀 . Two
points of 𝑀 are said to be equivalent when they belong to the same tile (Def. 2.11); two elements of
𝑑𝑀 are said to be equivalent when so are their extremities and their sequences of multi-instructions
have the same effect on the system – see §1 or (Haucourt, 2018, §6). We have just seen that 𝑀
admits a metric such that the length of a directed path on 𝑀 is the execution time of its sequence
of multi-instructions, so it seems natural to minimize length in order to optimize execution time.
However, a constant path and a directed loop on 𝑀 with the same extremities are not equivalent
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in general. Therefore, assuming that 𝜎 is the sequence of multi-instructions of 𝛾 ∈ 𝑑𝑀 , when it
comes to replacing 𝜎 by a faster sequence of multi-instructions doing the same job, we cannot just
replace 𝛾 by a shorter directed path with equivalent extremities. Nevertheless, assuming that 𝑑𝑀
is equipped with the distance defined by

𝑑 (𝛿0, 𝛿1) = max{𝑑 (𝛿0(𝑡), 𝛿1(𝑡)) | 𝑡 ∈ 𝐽}
for all 𝛿0, 𝛿1 ∈ 𝑑𝑀 such that dom (𝛿0) = dom (𝛿1) = 𝐽, there is an open ball 𝐵 centered at 𝛾 such
that for every 𝛿 ∈ 𝐵, the directed paths 𝛾 and 𝛿 are equivalent when so are their extremities
(Haucourt, 2018, Thm. 6.1). We easily obtain a possible radius for 𝐵 as follows. We define the
set of atomic instructions appearing in a multi-instruction 𝜇 as 𝐴(𝜇) = {𝜇𝑖 | 𝑖 ∈ dom (𝜇)}, and the
set of atomic instructions appearing in a sequence of multi-instructions 𝜇1, . . . , 𝜇𝑘 as the union
𝐴(𝜇1)∪ · · · ∪𝐴(𝜇𝑘). The smallest execution time of the atomic instructions appearing in 𝜎 can
be taken as the radius of 𝐵. This result allows local optimizations based on purely geometric
considerations, a topic which is discussed further in §7.

6.2 Piecewise affine approximations
As long as we are only interested in minimizing the length of directed paths between two points
of a tile compatible set (Def. 2.11 and 2.15) we can restrict our attention to piecewise affine paths
(Def. 4.4): this claim is formalized in Thm. 6.5 and Cor. 6.6.

The sets |𝐺1 | × · · · × |𝐺𝑛 | and ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ are equipped with their standard local orders
(Def. 5.11 and 5.15) from which their topologies are inherited (§5.2, p. 23). The pseudometrics 𝑑𝑖

on |𝐺𝑖 | and ∥𝐺𝑖∥ are given by Def. 4.5 and 4.14. Following execution time considerations (§6.1)
the chosen product metric is

𝑑 (∞)
(
(𝑝1, . . . , 𝑝𝑛), (𝑞1, . . . , 𝑞𝑛)

)
= max

{
𝑑𝑖 (𝑝𝑖, 𝑞𝑖)

�� 𝑖 ∈ {1, . . . , 𝑛}} .
Let 𝛾 : 𝐼→ 𝑋 be a path with 𝑋 a subset of |𝐺1 | × · · · × |𝐺𝑛 | or ∥𝐺1∥ × · · · × ∥𝐺𝑛∥.

Definition 6.1. For 𝜀 > 0, an 𝜀-approximation of 𝛾 on 𝑋 is a path 𝛼 : 𝐼→ 𝑋 such that:

– 𝛼 and 𝛾 have the same starting and the same finishing points,
– 𝛼 and 𝛾 are 𝜀-close, i.e. 𝑑 (∞) (𝛼(𝑡), 𝛾(𝑡)) < 𝜀 for every 𝑡 ∈ 𝐼,
– 𝛼 is not longer than 𝛾, and
– if 𝛾 is directed, then so is 𝛼.

Any path is clearly its own 𝜀-approximation whatever 𝜀 and 𝑋 are. From now on we assume that
𝑋 is tile-compatible; our goal is to prove that any directed path 𝛾 on 𝑋 has a piecewise affine
𝜀-approximation for arbitrarily small 𝜀 > 0. We first deal with the case where 𝑋 ⊆ |𝐺1 | × · · · × |𝐺𝑛 |,
which requires more technicalities.

Definition 6.2. An open ball 𝐵 of radius 𝑟 in the metric space ( |𝐺1 | × · · · × |𝐺𝑛 |, 𝑑 (∞)) is said to
be admissible when 𝑟 ⩽ 𝑅

4 and for every 𝑘 ∈ {1, . . . , 𝑛}, if the 𝑘 th projection of the center of 𝐵

is not a vertex, then the 𝑘 th projection of 𝐵 contains no vertex. Given 𝜀 > 0, an 𝜀-discretization
of a path 𝛾 : [𝑥, 𝑦] → |𝐺1 | × · · · × |𝐺𝑛 | is a sequence 𝑥 = 𝑡0< · · · <𝑡𝑘⩽𝑦 with admissible open balls
𝐵0, . . . , 𝐵𝑘 such that i) each 𝐵𝑖 is centered at 𝛾(𝑡𝑖) with radius at most 𝜀, ii) for every 𝑖 ∈ {1, . . . , 𝑘},
]𝑡𝑖−1, 𝑡𝑖 [ ∩ 𝛾−1(𝐵𝑖−1 ∩ 𝐵𝑖) ≠ ∅, and iii) img (𝛾) ⊆ 𝐵0 ∪ · · · ∪ 𝐵𝑘 .

Lemma 6.3. Denote by 𝑝 the center of an admissible open ball 𝐵. For every 𝑞 ∈ 𝐵 and every
𝑘 ∈ {1, . . . , 𝑛}, the shortest path from 𝑝𝑘 to 𝑞𝑘 (the 𝑘 th projections of 𝑝 and 𝑞) is the dash 𝑝𝑘→ 𝑞𝑘

(Def. 4.7, p. 15). The higher dimensional dash 𝑝→ 𝑞 = (𝑝1→ 𝑞1) × · · · × (𝑝𝑛→ 𝑞𝑛) (with affine
parametrization) is of length 𝑑 (𝑝, 𝑞) and its image is contained in the union of the tiles containing
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𝑝 and 𝑞 respectively. Moreover, if 𝑝 ⩽𝑈 𝑞 (resp. 𝑞 ⩽𝑈 𝑝) for some pospace 𝑈 of the standard local
order X𝐺1

× · · · × X𝐺𝑛
(Def. 5.11, p. 24), then 𝑝→ 𝑞 (resp. 𝑞→ 𝑝) induces (as a map) a pospace

morphism with values in 𝑈, and therefore a directed path on X𝐺1
× · · · × X𝐺𝑛

.

Proof. The 𝑘 th projection of 𝐵 is the open ball of |𝐺𝑘 | centered at 𝑝𝑘 with radius 𝑟 ⩽ 𝑅
4 , we denote

it by 𝐵𝑘 . The shortest path 𝛼𝑘 from 𝑝𝑘 to 𝑞𝑘 is either of the form 𝑝𝑘→ 𝑞𝑘 or 𝑝𝑘→ 𝑣𝑘→ 𝑞𝑘 for a
unique vertex 𝑣𝑘 (Lem. 4.10, p. 15). We have img (𝛼𝑘) ⊆ 𝐵𝑘 because the distance from any point
along 𝛼𝑘 to 𝑝𝑘 is less that 𝑑 |𝐺𝑘 | (𝑝𝑘, 𝑞𝑘); it follows that if 𝛼𝑘 = 𝑝𝑘→ 𝑣𝑘→ 𝑞𝑘 , then 𝑝𝑘 = 𝑣𝑘 because 𝐵𝑘

contains no vertex otherwise (𝐵 is admissible). Let 𝜏𝑘 be the 𝑘 th projection of the tile 𝜏 containing
𝑞. Suppose that dom (𝛼𝑘) = [𝑡0, 𝑡1], since the path 𝛼𝑘 is an arc (Rem. 4.9) and 𝛼𝑘 (𝑡0) = 𝑝𝑘 , we deduce
from Def. 4.7 that 𝛼𝑘 (]𝑡0, 𝑡1]) ⊆ 𝜏𝑘 . Assuming that all the paths 𝛼𝑘 (for 𝑘 ∈ {1, . . . , 𝑛}) are defined
on [𝑡0, 𝑡1], the path 𝛼 = 𝛼1 × · · · × 𝛼𝑛 on |𝐺1 | × · · · × |𝐺𝑛 | satisfies 𝛼(]𝑡0, 𝑡1]) ⊆ 𝜏. The last point is
readily deduced from Def. 4.7 (p. 15) and 5.11 (p. 24).

Lemma 6.4. For every 𝜀 > 0, every path 𝛾 on |𝐺1 | × · · · × |𝐺𝑛 | admits an 𝜀-discretization.

Proof. Suppose that dom (𝛾) = [𝑥, 𝑦] and denote by 𝑡∞ the least upper bound of the set of elements
𝑡 ∈ [𝑥, 𝑦] such that the restriction 𝛾 | [𝑥, 𝑡] has an 𝜀-discretization. Choose an admissible open ball 𝐵∞
centered at 𝛾(𝑡∞) with radius less than 𝜀. Let 𝑡 < 𝑡∞ such that 𝛾 [𝑡, 𝑡∞] ⊆ 𝐵∞. Let 𝑡0< · · · <𝑡𝑘 ⩽ 𝑡 with
open balls 𝐵0, . . . , 𝐵𝑘 be an 𝜀-discretization of the restriction 𝛾 | [𝑥, 𝑡] . Even if it means taking 𝑡 a bit
bigger, we can suppose that 𝑡𝑘 < 𝑡 < 𝑡∞ with 𝛾(𝑡) ∈ 𝐵𝑘 ∩ 𝐵∞. Then 𝑡0< · · · <𝑡𝑘 < 𝑡∞ ⩽ 𝑡∞ with open
balls 𝐵0, . . . , 𝐵𝑘 , 𝐵∞ is an 𝜀-discretization of the restriction 𝛾 | [𝑥, 𝑡∞] . If we had 𝑡∞ < 𝑦 then we would
have 𝑡′ ∈ ]𝑡∞, 𝑦[ such that 𝛾 [𝑡∞, 𝑡′] ⊆ 𝐵∞ so the previous 𝜀-discretization of 𝛾 | [𝑥, 𝑡∞] would also be an
𝜀-discretization of 𝛾 | [𝑥, 𝑡′] , which would contradict the definition of 𝑡∞.

We deduce the approximation results:

Theorem 6.5. For every 𝜀 > 0, every path 𝛾 on a tile compatible subset 𝑋 of |𝐺1 | × · · · × |𝐺𝑛 |
admits a piecewise affine 𝜀-approximation.

Proof. Let 𝜀 > 0 and suppose that 𝑥 = 𝑡0< · · · <𝑡𝑘⩽𝑦 with the admissible open balls 𝐵0, . . . , 𝐵𝑘 is
an 𝜀-discretization of the path 𝛾 : [𝑥, 𝑦] → 𝑋 (Lem. 6.4). In particular 𝛾(𝑡𝑖) is the center of 𝐵𝑖 for
every 𝑖 ∈ {0, . . . , 𝑘}. For every 𝑖 ∈ {1, . . . , 𝑘} choose 𝑡′𝑖 ∈ ]𝑡𝑖−1, 𝑡𝑖 [ such that 𝛾(𝑡′𝑖 ) ∈ 𝐵𝑖−1 ∩ 𝐵𝑖 and
define 𝑡′

𝑘+1 = 𝑦. For every 𝑖 ∈ {0, . . . , 𝑘}we have a step 𝑠𝑖 (Def. 4.3) from 𝛾(𝑡𝑖) to 𝛾(𝑡′𝑖+1) whose image
is included in 𝑋 (apply Lem. 6.3 with 𝑝 = 𝛾(𝑡𝑖) and 𝑞 = 𝛾(𝑡′𝑖+1) observing that 𝑋 is tile compatible
and contains the endpoints of 𝑠𝑖). Similarly we have, for 𝑖 ∈ {1, . . . , 𝑘}, a step 𝑠𝑖

′ from 𝛾(𝑡′𝑖) to 𝛾(𝑡𝑖)
whose image is included in 𝑋 . The concatenation 𝑠0𝑠1

′𝑠1 · · · 𝑠𝑘′𝑠𝑘 is the expected piecewise affine
𝜀-approximation.

Corollary 6.6. For every 𝜀 > 0, every directed path 𝛾 on a tile compatible subset 𝑋 of
∥𝐺1∥ × · · · × ∥𝐺𝑛∥ admits a piecewise affine 𝜀-approximation on 𝑋 .

Proof. The directed path (𝛽1 × · · · × 𝛽𝑛) ◦ 𝛾 on the tile compatible set (𝛽1 × · · · × 𝛽𝑛) (𝑋)
(Lem. 2.19) admits a piecewise affine 𝜀-approximation 𝛼 (Thm. 6.5) which is a directed path
(Def. 6.1). The expected approximation is the lifting of 𝛼 (Thm. 5.29).

7. Afterword
A glimpse of Finsler geometry. Finsler metrics are motivated by the observation that measuring
the length of a curve on a manifold M only requires a way of measuring the length of tangent
vectors, see (Papadopoulos, 2013, p. 40), (Chern & Shen, 2005, p. 1). In this context, we call
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action functional any map 𝐹 :𝑇M→ R+ such that 𝐹 (𝑥 + 𝑦) ⩽ 𝐹 (𝑥) + 𝐹 (𝑦) and 𝐹 (𝜆𝑥) = 𝜆𝐹 (𝑥) for
all 𝑝 ∈M, 𝑥, 𝑦 ∈ 𝑇𝑝M, and 𝜆 > 0. As suggested by (Bao et al., 2000, p. 1, 2), the action functional
can be chosen so that the length of a curve has a physical meaning: in such a context, minimizing
length amounts to minimizing action. Given a parallelization ( 𝑓1, . . . , 𝑓𝑛) ofM and a norm |_|

★

on R𝑛, the mapping (𝑝, 𝑣) ∈ 𝑇M ↦→ |(𝑎1, . . . , 𝑎𝑛) |★ ∈ R+ with 𝑣 = 𝑎1 𝑓1(𝑝) + · · · + 𝑎𝑛 𝑓𝑛 (𝑝) is an
action functional that we still denote by |_|

★
(Def. B.13). When the norm on R𝑛 is |_|∞ the length

of 𝛾 is the time required to execute the sequence of multi-instructions represented by 𝛾; see §6.1
and compare to the navigation problem (Chern & Shen, 2005, 1.4).

