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Abstract
Every graph 𝐺 induces a locally ordered metric space X𝐺 together with a local order X̃𝐺 that is locally
dihomeomorphic to the standard pospace R; both are related by a morphism 𝛽𝐺 : X̃𝐺→X𝐺 satisfying
a universal property. The underlying set of X̃𝐺 admits a non-Hausdorff atlas A𝐺 equipped with a non-
vanishing vector field 𝑓𝐺 ; the latter is associated to X̃𝐺 through the correspondence between local orders and
cone fields on manifolds. The above constructions are compatible with cartesian products, so the geometric
model of a conservative program is lifted through 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
to a subset 𝑀 of the parallelized manifold

A𝐺1
× · · · × A𝐺𝑛

. By assigning the suitable norm to each tangent space of A𝐺1
× · · · × A𝐺𝑛

the length of
every directed smooth path 𝛾 on 𝑀 , i.e.

∫
|𝛾′ (𝑡) |

𝛾(𝑡)𝑑𝑡, corresponds to the execution time of the sequence of
multi-instructions associated to 𝛾. This induces a pseudometric 𝑑A whose restrictions to sufficiently small
open sets ofA𝐺1

× · · · × A𝐺𝑛
(we refer to the manifold topology, which is strictly finer than the pseudometric

topology) are isometric to open subspaces of R𝑛 with the 𝛼-norm for some 𝛼 ∈ [1,∞]. The transition maps
of A𝐺 are vector translations so the representation of a tangent vector does not depend on the chart of A𝐺

in which it is represented; consequently, differentiable maps between open subsets of A𝐺1
× · · · × A𝐺𝑛

are
handled as if they were maps between open subsets of R𝑛. For every directed path 𝛾 on 𝑀 (possibly the
representation of a sequence 𝜎 of multi-insructions) there is a shorter directed smooth path on 𝑀 that is
arbitrarily close to 𝛾, and that can replace 𝛾 as a representation of 𝜎.

Keywords: Concurrency; local order; conal field; directed path; execution time; multi-instruction;

1. Introduction
The concurrent programs we consider are made of finitely many sequential processes running in
parallel. The idea that such programs could be interpreted geometrically was already lurking in
the work of Dĳkstra (1968); which was quickly followed by publications containing pictures of
models that are subsets of R𝑛 (Coffman et. al. (1971); Kung et. al. (1979); Lipski (1981)). The
«geometry of concurrency» was formalized a bit later for programs 𝑃 whose processes neither
have branchings nor loops: their representations are subsets of R𝑛 called progress graphs with 𝑛

being the number of processes of 𝑃 (Carson & Reynolds, 1987, §4). We recall two prototypical
examples, both made of two processes 𝑃1 and 𝑃2. In the first one, both try to take (P(m)) and release
(V(m)) the mutex 𝑚 concurrently (whereas mutexes cannot be held by more than one process at
the time). In the second one, both have to wait for each other (W(b)) behind the synchronization
barrier 𝑏. The corresponding progress graphs are R2 \ [1, 2]2 (up to subtleties at the boundary of
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the square) and {(𝑥, 𝑦) ∈ R2 | 𝑥 = 1⇔ 𝑦 = 1}, they are pictured below:

P(m
)

V
(m

)

P(m)

V(m)

𝑃1

𝑃2

× W
(b)

W(b)

𝑃1

𝑃2

×

The motivation for progress graphs is the relation between their directed paths (namely the
componentwise order-preserving ones) and the execution traces of the programs they represent.
As an illustration, the dotted paths on the preceding figures induce the following execution traces:

𝑃1

𝑃2

P(m) V(m)

P(m) V(m)
𝑃1

𝑃2

W(b)

W(b)

Conversely, any execution trace is induced by a directed path on the progress graph. Following this
principle, and according to the postulates a progress graph 𝑋 is submitted to (Carson & Reynolds,
1987, p.28), the by-product of 𝑋 we are really interested in is its collection 𝑑𝑋 of directed paths.

The «geometry of concurrency» described in Carson & Reynolds (1987) only applies to pro-
grams without branching nor loop. At the price of some extra mathematical machinery, this
limitation can be overcome (Haucourt (2018)). The key feature of a progress graph of dimension
𝑛 is that its set of directed paths derives from the order and the metric inherited from R𝑛. Let 𝑃 be
a program made of the processes 𝑃1, . . . , 𝑃𝑛 :

i) In accordance with the standard representation of sequential programs used in compilers
(Aho et. al., 2007, §9.2), each 𝑃𝑖 is given as an automaton which we associate with its
underlying graph 𝐺𝑖.

ii) Each graph 𝐺𝑖 induces a locally order metric graph |𝐺𝑖 |. An execution trace of 𝑃𝑖 is seen as a
directed path on |𝐺𝑖 |, so the set of directed paths on |𝐺1 | × · · · × |𝐺𝑛 | is an overapproximation
of the set of execution traces of 𝑃.

The process 𝑃𝑖 is said to be conservative when for any directed path 𝛾 on |𝐺𝑖 | the amount of
resources held by 𝑃𝑖 after the execution of 𝛾 only depends on the point where 𝛾 stops (this property
is decided by a breadth first traversal of 𝐺𝑖).

iii) If all the processes of 𝑃 are conservative, we define its geometric model as the complement
in |𝐺1 | × · · · × |𝐺𝑛 | of the forbidden region of 𝑃 (Carson & Reynolds, 1987, §4), (Haucourt,
2018, Definition 4.2).

Every directed path on a geometric model induces a sequence of multi-instructions that respect
the constraints imposed by the synchronization mechanisms (mutexes, semaphores, and barriers)
(Haucourt, 2018, Theorem 4.1). Moreover, directed paths that are metrically close to each other
represent sequences of multi-instructions having the same effect on the state of the abstract machine
(Haucourt, 2018, Theorem 6.1). As progress graphs, geometric models are helpful abstractions of
their directed paths. In this perspective, we aim at proving that the local order and the metric of the
model of 𝑃 are by-products of a possibly non-Hausdorff parallelized manifold canonically defined
from 𝑃 (it is Hausdorff if, and only, if the program under consideration has no branching).
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Motivation. For now let us suppose that the geometric model 𝑋 is a subset of R𝑛 (we may as well
suppose that 𝑋 is one of the previous prototypical models). We give some facts about 𝑋 that will
be proven later in the general setting of geometric models:

i) For any directed path 𝛾 on 𝑋 , there is a shorter directed smooth path 𝛿 on 𝑋 that is arbitrarily
close to 𝛾.

ii) If 𝛿 is close enough to 𝛾, then the sequence of multi-instructions they induce have the same
effect of the system.

iii) The product metric on R𝑛 can be chosen so that the lengths of 𝛾 and 𝛿 correspond to execution
times, so «shorter» actually means «faster».

iv) A smooth path on 𝑋 is directed (i.e. order-preserving in all coordinates) if, and only if, all
its tangent vectors belong to R𝑛

+ .

These properties suggest that the differential structure we expect is the standard manifold R𝑛

equipped with its standard parallelization ( 𝑓1, . . . , 𝑓𝑛) (Example 3.28).

As an insight of what happens beyond the case of progress graphs, assume that 𝐺 represents a
basic «if-then-else» construction (see Example 2.16):

𝑣

𝐺

{𝑣}
|𝐺 | ∥𝐺∥

The underlying set of the locally ordered metric graph |𝐺 | is 𝑉 ∪ 𝐴×]0, 1[ with 𝐴 and 𝑉 denoting
the sets of arrows and vertices of the graph 𝐺. Except around the four vertices, which form a
‘neglectable’ subset of |𝐺 |, the local order is locally isomorphic to R. In order to get rid of these
‘singularities’, every vertex is ‘blown up’ into as many points as ways of going through it in the
respect of the local order. Consequently, the vertex 𝑣 is duplicated and the extremities of 𝐺 are
removed. The resulting set ∥𝐺∥ equipped with the adhoc (non-Hausdorff) topology often appears
in textbooks as an undesirable 1-dimensional smooth manifold. Such oddities are precisely what
we need to represent branchings and loops.

Overview. To every program 𝑃 = 𝑃1 | · · · |𝑃𝑛 made of 𝑛 processes running in parallel we associate
the 𝑛-tuple (𝐺1, . . . , 𝐺𝑛) of 𝑃𝑖’s graphs; the discrete and the continuous models of 𝑃 are deduced
from it (§2). In particular, every graph 𝐺 comes with a set theoretic map 𝛽𝐺 : ∥𝐺∥ → |𝐺 | which
‘blows up’ every singularity of |𝐺 | (Definition 2.11). The manifold and the local order to which
the title refers are the standard atlasA𝐺1

× · · · × A𝐺𝑛
with its standard parallelization ( 𝑓1, . . . , 𝑓𝑛)

(Definitions 3.14 and 3.29), and the standard local order X𝐺1
× · · · × X𝐺𝑛

(Definition 5.6); their
underlying sets are ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ and |𝐺1 | × · · · × |𝐺𝑛 | respectively. From a practical point of
view, the transition maps between standard charts are vector translations (Lemma 3.13), which
makes the derivatives of smooth maps between standard atlases easy to represent (Lemma 3.31).
The parallelization ( 𝑓1, . . . , 𝑓𝑛) induces a local order X̃𝐺1

× · · · × X̃𝐺𝑛
on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥, and

reciprocally (Definition 5.8 and Theorem 5.4); this result is based on an equivalence of category
due to J.D. Lawson (1989) (§5.4). The product 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
satisfies a universal lifting property

relating the local orders X𝐺1
× · · · × X𝐺𝑛

and X̃𝐺1
× · · · × X̃𝐺𝑛

(Theorem 5.3). The relation between
( 𝑓1, . . . , 𝑓𝑛) and X𝐺1

× · · · × X𝐺𝑛
is thus established through X̃𝐺1

× · · · × X̃𝐺𝑛
.

From every map ℓ : {arrows of 𝐺} → R+ admitting a positive lower bound, one defines a metric
𝑑 |𝐺 | on the set |𝐺 |; metric spaces of this form are called metric graphs. In this article (as well
as in Haucourt (2018)) they are meant to replace intervals of R in view of modeling programs
with branchings and loops. Due to their prominent role (and also because we have not found
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a presentation that fits our needs), we devote §4.2 to a thorough description of these very well-
known spaces (Bridson & Haefliger (1999); Papadopoulos (2013)). For our purpose we assume that
|𝐺1 | × · · · × |𝐺𝑛 | is equipped with the 𝛼-product metric 𝑑 (𝛼) for some 𝛼 ∈ [1,∞] (Definition 4.10).
If we wish 𝛼 to be in accordance with the parallel execution time principle (§6 (25)) we should
take 𝛼 =∞. We transport the 𝛼-norm on R𝑛 to every tangent space of A𝐺1

× · · · × A𝐺𝑛
through

( 𝑓1, . . . , 𝑓𝑛) (Definition 4.46 (11)). For every piecewise smooth path 𝛾, we define the smoothed
𝛼-length L𝛼 (𝛾) as the sum along 𝛾 of the lengths of its tangent vectors (Definition 4.47). Then,
assuming that 𝑝 and 𝑞 are the images of 𝑝′ and 𝑞′ under 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
, the distance 𝑑 (𝛼) (𝑝, 𝑞) is

the infimum of L𝛼 (𝛾) for 𝛾 piecewise smooth path from 𝑝′ to 𝑞′ (Theorem 4.3). So for every
𝛼 ∈ [1,∞], the metric 𝑑 (𝛼) derives from L𝛼 which derives from ( 𝑓1, . . . , 𝑓𝑛).

From the computer science point of view, for 𝜀 > 0 sufficiently small, the sequences of mutli-
instructions induced by a directed path and its 𝜀-approximations (Definition 6.1) lead to the same
result (Haucourt, 2018, Theorem 6.1). Also, every directed path 𝛾 on a tile compatible subset
𝑀 of |𝐺1 | × · · · × |𝐺𝑛 | (resp. ∥𝐺1∥ × · · · × ∥𝐺𝑛∥) admits a piecewise affine 𝜀-approximation on 𝑀

(Definition 2.8, Theorem 6.2, and Corollary 6.10). Since the geometric and the smooth models of
a conservative program are tile compatible (Definitions 2.9 and 2.17), any execution trace of the
program to model can be represented by a piecewise affine path.

Organization. Every section of the article comes with its own introduction, so we just briefly
describe the (straightforward) organization of the paper. Sections 2, 3, 4, 5, and 5.4 respectively deal
with the set maps 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
, the atlasesA𝐺1

× · · · × A𝐺𝑛
and their parallelizations ( 𝑓1, . . . , 𝑓𝑛),

the 𝛼-product (psuedo)metrics 𝑑 (𝛼) and 𝑑
(𝛼), the local ordersX𝐺1

× · · · × X𝐺𝑛
and X̃𝐺1

× · · · × X̃𝐺𝑛
, and

the Lawson correspondance.

2. Underlying sets of models
As we shall see in sections 3, 4, and 5, the continuous models of conservative programs inherit
their structures from atlases, metrics, and local orders. We explicitly describe their underlying sets.

A graph is a set 𝐺, whose elements are called points, together with three maps, namely
dim : 𝐺→ {0, 1}, and src, tgt : 𝐺 (1) →𝐺 (0) with 𝐺 (𝜀) = {𝑥 ∈𝐺 | dim 𝑥 = 𝜀} for 𝜀 ∈ {0, 1}. These
maps are respectively called dimension, source, and target. A vertex (resp. an arrow) is a point of
𝐺 of dimension 0 (resp. 1). Given a vertex 𝑣, an arrow 𝛼 is said to be ingoing (resp. outgoing) when
tgt 𝛼 = 𝑣 (resp. src 𝛼 = 𝑣). A vertex with no ingoing or no outgoing arrow is called an endpoint.
We use the same denotation for the graph and its underlying set. A map 𝑓 : 𝐺→𝐺′ is a morphism
of graphs when it preserves dimensions, sources, and targets. The category of graphs is denoted
by Grph.

Discrete models of conservative programs. The notion of a conservative program (Haucourt (2018))
is based on a virtual machine allowing parallel execution of multi-instructions i.e. partial maps 𝜇

on {1, . . . , 𝑛} assigning to the 𝑖th process of the machine the ‘atomic’ instruction it has to execute
(the 𝑖th process is inactive during the execution of 𝜇 if the latter is not defined at 𝑖).

Definition 2.1. A sequential process is a graph 𝐺 whose arrows are labeled with atomic instruc-
tions. The vertices of 𝐺 are possible positions of the instruction pointer 𝑝. At each step 𝑝 moves
from the source 𝑣 to the target 𝑣′ of the arrow 𝑎 carrying the next instruction to execute. However,
our setting does not allow 𝑝 to jump from 𝑣 to 𝑣′ without going through an intermediate stage,
namely the arrow 𝑎 itself. The arrows of 𝐺 are thus legit positions of the instruction pointer. The
execution of a directed path on 𝐺 is the execution of the corresponding sequence of instructions.

Without loss of generality, we suppose that every vertex of 𝐺 with more than one outgoing
(resp. ingoing) arrow has at least one ingoing (resp. outgoing) arrow; this property is used exactly
once, but crucially, in the proof of Lemma 4.51.
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A program 𝑃 is a tuple of sequential processes running concurrently. The virtual machine on
which it is executed comes with a pool of resources shared by the processes of 𝑃. These resources
are renewable in the sense that they can be restored after use: the processes take and release them
by means of atomic instructions. A sequential process over the graph 𝐺 is said to be conservative
when the amount of resources mobilized after the execution of any directed path starting at the
initial vertex only depends on where it stops (this property is decided by a breadth first traversal
of 𝐺). A program is said to be conservative when so are all its processes. Each process of the
program 𝑃 is identified by an element of {1, . . . , 𝑛}, its underlying graph is denoted by 𝐺𝑖.

Definition 2.2. For the purposes of our study, we only need to know that the discrete model of 𝑃
(Haucourt, 2018, §4.2), which is a subset J𝑃K

𝑑
of the cartesian product of sets 𝐺1 × · · · ×𝐺𝑛, has

the following properties:

(1) If the virtual machine fulfills the resource requirements specified in 𝑃, then any directed path
on J𝑃K

𝑑
(i.e. any finite sequence of points in J𝑃K

𝑑
satisfying certain conditions (Haucourt,

2018, §3, p.1729)) induces a sequence of multi-instructions that the virtual machine can
execute without exhausting its pool of resources.

(2) Any execution trace of 𝑃 is induced by a directed path on J𝑃K
𝑑
.

In other words, the amount of resources required to execute a conservative program 𝑃 is known at
compile time, and its discrete model induces an overapproximation of its set of execution traces.

Continuum of states. We have already mentioned that the arrows of the graph of a sequential
process are intermediate positions of the instruction pointer (Definition 2.1). Pushing this principle
further, we specify where the pointer stands on a given arrow of 𝐺. Suppose that the map

ℓ : 𝐺 (1) → [𝑅,∞[
assigns to each arrow a length which is meant to be the execution time of the atomic instruction it
carries (§6). The real number 𝑅 is supposed to be positive because execution times should not be
arbitrarily small. This constraint have important consequences on the mathematical properties of
the models that will be defined later. We end up with a continuum of states:

Definition 2.3. The continuous support of 𝐺 is the set

|𝐺 | = 𝐺 (0) ∪
⋃{

{𝑎} × ]0, ℓ(𝑎) [
�� 𝑎 ∈𝐺 (1)

}
.

The quotient map 𝜋𝐺 : |𝐺 | →𝐺 is defined by 𝜋𝐺 (𝑣) = 𝑣 on 𝐺 (0) and by 𝜋𝐺 (𝑎, 𝑡) = 𝑎 elsewhere.
The local order on |𝐺 | (Definition 5.6) encodes the constraints that force the pointer 𝑝 to move
continuously with respect to the direction imposed by the arrows. The source and the target of an
arrow 𝑎 play the role of (𝑎, 0) and (𝑎, ℓ(𝑎)) which are intentionally excluded from |𝐺 |. An arrow
of |𝐺 | is a subset of the form {𝑎} × ]0, ℓ(𝑎) [ for some 𝑎 ∈𝐺 (1); by extension its source and its target
are those of 𝑎.

Definition 2.4. Subsets of the form {𝑎} × 𝐽 are said to be initial (resp. final) when 𝐽 is an initial
(resp. final) subinterval of ]0, ℓ(𝑎) [. A subset 𝑆 of |𝐺 | is said to be a star when it is of the form

𝑆(𝑣, 𝑖, 𝑓 ) =
⋃

tgt 𝑎=𝑣
{𝑎} × ]ℓ(𝑎) − 𝑓 (𝑎), ℓ(𝑎) [ ∪ {𝑣} ∪

⋃
src 𝑎=𝑣
{𝑎} × ]0, 𝑖(𝑎) [

with the functions 𝑖 : src−1{𝑣} → R+\{0}, 𝑓 : tgt−1{𝑣} → R+\{0} satisfying 𝑖(𝑎), 𝑓 (𝑎) ⩽ ℓ(𝑎) when-
ever it makes sense. We just write 𝑆(𝑣) when 𝑖(𝑎) = ℓ(𝑎) and 𝑓 (𝑎) = ℓ(𝑎) whenever it makes sense.
If both 𝑖 and 𝑓 are constant and equal to 𝑟 < 𝑅

2 , we write 𝑆(𝑣, 𝑟) instead of 𝑆(𝑣, 𝑖, 𝑓 ), and call
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𝑆(𝑣, 𝑟) the star centered at 𝑣 of radius 𝑟 . The canonical star centered at 𝑣 is the set 𝑆(𝑣, ℓ2 ,
ℓ
2 ), i.e.

𝑖(𝑎) = ℓ(𝑎)/2 for every 𝑎 ∈ src−1{𝑣} and 𝑓 (𝑎) = ℓ(𝑎)/2 for every 𝑎 ∈ tgt−1{𝑣}. In every case, the
vertex 𝑣 is called the centre of the star.

Definition 2.5. A segment of 𝐺 centered at (𝑎, 𝑡) with 𝑎 ∈𝐺 (1) and 𝑡 ∈ ]0, ℓ(𝑎) [, is a subset of |𝐺 |
of the form {𝑎} × ]𝑡 − 𝜀, 𝑡 + 𝜀[ with 𝜀 ⩽min(𝑡, ℓ(𝑎) − 𝑡).

Remark 2.6. The intersection of two stars is either a star or a (possibly empty) disjoint union of
segments. The intersection of a segment with a star (resp. a segment) is either a segment, or the
union of two disjoint segments, or empty. Stars and segments thus form a base of topology. The
stars centered at 𝑣 (resp. the segments centered at (𝑎, 𝑡)) form a base of neighborhoods of 𝑣 (resp.
(𝑎, 𝑡)). We give some immediate consequences: the topology of |𝐺 | is Hausdorff; the boundary
of {𝑎} × ]0, ℓ(𝑎) [ is {src 𝑎, tgt 𝑎}; the boundary of 𝑆(𝑣) is the set {src(𝑎), tgt(𝑎) | 𝑎 ∈𝐺 (1), 𝑣 ∈
{src(𝑎), tgt(𝑎)}} \ {𝑣} (for any vertex 𝑣); and the connected components of |𝐺 | \ {vertices} are
the segments {𝑎} × ]0, ℓ(𝑎) [ for 𝑎 arrow of 𝐺.

Definition 2.7. The topology of |𝐺 | is the one described in Remark 2.6.

Definition 2.8. The tile over 𝑝 ∈𝐺1 × · · · ×𝐺𝑛 is the set (𝜋𝐺1
× · · · × 𝜋𝐺𝑛

)−1{𝑝}, i.e. 𝜏1 × · · · × 𝜏𝑛
with 𝜏𝑖 = {𝑝𝑖} if 𝑝𝑖 is a vertex, and 𝜏𝑖 = {𝑝𝑖} × ]0, ℓ(𝑝𝑖) [ if 𝑝𝑖 is an arrow. A subset of |𝐺1 | × · · · × |𝐺𝑛 |
is said to be tile compatible when it contains any tile it meets.

Definition 2.9. (Haucourt, 2018, §6.2). The support of the geometric model of 𝑃 is the set

|𝑃 | = (𝜋𝐺1
× · · · × 𝜋𝐺𝑛

)−1J𝑃K
𝑑

with J𝑃K
𝑑

denoting the discrete model (Definition 2.2); it is tile compatible.

Blowing up vertices. For every arrow 𝑎 of 𝐺 the canonical bĳection {𝑎} × ]0, ℓ(𝑎) [→]0, ℓ(𝑎) [
induces a dihomeomorphism (i.e. a homeomorphism that is also an order isomorphism).

Definition 2.10. A traversal at 𝑣 is an ordered pair of arrows (𝑎, 𝑏) such that tgt 𝑎 = 𝑣 = src 𝑏, we
say that 𝑣 is regular when there is exactly one traversal at 𝑣 in 𝐺; otherwise 𝑣 is said to be singular.

From the topological and order theoretic points of view, the set |𝐺 | is ‘almost everywhere’ like R.
The only possible exceptions are the singular vertices of 𝐺. As for curves in Algebraic Geometry(1)

we ‘resolve singularities’ by ‘blowing them up’: we replace each vertex 𝑣 by the traversals at 𝑣 :

Definition 2.11. The support of the blowup of𝐺, which we denote by ∥𝐺∥, is the set ( |𝐺 | \𝐺 (0)) ∪
{traversals of 𝐺}, that is to say

∥𝐺∥ =
⋃{
{𝑎} × ]0, ℓ(𝑎) [

�� 𝑎 ∈𝐺 (1)
}
∪

{
(𝑎, 𝑏) ∈𝐺 (1) ×𝐺 (1)

�� tgt 𝑎 = src 𝑏
}
.

The desingularizator of 𝐺 is the map 𝛽𝐺 : ∥𝐺∥ → |𝐺 | defined by 𝛽𝐺 (𝑎, 𝑏) = tgt 𝑎 (or src 𝑏) for
every traversal (𝑎, 𝑏) of 𝐺, and by 𝛽𝐺 (𝑎, 𝑡) = (𝑎, 𝑡) for every 𝑎 ∈𝐺 (1) and 𝑡 ∈ ]0, ℓ(𝑎) [. A subset of
∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is said to be tile compatible when it is the inverse image under 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
of

some tile compatible set (Definition 2.8). From now on we write 𝛽𝑖 instead of 𝛽𝐺𝑖
.

The image of 𝛽𝐺 is precisely |𝐺 | \ {endpoints of 𝐺}.

(1)« The effect of blowing up is thus to separate out branches of curves passing through 𝑂 according to their slopes »
(Hartshorne, 1977, p.30). In our context, the traversals at 𝑣 play the role of the slopes of branches at 𝑂.
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Remark 2.12. The constructions |_| and ∥_∥ readily extend to functors from Grph to Set, and the
collection of desingularizators 𝛽𝐺 : ∥𝐺∥ → |𝐺 |, for 𝐺 running through the class of graphs, forms
a natural transformation from ∥_∥ to |_|.
Remark 2.13. It is natural to define the topology of ∥𝐺∥ as the initial topology of the desingular-
izator 𝛽𝐺: a base of this topology is given by the inverse images under 𝛽𝐺 of the stars and segments
(Remark 2.6). By observing that 𝛽𝐺

−1(𝑆(𝑣, 𝑖, 𝑓 )) is the set⋃
tgt 𝑎=𝑣=src 𝑏

{𝑎} × ]ℓ(𝑎) − 𝑓 (𝑎), ℓ(𝑎) [ ∪ {(𝑎, 𝑏)} ∪ {𝑏} × ]0, 𝑖(𝑏) [

we conclude that the topology of ∥𝐺∥ is not 𝑇1 (i.e. it contains a finite subset that is not closed, for
example every single traversal at a singular vertex).

Lemma 2.14. The image of a tile compatible set (in the sense of Definition 2.11) under
𝛽1 × · · · × 𝛽𝑛 is tile compatible (in the sense of Definition 2.8).

Proof. Suppose that 𝑌 = (𝛽1 × · · · × 𝛽𝑛)−1𝑋 for some tile compatible set 𝑋 and that 𝑞 ∈𝑌 ∩
(𝛽1 × · · · × 𝛽𝑛)−1𝜏 for some tile 𝜏. Let 𝑝 ∈ 𝜏. We have (𝛽1 × · · · × 𝛽𝑛) (𝑞) ∈ 𝑋 therefore 𝜏 ⊆ 𝑋

because 𝑋 is tile compatible; hence 𝑝 ∈ 𝑋 . For 𝑖 ∈ {1, . . . , 𝑛} if 𝑞𝑖 is a traversal, then put 𝑞′
𝑖
= 𝑞𝑖 ;

otherwise 𝑞′
𝑖
= 𝑝𝑖. Then (𝛽1 × · · · × 𝛽𝑛) (𝑞′) = 𝑝.

Examples 2.15. We denote by 𝐺Z the graph whose arrows (all of length 1) are (𝑛, 𝑛+1) with 𝑛 ∈ Z,
the source and the target being 𝑛 and 𝑛+1 respectively.

𝑛 𝑛+1
· · ·· · ·

The map

|𝐺Z | → R

𝑛 ↦→ 𝑛

((𝑛, 𝑛 + 1), 𝑡) ↦→ 𝑛 + 𝑡

is a bĳection, as well as the desingularizator of 𝐺Z since every vertex has a unique traversal. So
we have a canonical bĳection from ∥𝐺Z∥ to R.

Examples 2.16. Assuming that the length of every arrow of 𝐺 is 1 we have:

𝑣𝑎
𝑏

𝑐
𝐺

← [ ← [
𝜋𝐺 𝛽𝐺

{𝑣}
{𝑎} × [0, 1[ {𝑏} × ]0, 1]

{𝑐} × ]0, 1]|𝐺 |

{(𝑎, 𝑏)}

{(𝑎, 𝑐)}

{𝑎} × ]0, 1[

{𝑏} × ]0, 1[

{𝑐} × ]0, 1[
∥𝐺∥

We will see that every set ∥𝐺∥ carries a standard atlas (Definition 3.14). Connectedness of this
atlas, as well as non-Hausdorffness of its underlying topology (Definition 3.9), derive form the
fact that any neighborhood of (𝑎, 𝑏) meets any neighborhood of (𝑎′, 𝑏′) precisely when 𝑎 = 𝑎′ or
𝑏 = 𝑏′.

We have already observed that the endpoints of 𝐺 are ‘forgotten’ by ∥𝐺∥. One may think of this
as an issue since the starting point of the automaton associated with a process is an endpoint. We
circumvent the difficulty taking advantage of the following control flow graph feature: the starting
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point has a unique outgoing arrow 𝑎. So we can harmlessly declare any point on {𝑎} × ]0, ℓ(𝑎) [
to be the starting point instead of the source of 𝑎. Another way to solve the problem, and maybe a
more canonical one, consists of adding a fresh arrow ending at the starting point we wish to save.
The same remarks hold (and the same tricks work) for the final points of the graph.

Definition 2.17. The support for the smooth model of 𝑃 is the set

∥𝑃∥ = (𝛽1 × · · · × 𝛽𝑛)−1 |𝑃 |
with |𝑃 | as in Definition 2.9. Following Definition 2.11, the set ∥𝑃∥ is tile compatible.

3. Differential calculus on atlases
The notion of an atlas allows to apply Differential Calculus beyond the class of maps between open
subsets of (finite dimensional) normed spaces(2). We recall some basic definitions without using
local coordinates(3), and atlases are defined on sets without presupposing any topology (the latter
can indeed be recovered from the charts).

Manifolds are equivalence classes of atlases. Such a class contains a maximal element (with
respect to inclusion) to which the manifold is usually identified. However, each manifold met in
this article comes with canonical representative that is much more tractable than the maximal one.
Indeed, the representation of any tangent vector to a standard atlas (Definition 3.14) does not
depend on the standard chart (Definition 3.12) in which it is represented. For this reason, we will
only deal with atlases.

Last but not least, we are not concerned with global properties of manifolds, so we can harmlessly
let them be non-Hausdorff.(4) This seemingly anodyne weakening is of crucial importance here
for it allows branchings, which is precisely what we need to build manifolds from graphs. The
relation between non-Hausdorff manifolds and branching, non-determinism, and bifurcation, is
well-known (Müller (2013)). Such manifolds naturally appear in the study of dynamical systems
(Goel (1987)), foliations of the plane (Haefliger & Reeb (1957)), (Gauld, 2014, Chap.9) and general
relativity (Hájíček (1971); Luc & Placek (2020)). The novelty is that we apply it to formalize the
intuition that a graph is a kind of ‘discrete vector field’.

3.1 Differential calculus
We assume that Differential Calculus for smooth maps 𝑓 :𝑈→ R𝑚 with 𝑈 open subset of R𝑛 is
known, see (Lang, 2002, Chap. I, §2-4) or (Nachbin, 1981, §11,13,14,16). The derivative of 𝑓 at
𝑥 ∈𝑈 is a linear map Df𝑥 : R𝑛→ R𝑚 which we identify with an 𝑚 × 𝑛 matrix with entries in R, i.e.
an element of Mat𝑚𝑛 (R). All one really needs here is the derivative of identities and the chain rule

D(id𝑈)𝑥 = idR𝑛 and D(𝑔◦ 𝑓 )𝑥 = Dg𝑓𝑥 ◦Df𝑥 (1)

for every element 𝑥 of an open subset 𝑈 of R𝑛. If the map 𝑓 has a smooth inverse 𝑓 −1 with 𝑓 𝑥 = 𝑦,
then the above relations imply that

D( 𝑓 −1)𝑦 =
(
Df𝑥

)−1
. (2)

(2)« Differentiability is a local phenomenon, so to talk about it, we need only a space which is locally like euclidean space»
/ «a manifold is locally like the arena of calculus» (Gauld, 1982, p.28, 53). See also (do Carmo, 1992, p.1).

(3) This approach is advocated in (Lang, 1999, Foreword) and (Nachbin, 1981, chap.13), in accordance with the principle
that local coordinates are only meant to be a tool for computations.

(4)« The concept of Hausdorffness is irrelevant for much of local differential geometry » (Hicks, 1965, p.3). A similar point
of view is adopted in (Lang, 1999, p.23).
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3.2 Atlases
A chart of dimension 𝑛 ∈ N, or 𝑛-chart, is a bĳection 𝜙 whose codomain is an open subset of R𝑛.
The 𝑛-dimensional chart 𝜙 is a subchart of 𝜙, which we denote by 𝜙 ⊆ 𝜙, when 𝜙 and 𝜙 agree
on dom 𝜙 ⊆ dom 𝜙 (note that we necessarily have cod 𝜙 ⊆ cod 𝜙 since 𝜙 is onto). The subcharts
of 𝜙 are canonically identified with the subsets of dom 𝜙 whose images under 𝜙 are open, and
therefore with the open subsets of cod 𝜙. The initial topology on dom 𝜙 is the only one that makes
𝜙 a homeomorphism. A subset 𝑈 ⊆ dom 𝜙 is open in the initial topology if, and only if, its image
under 𝜙 is open. We denote by 𝜙𝑈 the corresponding subchart of 𝜙.

Definition 3.1. Given the charts 𝜙 and 𝜓, a map 𝑓 is said to be smooth around 𝑝 ∈ dom 𝑓 from 𝜙 to
𝜓 when there are open subsets 𝑈 and 𝑉 of dom 𝜙 and dom 𝜓 such that 𝑝 ∈𝑈 ⊆ dom 𝑓 , 𝑓 (𝑈) ⊆ 𝑉 ,
and the composite 𝜓𝑉 ◦ 𝑓 ◦ 𝜙𝑈

−1 is smooth as a map from 𝜙𝑈 to 𝜓𝑉 . The sets 𝑈 and 𝑉 are called
witnesses of smoothness. The map 𝜓𝑉 ◦ 𝑓 ◦ 𝜙𝑈

−1 is referred to as the representation of 𝑓 in the
charts 𝜙𝑈 and 𝜓𝑉 .

Charts are meant to allow differential calculus for mappings whose (co)domains may not be
subsets of R𝑛. Indeed, with the denotation from Definition 3.1, it is natural to think of the linear
map D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝 as the representation of ‘the’ derivative of 𝑓 at 𝑝 (Definition 3.22). However,
such a representation essentially depends on the charts 𝜙 and 𝜓. The concept of an atlas arises
from the need to regulate this dependency:

Definition 3.2. The 𝑛-charts 𝜙 and 𝜓 are said to be compatible, which denote by 𝜙 ∼ 𝜓, when:

i) the intersection 𝑈 = dom 𝜙 ∩ dom 𝜓 is open in both dom 𝜙 and dom 𝜓, and
ii) the composites 𝜙𝑈 ◦ 𝜓𝑈

−1 and 𝜓𝑈 ◦ 𝜙𝑈
−1, which we call transition maps, are smooth.

Following the common usage, we ‘forget’ the subscript𝑈 and just write 𝜙 ◦ 𝜓−1 and 𝜓 ◦ 𝜙−1 instead
of 𝜙𝑈 ◦ 𝜓𝑈

−1 and 𝜓𝑈 ◦ 𝜙𝑈
−1.

Remark 3.3. With the denotation from Definition 3.2, for every 𝑋 ⊆𝑈, if 𝜙𝑈𝑋 is open in R𝑛,
then so is 𝜓𝑈𝑋 because we have 𝜓𝑈𝑋 = (𝜓𝑈 ◦ 𝜙𝑈

−1) (𝜙𝑈𝑋) and 𝜓𝑈 ◦ 𝜙𝑈
−1 is a diffeomorphism so the

inverse mapping theorem applies (Lang, 2002, Thm.5.2, p.13). Consequently, the charts 𝜙𝑈 and
𝜓𝑈 induce the same topology on 𝑈, so it suffices to require that 𝑈 is open in dom 𝜙 (resp. dom 𝜓)
in the first point of Definition 3.2.

One switches from one representation of the derivative of 𝑓 to another by means of the following
result:

Lemma 3.4. Suppose that 𝜙0 ∼ 𝜙1 and 𝜓0 ∼ 𝜓1. Let 𝑓 be a map such that dom 𝜙0 ∩ dom 𝜙1 ⊆ dom 𝑓

and 𝑓 (dom 𝜙0 ∩ dom 𝜙1) ⊆ dom 𝜓0 ∩ dom 𝜓1. Given any 𝑝 ∈ dom 𝜙0 ∩ dom 𝜙1, the map 𝑓 is smooth
nearby 𝑝 with respect to 𝜙0, 𝜓0 if, and only if, so it is with respect to 𝜙1, 𝜓1. In particular we have

𝜓1 ◦ 𝑔 ◦ 𝜙1
−1 = (𝜓1 ◦ 𝜓0

−1) ◦ (𝜓0 ◦ 𝑔 ◦ 𝜙0
−1) ◦ (𝜙0 ◦ 𝜙1

−1)
being understood that the 𝜙𝑖’s and the 𝜓𝑖’s in the above equation are subcharts of 𝜙𝑖 and 𝜓𝑖 whose
domains respectively contain 𝑝 and 𝑓 (𝑝).

Definition 3.5. An atlas is a collection A of pairwise compatible charts, its support is the set

|A | =
⋃{

dom 𝜙
�� 𝜙 ∈ A}

.

Following Definition 3.2, all the charts of A have the same dimension, which is the dimension of
A.
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Definition 3.6. Given the atlases A and B, a map 𝑓 : |A | → |B| is said to be smooth nearby
𝑝 ∈ |A| when there exist two charts 𝜙 ∈ A and 𝜓 ∈ B such that 𝑓 is smooth nearby 𝑝 from 𝜙 to 𝜓

(Definition 3.1). It is said to be smooth when it is so nearby every point of A. Smooth maps are
the morphisms of the category of atlases, which we denote by Atl. The cartesian product ofA and
B in Atl is the atlas

A ×B =
{
𝜙 × 𝜓

�� 𝜙 ∈ A ; 𝜓 ∈ B
}

.

The transition map between the charts 𝜙 × 𝜓 and 𝜙′ × 𝜓′ of A ×B is the product 𝜏 × 𝜏′ of the
transition map 𝜏 between 𝜙 and 𝜙′ and the transition map 𝜏′ between 𝜓 and 𝜓′.

As an immediate consequence of Lemma 3.4, smoothness nearby 𝑝 does not depend on the
choice of 𝜙 and 𝜓 (with the denotation from Definition 3.6).

Examples 3.7. Unless otherwise stated, any open subset 𝑈 of R𝑛 is equipped with the atlas {id𝑈}.
For any chart 𝜙, the one element set {𝜙} is an atlas, and 𝜙 induces a smooth map from {𝜙} to
{idcod 𝜙}.

Definition 3.8. A curve is a smooth map defined on open interval of R.

Two atlases with the same support are said to be equivalent if their union is still an atlas. A
manifold is an equivalence class of atlases.

Definition 3.9. The support of an atlas A is endowed with the initial topology, i.e. the least one
making all the elements of A continuous.

According to the above definition, any chart of A is a homeomorphism. As in (Hicks, 1965,
p.3) and (Lang, 1999, Chap.II), we do not require the topology of an atlas to be Hausdorff; yet we
have:

Lemma 3.10. (Gauld, 2014, Proposition 9.2, p.153). The topology of any atlas is 𝑇1.

Definition 3.11. A path on the atlasA is said to be smooth when it is the restriction of a curve on
A (Definition 3.8). A piecewise smooth path on A is a concatenation of smooth paths on A.

The standard atlas of a tuple of graphs. Given a graph 𝐺 with ℓ : 𝐺 (1) → [𝑅,∞[, the set ∥𝐺∥
(Definition 2.11) admits a standard atlas that we now describe. Given 𝑥 ∈𝐺 (1) we define

𝐼𝑥 = ]0, ℓ (𝑥 )2 [ , 𝐽𝑥 = ] ℓ (𝑥 )2 , ℓ(𝑥) [ , (3)

and keep in mind the bĳection 𝑡 ↦→ 𝑡 − ℓ(𝑥) from 𝐽𝑥 to −𝐼𝑥.

Definition 3.12. The standard charts of 𝐺 are the following bĳections
𝜙𝑎 : {𝑎} × ]0, ℓ(𝑎) [ → ]0, ℓ(𝑎) [ , and

𝜙𝑎𝑏 : {𝑎} × 𝐽𝑎 ∪ {(𝑎, 𝑏)} ∪ {𝑏} × 𝐼𝑏 → −𝐼𝑎 ∪ {0} ∪ 𝐼𝑏

with (𝑎, 𝑡) ↦→ 𝑡 − ℓ(𝑎) , (𝑎, 𝑏) ↦→ 0 , (𝑏, 𝑡) ↦→ 𝑡

for all arrows 𝑎 and all traversals (𝑎, 𝑏) of 𝐺. The standard charts of (𝐺1, . . . , 𝐺𝑛) are the products
𝜙1 × · · · × 𝜙𝑛 with 𝜙𝑖 standard chart of 𝐺𝑖 for 𝑖 ∈ {1, . . . , 𝑛}.

Lemma 3.13. The collection of standard charts of (𝐺1, . . . , 𝐺𝑛) is an atlas on the set
∥𝐺1∥ × · · · × ∥𝐺𝑛∥, and the transition maps between its charts are vector translations.
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Proof. The domains of the standard charts cover ∥𝐺∥. Given two arrows 𝑎 and 𝑎′ with 𝑎 ≠ 𝑎′ the
domains of 𝜙𝑎 and 𝜙𝑎′ are disjoint. By applying the distributivity of ∩ over ∪, the intersection of
dom 𝜙𝑎𝑏 and dom 𝜙𝑎′𝑏′ is the disjoint union

({𝑎} ∩ {𝑎′}) × (𝐽𝑎 ∩ 𝐽𝑎′) ∪
(
{(𝑎, 𝑏)} ∩ {(𝑎′, 𝑏′)}

)
∪ ({𝑏} ∩ {𝑏′}) × (𝐼𝑏 ∩ 𝐼𝑏′) .

In all the cases, the transition map 𝜙𝑎′𝑏′ ◦ 𝜙𝑎𝑏
−1 is an identity; but depending on the case, the domain

of this identity is

cod (𝜙𝑎𝑏) if (𝑎, 𝑏) = (𝑎′, 𝑏′) ,

𝐽𝑎 if 𝑎 = 𝑎′ and 𝑏 ≠ 𝑏′ ,

𝐼𝑏 if 𝑎 ≠ 𝑎′ and 𝑏 = 𝑏′ ,

∅ otherwise.

Also, if 𝑐 ∉ {𝑎, 𝑏} then the domains of the charts 𝜙𝑎𝑏 and 𝜙𝑐 are disjoint. So the only nontrivial
case is when 𝑐 ∈ {𝑎, 𝑏}. We take {𝑎} × 𝐽𝑎 as witness of compatibility of 𝜙𝑎𝑏 and 𝜙𝑎 since we have

𝜙𝑎𝑏 ◦ 𝜙𝛼

−1 : 𝑡 ∈ 𝐽𝑎 ↦→ 𝑡 − ℓ(𝑎) ∈ −𝐼𝑎 ,

and of course 𝐽𝑏 as witness of compatibility of 𝜙𝑎𝑏 and 𝜙𝑏 since 𝜙𝑎𝑏 ◦ 𝜙𝑏
−1 is just the identity map

on 𝐽𝑏. We readily deduce the higher dimensional case from the description of the transition maps
between the charts of a product of atlases (Definition 3.6).

Definition 3.14. The standard atlas of the tuple of graphs (𝐺1, . . . , 𝐺𝑛) is the collection of
standard charts of (𝐺1, . . . , 𝐺𝑛) (Definition 3.12). Following Definition 3.6, it is the product atlas
A𝐺1

× · · · × A𝐺𝑛
of the standard atlases A𝐺𝑖

of 𝐺𝑖.

Examples 3.15. The canonical bĳection ∥𝐺Z∥ � R (Example 2.15) induces a smooth diffeomor-
phism between the standard atlas of 𝐺Z and {idR} (Example 3.7).

As an immediate consequence of Lemma 3.10, the topology of ∥𝐺∥ (Remark 2.13) differs from
that of the atlas X𝐺 (Definition 3.9).

3.3 Tangent bundles and vector fields
Tangent vectors. Let A be an atlas of dimension 𝑛. Given 𝜙, 𝜓 ∈ A, 𝑝 ∈ dom (𝜙), 𝑞 ∈ dom (𝜓),
and 𝑎, 𝑏 ∈ R𝑛, we write (𝑝, 𝜙, 𝑎) ∼ (𝑞, 𝜓, 𝑏) when 𝑝 = 𝑞 and D(𝜓 ◦ 𝜙−1)𝜙𝑝𝑎 = 𝑏. This makes sense
because the elements of A are pairwise compatible. The relation ∼ is reflexive, transitive, and
symmetric as a consequence of (1) and (2) from §3.1.

Definition 3.16. (Hirsch, 1976, p.16-7). The tangent vectors ofA are the elements of the quotient

𝑇A =
{
(𝑝, 𝜙, 𝑎)

�� 𝜙 ∈ A, 𝑝 ∈ dom 𝜙, and 𝑎 ∈ R𝑛
}
/ ∼

All the tuples contained in an equivalence class 𝑣 have the same first component 𝑝, we say that 𝑣
is a tangent vector at 𝑝, or that 𝑝 is the attachment point of 𝑣. We denote by 𝑇𝑝A the set of all
such vectors.