A Finsler metric is a family of Minkowski norms on 𝑇𝑝M smoothly varying with 𝑝 ∈M
(Bao et al., 2000, p.5), i.e. a map 𝐹 :𝑇M→ R+ which is smooth on the slit tangent bundle
(i.e. 𝑇M \ {zero tangent vectors}) and whose restrictions to tangent spaces are Minkowski norms
(Chern & Shen, 2005, 1.2.1). These axioms are motivated by the notion of curvature, which plays a
central role in the study of both Riemannian and Finsler geometries (Bao et al., 2000, Introduction).

Although our mathematical framework arises from the same motivations, technicalities rule it
out of the scope of standard Finsler geometry. First, manifolds of the form A𝐺1

× · · · × A𝐺𝑛
are

non-Hausdorff (in all relevant cases) so their topologies are not induced by their (pseudo)metrics.
This defect is related to the non-determinism specific to our topic, and it seems impossible to get
rid of it. The other issue is that the action functional corresponding to the norm |_|∞, which is the
one we are interested in (§6.1), fails to be smooth on the slit tangent bundle. Indeed, the norm |_|∞ is
derivative at (𝑥1, . . . , 𝑥𝑛) if, and only if, 𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗 . About this last point, one may argue that
‘ill-behaved’ points form a neglectable closed subset of R𝑛 (with respect to Lebesgue measure), so
they may be manageable. Actually, the problem of finding minimum action curves in degenerate
(i.e. non-smooth) Finsler metrics is studied in (Heymann (2015)) whose preface indicates concrete
situations in which they naturally occur. Heymann’s theory is presented for action functionals
defined on R𝑛 (Heymann, 2015, Def. 2.4); we are confident that this limitation can be easily
overcome, at least for manifolds of the form A𝐺1

× · · · × A𝐺𝑛
(Def. 3.3). Heymann theory satisfies

many desirable properties (Heymann, 2015, p. 6). In view of applications to geometric models of
concurrency, we would like to adapt it to find directed minimizing curves, which would correspond
to optimal schedules. This should be compared to the work of Dang & Gerner (2004).

Dealing with the endpoints of a graph. We have observed that the blowup 𝛽𝐺 : ∥𝐺∥ → |𝐺 | may not
be surjective (after Def. 2.15, p. 9); indeed, the elements of the set |𝐺 | \ 𝛽𝐺 (∥𝐺∥) are the endpoints
of 𝐺, i.e. the vertices of 𝐺 without incoming arrow or without outgoing arrow. One can remedy
this by means of manifolds with boundary (Bröcker and Jänich, 1982, Chap. 13, p.129-131),
(Guillemin & Pollack, 1974, §1, p. 57), (Lee, 2012, p.25):

Definition 7.1. A chart with boundary of dimension 𝑛 ∈ N, or 𝑛-chart with boundary, is a bijection
𝜙 whose codomain is an open subset of R+ × R𝑛−1, with R+ = [0,∞[. A map 𝑓 :𝑈→ R𝑚 with𝑈 an
open subset of R+ × R𝑛−1 is said to be smooth if it has a smooth extension to an open subset of R𝑛

(i.e. there exists an open subset𝑉 of R𝑛 and a smooth map 𝑓 :𝑉→ R𝑚 such that𝑈 ⊆ 𝑉 and 𝑓 is the
restriction of 𝑓 to 𝑈). Compatibility between charts with boundary is defined as for charts except
that the second item of Def. A.2 refers to smooth maps defined on open subsets of R+ × R𝑛−1.
An atlas with boundary is a collection A of pairwise compatible charts with boundary (compare
with Def. A.4). The 𝑛-dimensional atlas (with boundary) A induces an (𝑛 − 1)-dimensional atlas
(without boundary) 𝜕A on the union of the sets 𝜙−1({0} × R𝑛−1) for 𝜙 ranging through A (given
𝜙, 𝜓 ∈ A, for every point 𝑝 ∈ dom (𝜙) ∩ dom (𝜓), we have 𝑝 ∈ 𝜙−1({0} × R𝑛−1) if, and only if,
𝑝 ∈ 𝜓−1({0} × R𝑛−1)). The atlas 𝜕A is called the boundary of A.(4)

(4)Every atlas in the sense of Def. A.4 is an atlas with boundary ... whose boundary is empty!
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Definition 7.2. The endpoint traversals of 𝐺 are the elements of the set
𝜕∥𝐺∥ =

{
(𝑎, 𝑣), (𝑣, 𝑏)

�� 𝑣 endpoint of 𝐺; tgt(𝑎) = 𝑣; src(𝑏) = 𝑣
}
,

and the standard charts with boundary of 𝐺 are the bijections

𝜙𝑎𝑣 : {𝑎} × 𝐽𝑎 ∪ {(𝑎, 𝑣)} → ] −ℓ (𝑎)2 , 0]

with (𝑎, 𝑡) ↦→ 𝑡 − ℓ(𝑎) , (𝑎, 𝑣) ↦→ 0

𝜙𝑣𝑏 : {(𝑣, 𝑏)} ∪ {𝑏} × 𝐼𝑏 → [0, ℓ (𝑏)2 [

with (𝑣, 𝑏) ↦→ 0 , (𝑏, 𝑡) ↦→ 𝑡

with 𝐽𝑎 = ] ℓ (𝑎)2 , ℓ(𝑎) [, 𝐼𝑏 = ]0, ℓ (𝑏)2 [, and (𝑎, 𝑣), (𝑣, 𝑏) ∈ 𝜕∥𝐺∥. We define Ā𝐺 , the standard atlas
with boundary of 𝐺, as the collection of all standard charts of 𝐺, with or without boundary. We
denote by 𝛽

𝐺
: ∥𝐺∥ ∪ 𝜕∥𝐺∥ → |𝐺 | the extension of the blowup map 𝛽𝐺 (Def. 2.15, p. 9) defined

by 𝛽
𝐺
(𝑎, 𝑣) = 𝛽

𝐺
(𝑣, 𝑏) = 𝑣 for (𝑎, 𝑣), (𝑣, 𝑏) ∈ 𝜕∥𝐺∥. Note that, unlike 𝛽𝐺 , the map 𝛽

𝐺
is surjective.

Remark 7.3. If 𝑋 is the underlying topology of the standard atlas with boundary of 𝐺, then ℎ𝑋 the
unit at 𝑋 of the adjunction between H and Top (Rem. 5.22) is the map 𝛽

𝐺
.

The map 𝛽
𝐺

should satisfy a universal property similar to that of Thm. 5.33, see Fig. 6, p. 42,
nevertheless we have not checked the details. The higher dimensional version of this universal
property, which concerns 𝛽1 × · · · × 𝛽𝑛, raises a technical issue: the product of manifolds with
boundary is not a manifold with boundary; it is actually a manifold with corners. Roughly speaking,
the latter are defined as manifold with boundary, except that R+ × R𝑛−1 is replaced by R𝑛

+ – see
(Lee, 2012, p. 415). One of the subtleties one has to deal with is that for 𝑘0, 𝑘1 ∈ {1, . . . , 𝑛} with
𝑘0 ≠ 𝑘1, R𝑘0

+ × R𝑛−𝑘0 and R𝑘1
+ × R𝑛−𝑘1 are homeomorphic but not diffeomorphic (Lee, 2012, p. 416).

Hausdorff vs Non-Hausdorff manifolds. Apart from a few marginal observations here and there,
references dealing with non-Hausdorff manifolds seem to be rare; (Gauld, 2014, Chapter 9) and
(Mardani, 2014, §2, p. 61–85) are among the few exceptions. Here are some of the reasons why
non-Hausdorff manifolds are ignored: «Non-Hausdorff manifolds occasionally turn up, but it is
hard to prove anything interesting about them» (Hirsch, 1976, pp. 32-33), «Most of the interesting
results about manifolds do in fact require these properties.(5)» (Lee, 2012, p. 4), and « ... we are
not defining manifolds as sets supplied with an atlas [...] because [...] this [...] definition would
put us under the obligation to bestow the noble title of manifold upon certain ungainly objects.»
(Nestruev, 2020, §5.6, p. 57). We illustrate these claims with some basic observations which prove
that standard facts of differential topology are either wrong or not relevant for non-Hausdorff
manifolds:

1) There can be more than one integral curve passing through a given point on a non-Hausdorff
manifold; compare with (Lang, 1999, Thm. 2.1, p. 90). Such a pathology occurs for every standard
parallelization (Def. 3.6) whose underlying topology is non-Hausdorff; this is related to the notion
of bifurcate curves of the second kind in physics (Hájíček, 1971𝑎, p. 158).

2) The Whitney embedding theorem is an emblematic result of differential topology which
asserts that every Hausdorff, second countable, smooth manifoldM can be smoothly embedded
into R2𝑛 with 𝑛 denoting the dimension ofM, see (Whitney, 1944, Thm. 5), or (Adachi, 1993,
Thm. 2.11, p. 67), (Benedetti, 2021, Thm. 7.17, p. 146) for the compact case; most textbooks
provide a smooth embedding ofM into R2𝑛+1, see (Guillemin & Pollack, 1974, p. 53), (Hirsch,
1976, Thm. 2.14, p. 55), (Mukherjee, 2015, Thm. 2.5.1, p. 62). Conversely, since the collection
of Hausdorff (resp. second countable) spaces is stable under subspaces, every manifold M that
can be embedded in R𝑁 for some 𝑁 ∈ N is Hausdorff and second countable. Hence the Whitney
embedding theorem does not hold for non-Hausdorff manifolds.

3) Given a smooth embedding 𝜙 :M→ R𝑁 , the subspace 𝜙(M) is actually a smooth submani-
fold of R𝑁 so it inherits a Riemannian metric 𝑔 from the euclidean structure of R𝑛; the Riemannian

(5)The quotation refers to the Hausdorff and second-countability properties.
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metric 𝑔 is transferred toM via the embedding 𝜙 (Lafontaine, 2015, p. 223). One can also build a
Riemannian metric onM from a partition of unity (Bishop & Crittenden, 1964, Thm. 2, p. 126);
indeed, a connected manifoldM admits a partition of unity if, and only if, it is Hausdorff and sec-
ond countable (Brickell & Clark, 1970, Prop. 3.4.4, p. 51).(6) Anyway, the topology of a Hausdorff
second countable smooth manifold M is induced by any Riemannian metric 𝑔 on M (Bishop
& Crittenden, 1964, Thm. 1, p. 125). These considerations are often summarized by a concise
statement like «every smooth manifold admits a Riemannian metric» (do Carmo, 1992, Prop. 2.10,
p. 43), or (Lee, 2018, Prop. 2.4, p. 11), being assumed that the manifolds under consideration are
Hausdorff and second countable. A non-Hausdorff manifold is not metrizable, nevertheless there
may be a Riemannian metric on it. For example, every standard atlas (Def. 3.3) can be equipped
with a Riemannian metric for which the standard parallelization (Def. 3.6) is orthonormal. As in
Def. B.13, the distance between two points 𝑝, 𝑞 is the infimum of the lengths of the (smooth) paths
from 𝑝 to 𝑞, we denote it by 𝑑 (𝑝, 𝑞). Then we may have 𝑝 ≠ 𝑞 and 𝑑 (𝑝, 𝑞) = 0 (Ex. 4.23) so the
corresponding topology is not 𝑇0, while the topology of the atlas is 𝑇1 (Lem. A.9). This suggests
that the standard tools of differential geometry are of little help as soon as we have to deal with the
topology of non-Hausdorff manifolds.

4) The connected subsets of the circle are the only 1-dimensional connected metrizable man-
ifolds with boundary, see (Milnor, 1965, Appendix) or (Gale (1987)), while the collection of
1-dimensional standard atlases (Def. 3.3) is infinite (up to diffeomorphism). To see this we define
𝑁 (𝐺, 𝑎, 𝑏) as the number of vertices of𝐺 with 𝑎 incoming arrows and 𝑏 outgoing arrows, for every
finite graph 𝐺 and every (𝑎, 𝑏) ∈ N ×N such that 𝑎𝑏 ≠ 0 and 𝑎 + 𝑏 ≠ 2. If 𝑁 (𝐺, 𝑎, 𝑏) ≠ 𝑁 (𝐺′, 𝑎, 𝑏)
then the standard atlasesA𝐺 andA𝐺′ are not diffeomorphic. The classification of standard atlases
remains rather tractable because it only depends on a rather simple classification of graphs (which
we do not provide here); however «a reasonable classification of non-Hausdorff manifolds seems
infeasible even in dimension 1» (Gauld, 2014, p. 153).(7) This claim is to be compared with the
classification theorems for metrizable manifolds in dimension 2 – see (Hirsch, 1976, Thm. 3.5,
p. 204), (Gauld, 1982, Chapter 14), or (Massey, 1991, Thm. 5.1, p. 9)), in dimension 3 – see
(Hempel, 1976, Thm. 3.21, p. 35) or (Jaco, 1980, II.4, p. 20), and in dimension 𝑛 ⩾ 5 – see (Kreck
(1999)).(8) The branching topology of a manifold (which will be defined below), gives a concrete
insight of how complicated a non-Hausdorff manifold might be.

5) Every point 𝑝 of a manifold M is contained in an open Hausdorff submanifold 𝑉 of M:
it suffices to consider a chart of M whose domain contains 𝑝. One can even suppose that 𝑉 is
maximal with respect to inclusion (Hájíček, 1971𝑏, Thm. 1). The collection of finite intersections
of maximal open Hausdorff submanifolds ofM is a ∩-semilattice (i.e. the greatest lower bound
of two elements is their intersection) which we call the branching semilattice of M; the latter
is in particular a base of a topology (on the underlying set of M) which we call the branching
topology ofM. By definition, the branching topology of every Hausdorff manifold is the coarsest
one. For every point 𝑝 of the standard atlas A𝐺 of a graph 𝐺, there is a smallest element of the
branching semilattice of 𝐺 containing 𝑝; equivalently, the branching topology of 𝐺 is Alexandroff-
discrete (Arenas (1999)). To see this, let ∥𝐺∥S be the set of singular traversals of 𝐺 (Def. 2.14,
p. 8). Then ∥𝐺∥ \ ∥𝐺∥S is a subspace of (the underlying topological space of) A𝐺 (Def. A.8).
The connected component of 𝑝 ∈ ∥𝐺∥ \ ∥𝐺∥S is the smallest neighborhood of 𝑝 in the branching
topology of A𝐺 . For every arrow 𝑎 we denote by 𝐶𝑎 the connected component of ∥𝐺∥ \ ∥𝐺∥S

containing {𝑎} × ]0, ℓ(𝑎) [. Let (𝑎, 𝑏) be a traversal of 𝐺. If (𝑎, 𝑏) is regular then 𝐶𝑎 =𝐶𝑏 and it is
the smallest neighbourhood of (𝑎, 𝑏) in the branching topology of A𝐺 . If (𝑎, 𝑏) is singular, then
𝐶𝑎 ∪ {(𝑎, 𝑏)} ∪𝐶𝑏 is the smallest neighbourhood of (𝑎, 𝑏) in the branching topology of A𝐺 .

(6)Take care that in (Brickell & Clark, 1970, p. 51), ‘a paracompact manifold’ is defined as ‘a manifold whose connected
components are Hausdorff and second countable’.

(7)Non-Hausdorff 1-manifolds are related to foliations of the plane (Gauld, 2014, Thm. 9.14, p. 165).
(8)The fourth dimension is known to be like no other (Scorpan, 2005, p. vii).
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Even if the branching topology of every graph is Alexandrov discrete, the branching semilattice
of a graph may not satisfy the descending chain condition; we illustrate this claim:

Let 𝑍 be the graph whose set of vertices is Z and such that every vertex 𝑥 has exactly one
outgoing arrow whose target is 𝑥 + 1 (Ex. 2.20, p. 9). Every graph embedding of 𝑍 into a graph
𝐺 induces a manifold embedding of R into A𝐺 (see p. 13) whose image is a maximal Hausdorff
submanifold of A𝐺 . Suppose that the set of vertices of 𝐺 is Z ×Z and that every vertex (𝑥, 𝑦)
has exactly two outgoing arrows whose targets are (𝑥, 𝑦 + 1) and (𝑥 + 1, 𝑦). Let 𝐻𝑛, for 𝑛 ∈ N,
be the maximal Hausdorff submanifold of A𝐺 corresponding to the graph embedding 𝑓𝑛 : 𝑍→𝐺

defined by 𝑓𝑛 (𝑘) = (𝑘, 0) for 𝑘 ⩽ −𝑛, and by 𝑓𝑛 (𝑘) = (−𝑛, 𝑛 + 𝑘) for 𝑘 > 𝑛. For every 𝑛 ∈ N we
have 𝐻0 ∩ · · · ∩ 𝐻𝑛+1 ⊊ 𝐻0 ∩ · · · ∩ 𝐻𝑛. More generally, given a graph 𝐺, if we have a graph
embedding of 𝑍 into 𝐺 whose image contains infinitely many singular vertices (Def. 2.14, p. 8)
then the branching semilattice of 𝐺 does not satifsy the descending chain condition.

We now provide an example of a manifold whose branching topology is not Alexandrov discrete;
it is a special instance of (Mardani, 2014, Ex. 2.4.2, p. 66). The underlying set is {0, 1} × R. For every
𝑥 ∈ R consider the chart 𝜙𝑥 defined on the set {(𝜀, 𝑦) ∈ {0, 1} × R | 𝜀 = 1⇔ 𝑦 = 𝑥} by 𝜙𝑥 (𝜀, 𝑦) = 𝑦.
Observe that for all 𝑥, 𝑥′ ∈ R with 𝑥 ≠ 𝑥′, we have dom (𝜙𝑥) ∩ dom (𝜙𝑥′) = {0} × (R \ {𝑥, 𝑥′}), and
that the transition map 𝜙𝑥′ ◦ 𝜙𝑥

−1 is the identity on R \ {𝑥, 𝑥′}. Hence the collection {𝜙𝑥 | 𝑥 ∈ R} is an
atlas whose corresponding manifold is denoted byM. The maximal open Hausdorff submanifolds
ofM are of the form ({0} × (R \ 𝐷)) ∪ ({1} × 𝐷) with 𝐷 a discrete subset of R. Indeed, the map

𝑥 ∈ R ↦→
{
(0, 𝑥) if 𝑥 ∉ 𝐷

(1, 𝑥) if 𝑥 ∈ 𝐷
∈ {0, 1} × R

is a smooth embedding whose derivative at every point is one-to-one (as a linear map); conversely,
if 𝑓 : R→M is a topological embedding, then 𝑓 −1({1} × R) is a discrete subset of R. As a
consequence, the elements of the branching semilattice ofM are of the form ({0} × (R \ 𝐷0)) ∪
({1} × 𝐷1) with 𝐷1 ⊆ 𝐷0 discrete subsets of R. It follows that the branching topology ofM is 𝑇1,
not Alexandrov discrete, yet it is strictly coarser than the manifold topology ofM (e.g. the subset
{0} × ]0, 1[ is open in the latter, but not in the former). See (Kent et. al. (2009)) and (Mardani,
2014, §2, p. 61–84) for more topological facts about non-Hausdorff manifolds.

6) The ‘cut and glue’ operation on manifolds is of crucial importance in standard differential
topology: «A favorite method of studying smooth manifolds consists in observing how they are put
together from smaller pieces. The pieces are not, however, smooth manifolds, they are manifolds
with boundary.» (Kosinski, 1993, p.2). The underlying idea is quite simple: given a submanifold
𝐵 of a manifold 𝑀 and a manifold 𝐶 such that 𝜕𝐵 � 𝜕𝐶 ≠ ∅ (i.e. the boundaries of 𝐵 and 𝐶

are nonempty and diffeomorphic; see Def. 7.1), one obtains a new manifold 𝑀 ′ by ‘replacing’
𝐵 by 𝐶 in 𝑀 (for technical reasons, 𝑀 ′ may also depend on the choice of the diffeomorphism
𝜙 : 𝜕𝐵 � 𝜕𝐶, we can safely ignore this problem here). Informally speaking, we cut 𝐵 and glue𝐶. A
crucial property of this construction is that if 𝑀 and 𝐶 are Hausdorff (resp. metrizable), then so is
𝑀 ′, see (Hirsch, 1976, §2, p. 184), (Kosinski, 1993, VI.4, VI.5, pp. 99–103), or (Wall, 2016, §2.7,
p. 63) for technical details. A drastically more general construction is possible in the non-Hausdorff
framework: instead of ‘replacing 𝐵 by 𝐶’ to obtain 𝑀 ′, one can ‘add 𝐶 without removing 𝐵’ to
obtain 𝑀 ′′ in a way that we have 𝑏 ∼ 𝜙(𝑏) for every 𝑏 ∈ 𝜕𝐵 with ∼ as in Rem. 5.22. The boundary
of 𝐵 is in some sense duplicated, and if 𝐵 =𝐶 then the whole submanifold 𝐵 is duplicated. For
example, by duplicating the submanifold [1, 2[ of the manifold ]0, 2[, i.e. 𝐵 =𝐶 = [1, 2[ and
𝑀 = ]0, 2[, we obtain a manifold 𝑀 ′′ which is diffeomorphic to the one shown on Fig. 3, see also
(Baillif & Gabard, 2008, Fig. 1, p. 1106). In particular we have a canonical embedding of 𝑀 (resp.
𝑀 ′) into 𝑀 ′′ which induces an embedding of the branching topology of 𝑀 (resp. 𝑀 ′) into that of
𝑀 ′′ (in general, these embeddings are not homeomorphisms).

7) The duplication of submanifolds has further drastic consequences. An atlas (resp. a manifold)
is said to be closed when it is compact Hausdorff without boundary. A cobordism between the
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Figure 6. The standard atlas with boundary of a graph.

closed atlasesA0 andA1 is a compact Hausdorff atlas C such that 𝜕C =A0 ⊔A1 with ⊔ denoting
the disjoint union of manifolds of the same dimension, see (Hirsch, 1976, §1, pp. 169-172), (Wall,
2016, §5.1, p. 129), (Mukherjee, 2015, Def. 10.1.3, p. 301). If C satisfies all the requirements
of a cobordism between A0 and A1 but the Hausdorff property, then we say that C is a non-
Hausdorff cobordism, in which case we write A0 ≈A1. Given a closed atlas A, the cylinder
A × [0, 1] is known as the trivial cobordism from A to itself. Then A × [ 12 , 1] is a submanifold
ofA × [0, 1] that can be duplicated to obtain a non-Hausdorff cobordism betweenA andA ⊔A,
i.e. A ≈A ⊔A. We deduce from the equality 𝜕 ((A0 ⊔A1) × [0, 1]) =A0 ⊔A0 ⊔A1 ⊔A1 that
A0 ≈A0 ⊔A1 ⊔A1, and thereforeA0 ≈A0 ⊔A1 becauseA1 ≈A1 ⊔A1. Similarly we prove that
A1 ≈A0 ⊔A1. Hence there is a non-Hausdorff cobordism between any two closed atlases of the
same dimension. By contrast, the only 1-dimensional compact Hausdorff connected manifolds
(possibly with boundary) are the circle 𝑆1 (𝜕𝑆1 = ∅), and the unit segment [0, 1] (𝜕 [0, 1] = {0, 1}),
see (Milnor, 1965, Appendix) or (Gale (1987)). Consequently, the boundary of a (possibly not
connected) 1-dimensional compact Hausdorff manifold is a 0-dimensional compact Hausdorff
manifold, i.e. a finite set, whose cardinal is even. It follows that there is a cobordism between two
0-dimensional closed manifolds if, and only if, their cardinals have the same parity.

In the light of the above observations, the gap between Hausdorff and non-Hausdorff manifolds
seems to be an abyss. Nevertheless, the standard atlases (Def. 3.3) are so tractable that they are
usable by a non-expert. Due to their connection with graphs, which are pervasive in computer
science, we believe that they could be relevant to other branches of the discipline. In particular,
standard atlases provide a counter-example to the claim «It is exceedingly rare to encounter a
space “in nature” that would be a manifold except for the failure of one or the other of these
hypotheses.»(9) (Lee, 2012, p.4).

Beyond manifolds. The notion of a manifold has been generalized in many different ways, often
with the aim of dealing with singularities, which can arise when more than two smooth manifolds
are glued along their common boundary (Pflaum, 2001, p. 1, 2), or when quotients of (finite
dimensional) manifolds are considered, for example in physics (Iglesias-Zemmour, 2013, Preface;
pp. xvii-xx). We are interested in two of these generalisations, and more specifically in their
relevance comparing to standard atlases (Def. 3.3 and 7.2).

Diffeological spaces (a.k.a. Souriau spaces) and their morphisms form a quasitopos (Baez &
Hoffnung (2011)) into which the category of smooth manifolds fully embeds; see (Stacey (2011))
for a categorical comparison with similar kind of ‘smootheologies’. This means that diffeological
spaces provide a framework in which every standard construction on topological spaces is available
for manifolds. We provide details and examine a concrete example related to this paper.

A parametrization of dimension 𝑛 ∈ N in a set 𝑋 is a map 𝑝 :𝑈→ 𝑋 where 𝑈 is a domain of
dimension 𝑛, i.e. an open subset of R𝑛. A collection P of 𝑛-parametrizations in 𝑋 (with 𝑛 ∈ N
fixed) is said to be glueable when for all 𝑝, 𝑞 ∈ P, the maps 𝑝 and 𝑞 coincide on dom 𝑝 ∩ dom 𝑞.

(9)Again, the quotation refers to the Hausdorff and the second-countability properties.
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The glueing of such a collection P is the 𝑛-parametrization 𝑔 defined on
⋃{dom 𝑝 | 𝑝 ∈ P} by

𝑔(𝑢) = 𝑝(𝑢) for any 𝑝 ∈ P such that 𝑢 ∈ dom 𝑝; we denote the glueing of P by ∪P. A diffeology
on a set 𝑋 is a collection D of parametrization in 𝑋 containing all constant parametrizations,
and which is closed under gluing and precomposition by smooth maps between domains (because
of this last property, a diffeology contains parametrizations in every dimension). The topology
of D is the greatest topology on 𝑋 making all the elements of D continuous. The collec-
tion of constant parametrizations in 𝑋 is a diffeology on 𝑋 , and so is the collection of all
parametrizations in 𝑋 . For every smooth manifoldM (with or without boundary, see Def. 7.1),
the collection {𝜙 :𝑈→M |𝑈 a domain and 𝜙 smooth} is a diffeology; we refer to it as the stan-
dard diffeology of M. In particular, the standard diffeology of a domain 𝑈 is the collection
{𝜙 :𝑉→𝑈 | 𝑉 domain and 𝜙 smooth}. Moreover, the collection of diffeologies on 𝑋 is closed
under intersection. In particular, for every collection P of parametrizations in 𝑋 , the diffeology on
𝑋 generated by P is (by definition) the smallest one containing P. This gives an insight of how
flexible the notion of a diffeology is: any collection of parametrizations in R𝑛 (they may not even be
continuous) induces a diffeology on R𝑛; in comparison, if 𝑛 ≠ 4, there is a unique manifold whose
underlying topological space is R𝑛 (Scorpan, 2005, p. vii). Given a map 𝑓 : 𝑋→ 𝑋 ′ we define
𝑓∗D, the pushforward of D by 𝑓 , as the diffeology on 𝑋 ′ generated by 𝑓 ◦ D. Assuming that 𝑓 is
surjective, a parametrization 𝑞 (in 𝑋 ′) belongs to 𝑓∗D if, and only if, for every 𝑢 ∈ dom (𝑞) there
exist an open subset 𝑈 of dom (𝑞) containing 𝑢, and a parametrization 𝑝 ∈ D with 𝑈 ⊆ dom (𝑝)
such that the restriction of 𝑞 to 𝑈 is the composite 𝑓 ◦ 𝑝 (Iglesias-Zemmour, 2013, 1.68, p. 41);
in other words 𝑓∗D = {∪P | P ⊆ 𝑓 ◦ D glueable}. Note that, in the preceding criterion, we can
always suppose that 𝑈 (resp. every domain on which an element of P is defined) is connected.
Given another diffeology D′ on 𝑋 ′, a map 𝑓 : 𝑋→ 𝑋 ′ is said to be smooth from D to D′ when
𝑓∗D ⊆ D′, which is equivalent to have 𝑓 ◦ 𝜙 ∈ D′ for every 𝜙 ∈ D, i.e. 𝑓 ◦ D ⊆ D′. Given an
equivalence relation ∼ on the underlying set of a diffeologyD, the quotient diffeologyD/∼ is (by
definition), the pushforward 𝑞∗D with 𝑞 the quotient map corresponding to ∼.