Examples 3.17. The tangent vectors of a single element atlas {𝜙} (Example 3.7) can be identified
with the elements of dom 𝜙 × R𝑛, with 𝑛 the dimension of the chart 𝜙.
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For every 𝑣 ∈ 𝑇𝑝A there is a unique J𝑣K𝜙

𝑝
∈ R𝑛 such that 𝑣 is the equivalence class of the tuple

(𝑝, 𝜙, J𝑣K𝜙

𝑝
) (this holds because every mapping D(𝜓 ◦ 𝜙−1)𝜙𝑝 with 𝜙,𝜓 ∈ A and 𝑝 ∈ dom 𝜙 ∩ dom 𝜓,

is a bĳection). By definition of the relation ∼ we have

J𝑣K𝜓
𝑝

= D(𝜓◦𝜙−1)𝜙𝑝 ◦ J𝑣K𝜙

𝑝
(4)

for every 𝜓 ∈ A with 𝑝 ∈ dom 𝜙.

Examples 3.18. For any standard charts 𝜙 and 𝜓 of (𝐺1, . . . , 𝐺𝑛), the derivative of 𝜓 ◦ 𝜙−1 at any
point of cod 𝜙 ∩ cod 𝜓 is the identity map idR : R→ R (Lemma 3.13). It follows from (4) that for
all 𝑣 ∈ 𝑇𝑝 (

∏𝑛
𝑖=1A𝐺𝑖

) the representation J𝑣K𝜙

𝑝
does not depend on the standard chart 𝜙. Hence we

may as well decide that

𝑇 (A𝐺1
× · · · × A𝐺𝑛

) = ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ × R𝑛 . (5)

Tangent spaces. We transfer the (topological) real vector space structure of R𝑛 to 𝑇𝑝A in the
obvious way: the linear combination 𝑢 + 𝜆𝑣 in 𝑇𝑝A is characterized by the equality

J𝑢 + 𝜆𝑣K𝜙

𝑝
= J𝑢K𝜙

𝑝
+ 𝜆J𝑣K𝜙

𝑝
.

It does not depend on the chart 𝜙 because we have the relation (4) and the map D(𝜓◦𝜙−1)𝜙𝑝 is
linear. Given 𝑛 ∈ N there is a unique, up to isomorphism, structure of 𝑛-dimensional Hausdorff
topological vector spaces (tvs for short) (Schaefer & Wolff, 1999, Chap.I, 3.2, 3.4). Consequently,
the only tvs structure on 𝑇𝑝A that makes the bĳection J_K𝜙

𝑝
:𝑇𝑝A→ R𝑛 an isomorphism does not

depend on 𝜙.

Definition 3.19. The resulting topological vector space 𝑇𝑝A is called the tangent space of the
atlas A at point 𝑝.

Examples 3.20. The mappings J_K𝜙

𝑝
are tvs isomorphisms.

Examples 3.21. Following the description of 𝑇A𝐺 given in Example 3.18 (5), we can suppose
that 𝑇𝑝 (A𝐺1

× · · · × A𝐺𝑛
) = {𝑝} × R𝑛 with the obvious topological vector space structure.

Derivative of a smooth map. Given a smooth map 𝑓 :A→B (Definition 3.6) and the charts 𝜙 ∈ A
and 𝜓 ∈ B with 𝑝 ∈ dom 𝜙 and 𝑓 (𝑝) ∈ dom 𝜓, neither the smoothness of 𝑓 nearby 𝑝 (Definition
3.1) nor the validity of the following equality

JDf𝑝𝑣K
𝜓

𝑓 𝑝
= D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝J𝑣K𝜙

𝑝
(6)

depends on 𝜙 and 𝜓 : it suffices to apply i) the chain rule (§3.1(1)) to the formula from Lemma
3.4, and ii) the relation (4). Hence the following definition sound:

Definition 3.22. The derivative of 𝑓 at 𝑝 is the only map Df𝑝 :𝑇𝑝A→𝑇𝑓𝑝B satisfying the equality
(6) for every 𝑣 ∈ 𝑇𝑝A. It is linear because so are the mappings J_K𝜙

𝑝
, J_K𝜓

𝑓 𝑝
, and D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝; the

latter is called the representation of Df𝑝 in the charts 𝜙 and 𝜓, it is denoted by JDf𝑝K
𝜓

𝜙
.

We switch from a representation of Df𝑝 to another applying the chain rule (§3.1(1)) to the
formula from Lemma 3.4.

Examples 3.23. Let 𝑓 :A→B be a smooth map between standard atlases (Definition 3.14) of
dimensions 𝑛 and 𝑚. The transition maps between standard charts are vector translations (Lemma
3.13) so the representation of Df𝑝 in the charts 𝜙 ∈ A and 𝜓 ∈ B does not depend on these latter.
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As a linear map from R𝑛 to R𝑚, it can be identified with an 𝑛 ×𝑚 matrix with entries in R which
we just denote by 𝑓 ′𝑝.

Definition 3.24. The matrix 𝑓 ′𝑝 from Example 3.23 is called the standard representation of Df𝑝.

Let Grphℓ be the category whose objects are graphs equipped with a length map ℓ : 𝐺 (1) →
[𝑅,∞[ and whose morphisms are the graph morphisms 𝑔 : 𝐺→𝐺′ such that the ratio ℓ (𝑔1 (𝑎) )

ℓ (𝑎)
does not depend on 𝑎; we denote it by 𝑟𝑔. Given two arrows 𝑎 and 𝑏 of 𝐺, we write 𝑔1𝑎 = 𝑎′ and
𝑔1𝑏 = 𝑏′. The map 𝑓 : ∥𝐺∥ → ∥𝐺′∥ is defined by 𝑓 (𝑎, 𝑡) = (𝑎′, 𝑟𝑔𝑡) for every 𝑡 ∈ ]0, ℓ(𝑎) [, and by
𝑓 (𝑎, 𝑏) = (𝑎′, 𝑏′) when (𝑎, 𝑏) is a traversal. Such a map 𝑓 is called a dilation. Denoting by 𝜓𝑎′ and
𝜓𝑎′𝑏′ the charts of the standard atlas of A𝐺′ associated with 𝑎′ and (𝑎′, 𝑏′), we have

𝜓𝑎′ ◦ 𝑓 ◦ 𝜙𝑎

−1 = 𝑡 ∈ ]0, ℓ(𝑎) [ ↦→ 𝑟𝑔𝑡 ∈ ]0, ℓ(𝑎′) [
𝜓𝑎′𝑏′ ◦ 𝑓 ◦ 𝜙𝑎𝑏

−1 = 𝑡 ∈ ] −ℓ (𝑎)2 ,
ℓ (𝑏)

2 [ ↦→ 𝑟𝑔𝑡 ∈ ] −ℓ (𝑎
′ )

2 ,
ℓ (𝑏′ )

2 [
so the map 𝑓 is smooth, and with the denotation from Definition 3.24 we have 𝑓 ′𝑝 = 𝑟𝑔 for all
𝑝 ∈ ∥𝐺∥. In particular the construction 𝐺 ↦→ A𝐺 (Definition 3.14) extends to a functor

A∗ : Grphℓ→Atl .

Tangent bundle We denote by GL𝑛 (R) the group of 𝑛 × 𝑛 invertible matrices with real entries; its
underlying set is open in Mat𝑛 (R) equipped with the standard topology.

The set 𝑇A (Definition 3.16) is the support of an atlas: for every 𝜙 ∈ A one defines the chart

𝑇𝜙 :
⊔

𝑝∈dom 𝜙

𝑇𝑝A → cod 𝜙 × R𝑛 (7)

by 𝑇𝜙(𝑣) =
(
𝜙𝑝 , J𝑣K𝜙

𝑝

)
for every 𝑣 ∈ 𝑇𝑝A. Given 𝜙, 𝜓 ∈ A, the bĳection 𝑇𝜓 ◦ (𝑇𝜙)−1 :

cod 𝜙 × R𝑛→ cod 𝜓 × R𝑛 satisfies the equality

𝑇𝜓 ◦ (𝑇𝜙)−1(𝑥, 𝑡) =

(
(𝜓 ◦ 𝜙−1)𝑥 , D(𝜓 ◦ 𝜙−1)𝑥𝑡

)
so it is smooth because so are the maps

𝜓 ◦ 𝜙−1 : cod 𝜙→ cod 𝜓 and D(𝜓 ◦ 𝜙−1) : cod 𝜙→GL𝑛 (R) .
This atlas is called the tangent bundle of A; it is also denoted by 𝑇A. The construction extends
to a functor 𝑇 : Atl→Atl : if the map 𝑓 :A→B is smooth, then so is the map 𝑇𝑓 :𝑇A→𝑇B
defined by 𝑇𝑓 (𝑣) =Df𝑝𝑣 for every 𝑣 ∈ 𝑇𝑝A . Indeed, assuming that 𝑇𝜙(𝑣) = (𝑥, 𝑡) we have(

𝑇𝜓 ◦𝑇𝑓 ◦ (𝑇𝜙)−1 ) (𝑥, 𝑡) =
(
𝜓 ◦ 𝑓 ◦ 𝜙−1𝑥 , D(𝜓◦ 𝑓 ◦𝜙−1)𝑥 · 𝑡

)
,

and D(𝜓◦ 𝑓 ◦𝜙−1) is smooth as a map from cod 𝜙 to Mat𝑚𝑛 (R). The tangent bundle functor preserves
binary products in the sense that the bĳection(

(𝑝, 𝑞), 𝜙 × 𝜓, (𝑎, 𝑏)
)
↔

(
(𝑝, 𝜙, 𝑎), (𝑞, 𝜓, 𝑏)

)
induces a smooth diffeomorphism between 𝑇 (A × B) and 𝑇A ×𝑇B.

Examples 3.25. The tangent bundle of a single element atlas {𝜙} is the single element atlas {𝑇𝜙}.
After Example 3.17 we can suppose that 𝑇𝜙 : (𝑝, 𝑣) ∈ dom (𝜙) × R𝑛 ↦→ (𝜙(𝑝), 𝑣) ∈ cod (𝜙) × R𝑛.

Definition 3.26. Following Example 3.18 (5), for every standard chart 𝜙 of (𝐺1, . . . , 𝐺𝑛) the chart
𝑇𝜙 from (7) is the product map 𝜙 × idR𝑛 :

𝑇𝜙 : dom 𝜙 × R𝑛 → cod 𝜙 × R𝑛

(𝑝, 𝑡) ↦→ (𝜙𝑝, 𝑡)
.
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Assuming that 𝑓 is as in Example 3.23 we have

Df𝑝 (𝑝, 𝑡) = 𝑇𝑓 (𝑝, 𝑡) =
(
𝑓𝑝 , 𝑓 ′𝑝 · 𝑡

)
with 𝑓 ′𝑝 · 𝑡 being the product of the standard matrix of Df𝑝 (Definition 3.24) and the vector 𝑡 ∈ R𝑛.
Bĳections of the form 𝑇𝜙 are called the standard tangent charts of (𝐺1, . . . , 𝐺𝑛), they form the
standard tangent atlas of (𝐺1, . . . , 𝐺𝑛). The standard representation of the tangent bundle of
A𝐺1

× · · · × A𝐺𝑛
is the set ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ × R𝑛 equipped the standard tangent atlas.

Vector fields and parallelizations. The projection 𝜋 :𝑇A→A sends every tangent vector to its
attachment point. It is smooth because its local representation in the charts 𝑇𝜙 and 𝜙, see (7),
is the projection cod 𝜙 × R𝑛→ cod 𝜙. A vector field over A is a smooth map 𝑓 :A→𝑇A such
that 𝜋 ◦ 𝑓 = id. Such an 𝑓 is called a smooth section of 𝜋; it associates a vector of 𝑇𝑝A to every
point 𝑝 of A. A parallelization of A is a tuple ( 𝑓1, . . . , 𝑓𝑛) of vector fields over A such that
( 𝑓1(𝑝), . . . , 𝑓𝑛 (𝑝)) is a vector basis of 𝑇𝑝A for every point 𝑝 ∈ A.

Remark 3.27. For every parallelization 𝑓★ = ( 𝑓1, . . . , 𝑓𝑛) of A the following map is a smooth
diffeomorphism (

𝑝 , (𝑎1, . . . , 𝑎𝑛)
)
∈ A × R𝑛 ↦→

𝑛∑︁
𝑖=1

𝑎𝑖 𝑓𝑖 (𝑝) ∈ 𝑇A

Conversely, from any smooth diffeomorphism Π :A × R𝑛→𝑇A one recovers a parallelization of
A putting 𝑓𝑖 = Π ◦

(
𝑝 ↦→ (𝑝, 𝑒𝑖)

)
with 𝑝 ∈ A and 𝑒𝑖 denoting the 𝑖th canonical basis of R𝑛.

Examples 3.28. The standard parallelization of a single element atlas {𝜙} of dimension 𝑛 is the
tuple ( 𝑓1, . . . , 𝑓𝑛) with 𝑓𝑖 (𝑝) = (𝑝, 𝑒𝑖) with 𝑒𝑖 denoting the 𝑖th vector of the canonical base of R𝑛

(Examples 3.17 and 3.25).

Definition 3.29. Following Definition 3.26, the standard parallelization of (𝐺1, . . . , 𝐺𝑛) is the
tuple of vector fields ( 𝑓1, . . . , 𝑓𝑛) with:

𝑓𝑖 : ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ → (∥𝐺1∥ × · · · × ∥𝐺𝑛∥) × R𝑛

𝑝 ↦→ 𝑝 , 𝑒𝑖

for 𝑖 ∈ {1, . . . , 𝑛} and 𝑒𝑖 the 𝑖th vector of the canonical basis of R𝑛. The standard basis of the
tangent space at 𝑝 is ( 𝑓1(𝑝), . . . , 𝑓𝑛 (𝑝)); its positive cone is the set of vectors whose coordinates
in the standard basis are non-negative.

Remark 3.30. If ( 𝑓1, . . . , 𝑓𝑛) and (𝑔1, . . . , 𝑔𝑚) are parallelizations of A and B, then
( 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚) is a parallelization ofA ×B. Strictly speaking, even if the first two tuples
are standard parallelizations (Definition 3.29), the third one is not. Yet, it is related to a standard
parallelization by the obvious smooth diffeomorphism

(∥𝐺1∥ × R) × · · · × (∥𝐺𝑛∥ × R) � (∥𝐺1∥ × · · · × ∥𝐺𝑛∥) × R𝑛 .

Lemma 3.31. Assume that 𝑓 is as in Example 3.23. The standard matrix representation 𝑓 ′𝑝
(Definition 3.24) is the matrix of the linear map Df𝑝 in the standard bases (Definition 3.29) of the
tangent vector spaces at 𝑝 and 𝑓𝑝.

Proof. The matrix 𝑓 ′𝑝 represents D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝 in the canonical bases of R𝑛 and R𝑚 regardless
of the chosen standard charts 𝜙 and 𝜓 provided their domains contain 𝑝 and 𝑓𝑝 (Definition
3.24). We have the atlas morphisms 𝜙 : {𝜙} → {idcod 𝜙}, 𝜓 : {𝜓} → cod {idcod 𝜓} (Example 3.7), and



Submitted to Mathematical Structures in Computer Science 15

𝑓 : {𝜙} → {𝜓}, so we can write

D(𝜓◦ 𝑓 ◦𝜙−1)𝜙𝑝 = D𝜓𝑓𝑝 ◦Df𝑝 ◦D𝜙−1
𝜙𝑝

Assume that R𝑛 and R𝑚 are equipped with their canonical bases, and that the tangent spaces at 𝑝
and 𝑓 𝑝 are equipped with their standard bases. Then the matrices of D𝜓𝑓𝑝 and D𝜙−1

𝜙𝑝 are identities,
while the matrix of Df𝑝 is 𝑓 ′𝑝.

Remark 3.32. If 𝛾 is a curve on the standard atlas A𝐺1
× · · · × A𝐺𝑛

, then for every standard chart
𝜙 whose domain contains 𝛾(𝑡0), we have the curve 𝜙 ◦ 𝛾 in R𝑛. By Lemma 3.31, the coordinates
of the ‘speed’ vector (𝜙 ◦ 𝛾)′ (𝑡0) in the canonical basis of R𝑛 are the coordinates of the tangent
vector 𝛾′ (𝑡0) in the standard basis at 𝛾(𝑡0).

4. Metrics
We recall basic notions of metric space theory (§4.1), and thoroughly describe metric graphs:
the metric on |𝐺 | is lifted to a pseudometric on ∥𝐺∥ along the desingularizator 𝛽𝐺 (§4.2). The
pseudometric on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ and the standard parallelization on A𝐺1

× · · · × A𝐺𝑛
(together

with a norm on R𝑛) induce two natural ways of defining the length of a piecewise smooth
path: we prove that they coincide and determine the (pseudo)metrics on |𝐺1 | × · · · × |𝐺𝑛 | and
∥𝐺1∥ × · · · × ∥𝐺𝑛∥ (§4.3). The abovementioned (pseudo)metrics actually depend on the choice of a
norm on R𝑛, according to execution time consideration, we explain that the ∞-norm (Definition
4.42) should be preferred (§6). We start with a small reminder on paths.

A continuous map 𝛾 : [𝑎, 𝑏] → 𝑋 with 𝑎 ⩽ 𝑏 is called a path on 𝑋 . The opposite of 𝛾 is the path
𝛾̄ : [𝑎, 𝑏] → 𝑋 with 𝛾̄(𝑡) = 𝛾(𝑎 + 𝑏 − 𝑡). The endpoints of 𝛾 are 𝛾(𝑎) and 𝛾(𝑏), more precisely its
starting and finishing points. A subdivision of [𝑎, 𝑏] is a finite increasing sequence of elements of
[𝑎, 𝑏] whose first and last elements are 𝑎 and 𝑏. A one-to-one path is called an arc. A pseudo-arc
is a path 𝛾 such that 𝛾−1{𝑝} is connected for every 𝑝 ∈ dom (𝛾) (the empty set is connected). A
weak reparametrization is a nondecreasing path onto an interval (equivalently, an nondecreasing
surjection between two intervals). A reparametrization is an increasing path onto an interval
(equivalently, an increasing surjection between two intervals).

Remark 4.1. Two arcs 𝛼 : [𝑎, 𝑏] → 𝑋 and 𝛽 : [𝑐, 𝑑] → 𝑋 with the same image and the same starting
point are equal up to reparametrization. Indeed, denote by 𝛼̃ and 𝛽 the homeomorphisms induced
by 𝛼 and 𝛽 on their common image. Let 𝜃 = 𝛽

−1◦ 𝛼̃, we have 𝛼 = 𝛽 ◦ 𝜃 and the homeomorphism 𝜃

is increasing because 𝜃 (𝑎) = 𝑐.

Given a path 𝛿 : [𝑏, 𝑐] → 𝑋 with 𝛾(𝑏) = 𝛿(𝑏), the concatenation 𝛾 · 𝛿 is the path defined on
[𝑎, 𝑐] such that 𝛾 · 𝛿(𝑡) = 𝛾(𝑡) if 𝑡 ⩽ 𝑏, and 𝛾 · 𝛿(𝑡) = 𝛿(𝑡) if 𝑏 ⩽ 𝑡. If dom (𝛿) = [𝑏′, 𝑐] then we still
write 𝛾 · 𝛿 to mean 𝛾 · (𝛿 ◦ 𝜏) with 𝜏 denoting the translation 𝑡 ↦→ 𝑡 + 𝑏′ − 𝑏 from [𝑏, 𝑐 − 𝑏′ + 𝑏] to
[𝑏′, 𝑐].

For every path 𝛾 on a Hausdorff space 𝑋 , there exists an arc 𝛼 on 𝑋 whose endpoints are those
of 𝛾. Since any subspace of a Hausdorff space is Hausdorff, we can suppose that img (𝛼) ⊆ img (𝛾).
The following result (Douady & Douady, 2020, p.12) states that the arc 𝛼 can be chosen so that it
satisfies extra properties that will be used later:

Lemma 4.2. For every path 𝛾 from 𝑝 to 𝑞 on a Hausdorff space 𝑋 , there exists an increasing
lower semicontinuous map 𝑓 : [0, 𝑟] → dom (𝛾) such that 𝛾 ◦ 𝑓 is an arc from 𝑝 to 𝑞, and 𝑓 is
continuous if, and only if, 𝛾 is an arc. Moreover we can suppose that 𝑓 (0) = min(dom (𝛾)).

Proof. Assume that dom (𝛾) = [𝑥, 𝑦] and suppose that 𝛾−1{𝑝} contains more than one element. Let
𝑠 and 𝑠′ be the least and the greatest elements of 𝛾−1{𝑝}. The subpath 𝛾 | [𝑠, 𝑠′] is a nontrivial loop that



16 Emmanuel Haucourt

we can shunt by considering 𝛾 | [𝑥, 𝑠] · 𝛾 | [𝑠′, 𝑦] . In order to obtain an arc, we need to shunt all the loops;
the problem is that there might be infinitely many of them, and they might be nested (keep in mind
space filling curves). Following (Douady & Douady, 2020, p.12) we consider the set Ω of all the
open subsets of [0, 1] neither containing 𝑥 nor 𝑦, and whose connected components ]𝑠, 𝑠′ [ satisfies
𝛾(𝑠) = 𝛾(𝑠′). Every such connected component corresponds to a loop we wish to shunt. The set Ω
ordered by inclusion is inductive (the Hausdorff property of 𝑋 intervenes here) so it has a maximal
element 𝑊 (Zorn’s Lemma). The only possible isolated points of 𝑊𝑐 = ( [𝑥, 𝑦] \𝑊) are 𝑥 and 𝑦.
For every connected component 𝐶 of 𝑊𝑐 \ {𝑥, 𝑦} the restriction 𝛾 |

𝐶
is an arc. The idea is to obtain

an arc 𝛼 from 𝑝 to 𝑞 as the (infinite) concatenation of the arcs 𝛾 |
𝐶

for 𝐶 connected component of
𝑊𝑐 \ {𝑥, 𝑦}. In order to formalize this construction, denote by 𝜆 the Lebesgue measure on R (we
just need the measure of compact subsets of R actually). Define the map ℎ : [𝑥, 𝑦] → [0, 𝜆(𝑊𝑐)] by
ℎ(𝑡) = 𝜆(𝑊𝑐 ∩ [𝑥, 𝑥 + 𝑡]) and the map 𝑓 : [0, 𝜆(𝑊𝑐)] → [𝑥, 𝑦] by 𝑓 (𝜏) = min(ℎ−1{𝜏}). The map
𝑓 is a section of ℎ (i.e. ℎ◦ 𝑓 = id), it is increasing, lower semicontinuous (but not continuous in
general) and 𝛼 = 𝛾 ◦ 𝑓 is the expected arc. Observe that 𝑊 is the interior of ]𝑥, 𝑦[\img ( 𝑓 ). Note
that if 𝛾 is an arc, then ∅ is the only element of Ω, so both ℎ and 𝑓 are homeomorphisms.