Given a graph 𝐺 and a map ℓ : 𝐺 (1) → [𝑅,∞[ with 𝑅 > 0, the following space is a disconnected
union (i.e. coproduct in the category of topological spaces) of intervals:

𝑋̄𝐺 =
⋃{

{𝑎} × [0, ℓ(𝑎)]
�� 𝑎 ∈𝐺 (1)

}
.

In particular 𝑋̄𝐺 is a 1-dimensional smooth manifold with boundary, hence it induces a diffeology.
Let∼ be the least equivalence relation such that (𝑎, ℓ(𝑎)) ∼ (𝑏, 0) when tgt 𝑎 = src 𝑏, (𝑎, 0) ∼ (𝑏, 0)
when src 𝑎 = src 𝑏, and (𝑎, ℓ(𝑎)) ∼ (𝑏, ℓ(𝑏)) when tgt 𝑎 = tgt 𝑏. The underlying topological space
of the quotient diffeology 𝑋̄𝐺/∼ is the geometric realization of 𝐺 (Def. 2.10, p. 7). This topology
is the largest one making the quotient map 𝑞 : 𝑋̄𝐺→ |𝐺 | associated with ∼ continuous; its is also
the largest one making the map 𝛽

𝐺
(Def. 7.2) continuous. So the set |𝐺 | admits two ‘natural’

diffeologies with the same underlying topology: the first one isD1 = 𝑞∗ ( 𝑋̄𝐺) the pushforward of the
(Hausdorff) manifold with boundary 𝑋̄𝐺 by 𝑞, the second one is D2 = (𝛽𝐺

)∗ (Ā𝐺) the pushforward
of the (non-Hausdorff) standard atlas with boundary Ā𝐺 by 𝛽

𝐺
. Let us see which one is relevant:

Given a traversal (𝑎, 𝑏) at a vertex 𝑣 of 𝐺 we consider the path

𝛾 : 𝑡 ∈ ]−ℓ(𝑎), ℓ(𝑏) [ ↦→


(𝑎, 𝑡 + ℓ(𝑎)) if 𝑡 < 0
𝑣 if 𝑡 = 0
(𝑏, 𝑡 + ℓ(𝑏)) if 𝑡 > 0

∈ |𝐺 | .

We note that the map 𝛾̃ : ]−ℓ(𝑎), ℓ(𝑏) [ → Ā𝐺 defined by 𝛾̃(0) = (𝑎, 𝑏) and 𝛾̃(𝑡) = 𝛾(𝑡) for 𝑡 ≠ 0
is a smooth map such that 𝛾 = 𝛽

𝐺
◦ 𝛾̃, hence 𝛾 is smooth according to D2. By contrast, as we

shall see, 𝛾 is not smooth according to D1. Formally speaking, the identity map id]−ℓ (𝑎) ,ℓ (𝑏) [
is an element of the standard diffeology of ]−ℓ(𝑎), ℓ(𝑏) [, so if 𝛾 were smooth with respect to
D1, then it should belong to D1; we now prove that it is not the case. Let 𝑈 be an open interval
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containing 0 and included in ]−ℓ(𝑎), ℓ(𝑏) [, and let 𝑝 be an element of the standard diffeology of
the manifold 𝑋̄𝐺 . By connectedness we have img (𝑝) ⊆ {𝑎} × [0, ℓ(𝑎)] for a certain 𝑎 ∈𝐺 (1), and
therefore img (𝑞 ◦ 𝑝) ⊆ {src(𝑎), tgt(𝑎)} ∪ ]0, ℓ(𝑎) [. In particular 𝑞 ◦ 𝑝 is not the restriction of 𝛾
to 𝑈, so according to the description of pushforwards, 𝛾 ∉D1. The vertices are like impassable
frontiers for paths on |𝐺 | that are smooth according toD1, which is certainly not what is expected.

We now check that D1 ⊆ D2 (the path 𝛾 witnesses that if 𝐺 has a traversal at a vertex that is
not an endpoint, then this inclusion is strict). Let 𝑈 be a connected domain and 𝜙 :𝑈→ 𝑋̄𝐺 be a
smooth map. There is a (unique) arrow 𝑎 of 𝐺 such that img (𝜙) ⊆ {𝑎} × [0, ℓ(𝑎)], we denote by
𝜙𝑎 :𝑈→ {𝑎} × [0, ℓ(𝑎)] the corestriction of 𝜙. Given 𝜏1, 𝜏2 ∈ Ā𝐺 traversals at src(𝑎) and tgt(𝑎)
(which may be endpoints of 𝐺, see Def. 7.2) we have the canonical smooth map

𝜄𝑎 : (𝑎, 𝑡) ∈ {𝑎} × [0, ℓ(𝑎)] ↦→


(𝑎, 𝑡) if 𝑡 ∈ ]0, ℓ(𝑎) [
𝜏1 if 𝑡 = 0
𝜏2 if 𝑡 = ℓ(𝑎)

∈ {𝜏1, 𝜏2} ∪ ]0, ℓ(𝑎) [

with {𝜏1, 𝜏2} ∪ ]0, ℓ(𝑎) [ submanifold of Ā𝐺 . The composite of the sequence of smooth maps

𝑈 {𝑎} × [0, ℓ(𝑎)] {𝜏1, 𝜏2} ∪ ]0, ℓ(𝑎) [ Ā𝐺

𝜙𝑎 𝜄𝑎

is thus a smooth map on Ā𝐺 which we denote by 𝜓 and which satisfies 𝛽
𝐺
◦ 𝜓 = 𝑞 ◦ 𝜙. We

have proven that the family of parametrizations {𝑞 ◦ 𝜙 | 𝜙 smooth and dom (𝜙) connected} (which
generates D1) is contained in D2, therefore D1 ⊆ D2.

Hence the ‘right’ diffeology on |𝐺 | is the pushforward (𝛽
𝐺
)∗ (Ā𝐺) with 𝛽

𝐺
‘the best Hausdorff

approximation’ under (the topological space of) Ā𝐺 (Rem. 7.3). So even if we worked with
diffeologies to save Hausdorffness, we would not avoid dealing with non-Hausdorff manifolds.
Moreover, in view of the importance of tangent vectors in this article, the following issue is to be
taken very seriously: «There are many ways to think about tangent spaces, which are equivalent
for manifolds but not when applied to diffeological spaces» (Iglesias-Zemmour, 2013, p. 161).

Diffeological spaces are easy to define, and their category extends that of smooth manifolds in a
way that makes standard categorical constructions available. The (probably unavoidable) drawback
is that we have no control over the outcomes of such constructions (even if they are applied to
manifolds). As a consequence, there are diffeological spaces that have nothing to do with manifolds.
The concept of ‘smooth stratification’ overcomes this problem; it was formalized in many different
ways, giving rise, for example, to Whitney stratified spaces and conically smooth stratified spaces
(Nocera & Volpe, 2023, Def. 2.5 and 2.23). Roughly speaking, a space of the first kind consists of
a topological space 𝑆 equipped with a partition P whose elements are topological submanifolds of
𝑆 equipped with a smooth structure. Although the elements of the partition may not be of the same
dimension, additional requirements ensure coherence between them: as the author understands
(Nocera & Volpe, 2023, Def. 2.1 and 2.5) and (Pflaum, 2001, second paragraph, p. 6), 𝑆 is a
subset of an ‘ambient’ smooth manifold 𝑀 such that every subpartition P′ of P whose union is a
topological submanifold of 𝑆 inherits a smooth structure from 𝑀 containing every element of P′
as a smooth submanifold. So providing a topological space with a smooth stratification requires an
embedding of it into a smooth manifold. The exact definitions are quite intricate, see in particular
(Ayala et al., 2017, Def. 3.2.21), so we just provide a prototypical example related to graphs. For
every 𝛼, 𝛽 ∈ R \ {0}, consider the map

𝜃𝛼𝛽 : 𝑡 ∈ R ↦→


𝛼 exp( 1

𝑡
) if 𝑡 < 0

0 if 𝑡 = 0
𝛽 exp(− 1

𝑡
) if 𝑡 > 0

∈ R .
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The value of the 𝑛th derivative of 𝜃𝛼𝛽 at 𝑡 < 0 (resp. 𝑡 > 0) is of the form 𝛼𝐴𝑛 ( 1
𝑡
) exp( 1

𝑡
) (resp.

𝛽𝐵𝑛 (− 1
𝑡
) exp(− 1

𝑡
)) with 𝐴𝑛 (resp. 𝐵𝑛) a polynomial only depending on 𝑛 ∈ N. According to the

well-known properties of the exponential map, we have

lim
𝑡→0−

𝐴𝑛 ( 1
𝑡
) exp( 1

𝑡
) = lim

𝑡→0+
𝐵𝑛 (− 1

𝑡
) exp(− 1

𝑡
) = 0 .

It follows that the maps 𝛾𝛼𝛽 defined by 𝛾𝛼𝛽 (𝑡) = (𝑡, 𝜃𝛼𝛽 (𝑡)) for every 𝑡 ∈ R are smooth curves on R2

(which plays the role of the ambient manifold). Given a finite set F ⊆ (R \ {0})2 the subset

𝑆 =
⋃ {

𝛾𝛼𝛽 ( [−1, 1]))
�� (𝛼, 𝛽) ∈ F } (21)

of R2 is a Whitney stratified space (the partition being given by the sets {𝛾𝛼𝛽 (𝑡)} and 𝛾𝛼𝛽 (𝐽) for
(𝛼, 𝛽) ∈ F , 𝑡 ∈ {−1, 0, 1}, and 𝐽 ∈ {]−1, 0[, ]0, 1[}): the crucial point is that all the curves 𝛾𝛼𝛽, as
well as their higher derivatives, coincide at 𝑡 = 0.

Now consider the graph 𝐺 whose set of vertices is {−𝑛, . . . , 𝑚} for 𝑛, 𝑚 ∈ N fixed, and whose
arrows are (𝛼, 0) and (0, 𝛽) for 𝛼 ∈ {−𝑛, . . . , −1} and 𝛽 ∈ {1, . . . , 𝑚} (the source and the target
of (𝑥, 𝑦) being 𝑥 and 𝑦 respectively). The underlying topological space Sp(X𝐺) of the standard
local order on |𝐺 | (Def. 5.11, p. 24) is (canonically) homeomorphic to the subspace 𝑆 of R2

given by (21) with F = {−𝑛, . . . , −1} × {1, . . . , 𝑚}. From this example, one conjectures that for
every finite graph 𝐺 the space Sp(X𝐺) is homeomorphic to a Whitney stratified subspace 𝑆𝐺 of R𝑛

(actually 𝑛 = 3 should be enough). Nevertheless, such an embedding 𝑓 is by no means canonical,
and the composite 𝑓 ◦ 𝛽

𝐺
, with 𝛽

𝐺
from Def. 7.2, is a local embedding (it is not global because

a non-Hausdorff topological space cannot be embedded into a Hausdorff one). One can deduce,
through 𝑓 ◦ 𝛽

𝐺
, the smooth structure of 𝑆𝐺 from that of Ā𝐺 , and vice versa. Due to the technicalities

inherent in dealing with Whitney stratified spaces (for example, see (Pflaum, 2001, §2.1 and §2.2)
about tangent bundles and vector fields), it seems to be much easier to work with standard atlases.

In addition to the fact that standard atlases are much more tractable than the corresponding
diffeological (resp. Whitney stratified) spaces, we emphasize that, as far as we know, there is no
extension of the Lawson correspondence (§5.4, p. 31) to such spaces.

Appendix A. Atlases
The notion of an atlas allows us to apply differential calculus beyond the class of maps between
open subsets of (finite dimensional) normed spaces(10). We recall some basic definitions without
using local coordinates(11), and atlases are defined on sets without presupposing any topology (the
latter can indeed be recovered from the charts).

A.1 Differential calculus
We assume that differential calculus for smooth maps 𝑓 :𝑈→ R𝑚 with 𝑈 an open subset of R𝑛 is
known, see (Lang, 2002, Chapter I, §2-4) or (Nachbin, 1981, §13, 14, 16). The derivative of 𝑓 at
𝑥 ∈𝑈 is a linear map Df𝑥 : R𝑛→ R𝑚 which we identify with an 𝑚 × 𝑛 matrix with entries in R, i.e.
an element of Mat𝑚𝑛 (R). All one really needs here is the derivative of identities and the chain rule

D(id𝑈)𝑥 = idR𝑛 and D(𝑔◦ 𝑓 )𝑥 = Dg𝑓𝑥 ◦Df𝑥 (22)

(10)« Differentiability is a local phenomenon, so to talk about it, we need only a space which is locally like euclidean space»
/ «a manifold is locally like the arena of calculus» (Gauld, 1982, p. 28, 53). See also (do Carmo, 1992, p. 1).

(11) This approach is advocated in (Lang, 1999, Foreword) and (Nachbin, 1981, chap. 13), in accordance with the principle
that local coordinates are only meant to be a tool for computations.
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for every element 𝑥 of an open subset 𝑈 of R𝑛. If the map 𝑓 has a smooth inverse 𝑓 −1 with 𝑓 𝑥 = 𝑦,
then it is called a smooth diffeomorphism, and the above relations imply that

D( 𝑓 −1)𝑦 =
(
Df𝑥

)−1
. (23)

A translation is a map 𝑓 of the form 𝑥 ∈ 𝑋 ↦→ 𝑥 + 𝑡 ∈𝑌 with 𝑋 and 𝑌 subsets of R𝑛 and 𝑡 ∈ R𝑛

fixed; if 𝑋 is open then for every 𝑥 ∈ 𝑋 we have Df𝑥 = idR𝑛 .

A.2 Atlases
A chart of dimension 𝑛 ∈ N, or 𝑛-chart, is a bijection 𝜙 whose codomain is an open subset of R𝑛.
The 𝑛-dimensional chart 𝜙 is a subchart of 𝜙, which we denote by 𝜙 ⊆ 𝜙, when 𝜙 and 𝜙 agree
on dom 𝜙 ⊆ dom 𝜙 (note that we necessarily have cod 𝜙 ⊆ cod 𝜙 since 𝜙 is onto). The subcharts
of 𝜙 are canonically identified with the subsets of dom 𝜙 whose images under 𝜙 are open, and
therefore with the open subsets of cod 𝜙. The initial topology on dom 𝜙 is the only one that makes
𝜙 a homeomorphism. A subset 𝑈 ⊆ dom 𝜙 is open in the initial topology if, and only if, its image
under 𝜙 is open. We denote by 𝜙𝑈 the corresponding subchart of 𝜙.