In the preceding proof, we have ]𝑥, 𝑦[ ∈Ω if, and only if, 𝛾(𝑥) = 𝛾(𝑦), in which case 𝑓 is
constant equal to 0. The Hausdorff property cannot be omitted: suppose that 𝐺 is the graph from
Example 2.16 and that ∥𝐺∥ is equipped with the topology of the standard atlas of 𝐺 (Definition
3.14); any point (𝑏, 𝑡) is related to any point (𝑐, 𝑡′) by a path, but there is no arc joining them.

Remark 4.3. A path on a Hausdorff space preserves closures. An arc on a Hausdorff space induces
a homeomorphism on its image (Gauld, 1982, Theorem 6, p.32).

4.1 Metrics and pseudometrics
A pseudometric on a set 𝑀 is a map 𝑑 : 𝑀 ×𝑀→ R+ ∪ {∞} such that 𝑑 (𝑥, 𝑥) = 0, 𝑑 (𝑥, 𝑦) = 𝑑 (𝑦, 𝑥),
and 𝑑 (𝑥, 𝑧) ⩽ 𝑑 (𝑥, 𝑦) + 𝑑 (𝑦, 𝑧) for all 𝑥, 𝑦, and 𝑧 ∈ 𝑀 . It is a metric when 𝑑 (𝑥, 𝑦) = 0 implies that
𝑥 = 𝑦. A (pseudo)metric space is a set equipped with a (pseudo)metric; it comes with a topology
whose open sets are the unions of open balls, namely the sets of the form{

𝑝 ∈ 𝑀
�� 𝑑 (𝑝, 𝑐) < 𝑟

}
with 𝑟 > 0 and 𝑐 ∈ 𝑀 . The open 𝑟-neighborhood of 𝑋 ⊆ 𝑀 is the union of the open balls of radius
𝑟 centered at some point of 𝑋 .

Remark 4.4. Any path 𝛾 on a pseudometric space (𝑀, 𝑑) is uniformly continuous in the sense
that for every 𝜀 > 0 there exists 𝛿 > 0 such that |𝑡 − 𝑡′ | < 𝛿 implies 𝑑 (𝛾(𝑡), 𝛾(𝑡′)) < 𝜀 (Rudin, 1976,
4.19, p.91).

Definition 4.5. The length of a path 𝛾 on the (pseudo)metric space (𝑀, 𝑑), which we denote by
𝐿 (𝛾), is defined as the least upper bound of the values

𝑛∑︁
𝑘=1

𝑑
(
𝛾(𝑡𝑘 − 1), 𝛾(𝑡𝑘)

)
with 𝑡0 ⩽ · · · ⩽ 𝑡𝑛 running through all the possible subdivisions of [𝑎, 𝑏]. We say that 𝛾 is rectifiable
when 𝐿 (𝛾) is finite.

Remark 4.6. The length of a path is invariant under weak reparametrization: for every path
𝛾 : [𝑎, 𝑏] → (𝑀, 𝑑) and every weak reparametrization 𝜃 : [𝑥, 𝑦] → [𝑎, 𝑏], both 𝛾 and 𝛾 ◦ 𝜃 have the
same length (Papadopoulos, 2013, 1.1.8). For this reason, when 𝛾 is rectifiable, it is often convenient
to suppose that 𝛾 is arclength parametrized, i.e. for all 𝑎 ⩽ 𝑡 ⩽ 𝑡′ ⩽ 𝑏, the length of the subpath
𝛾 | [𝑡,𝑡′ ] is 𝑡′ − 𝑡. Indeed, for any path 𝛾 there is a unique reparametrization 𝜃 : [0, 𝐿 (𝛾)] → dom (𝛾)
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such that 𝛾 ◦ 𝜃 is arclength parametrized, see (Papadopoulos, 2013, §1.2) or (Bridson & Haefliger,
1999, Proposition 1.20(5), p.13).

Lemma 4.7. Every arclength parametrized pseudo-arc 𝛼 is an arc.

Proof. Suppose that 𝑡 ⩽ 𝑡′ and 𝛼(𝑡) = 𝛼(𝑡′). We have 𝑡′ − 𝑡 = 𝐿 (𝛼 | [𝑡, 𝑡′] ) because 𝛼 is arclength
parametrized, and the pseudo-arc 𝛼 is constant on [𝑡, 𝑡′]. Therefore 𝑡 = 𝑡′.

Definition 4.8. Let (𝑀, 𝑑) be metric space. The path 𝛾 : [𝑎, 𝑏] →𝑀 is a geodesic when
𝑑 (𝛾(𝑡), 𝛾(𝑡′)) = |𝑡 − 𝑡′ | for all 𝑡, 𝑡′ ∈ [𝑎, 𝑏]. It is a local geodesic when for all 𝑡 ∈ [𝑎, 𝑏] there
exists 𝜀 > 0 such that the restriction of 𝛾 to [𝑎, 𝑏] ∩ [𝑡 − 𝜀, 𝑡 + 𝜀] is a geodesic. A subset 𝑋 ⊆ 𝑀 is
said to be geodesically stable(5) when for all 𝑝, 𝑞 ∈𝑋 there exists a geodesic from 𝑝 to 𝑞 and they
are all contained in 𝑋 .

Definition 4.9. The length (pseudo)metric 𝑑𝐿 associated with 𝑑 is given by

𝑑𝐿 (𝑝, 𝑞) = inf
{
𝐿 (𝛾)

�� 𝛾 path on 𝑀 from 𝑝 to 𝑞
}
.

We have 𝑑𝐿 (𝑝, 𝑞) =∞ when there is no path from 𝑝 to 𝑞.

The inequality 𝑑 ⩽ 𝑑𝐿 is always satisfied: the (pseudo)metric 𝑑 is said to be intrinsic when
𝑑 = 𝑑𝐿. Note that if 𝑑 is a metric, then so is 𝑑𝐿 because 𝑑𝐿 (𝑝, 𝑞) = 0 implies 𝑑 (𝑝, 𝑞) = 0, and
therefore 𝑝 = 𝑞. The converse is also true: assume that 𝑑𝐿 is a metric and 𝑑 (𝑝, 𝑞) = 0. Any map
𝛾 : [𝑎, 𝑏] →𝑀 whose image is contained in {𝑝, 𝑞} is continuous with respect to the topology
induced on 𝑀 by 𝑑. Moreover we have 𝐿 (𝛾) = 0, therefore 𝑑𝐿 (𝑝, 𝑞) = 0 and 𝑝 = 𝑞.

Given the metric spaces (𝑀𝑖, 𝑑𝑖) for 𝑖 ∈ {1, . . . , 𝑛}, there is no preferred metric 𝑑 on the product
𝑀1 × · · · ×𝑀𝑛 among those making the projection maps continuous. The 1-Lipschitz maps are
often taken as metric space morphisms, so we require that 𝑑𝑖 (𝑝𝑖, 𝑞𝑖) ⩽ 𝑑 (𝑝, 𝑞) for all points
𝑝 = (𝑝1, . . . , 𝑝𝑛) and 𝑞 = (𝑞1, . . . , 𝑞𝑛), and all 𝑖 ∈ {1, . . . , 𝑛}. In the context of this article, it also
desirable that each slice

𝜎𝑖 : 𝑀𝑖 ↩→ {𝑝1} × · · · × {𝑝𝑖 − 1} ×𝑀𝑖 × {𝑝𝑖 + 1} × · · · × {𝑝𝑛}
is an isometry, i.e. 𝑑𝑖 (𝑥, 𝑦) = 𝑑 (𝜎𝑖 (𝑥), 𝜎𝑖 (𝑦)) for all 𝑖 ∈ {1, . . . , 𝑛} and 𝑥, 𝑦 ∈ 𝑀𝑖. The most well-
known example of product metric is the euclidean one√√

𝑛∑︁
𝑖=1

𝑑𝑖
2 ,

which is a special instance of 𝛼-product metric:

Definition 4.10. For 𝛼 ∈ [1,∞] the 𝛼-product metric is given by (𝑑𝛼
1 + · · · + 𝑑𝛼

𝑛
) 1
𝛼 with the usual

convention that the preceding formula is replaced by max
{
𝑑𝑖

�� 𝑖 ∈ {1, . . . , 𝑛}} when 𝛼 =∞. The
𝛼-product metric is also given by

(𝑝, 𝑞) ↦→ |𝑑1(𝑝1, 𝑞1), . . . , 𝑑𝑛 (𝑝𝑛, 𝑞𝑛) |𝛼
with |_|

𝛼
denoting the 𝛼-norm on R𝑛, i.e. |𝑡 |

𝛼
= ( |𝑡1 |𝛼 + · · · + |𝑡𝑛 |𝛼)

1
𝛼 when 𝛼 ≠∞ and |𝑡 |∞ =

max
{
|𝑡𝑖 |

�� 𝑖 ∈ {1, . . . , 𝑛}} for every 𝑡 ∈ R𝑛.

(5)Such a set is said to be convex in (Bridson & Haefliger, 1999, p.4); we have reserved this term for another usage (§5.1).
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Proposition 4.11. Any (finite) 𝛼-product of intrinsic (pseudo)metrics is an intrinsic
(pseudo)metric.

Proof. See the proof of (Bridson & Haefliger, 1999, 5.3(1), p.56) for the case 𝛼 = 2. One readily
checks that it remains valid for any 𝛼 ∈ [1,∞[ instead of 2; see also (Bridson & Haefliger, 1999,
5.5(1), p.58) for 𝛼 <∞; the case 𝛼 =∞ just requires to drop the exponent 𝛼 and replace some
occurrences of ‘+’ by ‘max’.

4.2 Metric graphs
Given the map ℓ : 𝐺 (1) → R+ assigning a length to every arrow of a graph 𝐺, we wish to define a
pseudometric space in which the distance between the points 𝑝 and 𝑞 is the greatest lower bound of
the lengths of the paths joining 𝑝 and 𝑞. Such a space is called a metric graph, it can be defined as
the quotient of a disjoint union of intervals (Bridson & Haefliger, 1999, 5.21(3)). If ℓ has a positive
lower bound 𝑅, the resulting pseudometric is an intrinsic metric (Bridson & Haefliger, 1999,
5.20,28,29). Every metric graph is actually a 1-dimensional metric simplicial complexe (Bridson
& Haefliger, 1999, 7.40(1)). Under the extra assumption that the set {ℓ(𝑎) | 𝑎 ∈𝐺 (1) } is finite,
a metric graph inherits strong properties (Bridson & Haefliger, 1999, 7,5,9,10,19,21,24,50,62)
from metric simplicial complexes built on finitely many shapes (Bridson & Haefliger, 1999, 7.2).
Nevertheless, dealing with the latter requires a lot of material that is irrelevant in dimension 1.
This is why we have chosen a more elementary approach. The pedestrian construction given here
is standard (Bridson & Haefliger, 1999, §1.9, p.6), requires no prerequisites, and allows direct
proofs without the finiteness hypothesis about the image of the map ℓ (at least for the results we
are concerned with). We have slightly adapted the presentation to our needs.

Each arrow 𝑎 comes with the canonical map (see Definition 2.3 for |𝐺 |)

𝜒𝑎 : 𝑡 ∈ [0, ℓ(𝑎)] ↦→


src 𝑎 if 𝑡 = 0

tgt 𝑎 if 𝑡 = ℓ(𝑎)

(𝑎, 𝑡) otherwise

∈ |𝐺 | .

Remark 4.12. The finest topology making all the maps 𝜒𝑎 continuous is the topology of |𝐺 |
(Definition 2.7). It suffices to note that if 𝑉 is an open set of the latter topology containing the
vertex 𝑣, and if 𝑎 is an arrow of 𝐺 such that src(𝑎) = 𝑣 (resp. tgt(𝑎) = 𝑣), then 𝜒𝑎

−1(𝑉) contains
[0, 𝜀[ (resp. ]ℓ(𝑎) − 𝜀, ℓ(𝑎)]).

Lemma 4.13. If 𝐼 = ]0, ℓ(𝑎) [ or if 𝐼 is a proper closed subinterval of [0, ℓ(𝑎)], then the map 𝜒𝑎

induces a homeomorphism from 𝐼 to 𝜒𝑎 (𝐼). If src(𝑎) ≠ tgt(𝑎), then 𝜒𝑎 induces a homeomorphism
on its image.

Proof. Denote by 𝜒̃
𝑎

: ]0, ℓ(𝑎) [ → 𝜒𝑎 (]0, ℓ(𝑎) [) the bĳection induced by 𝜒𝑎. The direct image
map 𝜒̃∗

𝑎
induces a bĳection between the open subintervals of ]0, ℓ(𝑎) [ and the segments of 𝐺

(Definition 2.5) contained in 𝜒𝑎 (]0, ℓ(𝑎) [). The former (resp. the latter) collection is a base of the
topology of ]0, ℓ(𝑎) [ (resp. 𝜒𝑎 (]0, ℓ(𝑎) [)). In all the other cases, the map induced by 𝜒 on 𝐼 is an
arc on the space |𝐺 | which is Hausdorff (Remarks 2.6 and 4.12). We conclude by Remark 4.3.

Remark 4.14. Given an arrow 𝑎 and a traversal (𝑎, 𝑏) of a graph 𝐺, the standard charts 𝜙𝑎 and 𝜙𝑎𝑏

(Definition 3.12) are related to the mappings 𝜒𝑎 and 𝜒𝑏 : for all 𝑡 ∈ cod 𝜙𝑎 we have 𝛽𝐺 ◦ 𝜙𝑎
−1(𝑡) =
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𝜒𝑎 (𝑡) = (𝑎, 𝑡), and for all 𝑡 ∈ cod 𝜙𝑎𝑏 we have

𝛽𝐺 ◦ 𝜙𝑎𝑏

−1 =


𝜒𝑎 (ℓ(𝑎) + 𝑡) = (𝑎, ℓ(𝑎) + 𝑡) if 𝑡 < 0

𝜒𝑎 (ℓ(𝑎)) = tgt 𝑎 = src 𝑏 = 𝜒𝑏 (0) if 𝑡 = 0

𝜒𝑏 (𝑡) = (𝑏, 𝑡) if 𝑡 > 0

with 𝛽𝐺 denoting the desingularizator of 𝐺 (Definition 2.11).

We define the standard metric and pseudometric structures on |𝐺 | and ∥𝐺∥:

Lemma 4.15. A path on |𝐺 | visits finitely many vertices.

Proof. The union 𝑉 of stars of radius 𝑅
3 centered at some vertex of 𝐺 (Definition 2.4) does not

contain any middle point. The set 𝑈 = |𝐺 | \ {vertex} is an open neighborhood of |𝐺 | \𝑉 that does
not contain any vertex of 𝐺. The family C made of 𝑈 and the stars of radius 𝑅

3 centered at some
vertex of 𝐺 visited by 𝛾 is an open covering of the image of 𝛾. By construction, no strict subfamily
of C covers the image of 𝛾 which is compact, so 𝛾 visits finitely many vertices of 𝐺.

Definition 4.16. A step 𝑠 is a path of the form 𝜒𝑎 ◦ 𝜃 with 𝜃 arc on [0, ℓ(𝑎)]; it is said to be affine
if so is 𝜃; directed or antidirected according to whether 𝜃 is increasing or decreasing; standard if 𝜃
is an inclusion [𝑥, 𝑦] ↩→ [0, ℓ(𝑎)] or its opposite, in which case the step 𝑠 is denoted by (𝑎, 𝑥, 𝑦) or
(𝑎, 𝑦, 𝑥) accordingly. We define the length of 𝑠, denoted by ℓ(𝑠), as the length of the interval img 𝜃.
The support of 𝑠 is the arrow 𝑎. The steps 𝜒𝑎 ◦ 𝜃 and 𝜒𝑏 ◦ 𝜃′ are said to be overlapping when 𝑎 = 𝑏

and the interior of img 𝜃 ∩ img 𝜃′ is nonempty. In higher dimensions, a step of |𝐺1 | × · · · × |𝐺𝑛 | is
a product 𝑠1 × · · · × 𝑠𝑛 of steps 𝑠𝑖 of |𝐺𝑖 |.

Remark 4.17. If the step 𝑠 = 𝜒𝑎 ◦ 𝜃 is written as the concatenation 𝑠1 · · · 𝑠𝑛 then we have the
subdivision 𝑡1< · · · <𝑡𝑛 of dom (𝑠) such that 𝑠𝑖 = 𝜒𝑎 ◦ 𝜃𝑖 with 𝜃𝑖 the restriction of 𝜃 to [𝑡𝑖 − 1, 𝑡𝑖].
Hence 𝜃 (𝑡𝑖 − 1) ⩽ 𝜃 (𝑡𝑖) for every 𝑖 ∈ {1, . . . , 𝑛} or 𝜃 (𝑡𝑖 − 1) ⩾ 𝜃 (𝑡𝑖) for every 𝑖 ∈ {1, . . . , 𝑛}. In both
cases we have |𝜃 (𝑡𝑛) − 𝜃 (𝑡0) | =

∑𝑛
𝑖=1 |𝜃 (𝑡𝑖) − 𝜃 (𝑡𝑖 − 1) | that is to say ℓ(𝑠) = ℓ(𝑠1)+ · · · +ℓ(𝑠𝑛).

The next result justifies the notion of a step:

Lemma 4.18. If the concatenations of steps 𝑠1 · · · 𝑠𝑛 and 𝑠1 · · · 𝑠𝑚 are equal, then
ℓ(𝑠1)+ · · · +ℓ(𝑠𝑛) = ℓ(𝑠1)+ · · · +ℓ(𝑠𝑚).

Proof. Let 𝑡0< · · · <𝑡𝑛 and 𝑡0< · · · <𝑡𝑚 with dom (𝑠𝑖) = [𝑡𝑖 − 1, 𝑡𝑖] and dom (𝑠𝑖) = [𝑡𝑖 − 1, 𝑡𝑖]. Following
our notion of concatenation we have [𝑡0, 𝑡𝑛] = [𝑡0, 𝑡𝑚]. Suppose that 𝑡0< · · · <𝑡𝑛 is finer than
𝑡0< · · · <𝑡𝑚 (otherwise consider a third subdivision that is finer than both of them) and conclude
by Remark 4.17.

Definition 4.19. A path 𝛾 on |𝐺 | is said to be admissible (resp. piecewise affine) when it can
be written as a (finite) concatenation of (resp. affine) steps 𝑠1, . . . , 𝑠𝑛; the length of 𝛾 is ℓ(𝛾) =
ℓ(𝑠1)+ · · · +ℓ(𝑠𝑛) (Lemma 4.18). A path on |𝐺1 | × · · · × |𝐺𝑛 | is said to be admissible (resp. piecewise
affine) when so are all its components. A path on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is said to be piecewise affine
when so is its image under the product of desingularizators 𝛽1 × · · · × 𝛽𝑛 (Definition 2.11).

Remark 4.20. The class of admissible paths is stable under reparametrization; the image and the
length of an admissible path are left unchanged under reparametrization.

Remark 4.21. Every step is admissible and for every arrow 𝑎, we have ℓ(𝜒𝑎) = ℓ(𝑎).
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Lemma 4.22. Every arc on |𝐺 | is admissible.

Proof. The set of vertices visited by 𝛼 is finite (Lemma 4.15) and 𝛼 is one-to-one, so the set
𝛾−1({vertices}) is finite: let 𝑡0< · · · <𝑡𝑘 be its enumeration. Given 𝑖 ∈ {1, . . . , 𝑘}, the map 𝜃 : 𝜉 ∈
[𝑡𝑖−1, 𝑡𝑖] → 𝜒𝑎

−1(𝛼(𝜉)) ∈ [0, ℓ(𝑎)] is an arc (Remark 4.3 and Lemma 4.13) such that the restriction
of 𝛼 to [𝑡𝑖−1, 𝑡𝑖] is 𝜒𝑎 ◦ 𝜃.

Lemma 4.23. If the image of the arc 𝛼 is contained in the image of the admissible path 𝛾, then
ℓ(𝛼) ⩽ ℓ(𝛾). Equality holds if, and only if, 𝛾 is an arc and img (𝛼) = img (𝛾).

Proof. We write 𝛾 as a concatenation of steps 𝛾1 · · · 𝛾𝑛 (Definition 4.19). If 𝛼 is reduced to a single
step, then we can write it as 𝛼1 · · · 𝛼𝑚 so that for every 𝑗 ∈ {1, . . . , 𝑚} and every 𝑖 ∈ {1, . . . , 𝑛},
if 𝛼𝑗 and 𝛾𝑖 are overlapping (Definition 4.16), then img (𝛼𝑗) ⊆ img (𝛾𝑖); in particular there is some
𝑖 ∈ {1, . . . , 𝑛} such that img (𝛼𝑗) ⊆ img (𝛾𝑖). As a consequence of Lemma 4.22, the same holds for
any arc 𝛼. Hence we have the map 𝑓 : {1, . . . , 𝑚} → {1, . . . , 𝑛} defined by

𝑓 ( 𝑗) = min
{
𝑖 ∈ {1, . . . , 𝑛}

�� tr(𝛼𝑗) ⊆ tr(𝛾𝑖)
}

and we observe that

ℓ(𝛼) =

𝑛∑︁
𝑖=1

©­«
∑︁
𝑗∈ 𝑓 −1 {𝑖}

ℓ(𝛼𝑗)
ª®¬ . (8)

For any 𝑖 ∈ {1, . . . , 𝑛} and any distinct 𝑗 , 𝑗 ′ ∈ 𝑓 −1{𝑖} the steps 𝛼𝑗 and 𝛼𝑗 ′ do not overlap so we have∑︁
𝑗∈ 𝑓 −1 {𝑖}

ℓ(𝛼𝑗) ⩽ ℓ(𝛾𝑖) . (9)

Since ℓ(𝛾) = ℓ(𝛾1) + · · · + ℓ(𝛾𝑛) (Definition 4.19), we deduce from (8) and (9) that ℓ(𝛼) ⩽ ℓ(𝛾).
Under the assumption that 𝛾 is an arc such that img (𝛼) = img (𝛾), the roles of 𝛼 and 𝛾 can be
swapped, so we have ℓ(𝛼) = ℓ(𝛾).

If the image of 𝛾 strictly contains that of𝛼, then some step 𝛾𝑖 is not covered by𝛼 and consequently,
we have some index 𝑖 for which the inequality (9) is strict.

Suppose that 𝛾 is not an arc and img (𝛼) = img (𝛾). We have a point 𝑝 ∈ img (𝛾) such that
𝛾−1{𝑝} is not a singleton, and (a unique) 𝜏 ∈ dom (𝛼) such that 𝛼(𝜏) = 𝑝. Let 𝑗 ∈ {1, . . . , 𝑚} be
such that 𝜏 ∈ dom (𝛼𝑗) (there is at most two such indices, and they are consecutive). In particular
img (𝛼𝑗) ⊆ img (𝛾𝑘) with 𝑘 = 𝑓 ( 𝑗), and 𝑡 ∈ dom (𝛾𝑘) with 𝑡 = min(𝛾−1{𝑝}). Let 𝑡′ = max(𝛾−1{𝑝}),
we have 𝑡 < 𝑡′ and 𝛾(𝑡′) = 𝛾(𝑡). Denote by 𝑎 the support of the step 𝛾𝑘 . If the image of 𝜒𝑎 is covered
by 𝛾, then it is also covered by the arc 𝛼, so src(𝑎) ≠ tgt(𝑎). In any case the step 𝛾𝑘 is an arc
(Lemma 4.13), so 𝑡′ ∉ dom (𝛾𝑘). Let 𝑘 ′ ∈ {1, . . . , 𝑛} such that 𝑡′ ∈ dom (𝛾𝑘 ′); one of the steps 𝛾𝑘 ′ − 1,
𝛾𝑘 ′, and 𝛾𝑘 ′ + 1 is overlapping 𝛼𝑗 . Up to renaming, suppose that it is 𝛾𝑘 ′ . We have img (𝛼𝑗) ⊆ img (𝛾𝑘 ′)
and 𝑘 < 𝑘 ′. It follows that the inequality (9) is strict for 𝑖 = 𝑘 ′. In both cases (img (𝛼) ≠ img (𝛾) or
𝛾 not one-to-one), we have ℓ(𝛼) < ℓ(𝛾).

Definition 4.24. The standard pseudometric (one readily checks that it is a pseudometric) on |𝐺 |
is the map 𝑑 |𝐺 | : |𝐺 | × |𝐺 | → R+ ∪ {∞} defined by

𝑑 |𝐺 | (𝑝, 𝑞) = inf
{
ℓ(𝛾)

�� 𝛾 : admissible path from 𝑝 to 𝑞
}

with the convention that inf ∅ =∞; 𝑝 and 𝑞 are said to be neighbors when 𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅
2 .

Remark 4.25. Let 𝛾 be an admissible path from 𝑝 to 𝑞. The topology of |𝐺 | (Definition 2.7) is
Hausdorff (Remark 2.6) so we have an arc 𝛼 from 𝑝 to 𝑞 such that img (𝛼) ⊆ img (𝛾) (Lemma 4.2).
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By Lemmas 4.22 and 4.23 we have ℓ(𝛼) ⩽ ℓ(𝛾). Hence we can write ‘arc’ instead of ‘admissible
path’ in Definition 4.24.

Remark 4.26. Let 𝛾 be an admissible path from (𝑎, 𝑡) to some vertex. By a connectedness argument,
we have 𝜒𝑎 [0, 𝑡] ⊆ img (𝛾) or 𝜒𝑎 [𝑡, ℓ(𝑎)] ⊆ img (𝛾). In particular the restrictions of 𝜒𝑎 to [0, 𝑡]
and [𝑡, ℓ(𝑎)] are arcs (Lemma 4.13). It follows from Lemma 4.23 that ℓ(𝛾) ⩾min{𝑡, ℓ(𝑎) − 𝑡}. If
𝛾 visits two distinct vertices, then by a connectedness argument we have img (𝜒𝑎) ⊆ img (𝛾) for
some arrow 𝑎, so ℓ(𝛾) ⩾ ℓ(𝑎) ⩾ 𝑅.

Let 𝑝 = 𝜒𝑎 (𝑠) and 𝑞 = 𝜒𝑎 (𝑡) with {𝑠, 𝑡} ⊈ {0, ℓ(𝑎)}, which amounts to say that at least one of
the points 𝑝 and 𝑞 is not a vertex.

i) If {𝑠, 𝑡} ⊆ ]0, ℓ(𝑎) [ or src 𝑎 ≠ tgt 𝑎, then (𝑎, 𝑠, 𝑡) is the unique standard step from 𝑝 to 𝑞

(Definition 4.16),
ii) If {𝑠, 𝑡} ⊈ ]0, ℓ(𝑎) [ and src 𝑎 = tgt 𝑎, then we have exactly two standard steps 𝜎 and 𝜎′ from

𝑝 to 𝑞, namely:

– (𝑎, 𝑠, 0) and (𝑎, 𝑠, ℓ(𝑎)) if 𝑡 ∈ {0, ℓ(𝑎)}, or
– (𝑎, 0, 𝑡) and (𝑎, ℓ(𝑎), 𝑡) if 𝑠 ∈ {0, ℓ(𝑎)}. 𝑝

𝑞
>

<

𝜎′

𝜎

In both cases the sum of their length is ℓ(𝑎), and only one of them is directed. From the extra
assumption that ℓ (𝑎)

2 ∉ {𝑠, 𝑡} (i.e. neither 𝑝 nor 𝑞 stands on the midpoint of {𝑎} × ]0, 𝑎[) we deduce
that one of the steps 𝜎 and 𝜎′ is strictly shorter than the other.

Definition 4.27. Let 𝑝, 𝑞 ∈ img (𝜒𝑎), one of them not being vertex. The dash from 𝑝 to 𝑞, denoted
by 𝑝→ 𝑞, is the shortest standard step from 𝑝 to 𝑞 (Definition 4.16) with the convention that if there
are two such steps, then 𝑝→ 𝑞 is the directed one. When it is not the only step from 𝑝 to 𝑞, the other
one is called the complement of 𝑝→ 𝑞. In higher dimension, for 𝑝 and 𝑞 ∈ |𝐺1 | × · · · × |𝐺𝑛 |, we write
𝑝→ 𝑞 to denote the product (𝑝1→ 𝑞1) × · · · × (𝑝𝑛→ 𝑞𝑛) when every component is well-defined.

Remark 4.28. The step 𝜒𝑎 ◦ 𝜃 in an arc if, and only if, src(𝑎) ≠ tgt(𝑎) or img 𝜃 ≠ dom (𝜒𝑎). It
follows that every dash is an arc.

Any two neighbors (Definition 4.24) are related by a unique geodesic which is made of at most
two dashes (Definition 4.27):

Lemma 4.29. Suppose that 𝑝 = 𝜒𝑎 (𝑠) and 𝑞 = 𝜒𝑏 (𝑡) with 𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅
2 and 𝑝 ≠ 𝑞.

If 𝑎 = 𝑏 and (src 𝑎 ≠ tgt 𝑎 or |𝑡 − 𝑠 | < 1
2ℓ(𝑎)), then ℓ(𝑝→ 𝑞) = 𝑑 |𝐺 | (𝑝, 𝑞) = |𝑡 − 𝑠 |.

If 𝑎 = 𝑏 and src 𝑎 = tgt 𝑎 and |𝑡 − 𝑠 | ⩾ 1
2ℓ(𝑎), or if 𝑎 ≠ 𝑏, then there is a unique vertex 𝑣 (which

is an endpoint shared by 𝑎 and 𝑏) such that ℓ(𝑝→ 𝑣→ 𝑞) = 𝑑 |𝐺 | (𝑝, 𝑞), i.e. ℓ(𝑎) − |𝑡 − 𝑠 | in the case
where 𝑎 = 𝑏.

Moreover, the only admissible path of length 𝑑 |𝐺 | (𝑝, 𝑞) from 𝑝 to 𝑞 is, up to reparametrization,
the arc 𝑝→ 𝑞 or the arc 𝑝→ 𝑣→ 𝑞 accordingly.

Proof. The arrows 𝑎 and 𝑏 share at least one endpoint, and one (at least) of the points 𝑝 and 𝑞 is
not a vertex (Remark 4.26). We have an admissible path 𝛾 from 𝑝 to 𝑞 with ℓ(𝛾) < 𝑅/2 because
𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅/2 (Definition 4.24). There are three cases to examine:

Case 1. Assume that 𝑎 ≠ 𝑏.
By Remark 4.26 and because ℓ(𝛾) < 𝑅/2 we have img (𝑝→ 𝑣) ⊆ img (𝛾) with 𝑣 ∈ {src 𝑎, tgt 𝑎}
(Definition 4.27). Similarly we have img (𝑣′→ 𝑞) ⊆ img (𝛾) with 𝑣′ ∈ {src 𝑏, tgt 𝑏}. We deduce
that 𝑣 = 𝑣′ from Remark 4.26. The admissible path 𝛼 = (𝑝→ 𝑣→ 𝑞) is an arc because so are the



22 Emmanuel Haucourt

dashes 𝑝→ 𝑣 and 𝑣→ 𝑞 (Remark 4.28) and img (𝑝→ 𝑣) ∩ img (𝑣→ 𝑞) = {𝑣}. We apply Lemma
4.23 to conclude that ℓ(𝛼) ⩽ ℓ(𝛾) with equality if, and only if, 𝛾 is an arc having the same image
as 𝛼, in which case 𝛾 and 𝛼 are equal up to reparametrization (Remark 4.1). By Definition 4.24
we have ℓ(𝛼) = 𝑑 |𝐺 | (𝑝, 𝑞).

The two remaining cases share the assumption that 𝑎 = 𝑏. Up to exchanging the roles of 𝑠 and 𝑡

we can suppose that 𝑠 ⩽ 𝑡. By Remark 4.26, the image of 𝛾 either contains the set 𝐵 = {𝑎} × [𝑠, 𝑡]
or the set 𝐶 = {𝑎} × ([0, 𝑠] ∪ [𝑡, ℓ(𝑎)]).

Case 2. Assume that src 𝑎 = tgt 𝑎, which we denote by 𝑣, and 𝑡 − 𝑠 ⩾ 1
2ℓ(𝑎).

The standard steps (𝑎, 𝑠, 0) and (𝑎, ℓ(𝑎), 𝑡) are 𝑝→ 𝑣 and 𝑣→ 𝑞 (Definition 4.27). The path 𝛾

does not cover 𝐵, otherwise we would have ℓ(𝛾) ⩾ 𝑅/2 (Lemma 4.23). Therefore img (𝛾) contains
𝐶 which is the image of 𝑝→ 𝑣→ 𝑞. We have img (𝑝→ 𝑣) ∩ img (𝑣→ 𝑞) = {𝑣}, from which we
deduce, as in the first case, that ℓ(𝑝→ 𝑣→ 𝑞) ⩽ ℓ(𝛾) with equality if, and only if, 𝛾 and 𝑝→ 𝑣→ 𝑞

are equal up to reparametrization.
Case 3. Assume that src 𝑎 ≠ tgt 𝑎 or 𝑡 − 𝑠 < 1

2ℓ(𝑎).
The dash 𝑝→ 𝑞 is well-defined (Definition 4.27), and its length is 𝑡 − 𝑠. If 𝐶 ⊆ img (𝛾) then one
of the following situations occurs:

– 𝛾 visits src 𝑎 and tgt 𝑎 (which are distinct), so ℓ(𝛾) > 𝑅 (Remark 4.26), or
– ℓ(𝛾) ⩾ ℓ(𝑎) − (𝑡 − 𝑠) > 1

2ℓ(𝑎) (Lemma 4.23).

In both situations the inequality ℓ(𝛾) < 𝑅/2 is not satisfied, therefore img (𝛾) contains 𝐵 which
is the trace of the arc 𝑝→ 𝑞 (Remark 4.28). With the same arguments as in the two first cases,
we deduce that ℓ(𝑝→ 𝑞) ⩽ ℓ(𝛾) with equality if, and only if, 𝛾 and 𝑝→ 𝑞 are equal up to
reparametrization.

Lemma 4.30. For every admissible path 𝛾 on |𝐺 | we have 𝐿 (𝛾) = ℓ(𝛾), i.e. the length in the sense
of Definition 4.5 is equal to the length in the sense of Definition 4.19.

Proof. Given a step 𝑠, if the subdivision 𝑡0< · · · <𝑡𝑛 of dom (𝑠) is fine enough, we have ℓ(𝑠𝑖) < 𝑅
2

with 𝑠𝑖 denoting the restriction of 𝑠 to [𝑡𝑖−1, 𝑡𝑖]. It follows that 𝑑 |𝐺 | (𝑠(𝑡𝑖), 𝑠(𝑡𝑖−1)) < 𝑅
2 (Definition

4.24). From Lemma 4.29 we deduce that ℓ(𝑠𝑖) = 𝑑 |𝐺 | (𝑠(𝑡𝑖), 𝑠(𝑡𝑖−1)), and therefore
𝑛∑︁
𝑖=1

𝑑 |𝐺 | (𝑠(𝑡𝑖), 𝑠(𝑡𝑖−1)) =

𝑛∑︁
𝑖=1

ℓ(𝑠𝑖) = ℓ(𝑠) ,

the second equality being given by Remark 4.17. Hence 𝐿 (𝑠) = ℓ(𝑠). Given the concatenation of
steps 𝛾1 · · · 𝛾𝑛 we have

𝐿 (𝛾1 · · · 𝛾𝑛) =

𝑛∑︁
𝑖=1

𝐿 (𝛾𝑖) =

𝑛∑︁
𝑖=1

ℓ(𝛾𝑖) = ℓ(𝛾1 · · · 𝛾𝑛)

the last equality being given by Definition 4.19.

Definition 4.31. Given two neighbors 𝑝 and 𝑞 (Definition 4.24), the shortest arc from 𝑝 to 𝑞 is
the one provided by Lemma 4.29.

Corollary 4.32. The map 𝑑 |𝐺 | (Definition 4.24) is a metric.

Proof. Suppose that 𝑑 |𝐺 | (𝑝, 𝑞) = 0 so 𝑝 and 𝑞 are neighbors and the shortest admissible path from
𝑝 to 𝑞 is of null length. Following Definition 4.19 we deduce that 𝑝 = 𝑞.
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Remark 4.33. If we allow the lengths of arrows to be taken in R+ (or even ]0,∞[) instead of [𝑅,∞[
there might be arbitrarily short paths joining two distinct points, resulting in a pseudometric space
instead of a metric one.

The length metric is approximated by arcs:

Lemma 4.34. For every path 𝛾 from 𝑝 to 𝑞 on the metric graph |𝐺 |, there exists an arc 𝛼 from 𝑝

to 𝑞 such that img (𝛼) ⊆ img (𝛾), 𝐿 (𝛼) ⩽ 𝐿 (𝛾), and 𝛾 is a pseudo-arc if, and only if 𝐿 (𝛼) = 𝐿 (𝛾).

Proof. Let 𝛾 be a path on |𝐺 | from 𝑝 to 𝑞. If 𝛾 is not rectifiable, then consider any arc 𝛼 from 𝑝 to
𝑞 such that img (𝛼) ⊆ img (𝛾). By Lemma 4.22 we know that 𝛼 is admissible, hence it is rectifiable
(Lemma 4.30).

If 𝛾 is rectifiable, then we can suppose that it is arclength parametrized (Remark 4.6). Let 𝑓

be as in Lemma 4.2, so 𝛼 = 𝑓 ◦ 𝛾 is an arc from 𝑝 tp 𝑞. We have img (𝛼) ⊆ img (𝛾) and given
a subdivision 𝜏0< · · · <𝜏𝑛 of dom (𝛼) = dom ( 𝑓 ), the sequence 𝑓 (𝜏0)< · · · < 𝑓 (𝜏𝑛) of elements
of dom (𝛾) satisfies 𝛾( 𝑓 (𝜏𝑖)) = 𝛼(𝜏𝑖). It follows that 𝐿 (𝛼) ⩽ 𝐿 (𝛾). If 𝛾 is an arc, then 𝑓 is a
reparametrisation, and therefore 𝐿 (𝛼) = 𝐿 (𝛾); otherwise 𝑓 is not continuous, which means here
that we have 𝜏 ∈ dom ( 𝑓 ) such that

𝑟 = inf
{
𝑓 (𝜏 + 𝜀) − 𝑓 (𝜏)

�� 𝜀 > 0; 𝑡 + 𝜀 ∈ dom (𝛾)
}

> 0

Let 𝑡 = 𝑓 (𝜏) and 𝑡′ = 𝑡 + 𝑟 , the subpath 𝛾 | [𝑡, 𝑡′] is a loop (it has to be so because 𝛾 ◦ 𝑓 is continuous).
We have 𝐿 (𝛾 | [𝑡, 𝑡′] ) = 𝑟 > 0 because 𝛾 is arclength; it follows that for any 𝜀 > 0 we have a subdivision
𝑡0< · · · <𝑡𝑚 of [𝑡, 𝑡′] such that

𝑟 − 𝜀 ⩽
𝑚∑︁
𝑖=1

𝑑 |𝐺 | (𝛾(𝑡𝑖), 𝛾(𝑡𝑖−1)) .

There is 𝑖 ∈ {0, . . . , 𝑛} such that 𝑓 (𝜏𝑖) ⩽ 𝑡0< · · · <𝑡𝑚 < 𝑓 (𝜏𝑖 + 1) with the convention that 𝑓 (𝜏𝑛+1)
stands for 𝑀 . By inserting 𝑡0< · · · <𝑡𝑚 between 𝑓 (𝜏𝑖) and 𝑓 (𝜏𝑖 + 1) (do not duplicate 𝑡0 if 𝑡0 = 𝑓 (𝜏𝑖))
we obtain a subdivision 𝜎0< · · · <𝜎𝑁 of dom (𝛾) such that

𝑛∑︁
𝑖=1

𝑑 |𝐺 | (𝛼(𝜏𝑖), 𝛼(𝜏𝑖 − 1)) + 𝑟 − 𝜀 ⩽
𝑁∑︁
𝑖=1

𝑑 |𝐺 | (𝛾(𝜎𝑖), 𝛾(𝜎𝑖 − 1)) .

It follows that 𝐿 (𝛼) + 𝑟 ⩽ 𝐿 (𝛾) and therefore 𝐿 (𝛼) < 𝐿 (𝛾).

Lemma 4.35. The metric 𝑑 |𝐺 | is intrinsic.

Proof. We have

𝑑 |𝐺 | (𝑝, 𝑞) = inf
{
ℓ(𝛾)

�� 𝛾 : admissible path from 𝑝 to 𝑞
}

Definition 4.24

= inf
{
ℓ(𝛾)

�� 𝛾 : arc from 𝑝 to 𝑞
}

Remark 4.25

= inf
{
𝐿 (𝛾)

�� 𝛾 : arc from 𝑝 to 𝑞
}

Lemmas 4.22
and 4.30

= inf
{
𝐿 (𝛾)

�� 𝛾 : path 𝑝 to 𝑞
}

Lemma 4.34
An open ball with ‘small’ radius is geodesically stable (Definition 4.8):

Corollary 4.36. Every open ball 𝐵 of radius 𝑟 ⩽ 𝑅
4 is geodesically stable. If the center of 𝐵

is an isolated vertex then 𝐵 is a singleton; otherwise the center is 𝜒𝑐 (𝜌) for some arrow 𝑐 and
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𝜌 ∈ [0, ℓ(𝑐)], and

𝐵 =


{𝑐} × ]𝜌 − 𝑟, 𝜌 + 𝑟 [ if 𝑟 ⩽ 𝜌 ⩽ ℓ(𝑐) − 𝑟 ,

𝑆(src 𝑐, 𝑟 − 𝜌) ∪ {𝑐} × ]0, 𝜌 + 𝑟 [ if 𝑟 > 𝜌, and

{𝑐} × ]𝜌 − 𝑟, ℓ(𝑐) [ ∪ 𝑆(tgt 𝑐, 𝜌 + 𝑟 − ℓ(𝑐)) if 𝜌 + 𝑟 > ℓ(𝑐).

(10)

with 𝑆(𝑣, 𝑥) denoting the star centered at the vertex 𝑣 with radius 𝑥 (Definition 2.4).

Proof. The case where the center of 𝐵 is an isolated vertex is obvious, so we assume it is not.
First we prove that the right hand part of each equality appearing in (10) is a geodesically stable
set. Let 𝑝 and 𝑞 be two distinct points of such a set, which we denote by 𝑋 in the sequel. If 𝑋 is
described by the 2nd (resp. 3rd) case of (10), then it contains a unique vertex 𝑣, which is the center
of the star appearing in this description, i.e. 𝑣 = src 𝑐 (resp. 𝑣 = tgt 𝑐). In particular, the connected
components of 𝑋 \ {𝑣} are of the form {𝑥} × 𝐼 with 𝐼 open interval of ]0, ℓ(𝑥) [ of length at most
2𝑟 which is either initial (in which case src 𝑥 = 𝑣) or final (in which case tgt 𝑥 = 𝑣). Since 𝑝 and 𝑞

are neighbors (𝑑 |𝐺 | (𝑝, 𝑞) < 𝑅/2), the shortest arc 𝛼 from 𝑝 = 𝜒𝑎 (𝑠) to 𝑞 = 𝜒𝑏 (𝑡) (Definition 4.31) is
the only admissible path of length 𝑑 |𝐺 | (𝑝, 𝑞) up to reparametrization (Lemma 4.29). We have one
of the following situations:

– There is a connected component {𝑥} × 𝐼 of 𝑋 \ {𝑣} such that 𝑝, 𝑞 ∈ {𝑣} ∪ {𝑥} × 𝐼 (therefore
𝑥 ∈ {𝑎, 𝑏}). Since the length of 𝐼 is at most 2𝑟, the arc 𝛼 is reduced to the dash 𝑝→ 𝑞

(Definition 4.27) and its image is included in {𝑣} ∪ {𝑥} × 𝐼.
– The points 𝑝 and 𝑞 respectively belong to the connected components {𝑎} × 𝐼 and {𝑏} × 𝐽 of

𝑋 \ {𝑣}. We observe that length(𝐼) + length(𝐽) ⩽ 2𝑟. If 𝑎 = 𝑏, then 𝐼 ∩ 𝐽 = ∅ and

|𝑡 − 𝑠 | ⩾ ℓ(𝑎) − (ℓ(𝐼) + ℓ(𝐽)) ⩾ ℓ(𝑎) − 2𝑟 ⩾ ℓ(𝑎) − 𝑅
2 ⩾

1
2ℓ(𝑎) .

Hence no matter that 𝑎 ≠ 𝑏 or 𝑎 = 𝑏, the arc 𝛼 is 𝑝→ 𝑣→ 𝑞 and its image is contained in
({𝑎} × 𝐼) ∪ {𝑣} ∪ ({𝑏} × 𝐽).