Definition A.1. Given the charts 𝜙 and 𝜓, a map 𝑓 is said to be smooth around 𝑝 ∈ dom 𝑓 from 𝜙

to 𝜓 when there are open subsets𝑈 and𝑉 of dom 𝜙 and dom 𝜓 such that 𝑝 ∈𝑈 ⊆ dom 𝑓 , 𝑓 (𝑈) ⊆ 𝑉 ,
and the composite 𝜓𝑉 ◦ 𝑓 ◦ 𝜙𝑈

−1 is smooth as a map from 𝜙𝑈 to 𝜓𝑉 . The sets 𝑈 and 𝑉 are called
witnesses of smoothness. The map 𝜓𝑉 ◦ 𝑓 ◦ 𝜙𝑈

−1 is referred to as the representation of 𝑓 in the
charts 𝜙𝑈 and 𝜓𝑉 .

Charts are meant to allow differential calculus for mappings whose (co)domains may not be
subsets of R𝑛. Indeed, with the denotation from Def. A.1, it is natural to think of the linear map
D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝 as the representation of ‘the’ derivative of 𝑓 at 𝑝 (Def. A.14). However, such a
representation essentially depends on the charts 𝜙 and 𝜓. The concept of an atlas arises from the
need to regulate this dependency:

Definition A.2. The 𝑛-charts 𝜙 and 𝜓 are said to be compatible, which we denote by 𝜙 ∼ 𝜓, when:

i) the intersection 𝑈 = dom 𝜙 ∩ dom 𝜓 is open in both dom 𝜙 and dom 𝜓, and
ii) the composites 𝜙𝑈 ◦ 𝜓𝑈

−1 and 𝜓𝑈 ◦ 𝜙𝑈
−1, which we call transition maps, are smooth.

Following the common usage, we ‘forget’ the subscript𝑈 and just write 𝜙 ◦ 𝜓−1 and 𝜓 ◦ 𝜙−1 instead
of 𝜙𝑈 ◦ 𝜓𝑈

−1 and 𝜓𝑈 ◦ 𝜙𝑈
−1.

Remark A.3. With the notation from Def. A.2, for every 𝑋 ⊆𝑈, if 𝜙𝑈𝑋 is open in R𝑛, then so is
𝜓𝑈𝑋 because we have 𝜓𝑈𝑋 = (𝜓𝑈 ◦ 𝜙𝑈

−1) (𝜙𝑈𝑋) and 𝜓𝑈 ◦ 𝜙𝑈
−1 is a diffeomorphism, so the inverse

mapping theorem applies (Lang, 2002, Thm. 5.2, p. 13). Consequently, the charts 𝜙𝑈 and 𝜓𝑈 induce
the same topology on 𝑈, so it suffices to require that 𝑈 is open in dom 𝜙 (resp. dom 𝜓) in the first
point of Def. A.2.

We follow (Hicks, 1965, p. 2), (Marsden et al., 1988, p. 142), and (Lang, 1999, p. 22):

Definition A.4. An atlas is a collection A of pairwise compatible charts, its underlying set |A |
is the union

⋃ {
dom 𝜙

�� 𝜙 ∈ A}
. The dimension of A is the one common to all its charts.

Definition A.5. Given the atlases A and B, a map 𝑓 : |A | → |B| is said to be smooth around
𝑝 ∈ |A| when there exist two charts 𝜙 ∈ A and 𝜓 ∈ B such that 𝑓 is smooth around 𝑝 from 𝜙 to
𝜓 (Def. A.1). It is said to be smooth when it is so around every point of A. Smooth maps are the
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morphisms of the category of atlases, which we denote by Atl. An isomorphism of Atl is called a
smooth diffeomorphism. The cartesian product of A and B in Atl is the atlas

A ×B =
{
𝜙 × 𝜓

�� 𝜙 ∈ A ; 𝜓 ∈ B
}
.

The transition map between the charts 𝜙 × 𝜓 and 𝜙′ × 𝜓′ of A ×B is the product 𝜏 × 𝜏′ of the
transition map 𝜏 between 𝜙 and 𝜙′ and the transition map 𝜏′ between 𝜓 and 𝜓′.

Smoothness around 𝑝 does not depend on the choice of the charts 𝜙 and 𝜓:

Lemma A.6. Suppose that 𝜙0 ∼ 𝜙1 and 𝜓0 ∼ 𝜓1. Let 𝑓 be a map such that dom 𝜙0 ∩ dom 𝜙1 ⊆ dom 𝑓

and 𝑓 (dom 𝜙0 ∩ dom 𝜙1) ⊆ dom 𝜓0 ∩ dom 𝜓1. Given any 𝑝 ∈ dom 𝜙0 ∩ dom 𝜙1, the map 𝑓 is smooth
around 𝑝 from 𝜙0 to 𝜓0 if, and only if, so it is from 𝜙1 to 𝜓1. In particular we have

𝜓1 ◦ 𝑓 ◦ 𝜙1
−1 = (𝜓1 ◦ 𝜓0

−1) ◦ (𝜓0 ◦ 𝑓 ◦ 𝜙0
−1) ◦ (𝜙1 ◦ 𝜙0

−1)−1

being understood that the 𝜙𝑖’s and the 𝜓𝑖’s in the above equation are subcharts of 𝜙𝑖 and 𝜓𝑖 whose
domains respectively contain 𝑝 and 𝑓 (𝑝).

Example A.7. Any open subset 𝑈 of R𝑛 is equipped with the atlas {id𝑈}. For any chart 𝜙, the one
element set {𝜙} is an atlas, and 𝜙 induces a smooth map from {𝜙} to {idcod 𝜙}. A curve is a smooth
map defined on an open interval of R. A path on an atlas A is said to be smooth when it is the
restriction of a curve on A. A piecewise smooth path on A is a concatenation of smooth paths.

Two atlases with the same underlying set are said to be equivalent when their union is still an
atlas. A manifold is an equivalence class of atlases.

Definition A.8. The topology of the atlasA is the coarsest one in which dom (𝜙) (with the initial
topology) is an open subspace for every 𝜙 ∈ A.

Thus every chart of A is a homeomorphism. As in (Hicks, 1965, p. 3) and (Lang, 1999,
Chap. II), we do not require the topology of an atlas to be Hausdorff; yet we have:

Lemma A.9. (Gauld, 2014, Prop. 9.2, p. 153). The topology of any atlas is 𝑇1.

A.3 Tangent bundles and vector fields
Tangent vectors. Let A be an atlas of dimension 𝑛. Given 𝜙, 𝜓 ∈ A, 𝑝 ∈ dom (𝜙), 𝑞 ∈ dom (𝜓),
and 𝑎, 𝑏 ∈ R𝑛, we write (𝑝, 𝜙, 𝑎) ∼ (𝑞, 𝜓, 𝑏) when 𝑝 = 𝑞 and D(𝜓 ◦ 𝜙−1)𝜙𝑝𝑎 = 𝑏. This makes sense
because the elements of A are pairwise compatible. The relation ∼ is reflexive, transitive, and
symmetric as a consequence of (22) and (23), p. 46. We follow (Hirsch, 1976, pp. 16-17):

Definition A.10. The tangent vectors of A are the elements of the quotient

𝑇A =
{
(𝑝, 𝜙, 𝑎)

�� 𝜙 ∈ A, 𝑝 ∈ dom 𝜙, and 𝑎 ∈ R𝑛
}
/ ∼

All the tuples contained in 𝑣 ∈ 𝑇A have the same first component 𝑝, we say that 𝑣 is a tangent
vector at 𝑝, or that 𝑝 is the attachment point of 𝑣. We denote by 𝑇𝑝A the set of all such vectors.

Example A.11. Following Ex. A.7, we can suppose that the set of tangent vectors of a single-
element atlas {𝜙} is dom 𝜙 × R𝑛, with 𝑛 the dimension of the chart 𝜙.
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For every 𝜙 ∈ A, 𝑝 ∈ dom (𝜙), and 𝑣 ∈ 𝑇𝑝A, there is a unique J𝑣K𝜙

𝑝
∈ R𝑛 such that 𝑣 is the

equivalence class of the tuple (𝑝, 𝜙, J𝑣K𝜙

𝑝
) (because every mapping D(𝜓 ◦ 𝜙−1)𝜙𝑝 with 𝜙, 𝜓 ∈ A

and 𝑝 ∈ dom 𝜙 ∩ dom 𝜓, is a bijection). By definition of the relation ∼ we have

J𝑣K𝜓
𝑝

=
(
D(𝜓◦𝜙−1)𝜙𝑝

)
J𝑣K𝜙

𝑝
(24)

for every 𝜓 ∈ A with 𝑝 ∈ dom 𝜓.

Tangent spaces. We transfer the (topological) real vector space structure of R𝑛 to 𝑇𝑝A in the
obvious way: the linear combination 𝑢 + 𝜆𝑣 in 𝑇𝑝A is characterized by the equality

J𝑢 + 𝜆𝑣K𝜙

𝑝
= J𝑢K𝜙

𝑝
+ 𝜆J𝑣K𝜙

𝑝
.

It does not depend on 𝜙 because we have the relation (24) and the map D(𝜓◦𝜙−1)𝜙𝑝 is linear. Given
𝑛 ∈ N there is a unique, up to isomorphism, structure of 𝑛-dimensional Hausdorff topological vector
space (tvs for short) (Schaefer & Wolff, 1999, Chap. I, 3.2, 3.4). Hence the following is sound:

Definition A.12. For any chart 𝜙 of A with 𝑝 ∈ dom 𝜙, the tangent space of A at 𝑝 is 𝑇𝑝A with
the only topological vector space structure that makes the map J_K𝜙

𝑝
:𝑇𝑝A→ R𝑛 an isomorphism.

Tangent bundle. We denote by GL𝑛 (R) the group of 𝑛 × 𝑛 invertible matrices with real entries; its
underlying set is open in Mat𝑛 (R) equipped with the standard topology.

The set 𝑇A (Def. A.10) is the underlying set of an atlas: for every 𝜙 ∈ A one defines the chart

𝑇𝜙 :
⊔

𝑝∈dom 𝜙

𝑇𝑝A → cod 𝜙 × R𝑛 (25)

by 𝑇𝜙(𝑣) =
(
𝜙𝑝 , J𝑣K𝜙

𝑝

)
for every 𝑣 ∈ 𝑇𝑝A. Given 𝜙, 𝜓 ∈ A, and (𝑥, 𝑡) ∈ cod 𝜙 × R𝑛, we have

𝑇𝜓 ◦ (𝑇𝜙)−1(𝑥, 𝑡) = ((𝜓 ◦ 𝜙−1)𝑥, D(𝜓 ◦ 𝜙−1)𝑥𝑡) so the map𝑇𝜓 ◦ (𝑇𝜙)−1 : cod 𝜙 × R𝑛→ cod 𝜓 × R𝑛

is smooth because so are the maps𝜓 ◦ 𝜙−1 : cod 𝜙→ cod 𝜓 and D(𝜓 ◦ 𝜙−1) : cod 𝜙→GL𝑛 (R). This
atlas is called the tangent bundle of A; it is also denoted by 𝑇A. The construction extends to
a functor 𝑇 : Atl→Atl. More precisely, if the map 𝑓 :A→B is smooth, then so is the map
𝑇𝑓 :𝑇A→𝑇B defined by 𝑇𝑓 (𝑣) =Df𝑝𝑣 for every 𝑣 ∈ 𝑇𝑝A. Indeed, if 𝑇𝜙(𝑣) = (𝑥, 𝑡) then we have(

𝑇𝜓 ◦𝑇𝑓 ◦ (𝑇𝜙)−1 ) (𝑥, 𝑡) =
(
𝜓 ◦ 𝑓 ◦ 𝜙−1𝑥 , D(𝜓◦ 𝑓 ◦𝜙−1)𝑥 · 𝑡

)
,

and D(𝜓◦ 𝑓 ◦𝜙−1) is smooth as a map from cod 𝜙 to Mat𝑚𝑛 (R). The tangent bundle functor preserves
binary products in the sense that the bijection(

(𝑝, 𝑞), 𝜙 × 𝜓, (𝑎, 𝑏)
)
↔

(
(𝑝, 𝜙, 𝑎), (𝑞, 𝜓, 𝑏)

)
induces a smooth diffeomorphism between 𝑇 (A × B) and 𝑇A ×𝑇B.

Example A.13. Following Ex. A.11, we can suppose that the tangent bundle of a single-element
atlas {𝜙} is {𝑇𝜙} with 𝑇𝜙 : (𝑝, 𝑣) ∈ dom (𝜙) × R𝑛 ↦→ (𝜙(𝑝), 𝑣) ∈ cod (𝜙) × R𝑛.

Derivative of a smooth map. Given a smooth map 𝑓 :A→B (Def. A.5) and the charts 𝜙 ∈ A and
𝜓 ∈ B with 𝑝 ∈ dom 𝜙 and 𝑓 (𝑝) ∈ dom 𝜓, neither the smoothness of 𝑓 around 𝑝 (Def. A.1) nor the
validity of the following equality

JDf𝑝𝑣K
𝜓

𝑓 𝑝
= D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝J𝑣K𝜙

𝑝
(26)

depend on 𝜙 and 𝜓 : it suffices to apply i) the chain rule (§A.1(22)) to the formula from Lem. A.6,
and ii) the relation (24). Hence the following definition is sound:

Definition A.14. The derivative of 𝑓 at 𝑝 is the only map Df𝑝 :𝑇𝑝A→𝑇𝑓𝑝B satisfying the
equality (26) for every 𝑣 ∈ 𝑇𝑝A. The map Df𝑝 is linear because so are the mappings J_K𝜙

𝑝
, J_K𝜓

𝑓 𝑝
,
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and D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝, see §A.1 and Def. A.12. The map D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝 is called the representation
of Df𝑝 in the charts 𝜙 and 𝜓, it is denoted by JDf𝑝K

𝜓

𝜙
. (We switch from a representation of Df𝑝 to

another by applying the chain rule (§A.1(22)) to the formula from Lem. A.6.)

Vector fields and parallelizations. The projection 𝜋 :𝑇A→A sends every tangent vector to its
attachment point; it is smooth because its local representation in the charts 𝑇𝜙 and 𝜙, see (25),
is the projection cod 𝜙 × R𝑛→ cod 𝜙. A vector field over A is a section of 𝜋, i.e. a smooth map
𝑓 :A→𝑇A such that 𝜋 ◦ 𝑓 = id. A parallelization of A is a tuple ( 𝑓1, . . . , 𝑓𝑛) of vector fields
over A such that ( 𝑓1(𝑝), . . . , 𝑓𝑛 (𝑝)) is a vector basis of 𝑇𝑝A for every 𝑝 ∈ A.

Remark A.15. For every parallelization ( 𝑓1, . . . , 𝑓𝑛) of A we have the smooth diffeomorphism(
𝑝 , (𝑎1, . . . , 𝑎𝑛)

)
∈ A × R𝑛 ↦→

𝑛∑︁
𝑖=1

𝑎𝑖 𝑓𝑖 (𝑝) ∈ 𝑇A .

Conversely, from any smooth diffeomorphism Π :A × R𝑛→𝑇A one recovers a parallelization of
A by putting 𝑓𝑖 = Π ◦

(
𝑝 ↦→ (𝑝, 𝑒𝑖)

)
with 𝑝 ∈ A and 𝑒𝑖 denoting the 𝑖th canonical vector of R𝑛.

Example A.16. Following Ex. A.13, a parallelization of a single-element 𝑛-dimensional atlas {𝜙}
is given by the tuple ( 𝑓1, . . . , 𝑓𝑛) with 𝑓𝑖 (𝑝) = (𝑝, 𝑒𝑖) and 𝑒𝑖 the 𝑖th canonical vector of R𝑛.

Remark A.17. If ( 𝑓1, . . . , 𝑓𝑛) and (𝑔1, . . . , 𝑔𝑚) are parallelizations of A and B, then
( 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚) is a parallelization of A ×B.

Appendix B. Length metrics
Remark B.1. Let 𝛼 and 𝛽 be two arcs with the same image and the same starting point (p. 14).
Denote by 𝛼̃ and 𝛽 the homeomorphisms induced by 𝛼 and 𝛽 on their common image. Then
𝜃 = 𝛽

−1◦ 𝛼̃ is a reparametrization (p. 14) such that 𝛼 = 𝛽 ◦ 𝜃. The case where 𝛼 and 𝛽 are mere
paths is studied in (Fahrenberg & Raussen (2007)).

Lemma B.2. For every path 𝛾 from 𝑝 to 𝑞 (with 𝑝 ≠ 𝑞) on a Hausdorff space 𝑋 , there exists
an increasing map 𝑗 : [0, 1] → dom (𝛾) such that 𝛾 ◦ 𝑗 is an arc from 𝑝 to 𝑞, and 𝑗 is continuous
if, and only if, 𝛾 is an arc (p. 14). Moreover we can require that 𝑗 be left-continuous with
𝑗 (0) = min(dom (𝛾)), or that 𝑗 be right-continuous with 𝑗 (1) = max(dom (𝛾)).

Proof. Following (Brazas (2024)) we have an arc𝛼 : [0, 1] → 𝑋 and a non-decreasing surjection 𝑓 :
dom (𝛾) → [0, 1] such that 𝛼 ◦ 𝑓 = 𝛾̃ with 𝛾̃ : dom (𝛾) → 𝑋 the path that is constant on 𝑓 −1{𝑢} for
every 𝑢 ∈ [0, 1] and such that 𝛾(𝑡) = 𝛾̃(𝑡) for every 𝑡 ∈ dom (𝛾) \𝑈 with𝑈 the union of the interiors
of the sets 𝑓 −1{𝑢} for 𝑢 ∈ [0, 1]. The map 𝑗 : [0, 1] → dom (𝛾) defined by 𝑗 (𝑢) = min 𝑓 −1{𝑢} is
left-continuous and satisfies 𝑗 (0) = min(dom (𝛾)), 𝑓 ◦ 𝑗 = id[0,1] , and 𝛾̃ ◦ 𝑗 = 𝛾 ◦ 𝑗 ; it follows that
𝛼 = 𝛾 ◦ 𝑗 . We could have taken 𝑗 (𝑢) = max 𝑓 −1{𝑢} to obtain a right-continuous map such that
𝑗 (1) = max(dom (𝛾)).

The Hausdorff property cannot be omitted: suppose that 𝐺 is the graph from Fig. 3 (p. 10) and
that ∥𝐺∥ is equipped with the topology of the standard atlas of 𝐺 (Def. 3.3). Let 𝛾 be a path on
∥𝐺∥ from (𝑏, 𝑡) to (𝑐, 𝑡′). By a connectedness argument 𝛾 visits some point (𝑎, 𝑡′′), so we can
split 𝛾 as a concatenation 𝛾1 · 𝛾2 with 𝛾1 ending at (𝑎, 𝑡′′). Still by connectedness, both 𝛾1 and 𝛾2

cover the subset {𝑎} × ]𝑡′′,1[ of ∥𝐺∥, so 𝛾 is not one-to-one.

Remark B.3. A path on a Hausdorff space preserves closures. An arc on a Hausdorff space induces
a homeomorphism on its image (Gauld, 1982, Thm. 6, p. 32).
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B.1 Metrics and pseudometrics
A pseudometric on a set 𝑀 is a map 𝑑 : 𝑀 ×𝑀→ R+ ∪ {∞} such that 𝑑 (𝑥, 𝑥) = 0, 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥),
and 𝑑 (𝑥, 𝑧) ⩽ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) for all 𝑥, 𝑦, and 𝑧 ∈ 𝑀 . It is a metric when 𝑑 (𝑥, 𝑦) = 0 implies that
𝑥 = 𝑦. A (pseudo)metric space is a set equipped with a (pseudo)metric; it comes with a topology
whose open sets are unions of open balls, namely the sets of the form { 𝑝 ∈ 𝑀 | 𝑑 (𝑝, 𝑐) < 𝑟 } with
𝑟 > 0 and 𝑐 ∈ 𝑀 . The open 𝑟-neighborhood of 𝑋 ⊆ 𝑀 is the union of the open balls of radius 𝑟
centered at some point of 𝑋 .

Remark B.4. Any path 𝛾 on a pseudometric space (𝑀, 𝑑) is uniformly continuous, i.e. for every
𝜀 > 0 there exists 𝛿 > 0 such that |𝑡 − 𝑡′ | < 𝛿 implies 𝑑 (𝛾(𝑡), 𝛾(𝑡′)) < 𝜀 (Rudin, 1976, 4.19, p. 91).

Definition B.5. The length of a path 𝛾 on the (pseudo)metric space (𝑀, 𝑑), which we denote by
𝐿 (𝛾), is defined as the least upper bound of the collection of sums

𝑛∑︁
𝑘=1

𝑑
(
𝛾(𝑡𝑘 − 1), 𝛾(𝑡𝑘)

)
with 𝑡0 ⩽ · · · ⩽ 𝑡𝑛 a subdivision of [𝑎, 𝑏]. We say that 𝛾 is rectifiable when 𝐿 (𝛾) is finite.

Remark B.6 (Bridson & Haefliger (1999), Prop. 1.20(3), p. 12). Given a concatenation of paths
𝛾1 · · · 𝛾𝑛 (p. 2), we have 𝐿 (𝛾1 · · · 𝛾𝑛) = 𝐿 (𝛾1)+ · · · +𝐿 (𝛾𝑛).
Remark B.7. The length of a path is invariant under weak reparametrization (p. 14): for every path
𝛾 : [𝑎, 𝑏] → (𝑀, 𝑑) and every weak reparametrization 𝜃 : [𝑥, 𝑦] → [𝑎, 𝑏], both 𝛾 and 𝛾 ◦ 𝜃 have the
same length (Papadopoulos, 2013, 1.1.8). For this reason, when 𝛾 is rectifiable, it is often convenient
to suppose that 𝛾 is arclength parametrized, i.e. for all 𝑎 ⩽ 𝑡 ⩽ 𝑡′ ⩽ 𝑏, the length of the subpath
𝛾 | [𝑡,𝑡′ ] is 𝑡′ − 𝑡. Indeed, for any path 𝛾 there is a unique reparametrization 𝜃 : [0, 𝐿 (𝛾)] → dom (𝛾)
such that 𝛾 ◦ 𝜃 is arclength parametrized, see (Papadopoulos, 2013, §1.2) or (Bridson & Haefliger,
1999, Prop. 1.20(5), p. 13).

Remark B.8. Suppose that 𝑡 ⩽ 𝑡′ and 𝛼(𝑡) = 𝛼(𝑡′) with 𝛼 an arclength parametrized pseudo-arc.
We have 𝑡′ − 𝑡 = 𝐿 (𝛼 | [𝑡, 𝑡′] ) and 𝛼 constant on [𝑡, 𝑡′]. Therefore 𝑡 = 𝑡′ and 𝛼 is an arc.

Definition B.9. Let (𝑀, 𝑑) be a metric space. The path 𝛾 : [𝑎, 𝑏] →𝑀 is a geodesic when
𝑑 (𝛾(𝑡), 𝛾(𝑡′)) = |𝑡 − 𝑡′ | for all 𝑡, 𝑡′ ∈ [𝑎, 𝑏]. It is a local geodesic when for all 𝑡 ∈ [𝑎, 𝑏] there exists
𝜀 > 0 such that the restriction of 𝛾 to [𝑎, 𝑏] ∩ [𝑡 − 𝜀, 𝑡 + 𝜀] is a geodesic. A subset 𝑋 ⊆ 𝑀 is said to
be geodesically convex when for all 𝑝, 𝑞 ∈𝑋 there exists a geodesic from 𝑝 to 𝑞, and no geodesic
from 𝑝 to 𝑞 leaves 𝑋 .

Definition B.10. The length (pseudo)metric 𝑑𝐿 associated with 𝑑 is given by

𝑑𝐿 (𝑝, 𝑞) = inf
{
𝐿 (𝛾)

�� 𝛾 path on 𝑀 from 𝑝 to 𝑞
}
.

We have 𝑑𝐿 (𝑝, 𝑞) =∞ when there is no path from 𝑝 to 𝑞. The inequality 𝑑 ⩽ 𝑑𝐿 is always satisfied:
the (pseudo)metric 𝑑 is said to be intrinsic when 𝑑 = 𝑑𝐿.

Note that if 𝑑 is a metric, then so is 𝑑𝐿 because 𝑑𝐿 (𝑝, 𝑞) = 0 implies 𝑑 (𝑝, 𝑞) = 0, and
therefore 𝑝 = 𝑞. The converse is also true: assume that 𝑑𝐿 is a metric and 𝑑 (𝑝, 𝑞) = 0. Any map
𝛾 : [𝑎, 𝑏] →𝑀 whose image is contained in {𝑝, 𝑞} is continuous with respect to the topology
induced on 𝑀 by 𝑑. Moreover we have 𝐿 (𝛾) = 0, therefore 𝑑𝐿 (𝑝, 𝑞) = 0 and 𝑝 = 𝑞.

Given the metric spaces (𝑀𝑖, 𝑑𝑖) for 𝑖 ∈ {1, . . . , 𝑛}, there is no preferred metric 𝑑 on the product
𝑀1 × · · · ×𝑀𝑛 among those making the projection maps continuous. The 1-Lipschitz maps are
often taken as metric space morphisms, so we require that 𝑑𝑖 (𝑝𝑖, 𝑞𝑖) ⩽ 𝑑 (𝑝, 𝑞) for all points
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𝑝 = (𝑝1, . . . , 𝑝𝑛) and 𝑞 = (𝑞1, . . . , 𝑞𝑛), and all 𝑖 ∈ {1, . . . , 𝑛}. In the context of this article, it is also
desirable for each slice 𝜎𝑖 : 𝑀𝑖 ↩→ {𝑝1} × · · · × {𝑝𝑖 − 1} ×𝑀𝑖 × {𝑝𝑖 + 1} × · · · × {𝑝𝑛} to be an isometry,
i.e. 𝑑𝑖 (𝑥, 𝑦) = 𝑑 (𝜎𝑖 (𝑥), 𝜎𝑖 (𝑦)) for all 𝑖 ∈ {1, . . . , 𝑛} and 𝑥, 𝑦 ∈ 𝑀𝑖. The euclidean product metric,
i.e.

√︁
𝑑2

1 + · · · + 𝑑2
𝑛
, is a special instance of an 𝛼-product metric:

Definition B.11. For𝛼 ∈ [1,∞] we denote by |_|
𝛼
the𝛼-norm on R𝑛, i.e. |𝑡 |

𝛼
= ( |𝑡1 |𝛼 + · · · + |𝑡𝑛 |𝛼)

1
𝛼

when 𝛼 ≠∞ and |𝑡 |∞ = max
{
|𝑡𝑖 |

�� 𝑖 ∈ {1, . . . , 𝑛}} for every 𝑡 ∈ R𝑛; the 𝛼-product metric is given by

(𝑝, 𝑞) ↦→ |𝑑1(𝑝1, 𝑞1), . . . , 𝑑𝑛 (𝑝𝑛, 𝑞𝑛) |𝛼 .

Proposition B.12. Any finite 𝛼-product of intrinsic (pseudo)metrics is an intrinsic (pseudo)metric.

Proof. See (Bridson & Haefliger, 1999, 5.5(1), p. 58) for 𝛼 <∞; the case 𝛼 =∞ just requires to
drop the exponent 𝛼 and replace some occurrences of ‘+’ by ‘max’.

B.2 Length of piecewise smooth paths
For every 𝑡 ∈ ]𝑎, 𝑏[ the derivative of a smooth path 𝛾 : [𝑎, 𝑏] →A at 𝑡, with A an atlas, is a
linear map D𝛾𝑡 :𝑇𝑡 ]𝑎, 𝑏[ →𝑇𝛾 (𝑡 )A. Hence D𝛾𝑡 can be identified with the tangent vector D𝛾𝑡 (1),
which we denote by 𝛾′ (𝑡). We obtain a continuous map 𝛾′ : [𝑎, 𝑏] →𝑇A setting 𝛾′ (𝑎) = 𝑐′ (𝑎) and
𝛾′ (𝑏) = 𝑐′ (𝑏) with 𝑐 being any curve extending 𝛾. Assuming that every tangent space 𝑇𝑝A of the
atlas A is equipped with a norm |_|

𝑝
in such a way that the map 𝑡→ |𝛾′ (𝑡) |

𝛾(𝑡) is continuous, one
defines the length of 𝛾 as the sum of the norms of the speed vectors along 𝛾: this is the infinitesimal
version of Def. B.5. Riemannian metrics (do Carmo, 1992, Def 2.1, p. 38) are such structures,
nevertheless, they do not fit our needs (§7, Finsler geometry, p. 37).