By Lemma 4.34 any geodesic 𝛾 from 𝑝 to 𝑞 is an arc up to reparametrization. Therefore 𝛼 and 𝛾

are equal up to weak reparametrization, and we have in particular img (𝛾) = img (𝛼). Hence 𝑋 is
geodesically stable.

The open ball 𝐵 obviously contains 𝑋 , it remains to check the converse inclusion. Any point
𝑝 of 𝐵 is a neighbor of the center 𝑞 of 𝐵. Let 𝛼 be the shortest arc from 𝑝 to 𝑞 (Definition 4.31),
we have 𝐿 (𝛼) < 𝑟 . According to the description of 𝛼 given in Lemma 4.29 we have 𝑝 = 𝜒𝑎 (𝑡) and
𝑞 = 𝜒𝑐 (𝜌) with 𝑡 ∈ [0, ℓ(𝑎)] and 𝜌 ∈ [0, ℓ(𝑐)]. We have three cases to deal with according to the
inequalities relating 𝑟 and 𝜌.

Suppose that 𝑟 ⩽ 𝜌 ⩽ ℓ(𝑐) − 𝑟. The length of any path whose image covers {𝑐} × ]0, 𝑟] or
{𝑐} × [ℓ(𝑐) − 𝑟, ℓ(𝑐) [ is at least 𝑟. Hence the image of 𝛼 is included in {𝑐} × ]𝜌 − 𝑟, 𝜌 + 𝑟 [.

Now assume that 𝑟 > 𝜌. If 𝑝 and 𝑞 are on the same arrow of |𝐺 | (i.e. 𝑎 = 𝑐) then𝛼 is reduced to the
dash 𝑝→ 𝑞 whose image is 𝜒𝑐 [𝑡 ∧ 𝜌, 𝑡 ∨ 𝜌]. This latter is included in {src 𝑐} ∪ ({𝑐} × ]0, 𝜌 + 𝑟 [).
If 𝑝 and 𝑞 are not on the same arrow of |𝐺 | (i.e. 𝑎 ≠ 𝑐), then 𝛼 is 𝑝→ 𝑣→ 𝑞 with 𝑣 the only vertex
of 𝐵. The length of 𝑣→ 𝑞 is 𝜌 so the length of 𝑝→ 𝑣 is 𝑑 |𝐺 | (𝑝, 𝑞) − 𝜌 < 𝑟 − 𝜌. Moreover 𝑣 = src 𝑐
because 𝑟 < 𝑅 ⩽ ℓ(𝑐). Hence 𝑝 ∈ 𝑆(𝑣, 𝑟 − 𝜌). The last case is dealt with the same way.

A similar result holds for closed balls with the constraint 𝑟 < 𝑅
4 and the boundaries in the

description (10) adapted accordingly. We lift the distance 𝑑 |𝐺 | along the desingularizator 𝛽𝐺:

Definition 4.37. The standard pseudometric on ∥𝐺∥ is 𝑑 |𝐺 | ◦ (𝛽𝐺 × 𝛽𝐺) – see Definition 2.11, we
denote it by 𝑑∥𝐺∥.
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Remark 4.38. A map 𝑓 from a topological space 𝑋 to ∥𝐺∥ (equipped with the pseudo-metric
topology) is continuous if, and only if, so is the composite 𝛽𝐺◦ 𝑓 . Suppose that 𝛽𝐺◦ 𝑓 is continuous
at 𝑥0 ∈ 𝑋 , and let 𝜀 > 0. We have a neighborhood 𝑉 of 𝑥0 such that 𝛽𝐺 ( 𝑓 (𝑉)) ⊆ 𝐵(𝛽𝐺 ( 𝑓 (𝑥0)), 𝜀).
Given 𝑥 ∈𝑉 we have 𝑑∥𝐺∥ ( 𝑓 (𝑥0), 𝑓 (𝑥)) = 𝑑 |𝐺 | (𝛽𝐺 ( 𝑓 (𝑥0)), 𝛽𝐺 ( 𝑓 (𝑥))) (Definition 4.37) therefore
𝑓 (𝑉) ⊆ 𝐵( 𝑓 (𝑥0), 𝜀), and 𝑓 is continuous. The converse is immediate. In particular the pseudometric
𝑑∥𝐺∥ is intrinsic because so is 𝑑 |𝐺 | (Lemma 4.35).

Remark 4.39. The topology induced by the standard atlasA𝐺 (Definition 3.14), which we call the
atlas topology, is strictly finer than the topology induced by the standard pseudometric on ∥𝐺∥,
which we call the metric topology, since the distance between two traversals at the same point is
null.

For the rest of §4 we fix 𝛼 ∈ [1,∞] and a tuple of graphs (𝐺1, . . . , 𝐺𝑛).

Definition 4.40. The standard 𝛼-distance on (𝐺1, . . . , 𝐺𝑛) both refers to the 𝛼-product 𝑑 (𝛼) of the
standard metrics 𝑑 |𝐺𝑖 | (Definition 4.16), and to the 𝛼-product 𝑑 (𝛼) of the standard pseudometrics
𝑑∥𝐺𝑖 ∥ (Definition 4.37); see Definition 4.10 for 𝛼-products.

Remark 4.41. It readily derives from Definition 4.40 that the product of desingularizators
𝛽𝐺1
× · · · × 𝛽𝐺𝑛

preserves pseudometrics.

Following Definition 4.5 we have:

Definition 4.42. The 𝛼-length of a path 𝛾 on |𝐺1 | × · · · × |𝐺𝑛 | (resp. ∥𝐺1∥ × · · · × ∥𝐺𝑛∥) which
we denote by 𝐿𝛼 (𝛾), is the least upper bound of the sums

∑𝑘
𝑖=1 𝑑

(𝛼)
(
𝛾(𝑡𝑖 − 1), 𝛾(𝑡𝑖)

)
for 𝑡0< · · · <𝑡𝑘

subdivisions of dom 𝛾.

Remark 4.43. Every path 𝛾 on ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is continuous with respect to the pseudometric
from Definition 4.37, which is equivalent to have 𝛽𝐺𝑖

◦ 𝛾𝑖 continuous on the metric graph |𝐺𝑖 | for
every 𝑖 ∈ {1, . . . , 𝑛} (Remark 4.38); in that case we have 𝐿𝛼 (𝛾) = 𝐿𝛼 ((𝛽𝐺1

× · · · ×𝛽𝐺𝑛
)◦𝛾).

Lemma 4.44. The pseudometric 𝑑 (𝛼) is intrinsic.

Proof. By Proposition 4.11, Lemma 4.35, and Remark 4.38.

The next result states that each standard chart induces a ‘local isometry’, the codomain being
understood as a subspace of R𝑛 equipped with the 𝛼-norm:

Proposition 4.45. For every standard chart 𝜙 of 𝐺1 × · · · ×𝐺𝑛 (Definition 3.12) and all 𝑝, 𝑞 ∈
dom 𝜙, if |𝜙(𝑝) − 𝜙(𝑞) |

𝛼
< 𝑅

2 , then 𝑑
(𝛼) (𝑝, 𝑞) = |𝜙(𝑝) − 𝜙(𝑞) |

𝛼
.

Proof. By Definition 4.37 we have 𝑑∥𝐺∥ (𝑝, 𝑞) = 𝑑 |𝐺 | ( (𝛽𝐺 ◦ 𝜙−1) (𝜙𝑝), (𝛽𝐺 ◦ 𝜙−1) (𝜙𝑞)). Applying
Remark 4.14, (𝛽𝐺 ◦ 𝜙−1) (𝜙𝑝) is equal to 𝜒𝑎 (𝜙𝑝) if 𝜙 = 𝜙𝑎 for some arrow 𝑎; to 𝜒𝑎 (ℓ(𝑎) − 𝜙𝑝)
or 𝜒𝑏 (𝜙𝑝) depending on the sign of 𝜙𝑝 if 𝜙 = 𝜙𝑎𝑏 for some traversal (𝑎, 𝑏). The same
holds for 𝑞. We end up with 5 cases to examine, in each of which Lemma 4.29 applies
and gives 𝑑∥𝐺∥ (𝑝, 𝑞) = |𝜙(𝑝) − 𝜙(𝑞) |. In higher dimension, we follow Definition 4.40 and
apply the one-dimension case to each component: 𝑑

(𝛼) (𝑝, 𝑞) = |. . . , 𝑑𝐺𝑖
(𝛽𝐺𝑖
(𝑝𝑖), 𝛽𝐺𝑖

(𝑞𝑖)), . . . |
𝛼
=

|. . . , 𝜙𝑖 (𝑝𝑖) − 𝜙𝑖 (𝑞𝑖), . . . |
𝛼
= |𝜙(𝑝) − 𝜙(𝑞) |

𝛼
.
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4.3 Length of piecewise smooth paths
For every 𝑡 ∈ ]𝑎, 𝑏[ the derivative of a smooth path 𝛾 : [𝑎, 𝑏] →A at 𝑡 is a linear map D𝛾𝑡 :
𝑇𝑡 ]𝑎, 𝑏[ →𝑇𝛾 (𝑡 )A. Hence D𝛾𝑡 can be identified with the tangent vector D𝛾𝑡 (1), which we denote
by 𝛾′ (𝑡). We obtain a continuous map 𝛾′ : [𝑎, 𝑏] →𝑇A setting 𝛾′ (𝑎) = 𝑐′ (𝑎) and 𝛾′ (𝑏) = 𝑐′ (𝑏)
with 𝑐 being any curve extending 𝛾.

Assuming that every tangent space of the atlas A is equipped with a norm, one defines the
length of a smooth path 𝛾 on A as the sum of the norms of the speed vectors along 𝛾: this is
the infinitesimal version of Definition 4.5. Riemannian metrics (do Carmo, 1992, 2.1) are such
structures, nevertheless, they do not fit our needs (§7, Finsler geometry).

Definition 4.46. Let ( 𝑓1, . . . , 𝑓𝑛) be a parallelization of the atlasA, and let |_|
★

be a norm on R𝑛;
the mapping

𝑣 ∈ 𝑇𝑝A ↦→ |(𝑎1, . . . , 𝑎𝑛) |★ ∈ R+ (11)

with 𝑣 = 𝑎1 𝑓1(𝑝) + · · · + 𝑎𝑛 𝑓𝑛 (𝑝) is a norm on 𝑇𝑝A which we still denote by |_|
★
. The length of a

smooth path 𝛾 : [𝑥, 𝑦] →A is defined as

L(𝛾) =

∫
𝑦

𝑥

|𝛾′ (𝑡) |
★
𝑑𝑡 .

The length of a piecewise smooth path 𝛾1 · · · 𝛾𝑘 is L(𝛾1)+ · · · +L(𝛾𝑘). The distance between two
points 𝑝 and 𝑞 of A is then defined as

𝑑A = inf
{
L(𝛾)

�� 𝛾 : (piecewise) smooth path from 𝑝 to 𝑞
}
.

One can indifferently consider smooth or piecewise smooth paths in the above definition. Indeed,
for every piecewise smooth path 𝛾 one has a finite set 𝐹 ⊆ dom 𝛾 such that 𝛾′ (𝑡) exist for all 𝑡 ∉ 𝐹.
If 𝜃 : [𝑎, 𝑏] → [𝑎, 𝑏] is a non-decreasing surjective smooth path whose derivatives 𝐷 (𝑘)𝜃 vanish at
each point of 𝐹 and at every order 𝑘 ⩾ 1, then the composite 𝛾 ◦ 𝜃 is a smooth path. By a mere
change of variable we have 𝐿 (𝛾) = 𝐿 (𝛾 ◦ 𝜃). The map 𝜃 is obtained, for example, as

𝑡 ↦→ 𝑎 +𝑀
∫ 𝑡

𝑎

(
1 −

∑︁
𝑥∈𝐹

𝛽𝑥

)
with {𝛽𝑥 : R→ [0, 1] | 𝑥 ∈ 𝐹} a family of bump functions such that 𝛽𝑥 (𝑥) = 1, 𝐷 (𝑘)𝛽𝑥 (𝑥) = 0 at
every order 𝑘 ⩾ 1, and 𝛽𝑥𝛽𝑦 = 0 when 𝑥 ≠ 𝑦. The constant 𝑀 has to be chosen in a way that
𝜃 (𝑏) = 𝑏, in other words

𝑀 =
𝑏 − 2𝑎

𝑆
with 𝑆 =

∫ 𝑏

𝑎

(
1 −

∑︁
𝑥∈𝐹

𝛽𝑥

)
.

Definition 4.47. The smoothed 𝛼-length of a piecewise smooth path 𝛾 on the atlasA𝐺1
× · · · × A𝐺𝑛

,
which we denote by L𝛼𝛾, is given by Definition 4.46 with the standard parallelization ( 𝑓1, . . . , 𝑓𝑛)
of A𝐺1

× · · · × A𝐺𝑛
(Definition 3.29) and the 𝛼-norm |_|

★
on R𝑛. We just write L when 𝛼 = 1. We

denote by 𝑑
(𝛼)
A the metric induced by L𝛼.

Remark 4.48. We have the standard inequality L𝛼 (𝛾) ⩽ L(𝛾) as an immediate consequence of
the Jensen inequality (Brokate & Kersting, 2015, 5.7).

The distance mapping 𝑑 :A ×A→ R+ ∪ {∞} (Definition 4.46) is a pseudometric, one may
indeed have 𝑑 (𝑝, 𝑞) = 0 and 𝑝 ≠ 𝑞 :

Examples 4.49. Let L be the smoothed length onA𝐺 with (𝑎, 𝑏) and (𝑐, 𝑑) be two traversals at 𝑣
with 𝑎, 𝑏, 𝑐, and 𝑑 pairwise distinct. There is a piecewise smooth path onA𝐺 from (𝑎, 𝑏) to (𝑐, 𝑑)
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of arbitrarily small length. It suffices to concatenate the four smooth paths of length 𝜀 represented
by the arrows on the diagram

(𝑎, 𝑏) → (𝑎, 1 − 𝜀) → (𝑎, 𝑑) → (𝑑, 𝜀) → (𝑐, 𝑑)
and illustrated here below:

𝑎 𝑏

𝑐 𝑑

𝑣

Neighbourhood of 𝑣

𝑎

𝑐

𝑏

𝑑

(𝑎, 𝑏)

(𝑎, 𝑑)

(𝑐, 𝑏)

(𝑐, 𝑑)

Blow up of 𝑣

(𝑎, 𝑏)(𝑎, 1−𝜀)

(𝑎, 𝑑)

(𝑑, 𝜀)(𝑐, 𝑑)

Path in the atlas topology
(piecewise smooth)

Path in the metric topology
(not in the atlas topology)

In particular, the greatest lower bound defining the distance between (𝑎, 𝑏) and (𝑐, 𝑑) – following
Definition 4.46 – is not reached.

Lemma 4.50. For every smooth path 𝛾 on A𝐺1
× · · · × A𝐺𝑛

we have L𝛼𝛾 = 𝐿𝛼𝛾.

Proof. First observe that 𝛾 is continuous with respect to the topology of A𝐺1
× · · · × A𝐺𝑛

which is
finer than the topology of the pseudometric 𝑑 (𝛼) (Remark 4.39). Assume that img (𝛾) ⊆ dom (𝜙)
for some standard chart 𝜙, by Remark 3.32 we have∫

𝑦

𝑥

|𝛾′ (𝑡) |
𝛼
𝑑𝑡 =

∫
𝑦

𝑥

| (𝜙 ◦ 𝛾)′ (𝑡) |
𝛼
𝑑𝑡 . (12)

For a sufficiently fine subdivision 𝑡0< · · · <𝑡𝑘 of dom (𝛾) we have (Proposition 4.45)
𝑘∑︁
𝑖=1

𝑑 (𝛼) (𝛾(𝑡𝑖), 𝛾(𝑡𝑖 − 1)) =

𝑘∑︁
𝑖=1
|𝜙 ◦ 𝛾(𝑡𝑖) − 𝜙 ◦ 𝛾(𝑡𝑖 − 1) |𝛼 . (13)

By a standard result about smooth paths on R𝑛, the sum
∫

𝑦

𝑥
| (𝜙 ◦ 𝛾)′ (𝑡) |

𝛼
𝑑𝑡 (right member of

(12)) is the least upper bound of the sums
∑𝑘

𝑖=1 |𝜙 ◦ 𝛾(𝑡𝑖) − 𝜙 ◦ 𝛾(𝑡𝑖 − 1) |𝛼 (right member of (13))
for 𝑡0< · · · <𝑡𝑘 running through the set of subdivisions of dom (𝛾). The abovementioned result is
given in (Papadopoulos, 2013, Proposition 1.3.1) for 𝛼 = 2, though the proof is obviously valid for
any 𝛼 ∈ [1,∞].

We no longer assume that dom (𝛾) is contained in the domain of a standard chart. Nevertheless,
since dom (𝛾) is compact and the domains of the standard charts form an open covering of
∥𝐺1∥ × · · · × ∥𝐺𝑛∥, we have a subdivision 𝑡0< · · · <𝑡𝑘 of dom (𝛾) such that for all 𝑖 ∈ {1, . . . , 𝑘} the
restriction of 𝛾 to [𝑡𝑖, 𝑡𝑖 − 1] is contained in the domain of some standard chart.

So far we have introduced two metrics on the set ∥𝐺∥, both of equal interest. They are actually
equal:
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Lemma 4.51. For every piecewise affine map 𝛾 on |𝐺1 | × · · · × |𝐺𝑛 | and every 𝜀 > 0, there exists
a piecewise smooth path 𝛿 on A𝐺1

× · · · × A𝐺𝑛
such that L𝛼 (𝛿) ⩽ 𝐿𝛼 (𝛾) + 𝜀. If 𝛾 is directed, then

we can suppose that L𝛼 (𝛿) = 𝐿𝛼 (𝛾).

Proof. Fix 𝑡0 ∈ dom (𝛾) and choose a compact interval 𝐼, neighborhood of 𝑡0, such that 𝛾(𝐼 \{𝑡0})
does not contain any vertex.

If 𝛾(𝑡0) is not a vertex, then for every 𝑡 ∈ 𝐼 both |𝐺 | and ∥𝐺∥ contains 𝛾(𝑡), which it is the only
element of ∥𝐺∥ satisfying 𝛽𝐺 (𝛾(𝑡)) = 𝛾(𝑡). Hence the mapping 𝛿 : 𝑡 ∈ 𝐼 ↦→ 𝛾(𝑡) ∈ ∥𝐺∥ is smooth
(because it is affine) and satisfies 𝛽𝐺 ◦ 𝛿 = 𝛾 |

𝐼
.

Now suppose that 𝛾(𝑡0) is a vertex. It occurs at the junction between two consecutive steps 𝑠 and
𝑠′ of the piecewise affine path 𝛾. Without loss of generality, we assume that all the steps appearing
in 𝛾 are nondegenerate. Hence the supports 𝑎 and 𝑎′ of 𝑠 and 𝑠′ are uniquely defined, and each of
the steps 𝑠 and 𝑠′ is either directed or antidirected (Definition 4.16).

If both 𝑠 and 𝑠′ are directed (resp. antidirected), then tgt 𝑎 = src 𝑎′ (resp. src 𝑎 = tgt 𝑎′). The
mapping 𝛿 : 𝐼→ ∥𝐺∥ sending 𝑡 ≠ 𝑡0 to the unique lifting of 𝛾(𝑡), and 𝑡0 to the traversal (𝑎, 𝑎′) (resp.
(𝑎′, 𝑎)) is piecewise smooth. As before we have 𝛽𝐺 ◦ 𝛿 = 𝛾 |

𝐼
.

If 𝑠 is directed while 𝑠′ is antidirected (the ‘dual’ case is dealt with the same way), then we
have tgt 𝑎 = tgt 𝑠 = src 𝑠′ = tgt 𝑎′. If 𝑎 = 𝑎′ then we can shorten both 𝑠 and 𝑠′ so that they no longer
visit tgt 𝑎, this shortens the path 𝛾 without changing its source nor its target. If 𝑎 ≠ 𝑎′ then the
vertex tgt 𝑎 has at least two in ingoing arrows, and by the assumption made in Definition 2.1, it
also has an outgoing arrow 𝑏. On 𝐼− = 𝐼 ∩ ]−∞, 𝑡0] we define 𝛿1 the path sending 𝑡 to 𝛾(𝑡) for 𝑡 ≠ 𝑡0;
and 𝑡0 to (𝑎, 𝑏). We have 𝛽𝐺 ◦ 𝛿1 = 𝛾 |

𝐼−
. On 𝐼+ = 𝐼 ∩ [𝑡0,∞[ we define the path 𝛿3 sending 𝑡 to 𝛾(𝑡)

for 𝑡 ≠ 𝑡0; and 𝑡0 to (𝑎′, 𝑏). We have 𝛽𝐺 ◦ 𝛿3 = 𝛾 |
𝐼+
. The paths 𝛿1 and 𝛿3 are smooth and we have

(𝛽𝐺 ◦ 𝛿1) · (𝛽𝐺 ◦ 𝛿3) = 𝛾 |
𝐼
.

As in Example 4.49, we have an arbitrarily short piecewise smooth path 𝛿2 joining the traversals
(𝑏, 𝑎) and (𝑏, 𝑎′) (apart from these traversals, 𝛿2 covers {𝑏} × ]0, 𝜀′/2[ with 𝜀′ being the length
of 𝛿2). A path arising in that context is called a patch.

We have thus three situations: i) 𝛾(𝑡0) is not a vertex, ii) 𝛾(𝑡0) is a vertex and both 𝑎 and 𝑎′ goes
in the same direction, and iii) 𝛾(𝑡0) is a vertex and both 𝑎 and 𝑎′ goes in opposite directions. Note
that if 𝛾 is directed, then the case iii) does not occur. In the cases i) and ii) we define 𝛿1 = 𝛿 |

𝐼−
and

𝛿3 = 𝛿 |
𝐼+
, so the concatenation 𝛿1𝛿3 = 𝛿 makes sense. In the case iii) we need a patch 𝛿2 to form the

piecewise smooth concatenation 𝛿1𝛿2(𝛿3 ◦ (𝑡 ∈ 𝐽 ↦→ 𝑡 − 𝜀′ ∈ 𝐼+)) with 𝐽 = 𝐼+ + 𝜀′. Hence we have
piecewise smooth paths 𝛿1, 𝛿2, and 𝛿3 such that

(1) (𝛽𝐺 ◦ 𝛿1) = 𝛾 |
𝐼−

and (𝛽𝐺 ◦ 𝛿3) = 𝛾 |
𝐼+
,

(2) in the cases i) and ii), dom (𝛿2) = {𝑡0} and 𝛿 = 𝛿1𝛿3 is piecewise smooth, and
(3) in the case iii), L𝛼 (𝛿2) is arbitrarily small and 𝛿 = 𝛿1𝛿2(𝛿3◦ 𝜃)) is piecewise smooth with

𝐽 = 𝐼+ + L𝛼 (𝛿2) and 𝜃 : 𝑡 ∈ 𝐽 ↦→ 𝑡 − L𝛼 (𝛿2) ∈ 𝐼+.