Definition B.13. Given a parallelization ( 𝑓1, . . . , 𝑓𝑛) of the atlas A, and a norm |_|
★

on R𝑛, the
mapping

𝑣 ∈ 𝑇𝑝A ↦→ |(𝑎1, . . . , 𝑎𝑛) |★ ∈ R+ (27)

with 𝑣 = 𝑎1 𝑓1(𝑝) + · · · + 𝑎𝑛 𝑓𝑛 (𝑝) is a norm on 𝑇𝑝A which we still denote by |_|
★
. The length of a

smooth path 𝛾 : [𝑥, 𝑦] →A is defined as

L(𝛾) =

∫
𝑦

𝑥

|𝛾′ (𝑡) |
★
𝑑𝑡 .

The length of a piecewise smooth path 𝛾1 · · · 𝛾𝑘 is L(𝛾1)+ · · · +L(𝛾𝑘). The distance between two
points 𝑝 and 𝑞 of A, which we denote by 𝑑A (𝑝, 𝑞), is then defined as the infimum of L(𝛾) for 𝛾
(piecewise) smooth path from 𝑝 to 𝑞.

One can indifferently consider smooth or piecewise smooth paths in the above definition. Indeed,
for every piecewise smooth path 𝛾 one has a finite set 𝐹 ⊆ dom 𝛾 such that 𝛾′ (𝑡) exist for all 𝑡 ∉ 𝐹.
If 𝜃 : [𝑎, 𝑏] → [𝑎, 𝑏] is a non-decreasing surjective smooth path whose derivatives 𝐷 (𝑘)𝜃 vanish at
each point of 𝐹 and at every order 𝑘 ⩾ 1, then the composite 𝛾 ◦ 𝜃 is a smooth path. By a mere
change of variable we have 𝐿 (𝛾) = 𝐿 (𝛾 ◦ 𝜃). The map 𝜃 is obtained, for example, as

𝑡 ↦→ 𝑎 +𝑀
∫ 𝑡

𝑎

(
1 −

∑︁
𝑥∈𝐹

𝜆𝑥

)
with {𝜆𝑥 : R→ [0, 1] | 𝑥 ∈ 𝐹} a family of bump functions (Hirsch, 1976, p. 41, 42) such that
𝜆𝑥 (𝑥) = 1, 𝐷 (𝑘)𝜆𝑥 (𝑥) = 0 at every order 𝑘 ⩾ 1, and 𝜆𝑥𝜆𝑦 = 0 when 𝑥 ≠ 𝑦. The constant 𝑀 has to be
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chosen in a way that 𝜃 (𝑏) = 𝑏, in other words

𝑀 =
𝑏 − 𝑎
𝑆

with 𝑆 =

∫ 𝑏

𝑎

(
1 −

∑︁
𝑥∈𝐹

𝜆𝑥

)
.

B.3 Technical facts about metric graphs
In this section, 𝐺 is a graph with a map ℓ : 𝐺 (1) → [𝑅,∞] such that 𝑅 > 0; the associated metric
graph ( |𝐺 |, 𝑑 |𝐺 | ) is given by Def. 4.13, p. 16. The maps 𝜒𝑎 : [0, ℓ(𝑎)] → |𝐺 | with 𝑎 arrow of 𝐺, are
defined on p. 13 (4).

Lemma B.14. If 𝐼 = ]0, ℓ(𝑎) [ or if 𝐼 ⊊ [0, ℓ(𝑎)] is closed, then 𝜒𝑎 induces a homeomorphism
from 𝐼 to 𝜒𝑎 (𝐼). If src(𝑎) ≠ tgt(𝑎), then 𝜒𝑎 induces a homeomorphism on its image.

Proof. Denote by 𝜒̃
𝑎

: ]0, ℓ(𝑎) [ → 𝜒𝑎 (]0, ℓ(𝑎) [) the bijection induced by 𝜒𝑎. The direct image
map 𝜒̃∗

𝑎
induces a bijection from the collection of open subintervals of ]0, ℓ(𝑎) [ to the collection

of segments of 𝐺 (Def. 2.8, p. 7) contained in 𝜒𝑎 (]0, ℓ(𝑎) [). The former (resp. the latter) is a
base of the topology of ]0, ℓ(𝑎) [ (resp. 𝜒𝑎 (]0, ℓ(𝑎) [) by Rem. 2.9, p. 7). Let 𝐼 be a proper closed
subinterval of [0, ℓ(𝑎)]. If 𝐼 ⊆ ]0, ℓ(𝑎) [ the preceding case applies. If 0 ∈ 𝐼 then 𝐼 = [0, 𝑟] with
𝑟 < ℓ(𝑎) because 𝐼 is a proper subset of [0, ℓ(𝑎)]. So 𝜒̃

𝑎
: [0, 𝑟] → 𝜒𝑎 ( [0, 𝑟]), the restriction of 𝜒𝑎,

is a bijection. Moreover 𝜒̃
𝑎

is continuous because so is 𝜒𝑎 (Rem. 2.9). We conclude that 𝜒̃
𝑎

is a
homeomorphism by Rem. B.3, which applies because |𝐺 | is Hausdorff (Rem. 2.9).

Lemma B.15. Any path 𝛾 on |𝐺 | visits finitely many vertices.

Proof. We recall that ℓ ⩾ 𝑅 with 𝑅 > 0. The union 𝑉 of stars of radius 𝑅
3 centered at some vertex

of 𝐺 (Def. 2.7, p. 7) does not contain any point of the form (𝑎, ℓ(𝑎)/2) with 𝑎 ∈𝐺 (1); such a point
is called a middle point. The set𝑈 = |𝐺 | \𝐺 (0) is an open neighborhood of |𝐺 | \𝑉 that contains all
the middle points but no vertex of 𝐺. The family C made of 𝑈 and the stars of radius 𝑅

3 centered
at some vertex of 𝐺 visited by 𝛾 is an open covering of the image of 𝛾. Suppose that 𝛾 visits at
least two vertices. By a connectedness argument, 𝛾 visits at least one middle point. Moreover, the
stars of radius 𝑅

3 are pairwise disjoint. It follows that no strict subfamily of C covers the image of
𝛾 which is compact, so the family C is finite, and 𝛾 visits finitely many vertices of 𝐺.

Remark B.16. If the step 𝑠 = 𝜒𝑎 ◦ 𝜃 (Def. 4.3, p. 14) is written as a concatenation 𝑠1 · · · 𝑠𝑛 (p. 7), then
we have (up to translation of the domains of definitions of the paths 𝑠𝑖) a subdivision 𝑡0< · · · <𝑡𝑛
of dom (𝑠) such that dom (𝑠𝑖) = [𝑡𝑖 − 1, 𝑡𝑖] and the restriction of 𝑠 to [𝑡𝑖 − 1, 𝑡𝑖] coincide with 𝑠𝑖 for
every 𝑖 ∈ {1, . . . , 𝑛}. If 𝑛 = 1 then 𝑠 = 𝑠1; otherwise each interval [𝑡𝑖 − 1, 𝑡𝑖] is proper in [0, ℓ(𝑎)], so
Lem. B.14 applies and 𝑠𝑖 = 𝜒𝑎 ◦ 𝜃 | [𝑡𝑖−1, 𝑡𝑖] . Since 𝜃 is an arc on [0, ℓ(𝑎)], it induces an homeomorphism
on its image; in particular it is either increasing or decreasing. It follows that 𝜃 (𝑡𝑖 − 1) ⩽ 𝜃 (𝑡𝑖) for
every 𝑖 ∈ {1, . . . , 𝑛} or 𝜃 (𝑡𝑖 − 1) ⩾ 𝜃 (𝑡𝑖) for every 𝑖 ∈ {1, . . . , 𝑛}. In the first case we have

|𝜃 (𝑡𝑛) − 𝜃 (𝑡0) | = 𝜃 (𝑡𝑛) − 𝜃 (𝑡0) =

𝑛∑︁
𝑖=1

𝜃 (𝑡𝑖) − 𝜃 (𝑡𝑖 − 1) =

𝑛∑︁
𝑖=1
|𝜃 (𝑡𝑖) − 𝜃 (𝑡𝑖 − 1) |

the second one being dealt with the same way. We conclude that ℓ(𝑠) = ℓ(𝑠1)+ · · · +ℓ(𝑠𝑛).

Lemma B.17. If the concatenations (p. 2) of steps 𝑠1 · · · 𝑠𝑛 and 𝑠1 · · · 𝑠𝑚 are equal, then
ℓ(𝑠1)+ · · · +ℓ(𝑠𝑛) = ℓ(𝑠1)+ · · · +ℓ(𝑠𝑚).

Proof. Let 𝑡0< · · · <𝑡𝑛 and 𝑡0< · · · <𝑡𝑚 with dom (𝑠𝑖) = [𝑡𝑖 − 1, 𝑡𝑖] and dom (𝑠𝑖) = [𝑡𝑖 − 1, 𝑡𝑖]. Following
our notion of concatenation we have [𝑡0, 𝑡𝑛] = [𝑡0, 𝑡𝑚]. Suppose that 𝑡0< · · · <𝑡𝑛 is finer than
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𝑡0< · · · <𝑡𝑚 (otherwise consider a third subdivision that is finer than both of them) and conclude
by Rem. B.16.

We recall that a path 𝛾 on |𝐺 | is said to be admissible when it can be written as a (finite)
concatenation of steps (Def. 4.4, p. 14).

Lemma B.18. Every arc 𝛼 on |𝐺 | is admissible.

Proof. The set of vertices visited by 𝛼 is finite (Lem. B.15) and 𝛼 is one-to-one, so the set
𝛾−1(𝐺 (0)) is finite: let 𝑡0< · · · <𝑡𝑘 be its enumeration. Given 𝑖 ∈ {1, . . . , 𝑘}, the map 𝜃 : 𝜉 ∈ [𝑡𝑖−1, 𝑡𝑖] ↦→
𝜒𝑎
−1(𝛼(𝜉)) ∈ [0, ℓ(𝑎)] is an arc (Rem. B.3 and Lem. B.14) such that the restriction of 𝛼 to [𝑡𝑖−1, 𝑡𝑖]

is 𝜒𝑎 ◦ 𝜃.

Lemma B.19. If the image of an arc 𝛼 is contained in the image of an admissible path 𝛾, then
ℓ(𝛼) ⩽ ℓ(𝛾). Equality holds if, and only if, 𝛾 is an arc and img (𝛼) = img (𝛾).

Proof. We write 𝛾 as a concatenation of steps 𝛾1 · · · 𝛾𝑛. If 𝛼 is reduced to a single step, then we
can write it as 𝛼1 · · · 𝛼𝑚 so that for every 𝑗 ∈ {1, . . . , 𝑚} and every 𝑖 ∈ {1, . . . , 𝑛}, if 𝛼𝑗 and 𝛾𝑖 are
overlapping (Def. 4.3, p. 14), then img (𝛼𝑗) ⊆ img (𝛾𝑖); in particular there is some 𝑖 ∈ {1, . . . , 𝑛}
such that img (𝛼𝑗) ⊆ img (𝛾𝑖). As a consequence of Lem. B.18, the same holds for any arc 𝛼. Hence
we have a map 𝑓 : {1, . . . , 𝑚} → {1, . . . , 𝑛} defined by

𝑓 ( 𝑗) = min
{
𝑖 ∈ {1, . . . , 𝑛}

�� img(𝛼𝑗) ⊆ img(𝛾𝑖)
}

and we observe that

ℓ(𝛼) =

𝑛∑︁
𝑖=1

©­«
∑︁
𝑗∈ 𝑓 −1 {𝑖}

ℓ(𝛼𝑗)ª®¬ . (28)

For any 𝑖 ∈ {1, . . . , 𝑛} and any distinct 𝑗 , 𝑗 ′ ∈ 𝑓 −1{𝑖}, the steps 𝛼𝑗 and 𝛼𝑗 ′ do not overlap, so we
have ∑︁

𝑗∈ 𝑓 −1 {𝑖}

ℓ(𝛼𝑗) ⩽ ℓ(𝛾𝑖) . (29)

Since ℓ(𝛾) = ℓ(𝛾1) + · · · + ℓ(𝛾𝑛) (Def. 4.4, p. 14), we deduce from (28) and (29) that ℓ(𝛼) ⩽ ℓ(𝛾).
Under the assumption that 𝛾 is an arc such that img (𝛼) = img (𝛾), the roles of 𝛼 and 𝛾 can be
swapped, so we have ℓ(𝛼) = ℓ(𝛾).

If the image of 𝛾 strictly contains that of𝛼, then some step 𝛾𝑖 is not covered by𝛼 and consequently,
we have some index 𝑖 for which the inequality (29) is strict.

Suppose that 𝛾 is not an arc and img (𝛼) = img (𝛾). We have a point 𝑝 ∈ img (𝛾) such that
𝛾−1{𝑝} is not a singleton, and (a unique) 𝜏 ∈ dom (𝛼) such that 𝛼(𝜏) = 𝑝. Let 𝑗 ∈ {1, . . . , 𝑚} be
such that 𝜏 ∈ dom (𝛼𝑗) (there are at most two such indices, and they are consecutive). In particular
img (𝛼𝑗) ⊆ img (𝛾𝑘) with 𝑘 = 𝑓 ( 𝑗), and 𝑡 ∈ dom (𝛾𝑘) with 𝑡 = min(𝛾−1{𝑝}). Let 𝑡′ = max(𝛾−1{𝑝}),
we have 𝑡 < 𝑡′ and 𝛾(𝑡′) = 𝛾(𝑡). Denote by 𝑎 the support of the step 𝛾𝑘 (Def. 4.3, p. 14). If the
image of 𝜒𝑎 is covered by 𝛾, then it is also covered by the arc 𝛼, so src(𝑎) ≠ tgt(𝑎). In any case
the step 𝛾𝑘 is an arc (Lem. B.14), so 𝑡′ ∉ dom (𝛾𝑘). Let 𝑘 ′ ∈ {1, . . . , 𝑛} such that 𝑡′ ∈ dom (𝛾𝑘 ′);
one of the steps 𝛾𝑘 ′−1, 𝛾𝑘 ′, and 𝛾𝑘 ′+1 is overlapping 𝛼𝑗 . Up to renaming, suppose that it is 𝛾𝑘 ′. We
have img (𝛼𝑗) ⊆ img (𝛾𝑘 ′) and 𝑘 < 𝑘 ′; it follows that 𝑗 ∉ 𝑓 −1({𝑘 ′}) so the inequality (29) is strict for
𝑖 = 𝑘 ′. Whether we have img (𝛼) ≠ img (𝛾) or 𝛾 not one-to-one, we deduce that ℓ(𝛼) < ℓ(𝛾).