In higher dimension, we have 𝛾 = 𝛾1 × · · · × 𝛾𝑛. We can choose 𝐼 so that for every 𝑘 ∈ {1, . . . , 𝑛}
the set 𝛾𝑘 (𝐼 \{𝑡0}) does not contain any vertex. By applying the above reasoning for every dimension
𝑘 ∈ {1, . . . , 𝑛} we obtain the piecewise smooth paths 𝛿

(𝑘)
1 , 𝛿 (𝑘)2 , 𝛿 (𝑘)3 satisfying 1), 2), and 3) with

respect to 𝛾𝑘 . We form the products

𝛿1 = 𝛿 (1)1 × · · · × 𝛿 (𝑛)1 , 𝛿2 = 𝛿 (1)2 × · · · × 𝛿 (𝑛)2 , and 𝛿3 = 𝛿 (1)3 × · · · × 𝛿 (𝑛)3 .

We have (𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) ◦ 𝛿1 = 𝛾 |
𝐼−

and (𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) ◦ 𝛿3 = 𝛾 |
𝐼+

because the equalities hold com-
ponentwise. We have 𝐿𝛼 ((𝛽𝐺1

× · · · × 𝛽𝐺𝑛
) ◦ 𝛿𝑗) = 𝐿𝛼 (𝛿𝑗) =L𝛼 (𝛿𝑗) for 𝑗 ∈ {1, 2, 3} (Remark 4.43

and Lemma 4.50). Therefore 𝐿𝛼 (𝛾 |
𝐼
) =L𝛼 (𝛿1) + L𝛼 (𝛿3). If 𝛾 is directed then so are all the paths

𝛾𝑘 , consequently the case iii) does not occur, and we have 𝐿𝛼 (𝛾 |
𝐼
) =L𝛼 (𝛿1𝛿3). Otherwise the case

iii) may occur so we cannot ignore the patch 𝛿2. Yet, in each coordinate, L𝛼 (𝛿 (𝑘)2 ) can be made
arbitrarily small. We choose a domain of definition common to all the patches 𝛿 (𝑘)2 (some of them are
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‘useless’ loops if we are not in the case iii) for 𝛾𝑘 at 𝑡0). In particular we have the shift 𝜃 = 𝜃1 × · · · × 𝜃𝑛,
and L𝛼 (𝛿1𝛿2(𝛿3 ◦ 𝜃)) = 𝐿𝛼 (𝛾 |

𝐼
) + L𝛼 (𝛿2) (keeping in mind that L𝛼 (𝛿3 ◦ 𝜃) =L𝛼 (𝛿3), see Remark

4.6). We have L𝛼 (𝛿2) ⩽ L(𝛿2) (Remark 4.48) so making each component 𝛿 (𝑘)2 arbitrarily small
guarantees that so is L𝛼 (𝛿2).

Theorem. Let 𝑝 and 𝑞 be the images under 𝛽𝐺1
× · · · × 𝛽𝐺𝑛

of 𝑝′ and 𝑞′, we have

𝑑 (𝛼) (𝑝, 𝑞) = inf
{
L𝛼 (𝛿)

�� 𝛿 piecewise smooth path from 𝑝′ to 𝑞′
}
.

Proof. Since 𝑑 (𝛼) is intrinsic (Lemma 4.44) we have

𝑑 (𝛼) (𝑝, 𝑞) = inf
{
𝐿𝛼 (𝛾)

�� 𝛾 path from 𝑝 to 𝑞
}
.

We have 𝐿𝛼 ((𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) ◦ 𝛿) = 𝐿𝛼 (𝛿) =L𝛼 (𝛿) for every piecewise smooth path 𝛿 from 𝑝′ to
𝑞′ (Remark 4.43 and Lemma 4.50). Therefore 𝑑 (𝛼) (𝑝, 𝑞) is less than the infimum of the values
L𝛼 (𝛿); the converse inequality holds by Lemma 4.51.

5. Local orders
Local orders are similar to ‘finite causal orientations’ (Segal, 1976, p.23) which would be called
‘local preorders’ in this article. The importance of local antisymmetry was coined in Lawson
(1989) – see also §5.4. The usage of local orders in concurrency theory was initiated in Fajstrup
et. al. (2006).

Local orders are based on partially ordered spaces (pospaces) as atlases on charts, see §5.1 and
§5.2. The desingularizator 𝛽𝐺 induces a morphism from X𝐺 to X̃𝐺 , the standard local orders on
|𝐺 | and ∥𝐺∥ (Definition 5.6). We lift directed paths along 𝛽𝐺 (Theorem 5.3), and prove they admit
piecewise affine approximations on tile compatible subspaces of |𝐺1 | × · · · × |𝐺1 | (Theorem 6.2),
resp. ∥𝐺1∥ × · · · × ∥𝐺1∥ (Corollary 6.10). The desingularizator 𝛽𝐺 is characterized by a universal
property based on local orders (Theorem 5.3). The standard local order X̃𝐺1

× · · · × X̃𝐺𝑛
is related

to the standard parallelization on A𝐺1
× · · · × A𝐺𝑛

(Theorem 5.4).

5.1 Pospaces
A partial order ⩽ on the underlying set of a topological space 𝑋 is said to be closed when so
is the subset {(𝑎, 𝑏) ∈ 𝑋 × 𝑋 | 𝑎 ⩽ 𝑏} of the product space 𝑋 × 𝑋 . A partially ordered space, or
just pospace, is a topological space with a closed partial order on it. (The closedness condition
follows (Hilgert et. al, 1989, p.368), (Gierz et. al., 2003, VI-1.1), and (Goubault-Larrecq, 2013,
9.1.11).) The underlying set of a pospace is referred to as its support (which is often denotated as
the pospace). The real line R with its standard topology and order is the prototypical example of a
pospace. A sub-pospace is a subset of the support with the inherited topology and order.

A subset 𝐶 of a poset (𝑋, ⩽) is said to be order convex when it contains any 𝑥 ∈ 𝑋 such
that 𝑎 ⩽ 𝑥 ⩽ 𝑏 for some 𝑎, 𝑏 ∈𝐶. A pospace (𝑋, ⩽) is said to be locally order convex when its
underlying topology has a basis of order convex open subset, see (Nachbin, 1965, p.26), (Hilgert
et. al, 1989, p.371) or (Gierz et. al., 2003, VI-1.5).

A morphism of pospaces is an order preserving continuous map. An isomorphism of pospaces
is called a dihomeomorphism. Pospaces and their morphisms form the category P. The product of
𝑋 and 𝑌 in P is the product of their topological spaces together with the product order. Let 𝑋 ′ be
a pospace whose support is contained in the support of 𝑋. Then 𝑋 ′ is said to be a subpospace of
𝑋 when 𝑋 ′ is both a subspace and a subposet of 𝑋, i.e.

– the open subsets of 𝑋 ′ are the traces on 𝑋 ′ of the open subsets of 𝑋, and
– the partial order of 𝑋 ′ is the restriction to 𝑋 ′ of the partial order of 𝑋.
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Every subset of the support of 𝑋 induces a subpospace of 𝑋. If this subset is open in 𝑋, then the
subpospace is said to be open. A morphism of pospaces is said to be an embedding when it induces
a dihomeomorphism on its image.

Definition 5.1. The left action of the 𝑛th symmetric group 𝔖𝑛 on 𝑛-tuples is defined by

𝜎 · (𝑡1, . . . , 𝑡𝑛) = (𝑡𝜎−11, . . . , 𝑡𝜎−1𝑛) .
By extension, for every 𝑛-tules of sets 𝐴1, . . . , 𝐴𝑛, we define the set 𝜎 · (𝐴1 × · · · × 𝐴𝑛) as the
product 𝐴𝜎−11 × . . . × 𝐴𝜎−1𝑛 and the map 𝜋𝜎 : 𝐴1 × · · · × 𝐴𝑛→ 𝜎 · (𝐴1 × · · · × 𝐴𝑛) by 𝜋𝜎 (𝑡) =
𝜎 · 𝑡. In particular, for every 𝑛-tules of mappings 𝑓1, . . . , 𝑓𝑛 we have

𝜋𝜎 ◦ ( 𝑓1 × · · · × 𝑓𝑛) = ( 𝑓𝜎−11 × · · · × 𝑓𝜎−1𝑛) ◦ 𝜋𝜎 (14)

taking care that 𝜋𝜎 on the right hand side of (14) permutes the domains of the mappings 𝑓𝑘 while
𝜋𝜎 on the left hand side permutes their codomains.

The next result is an immediate consequence of the second point of (Schröder, 2003, 10.4.10),
which is about (possibly infinite) products of posets.

Lemma 5.2. The group of poset automorphisms of R𝑛 (with the standard product order) is the
product Aut(R)𝑛 ×𝔖𝑛 in the sense that any poset automorphism of R𝑛 can be written, in a unique
way, as (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 with 𝑥𝑘 ∈Aut(R) for 𝑘 ∈ {1, . . . , 𝑛}.

We denote by ∧ and ∨ the binary greatest lower bound and least upper bound operators in R𝑛.

Lemma 5.3. A pospace embedding 𝜃 : R𝑛→ R𝑛 preserves ∨ (resp. ∧) if, and only if, its image is
a set product of interval of R. Moreover these intervals are open.

Proof. We denote by ⩽ the product order in R𝑛 without specifying the dimension. Assume that
img (𝜃) is a product of intervals. The operator ∨ is computed pointwise in R𝑛, therefore img (𝛾)
is stable under ∨. Since the inequality 𝜃 (𝑡 ∨ 𝑡′) ⩾ 𝜃 (𝑡) ∨ 𝜃 (𝑡′) is always satisfied and 𝜃 (𝑡 ∨ 𝑡′)
belongs to img (𝛾), we actually have 𝜃 (𝑡 ∨ 𝑡′) = 𝜃 (𝑡) ∨ 𝜃 (𝑡′). The same holds for the ∧ operator.

Assume that 𝜃 preserves the ∨ operator. Let 𝜃𝑘 = proj
𝑘
◦ 𝜃 and 𝐼𝑘 = img (𝜃𝑘) for every 𝑘 ∈

{1, . . . , 𝑛}. Let 𝑥 ∈ 𝐼1 × · · · × 𝐼𝑛 and 𝐴 = 𝜃−1(↓𝑥); we have 𝜃 (𝑡) ⩽ 𝑥 if, and only if 𝜃𝑘 (𝑡) ⩽ 𝑥𝑘 for
every 𝑘 ∈ {1, . . . , 𝑛}. For every 𝑘 ∈ {1, . . . , 𝑛} we have 𝑡 (𝑘) ∈ R𝑛 such that 𝜃𝑘 (𝑡 (𝑘)) = 𝑥𝑘 , so{

𝜃𝑘 (𝑡 (1) ∧ · · · ∧ 𝑡 (𝑛)) ⩽ 𝜃𝑘 (𝑡 (1)) ∧ · · · ∧ 𝜃𝑘 (𝑡 (𝑛)) ⩽ 𝑥𝑘

𝜃𝑘 (𝑡 (1) ∨ · · · ∨ 𝑡 (𝑛)) ⩾ 𝜃𝑘 (𝑡 (1)) ∨ · · · ∨ 𝜃𝑘 (𝑡 (𝑛)) ⩾ 𝑥𝑘

It follows that 𝑡 (1) ∨ · · · ∨ 𝑡 (𝑛) is an upper bound of 𝐴 which is nonempty because it contains
𝑡 (1) ∧ · · · ∧ 𝑡 (𝑛). Therefore sup(𝐴) exists and we have 𝜃 (sup 𝐴) = ˜sup(𝜃 (𝐴)) the least upper bound
being taken in the image of 𝜃 (this holds because 𝜃 is a pospace embedding). Since ˜sup(𝜃 (𝐴))
is an upper bound of 𝜃 (𝐴) the least upper bound sup(𝜃 (𝐴)) taken in R𝑛 exists and sup(𝜃 (𝐴)) ⩽

˜sup(𝜃 (𝐴)).
Since 𝐴 is closed in R𝑛 (because 𝜃 is continuous and ↓𝑥 is closed in R𝑛) and has an upper bound,

each of its elements is below some maximal element of 𝐴. If 𝑎 and 𝑏 are two such elements,
then we have 𝜃 (𝑎) ∨ 𝜃 (𝑏) ⩽ 𝑥, and therefore 𝜃 (𝑎 ∨ 𝑏) ⩽ 𝑥 because 𝜃 preserves ∨, hence 𝑎 = 𝑏, and
sup(𝐴) ∈ 𝐴.

By invariance of domain (Hatcher, 2002, Theorem 2B.3, p.172) the image of 𝜃 is open in R𝑛,
therefore we have a set product 𝐽1 × · · · × 𝐽𝑛 of open intervals of R, that contains ˜sup(𝜃 (𝐴)) and that
is included in img (𝜃). If the inequality ˜sup(𝜃 (𝐴)) ⩽ 𝑥 was strict, then we would have 𝑦 ∈ img (𝜃)
such that ˜sup(𝜃 (𝐴)) < 𝑦 < 𝑥, and therefore 𝜃−1(𝑦) ∈ 𝐴 with sup(𝐴) < 𝜃−1(𝑦) : a contradiction.
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5.2 Local orders
A witness of compatibility of the pospaces 𝑋 and 𝑋 ′ nearby 𝑝 ∈ 𝑋 ∩ 𝑋 ′ is a subset 𝑊 of 𝑋 ∩ 𝑋 ′

containing 𝑝, on which both 𝑋 and 𝑋 ′ induce the same open subpospace. We say that 𝑋 and 𝑋 ′

are compatible around the point 𝑝, which we denote by 𝑋∼𝑝 𝑋 ′, when 𝑝 ∉ 𝑋 ∩ 𝑋 ′ or such a witness
exists. We say that 𝑋 and 𝑋 ′ are compatible when they are so around every point, in that case write
𝑋 ∼ 𝑋 ′.

A local order X is a collection of pairwise compatible pospaces. The canonical local order
induced by a pospace 𝑋 is the one element collection {𝑋}. The support of X is the union of the
supports of its elements, we denote it by |X|.

A morphism of local orders from X toY is a mapping 𝑓 : |X| → |Y| such that for every 𝑝 ∈ |X|,
every 𝑌 ∈ Y and every open subset 𝑉 of 𝑌 containing 𝑓 (𝑝), there exists 𝑋 ∈ X and an open subset
𝑈 of 𝑋 containing 𝑝 such that 𝑓 (𝑈) ⊆ 𝑉 , and the restriction 𝑓 |

𝑈
:𝑈→𝑉 is order preserving (i.e.

for all 𝑎, 𝑏 ∈𝑈, 𝑎 ⊑𝑋 𝑏 ⇒ 𝑓 𝑎 ⊑𝑌 𝑓 𝑏). Local orders and their morphisms form the category L.
The cartesian product of X and Y in L is the local order

X×Y =
{
𝑋 ×𝑌

�� 𝑋 ∈ X ; 𝑌 ∈ Y
}
.

The topology (on the support) of the local order X is generated by the subsets 𝑈 that are open
in some pospace of the collection X.

Two local orders X and Y are said to be equivalent, which we denote by X∼Y, when they
have the same underlying set 𝑆 and the identity map id𝑆 induces an isomorphism between them.
Actually, we have X∼Y when X∪Y is still a local order: in the end, it amounts to say that any
𝑋 ∈ X is equivalent to any 𝑌 ∈ Y.

A directed path on X is a local order morphism from {[𝑎, 𝑏]} to X, with 𝑎 ⩽ 𝑏.

The standard local orders. The sets |𝐺 | and ∥𝐺∥ respectively come with the standard local orders
X𝐺 and X̃𝐺 described in this section.

Definition 5.4. For every vertex 𝑣 we denote by 𝑈𝑣 the canonical star centered at 𝑣 (Definition
2.4), i.e.

𝑈𝑣 =
⋃

tgt 𝑎=𝑣
{𝑎} × 𝐽𝑎 ∪ {𝑣} ∪

⋃
src 𝑏=𝑣

{𝑏} × 𝐼𝑏 (15)

with the intervals 𝐽𝑎 = ]0, ℓ (𝑎)2 [ and 𝐼𝑏 = ] ℓ (𝑏)2 , ℓ(𝑏) [ (as in §3.2 (3)). The set 𝑈𝑣 is provided with
the greatest topology and the least partial order ⊑𝑣 making the maps

𝛾𝑎 : 𝑡 ∈ −𝐼𝑎 ∪ {0} ↦→

(𝑎, 𝑡 + ℓ(𝑎)) if 𝑡 ≠ 0

𝑣 if 𝑡 = 0
∈ 𝑈𝑣

𝛿𝑏 : 𝑡 ∈ {0} ∪ 𝐼𝑏 ↦→

(𝑏, 𝑡) if 𝑡 ≠ 0

𝑣 if 𝑡 = 0
∈ 𝑈𝑣

continuous and order-preserving for all arrows 𝑎 such that tgt(𝑎) = 𝑣, and all arrows 𝑏 such that
src(𝑏) = 𝑣. In particular, the maps 𝛾𝑎 and 𝛿𝑏 are pospace embeddings. Note that for every traversal
(𝑎, 𝑏) at 𝑣 the union of the mappings 𝛾𝑎 and 𝛿𝑏 is the pospace embedding

𝜉𝑎𝑏 : 𝑡 ∈ −𝐼𝑎 ∪ {0} ∪ 𝐼𝑏 ↦→


(𝑎, 𝑡 + ℓ(𝑎)) if 𝑡 < 0

𝑣 if 𝑡 = 0

(𝑏, 𝑡) if 𝑡 > 0

∈ 𝑈𝑣 . (16)
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The set 𝑈𝑣 comes with the map 𝜏𝑣 :𝑈𝑣→ R defined by 𝜏𝑣 (𝑣) = 0, and

𝜏𝑣 (𝑥, 𝑡) =


𝑡 − ℓ(𝑥) if 𝑡 ∈ 𝐽𝑥

𝑡 if 𝑡 ∈ 𝐼𝑥
.

Given two points 𝑝, 𝑞 of 𝑈𝑣, we have 𝑝 ⊑𝑣𝑞 if, and only if

𝜏𝑣 𝑝 ⩽ 0 ⩽ 𝜏𝑣𝑞 or 𝜋𝐺 𝑝 = 𝜋𝐺𝑞 and 𝜏𝑣 𝑝 ⩽ 𝜏𝑣𝑞 , (17)

thus defining a closed the partial order on 𝑈𝑣 (closedness of this partial order is proven from an
easy – but tedious – case disjunction readily obtained from the negation of the formula (17). The
standard pospace at 𝑣 is (𝑈𝑣, ⊑𝑣).

Proposition 5.5. The pospace (𝑈𝑣, ⊑𝑣) is locally order convex.

Proof. By Remark 2.6 and the fact that the stars centered at a vertex and the sets of the form
{𝑎} × ]𝑡 − 𝜀, 𝑡 + 𝜀[ are order convex.

Definition 5.6. The standard local order on |𝐺 |, which we denote by X𝐺 , is the collection of
pospaces (𝑈𝑣, ⊑𝑣) and {𝑎} × ]0, ℓ(𝑎) [ (equipped with the obvious pospace structure) with 𝑣 and 𝑎

ranging in the sets of vertices and arrows of 𝐺 respectively. The standard local order on the set
|𝐺1 | × · · · × |𝐺𝑛 | is the product X𝐺1

× · · · × X𝐺𝑛
.

Every vertex and every middle point (𝑎, ℓ(𝑎)/2) belongs to a single element of the collectionX𝐺 .
Every point (𝑎, 𝑡) with 𝑡 ≠ ℓ(𝑎)/2 only belongs to {𝑎} × ]0, ℓ(𝑎) [ and𝑈𝑣 with 𝑣 = src 𝛼 or 𝑣 = tgt 𝛼
depending on whether 𝑡 < ℓ(𝑎)/2 or 𝑡 > ℓ(𝑎)/2. Hence the (nontrivial) witnesses of compatibility
are the open sets {𝛼} × ]0, ℓ(𝑎)/2[ and {𝛼} × ]ℓ(𝑎)/2, ℓ(𝑎) [ with the obvious topology and order.

Remark 5.7. Assuming that |𝐺1 | × · · · × |𝐺𝑛 | is equipped with the 𝑑∞ metrics, every open ball of
radius 𝑟 ⩽ 𝑅

4 is contained in some pospace 𝑋 ∈ X𝐺1
× · · · × X𝐺𝑛

.

The standard charts 𝜙𝑎 and 𝜙𝑎𝑏 (Definition 3.12) with 𝑎 and (𝑎, 𝑏) arrows and traversals, are
bĳections towards open subintervals of R. Their domains, namely dom 𝜙𝑎 and dom 𝜙𝑎𝑏, are equipped
with the pospace structures so that 𝜙𝑎 and 𝜙𝑎𝑏 become dihomeomorphisms. All these pospaces are
locally order convex because so are the open intervals of R.

Definition 5.8. The collection of pospaces dom 𝜙𝑎 and dom 𝜙𝑎𝑏 (Definition 3.12) which we denote
by X̃𝐺 , forms the standard local order on ∥𝐺∥ observing that the witnesses of compatibility are of
the form {𝑎} × ]0, ℓ(𝑎)/2[ and {𝑎} × ]ℓ(𝑎)/2, ℓ(𝑎) [ with 𝑎 arrow of 𝐺. The standard local order
on the set ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ is X̃𝐺1

× · · · × X̃𝐺𝑛
.

Remark 5.9. Given a traversal (𝑎, 𝑏) at 𝑣, 𝜀 ∈ ]0, ℓ(𝑎) [, and 𝜀′ ∈ ]0, ℓ(𝑏) [, the desingularizator 𝛽𝐺

(Definition 2.11) induces the canonical pospace isomorphism

{𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {(𝑎, 𝑏)} ∪ {𝑏} × ]0, 𝜀′ [

{𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} ∪ {𝑏} × ]0, 𝜀′ [

�

hence a pospace embedding from dom 𝜙𝑎𝑏 to 𝑈𝑣 – see Definition 3.12. In particular 𝛽𝐺 induces a
morphism of local orders from X̃𝐺 to X𝐺 .