Lemma B.20. For every admissible path 𝛾 on |𝐺 | we have 𝐿 (𝛾) = ℓ(𝛾), i.e. the length in the sense
of Def. B.5 is equal to the length in the sense of Def. 4.4, p. 14.
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Proof. Given a step 𝑠, if the subdivision 𝑡0< · · · <𝑡𝑛 of dom (𝑠) is fine enough, we have ℓ(𝑠𝑖) < 𝑅
2

with 𝑠𝑖 denoting the restriction of 𝑠 to [𝑡𝑖−1, 𝑡𝑖]. It follows that 𝑑 |𝐺 | (𝑠(𝑡𝑖), 𝑠(𝑡𝑖−1)) < 𝑅
2 (Def. 4.5, p. 14).

From Lem. 4.10 (p. 15) we deduce that ℓ(𝑠𝑖) = 𝑑 |𝐺 | (𝑠(𝑡𝑖), 𝑠(𝑡𝑖−1)), and therefore
𝑛∑︁
𝑖=1

𝑑 |𝐺 | (𝑠(𝑡𝑖), 𝑠(𝑡𝑖−1)) =

𝑛∑︁
𝑖=1

ℓ(𝑠𝑖) = ℓ(𝑠) ,

the second equality being given by Rem. B.16. Hence 𝐿 (𝑠) = ℓ(𝑠). Given a concatenation of steps
𝛾1 · · · 𝛾𝑛 we have (the last equality being given by Def. 4.4)

𝐿 (𝛾1 · · · 𝛾𝑛) =

𝑛∑︁
𝑖=1

𝐿 (𝛾𝑖) =

𝑛∑︁
𝑖=1

ℓ(𝛾𝑖) = ℓ(𝛾1 · · · 𝛾𝑛) .

The length metric is approximated by arcs.

Lemma B.21. For every path 𝛾 from 𝑝 to 𝑞 on the metric graph of 𝐺, there exists an arc 𝛼 from 𝑝

to 𝑞 such that img (𝛼) ⊆ img (𝛾), 𝐿 (𝛼) ⩽ 𝐿 (𝛾), and 𝛾 is a pseudo-arc if, and only if 𝐿 (𝛼) = 𝐿 (𝛾).

Proof. Let 𝛾 be a path on |𝐺 | from 𝑝 to 𝑞. The metric graph of 𝐺 is a metric space (Def. 4.13,
p. 16) so its topology is Hausdorff. As a consequence, we have an increasing left-continuous map
𝑗 : [0, 1] → dom (𝛾) such that 𝛼 = 𝛾 ◦ 𝑗 is an arc from 𝑝 to 𝑞 and 𝑗 (0) = min(dom (𝛾)) (Lem. B.2).
Moreover 𝛼 is admissible (Lem. B.18) so it is rectifiable (Lem. B.20). If 𝛾 is not rectifiable,
then 𝐿 (𝛾) =∞ > 𝐿 (𝛼). Otherwise we can suppose that 𝛾 is arclength parametrized (Rem. B.7).
Given a subdivision 𝜏0< · · · <𝜏𝑛 of [0, 1], the subdivision 𝑗 (𝜏0)< · · · < 𝑗 (𝜏𝑛) of dom (𝛾) satisfies
𝛾( 𝑗 (𝜏𝑖)) = 𝛼(𝜏𝑖). It follows that 𝐿 (𝛼) ⩽ 𝐿 (𝛾).

If 𝛾 is a pseudo-arc, then it is an arc because 𝛾 is arclength parametrized (Rem. B.8). It follows
that 𝑗 is continuous (Lem. B.2). Moreover we have 𝛾 ◦ 𝑗 (1) = 𝛼(1) = 𝑞. Since 𝛾 is one-to-one we
have 𝑗 (1) = max(dom (𝛾)). Hence 𝑗 is a reparametrization (p. 4), and 𝐿 (𝛼) = 𝐿 (𝛾) (Rem. B.7).

If 𝛾 is not an arc, then 𝑗 is not right-continuous at some 𝜏 ∈ [0, 1[ (Lem. B.2), i.e.
𝑟 = inf

{
𝑗 (𝜏 + 𝜀) − 𝑗 (𝜏)

�� 0 < 𝜀 < 1 − 𝜏
}
> 0. Let 𝑡 = 𝑗 (𝜏) and 𝑡′ = 𝑡 + 𝑟 , we have 𝛾(𝑡) = 𝛾(𝑡′)

because 𝛾 ◦ 𝑗 is continuous (in particular the subpath 𝛾 | [𝑡, 𝑡′] is a loop). From any subdivision
𝜏0< · · · <𝜏𝑛 of [0, 1] we deduce the subdivision 𝑗 (𝜏0)< · · · < 𝑗 (𝜏𝑘) ⩽ 𝑡 < 𝑡′ ⩽ 𝑗 (𝜏𝑘 + 1)< · · · < 𝑗 (𝜏𝑛)
of dom (𝛾). In particular 𝑗 (𝜏0)< · · · < 𝑗 (𝜏𝑘) ⩽ 𝑡 and 𝑡′ ⩽ 𝑗 (𝜏𝑘 + 1)< · · · < 𝑗 (𝜏𝑛) are subdivisions of
[0, 𝑡] and [𝑡′, 1], and we have 𝑑 (𝛾(𝑡′), 𝛾(𝑡)) = 0. It follows that 𝐿 (𝛼) ⩽ 𝐿 (𝛾 | [0, 𝑡] ) + 𝐿 (𝛾 | [𝑡′, 1] ), there-
fore 𝐿 (𝛼) < 𝐿 (𝛾) because 𝐿 (𝛾) = 𝐿 (𝛾 | [0, 𝑡] ) + 𝐿 (𝛾 | [𝑡, 𝑡′] ) + 𝐿 (𝛾 | [𝑡′, 1] ) (Rem. B.6), and 𝐿 (𝛾 | [𝑡, 𝑡′] ) = 𝑟 > 0
since 𝛾 is arclength parametrized.

Geodesically convex balls. Open balls with ‘small’ radii are geodesically convex (Def. B.9):

Proposition B.22. Every open ball 𝐵 of |𝐺 | with radius 𝑟 ⩽ 𝑅
4 is geodesically convex. If the center

of 𝐵 is an isolated vertex then 𝐵 is a singleton; otherwise the center is 𝜒𝑐 (𝜌) for some arrow 𝑐 and
𝜌 ∈ [0, ℓ(𝑐)], and

𝐵 =


{𝑐} × ]𝜌 − 𝑟, 𝜌 + 𝑟 [ if 𝑟 ⩽ 𝜌 ⩽ ℓ(𝑐) − 𝑟 ,

𝑆(src 𝑐, 𝑟 − 𝜌) ∪ {𝑐} × ]0, 𝜌 + 𝑟 [ if 𝑟 > 𝜌, and

{𝑐} × ]𝜌 − 𝑟, ℓ(𝑐) [ ∪ 𝑆(tgt 𝑐, 𝜌 + 𝑟 − ℓ(𝑐)) if 𝜌 + 𝑟 > ℓ(𝑐).

(30)

with 𝑆(𝑣, 𝑥) denoting the star centered at the vertex 𝑣 with radius 𝑥 (Def. 2.7, p. 7).
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Proof. The case where the center of 𝐵 is an isolated vertex is obvious, so we assume it is not. First
we prove that the right hand part of each equality appearing in (30) is a geodesically convex set.
Let 𝑝 and 𝑞 be two distinct points of such a set, which we denote by 𝑋 in the sequel.

If 𝑋 is described by the 1st case of (30), then given 𝑝 = (𝑐, 𝑠) and 𝑞 = (𝑐, 𝑡) with 𝑠,
𝑡 ∈ ]𝜌 − 𝑟, 𝜌 + 𝑟 [, we have |𝑡 − 𝑠 | < 2𝑟 ⩽ 𝑅/2 ⩽ ℓ(𝑎)/2; so we are in the first case of Lem. 4.10
(p. 15), the step 𝑝→ 𝑞 is the unique geodesic from 𝑝 to 𝑞, and img (𝑝→ 𝑞) ⊆ {𝑐} × ]𝜌 − 𝑟, 𝜌 + 𝑟 [.

If 𝑋 is described by the 2nd (resp. 3rd) case of (30), then it contains a unique vertex 𝑣, which is
the center of the star appearing in this description, i.e. 𝑣 = src 𝑐 (resp. 𝑣 = tgt 𝑐). In particular, the
connected components of 𝑋 \ {𝑣} are of the form {𝑥} × 𝐼 with 𝐼 an open interval of ]0, ℓ(𝑥) [ of
length at most 2𝑟 which is either initial (in which case src 𝑥 = 𝑣) or final (in which case tgt 𝑥 = 𝑣).
Since 𝑝 and 𝑞 are neighbors (𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅/2), the shortest path 𝛼 from 𝑝 = 𝜒𝑎 (𝑠) to 𝑞 = 𝜒𝑏 (𝑡) is
the only admissible path of length 𝑑 |𝐺 | (𝑝, 𝑞) up to reparametrization (Lem. 4.10). We have one of
the following situations:

– There is a connected component {𝑥} × 𝐼 of 𝑋 \ {𝑣} such that 𝑝, 𝑞 ∈ {𝑣} ∪ {𝑥} × 𝐼 (therefore
𝑥 ∈ {𝑎, 𝑏}). Since the length of 𝐼 is at most 2𝑟, the arc 𝛼 is reduced to the dash 𝑝→ 𝑞

(Def. 4.7, p. 15) and its image is included in {𝑣} ∪ {𝑥} × 𝐼.
– The points 𝑝 and 𝑞 respectively belong to the connected components {𝑎} × 𝐼 and {𝑏} × 𝐽 of

𝑋 \ {𝑣}. We observe that length(𝐼) + length(𝐽) ⩽ 2𝑟 . If 𝑎 = 𝑏, then 𝐼 ∩ 𝐽 = ∅ and

|𝑡 − 𝑠 | ⩾ ℓ(𝑎) − (ℓ(𝐼) + ℓ(𝐽)) ⩾ ℓ(𝑎) − 2𝑟 ⩾ ℓ(𝑎) − 𝑅
2 ⩾ 1

2ℓ(𝑎) .

Hence no matter that 𝑎 ≠ 𝑏 or 𝑎 = 𝑏, the second item of Lem. 4.10 applies; we deduce that
the arc 𝛼 is 𝑝→ 𝑣→ 𝑞 and its image is contained in ({𝑎} × 𝐼) ∪ {𝑣} ∪ ({𝑏} × 𝐽).

By Lem. B.21 any geodesic 𝛾 from 𝑝 to 𝑞 is an arc up to reparametrization (p. 4). Therefore 𝛼 and
𝛾 are equal up to weak reparametrization, and we have in particular img (𝛾) = img (𝛼). Hence 𝑋

is geodesically convex.
We readily deduce from the definition of 𝑑 |𝐺 | (Def. 4.5, p.14) that 𝐵 contains 𝑋 , so it remains

to check the converse inclusion. Any point 𝑝 of 𝐵 is a neighbor of the center 𝑞 of 𝐵. Let 𝛼 be
the shortest path from 𝑝 to 𝑞, which is actually an arc (Lem. 4.10), we have 𝐿 (𝛼) < 𝑟 . According
to the description of 𝛼 given in Lem. 4.10 we have 𝑝 = 𝜒𝑎 (𝑡) and 𝑞 = 𝜒𝑐 (𝜌) with 𝑡 ∈ [0, ℓ(𝑎)] and
𝜌 ∈ [0, ℓ(𝑐)]. We have three cases to deal with according to the inequalities relating 𝑟 and 𝜌.

Suppose that 𝑟 ⩽ 𝜌 ⩽ ℓ(𝑐) − 𝑟 . The length of any path whose image covers {𝑐} × ]0, 𝑟] or
{𝑐} × [ℓ(𝑐) − 𝑟, ℓ(𝑐) [ is at least 𝑟. Hence the image of 𝛼 is included in {𝑐} × ]𝜌 − 𝑟, 𝜌 + 𝑟 [.

Now assume that 𝑟 > 𝜌. If 𝑝 and 𝑞 are on the same arrow of |𝐺 | (i.e. 𝑎 = 𝑐) then 𝛼 is reduced
to the dash 𝑝→ 𝑞 whose image is 𝜒𝑐 [min(𝑡, 𝜌), max(𝑡, 𝜌)]. This latter is included in {src 𝑐} ∪
({𝑐} × ]0, 𝜌 + 𝑟 [). If 𝑝 and 𝑞 are not on the same arrow of |𝐺 | (i.e. 𝑎 ≠ 𝑐), then 𝛼 is 𝑝→ 𝑣→ 𝑞 with
𝑣 the only vertex of 𝐵. The length of 𝑣→ 𝑞 is 𝜌 so the length of 𝑝→ 𝑣 is 𝑑 |𝐺 | (𝑝, 𝑞) − 𝜌 < 𝑟 − 𝜌.
Moreover 𝑣 = src 𝑐 because 𝑟 < 𝑅 ⩽ ℓ(𝑐). Hence 𝑝 ∈ 𝑆(𝑣, 𝑟 − 𝜌). The last case is dealt with the
same way.

A similar result holds for closed balls with the constraint 𝑟 < 𝑅
4 and the boundaries in the

description (30) adapted accordingly.
Prop. B.22 does not hold for open balls of an ∞-product (Def. B.11) of metric graphs: the

broken line 𝛾 (on the following picture) is a geodesic of R2 (with the maximum metric) joining
two points of the ball 𝐵, namely 𝑝 and 𝑞, whose image is not contained in 𝐵.

𝛾

𝑝

𝑞

𝐵
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