Remark 5.10. The domains of the isomorphisms from Remark 5.9 together with sets of the form
{𝑎} × 𝐼 with 𝐼 open interval of ]0, ℓ(𝑎) [ form a base of the topology of the local order X̃𝐺 .
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Remark 5.11. Denote by S the category of topological spaces, and by H the full subcategory
of Hausdorff spaces. Denote by 𝐻 : S→H and ℎ : idS→ 𝐼𝐻 the left adjoint to inclusion functor
𝐼 : H ↩→ S and its unit. Putting 𝑋 for the underlying topological space of X𝐺 we have 𝐻 (𝛽𝐺) = id𝑋 .

5.3 The lifting properties of desingularizators
Lifting directed paths. Every directed path on the image of 𝛽𝐺 can be lifted along it (Theorem
5.3). Nevertheless, such liftings may not be unique when the starting or the finishing point is a
vertex. We begin with a simple yet useful observation:

Remark 5.12. The vertex 𝑣 is the only element of 𝑈𝑣 (Definition 5.4 (15)) such that for every
𝑥 ∈𝑈𝑣 we have 𝑥 ⊑𝑣𝑣 or 𝑣 ⊑𝑣 𝑥. Let 𝐶 be a chain (i.e. a totally ordered set, which is said to be
unbounded when it has no greatest nor least element) of𝑈𝑣 containing at least two elements. If 𝑣 is
an upper bound of𝐶, then we have a unique arrow 𝑎 of 𝐺 such that𝐶 \ {𝑣} ⊆ {𝑎} × ]ℓ(𝑎)/2, ℓ(𝑎) [.
Moreover tgt 𝑎 = 𝑣. Similarly, if 𝑣 is a lower bound of 𝐶, then we have a unique arrow 𝑏 of 𝐺 such
that 𝐶 \ {𝑣} ⊆ {𝑏} × ]0, ℓ(𝑎)/2[. Moreover src 𝑏 = 𝑣. If 𝑣 is neither a lower nor an upper bound
of 𝐶, then 𝑣 is both an upper bound of ↓𝑣 ∩𝐶, and a lower bound of ↑𝑣 ∩𝐶. Therefore we have
a unique traversal (𝑎, 𝑏) of 𝐺 at 𝑣 such that 𝐶 is entirely contained in the image of 𝜉𝑎𝑏 – see
Definition 5.4(16). In addition, if 𝐶 is unbounded and connected (as a subset of 𝑈𝑣 which carries
a topology), then it is isomorphic to the pospace R.

Given 𝑡 ∈ dom 𝛾 for a path 𝛾, we say that 𝛾 is constant before (resp. after) 𝑡 when 𝛾{𝑠 ∈ dom 𝛾 |
𝑠 ⩽ 𝑡} (resp. 𝛾{𝑠 ∈ dom 𝛾 | 𝑠 ⩾ 𝑡}) is reduced to {𝛾(𝑡)}.

Lemma 5.13. Let 𝛾 be a directed path on X𝐺 and 𝑡 ∈ dom 𝛾 such that 𝛾(𝑡) is a vertex 𝑣. Suppose
that [𝑡′, 𝑡′′] is the connected component of 𝛾−1{𝑣} containing 𝑡. If 𝛾 is not constant before 𝑡 (i.e. 𝑡′
is not the least element of dom 𝛾) then we have a unique arrow 𝑎 such that for every 𝜀 ∈ ]0, ℓ(𝑎) [
there exists 𝑠 ∈ dom 𝛾 such that 𝑠 < 𝑡′ and 𝛾 [𝑠, 𝑡] \ {𝑣} ⊆ {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [. Moreover tgt 𝑎 = 𝑣.
Similarly, if 𝛾 is not constant after 𝑡 (i.e. 𝑡′′ is not the greatest element of dom 𝛾) then we have
a unique arrow 𝑏 such that for every 𝜀 ∈ ]0, ℓ(𝑎) [ there exists 𝑠 ∈ dom 𝛾 such that 𝑡′′ < 𝑠 and
𝛾 [𝑡, 𝑠] \ {𝑣} ⊆ {𝑏} × ]0, 𝜀[. Moreover src 𝑏 = 𝑣.

Proof. We have an open interval 𝐼 ′ containing 𝑡′ such that 𝛾 induces a pospace morphism from
𝐼 ′ to 𝑈𝑣 because 𝛾 is a local order morphism. Let 𝐼 = {𝑠 ∈ 𝐼 ′ |𝑠 ⩽ 𝑡} so 𝑣 is an upper bound of
the chain 𝛾(𝐼) of 𝑈𝑣. We readily deduce from the definition of 𝑡′ that 𝛾(𝐼) is not reduced to {𝑣},
so Remark 5.12 applies and we have a unique arrow 𝑎 such that 𝛾(𝐼) \ {𝑣} ⊆ {𝑎} × ]0, ℓ(𝑎) [ ,
moreover tgt 𝑎 = 𝑣. For 𝜀 ∈ ]0, ℓ(𝑎)/2[ the star 𝑆(𝑣, 𝜀) (Definition 2.4) is an open subset of 𝑈𝑣

(Remark 2.6). Since 𝛾 is continuous, we have a neighborhood 𝐽 of 𝑡′ (with 𝐽 ⊆ 𝐼 ′) such that 𝛾(𝐽)
is contained in 𝐵, therefore in {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [. Given 𝑠 ∈ 𝐼 ∩ 𝐽 such that 𝑠 < 𝑡′ we have
𝛾 [𝑠, 𝑡′ [ ⊆ {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [. The case where 𝛾 is not constant after 𝑡 is deduced from the
previous one by reversing the local order, or by a direct similar proof.

Definition 5.14. The arrows 𝑎 and 𝑏 given by Lemma 5.13 are referred to as the last arrow visited
before 𝑡, and the first arrow visited after 𝑡 (by 𝛾). If dom 𝛾 = [𝑡0, 𝑡1] the first arrow visited by 𝛾 is
the first one it visits after 𝑡0. Similarly, the last arrow visited by 𝛾 is the last one it visits before 𝑡1.

Definition 5.15. If 𝛾(𝑡) is a vertex, a traversal (𝑎, 𝑏) at 𝛾(𝑡) is said to be compatible with 𝛾 at 𝑡
when the following are satisfieed: i) if the last arrow visited before 𝑡 exists, then it is 𝑎; and ii) if
the first arrow visited after 𝑡 exists, then it is 𝑏.
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Remark 5.16. If 𝛾 is a constant path standing on a vertex 𝑣, then any traversal at 𝑣 is compatible
with 𝛾 at every 𝑡 ∈ dom 𝛾. If 𝛾 is not constant and starts on a vertex at 𝑡0, then any traversal (𝑎, 𝑏)
such that 𝑏 is the first arrow visited by 𝛾 is compatible at 𝑡0. Dually, if 𝛾 finishes on a vertex at 𝑡1,
then any traversal (𝑎, 𝑏) such that 𝑎 is the last arrow visited by 𝛾 is compatible at 𝑡1.

Lemma 5.17. Suppose that 𝛾(𝑡) is a vertex 𝑣 with 𝛾 directed path on X𝐺 . For any traversal (𝑎, 𝑏)
compatible with 𝛾 at 𝑡, and any 𝜀 ∈ ]0, 𝑅[, there exists an interval 𝐼 open in dom 𝛾, containing 𝑡,
and such that 𝛾 induces a pospace morphism

𝛾̃ : 𝐼 → {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} ∪ {𝑏} × ]0, 𝜀[ .

Moreover, if 𝛾 is not constant before (resp. after) 𝑡, then 𝛾̃ visits {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ (resp.
{𝑏} × ]0, 𝜀[).

Proof. Let 𝑡′ be the least element of the connected component of 𝛾−1{𝑣} containing 𝑡. Note that
𝛾 [𝑡′, 𝑡] = {𝑣}. If 𝛾 is constant before 𝑡 then 𝑡′ is the least element of dom 𝛾. In that case we can
suppose that 𝑡′ is also the least element of 𝐼. Otherwise 𝑎 is the last arrow visited by 𝛾 before 𝑡

(Definition 5.14). By Lemma 5.13 we have 𝑠 < 𝑡′ such that 𝛾(]𝑠, 𝑡′]) \ {𝑣} ⊆ {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [.
By definition of a local order morphism (§5.2) the map 𝛾 induces a pospace morphism from ]𝑠, 𝑡]
to {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} for 𝑠 sufficiently close to 𝑡. From the definition of 𝑡′ we deduce that
𝛾(]𝑠, 𝑡′]) is not reduced to {𝑣}, therefore it meets {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [. Whether 𝛾 is constant
before 𝑡 or not, we found an interval 𝐼0 whose greatest element is 𝑡, that is not reduced to a single
element unless 𝑡 is the least element of dom 𝛾, and such that 𝛾 induces a pospace morphism from 𝐼0

to {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣}. By similar arguments we obtain an interval 𝐼1 whose least element
is 𝑡, that is not reduced to a single element unless 𝑡 is the greatest element of dom 𝛾, and such
that 𝛾 induces a pospace morphism from 𝐼1 to {𝑣} ∪ {𝑏} × ]ℓ(𝑏) − 𝜀, ℓ(𝑏) [. The interval 𝐼 = 𝐼0 ∪ 𝐼1

matches the requirements.

Definition 5.18. A lifting (along 𝛽𝐺1
× · · · × 𝛽𝐺𝑛

) of a directed path 𝛾 on X𝐺1
× · · · × X𝐺𝑛

is a directed
path 𝛿 on X̃𝐺1

× · · · × X̃𝐺𝑛
such that (𝛽𝐺1

× · · · × 𝛽𝐺𝑛
) ◦ 𝛿 = 𝛾.

Proposition 5.19. Let 𝛾 be a directed path onX𝐺 . Given a set map 𝛿 from dom 𝛾 to ∥𝐺∥ (Definition
2.11) the following are equivalent:

(1) The map 𝛿 is a lifting of 𝛾 (Definition 5.18).
(2) The map 𝛿 is continuous and satisfies 𝛽𝐺 ◦ 𝛿 = 𝛾.
(3) For every 𝑡 ∈ dom 𝛾, if 𝛾(𝑡) is not a vertex, then 𝛿(𝑡) = 𝛾(𝑡), otherwise 𝛿(𝑡) is a traversal

compatible with 𝛾 at 𝑡 (Definition 5.15).

Proof. The first point implies the second one by Definition 5.15. Assume the second point is
satisfied. Since 𝛽𝐺 ◦ 𝛿 = 𝛾, we have 𝛾(𝑡) = 𝛿(𝑡) each time 𝛾(𝑡) is not a vertex (Definition 2.11). For
the same reason, if 𝛾(𝑡) is a vertex 𝑣, then 𝛿(𝑡) is a traversal (𝑎, 𝑏) at 𝑣. Assume we are in the latter
case. Since 𝛿 is continuous, and according to the topology of the local order X̃𝐺 (Remark 5.10),
we have an open interval 𝐼 containing 𝑡 and satisfying

𝛿(𝐼) ⊆ ({𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [) ∪ {(𝑎, 𝑏)} ∪ ({𝑏} × ]0, 𝜀[) .

If 𝛾 is not constant before 𝑡, then let 𝑎′ be the last arrow visited by 𝛾 before 𝑡 (Lemma 5.13).
We have 𝑠 < 𝑡 such that 𝛾 [𝑠, 𝑡] \ {𝑣} is nonempty and included in {𝑎′} × ]ℓ(𝑎′) − 𝜀, ℓ(𝑎′) [. Since
𝛾(𝑠) = 𝛿(𝑠) when 𝛾(𝑠) is not a vertex, we have 𝑎 = 𝑎′. Similarly, if 𝛾 is not constant after 𝑡, then 𝑏

is the first arrow visited by 𝛾 after 𝑡. Hence (𝑎, 𝑏) is compatible with 𝛾 at 𝑡.
Assume the third point is satisfied. One readily deduces that 𝛽𝐺 ◦ 𝛿 = 𝛾 from Definitions 2.11

and 5.15. It remains to check that 𝛿 is a local order morphism. The mappings 𝛾 and 𝛿 agree on
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𝛿−1(∥𝐺∥ \ {vertex of 𝐺}) because 𝛽𝐺 leaves unchanged any point of ∥𝐺∥ that is not a vertex – see
Definition 2.11. Let 𝑡 be an element of dom 𝛾.

If 𝛾(𝑡) is not a vertex, then 𝛾(𝑡) belongs to {𝑎} × ]0, ℓ(𝑎) [ for a unique arrow 𝑎. Since 𝛾 is a local
order morphism, we have an open interval 𝐼 containing 𝑡 such that the restriction of 𝛾 to 𝐼 induces
a pospace morphism from 𝐼 to {𝑎} × ]0, ℓ(𝑎) [. Hence the restriction of 𝛿 to 𝐼 coincides with the
restriction of 𝛾 to 𝐼, therefore it is a pospace morphism (the standard pospace {𝑎} × ]0, ℓ(𝑎) [
belongs to both X𝐺 and X̃𝐺).

If 𝛾(𝑡) is a vertex 𝑣, then 𝛿(𝑡) is a traversal (𝑎, 𝑏) compatible with 𝛾 at 𝑡 (we have supposed that
the third point is satisfied). Let 𝜀 > 0 be small enough so that we can apply Lemma 5.17 (with the
traversal (𝑎, 𝑏)) to obtain the pospace morphism

𝛾̃ : 𝐼 → {𝑎} × ]ℓ(𝑎) − 𝜀, ℓ(𝑎) [ ∪ {𝑣} ∪ {𝑏} × ]0, 𝜀[
induced by 𝛾 with 𝐼 open interval of dom 𝛾 containing 𝑡. Let 𝛽

𝐺
be the pospace isomorphism

induced by 𝛽𝐺 (Remark 5.9 with the traversal (𝑎, 𝑏) at 𝑣). Then 𝛽
𝐺

−1◦ 𝛾̃ is a local order morphism
defined on 𝐼 satifying 𝛽𝐺 ◦ 𝛽𝐺

−1◦ 𝛾̃ = 𝛾̃. The only vertex that 𝛾̃ reaches is 𝑣 and we know that 𝛿
and 𝛽

𝐺

−1◦ 𝛾̃ agree on {𝑠 ∈ 𝐼 | 𝛾(𝑠) ≠ 𝑣}. If 𝛾̃(𝑠) = 𝑣 then 𝛾(𝑠) = 𝛾̃(𝑠) = 𝑣 and 𝛽
𝐺

−1(𝑣) = (𝑎, 𝑏) = 𝛿(𝑠).
Hence 𝛿 and 𝛽

𝐺

−1◦ 𝛾̃ agree on 𝐼.

Theorem. Any directed path on the image of 𝛽𝐺1
× · · · × 𝛽𝐺𝑛

(seen as a sub-local order of
X𝐺1

× · · · × X𝐺𝑛
) admits a lifting.

Proof. Let 𝛾 be a directed path on img (𝛽𝐺) and 𝑡 ∈ dom 𝛾. If 𝛾(𝑡) is not a vertex put 𝛿(𝑡) = 𝛾(𝑡).
Otherwise, there is at least one traversal (𝑎, 𝑏) at 𝛾(𝑡) (Definition 2.11). If 𝛾 is not constant before
𝑡 then we can suppose that 𝑎 is the last arrow visited by 𝛾 before 𝑡 (Definition 5.14). Similarly,
if 𝛾 is not constant after 𝑡 then we can suppose that 𝑏 is the first arrow visited by 𝛾 after 𝑡. Put
𝛿(𝑡) = (𝑎, 𝑏). The map 𝛿 is a lifting of 𝛾 by the third point of Proposition 5.19. The lifting of
𝛾1 × · · · × 𝛾𝑛 is obtained by applying the above reasoning to 𝛾𝑖 for every 𝑖 ∈ {1, . . . , 𝑛}.

Universal lifting property. Let 𝑥 : R→ 𝑋 ∈ X𝐺 be a continuous map whose image does not contain
any vertex of𝐺 (the underlying set ofX𝐺 is |𝐺 |, see Definition 2.3). The map 𝑥 thus takes its values in
the space |𝐺 | \𝐺 (0), whose connected components are the segments {𝑎} × ]0, ℓ(𝑎) [. Consequently,
there is a unique arrow 𝑎 such that img (𝑥) ⊆ dom (𝜙𝑎), see Definition 3.12. Also the map 𝛽𝐺 induces
the identity on |𝐺 | \𝐺 (0), therefore we have a unique continuous map 𝑥 : R→ {𝑎} × ]0, ℓ(𝑎) [ such
that 𝑥(𝑡) = 𝛽𝐺 (𝑥(𝑡)) for all 𝑡 ∈ R. If 𝑥 is a pospace embedding, then so is 𝑥, and its image is
an open subset of {𝑎} × ]0, ℓ(𝑎) [. Extending the codomain of 𝑥 to the whole domain of 𝛽𝐺 , we
obtain an embedding 𝑦 such that 𝑥 = 𝛽𝐺 ◦ 𝑦 and img (𝑦) is open. Note that 𝜉𝑎𝑏 ◦ 𝜙𝑎𝑏 is the inclusion
dom (𝜙𝑎𝑏) ↩→ 𝛽𝐺

−1𝑈𝑣 – see Definitions 3.12 and 5.4 (16). The next result deals with the case where
the image of 𝑥 contains a vertex:

Proposition 5.20. For every pospace embedding 𝑥 : R→𝑈𝑣 ∈ X𝐺 with 𝑣 ∈ img (𝑥), there is a
unique traversal (𝑎, 𝑏) at 𝑣 such that img (𝑥) ⊆ img (𝜉𝑎𝑏). The map

𝑦 : 𝑡 ∈ R ↦→

(𝑎, 𝑏) if 𝑥(𝑡) = 𝑣

𝑥(𝑡) if 𝑥(𝑡) ≠ 𝑣

∈ dom (𝜙𝑎𝑏) (18)

is the only set map 𝑦 from R to dom (𝜙𝑎𝑏) such that

𝑥 = 𝛽𝐺 ◦ 𝜉𝑎𝑏 ◦ 𝜙𝑎𝑏 ◦ 𝑦 . (19)

Moreover, the mapping 𝑥 = 𝜉𝑎𝑏 ◦ 𝜙𝑎𝑏 ◦ 𝑦 is the only continuous map from R to 𝛽𝐺
−1𝑈𝑣 satisfying

𝑥 = 𝛽𝐺 ◦ 𝑥. Furthermore 𝑥 is a pospace embedding whose image is open.
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Proof. The map 𝑥 induces a pospace isomorphism on its image therefore img (𝑥) is an unbounded
connected chain of 𝑈𝑣. So we have a unique traversal (𝑎, 𝑏) at 𝑣 such that img (𝑥) ⊆ img (𝜉𝑎𝑏)
(Remark 5.12). The map defined at line (18) readily satisfies equality (19). It is the only one
because 𝛽𝐺 𝑝 = 𝑝 for all 𝑝 ∈ dom (𝜙𝑎𝑏) \ {(𝑎, 𝑏)} and 𝛽𝐺 (𝑎, 𝑏) = 𝑣. To check the uniqueness of 𝑥 it
suffices to observe that 𝛽𝐺

−1𝑈𝑣 is the union of the sets dom (𝜙𝑎′𝑏′) for all traversal (𝑎′, 𝑏′) at 𝑣, and
consequently that we have 𝛽𝐺 𝑝 = 𝑝 for all 𝑝 ∈ 𝛽𝐺

−1𝑈𝑣 that is not a traversal. However, there may be
more than one traversal in 𝛽𝐺

−1𝑈𝑣 and the image of any of them under 𝛽𝐺 is 𝑣 (it is actually the case
when 𝑣 is singular – see Definition 2.10). Denote by 𝑡 the only element of R such that 𝑥(𝑡) = 𝑣. We
already know that the image of R \ {𝑡} under 𝑥 is contained in dom (𝜙𝑎𝑏), which is a neighborhood
of (𝑎, 𝑏) not containing any other traversal. Since 𝑥 is continuous and sends 𝑡 to a traversal, this
latter must be (𝑎, 𝑏). Denoting by 𝜉

𝑎𝑏
and 𝑥′ the corestrictions of the pospace embeddings 𝜉𝑎𝑏 and

𝑥 to their images, we have

𝑥 =
(
cod (𝜙𝑎𝑏) ↩→ 𝛽𝐺

−1𝑈𝑣

)
◦ 𝜙𝑎𝑏

−1 ◦ 𝜉
𝑎𝑏

−1 ◦ 𝑥′

with cod (𝜙𝑎𝑏) ↩→ 𝛽𝐺
−1𝑈𝑣 pospace embedding, while 𝜙𝑎𝑏

−1, 𝜉
𝑎𝑏

−1 and 𝑥′ are dihomeomorphisms;
therefore 𝑥 is a pospace embedding. Hence img (𝑥) is an unbounded connected chain of dom (𝜙𝑎𝑏),
so it is open in the open subset dom (𝜙𝑎𝑏) of 𝛽𝐺

−1𝑈𝑣.

Lemma 5.21. Let 𝜃 : R𝑛→ 𝑋1 × · · · × 𝑋𝑛 be a pospace embedding with 𝑋𝑘 ∈ X𝐺𝑘
for every 𝑘 ∈

{1, . . . , 𝑛}. If 𝜃 preserves ∨ (resp. ∧), then img (𝜃) =𝐶1 × · · · ×𝐶𝑛 with 𝐶𝑘 unbounded connected
chain of 𝑋𝑘 .

Proof. Assume that 𝑋𝑘 =𝑈𝑣 (Definition 5.4 (15)) for some 𝑘 and that 𝑣 is a vertex of 𝐺𝑘 . Any
element 𝑥 ≠ 𝑣 is either smaller or greater than 𝑣 (Remark 5.12). Moreover, given two elements of
𝑈𝑣 that are strictly smaller (resp. greater) than 𝑣 the following are equivalent:

– they are comparable (i.e. one of them is smaller than the other),
– they have a lower bound (resp. an upper bound), and
– they belong to {𝑎} × ] 1

2ℓ(𝑎), ℓ(𝑎) [ for some arrow 𝑎 of 𝐺 such that tgt 𝑎 = 𝑣 (resp.
{𝑏} × ]0, 1

2ℓ(𝑏) [ for some arrow 𝑏 of 𝐺 such that src 𝑏 = 𝑣).

Given 𝑡 and 𝑡′ in R𝑛 we have 𝜃 (𝑡 ∧ 𝑡′) ⩽ 𝜃 (𝑡), 𝜃 (𝑡′) ⩽ 𝜃 (𝑡 ∨ 𝑡′) because 𝜃 is order preserving. It
follows that either

– 𝜃𝑘 (𝑡) and 𝜃𝑘 (𝑡′) belong to {𝑎} × ]0, ℓ(𝑎) [ for some arrow 𝑎 of 𝐺, or
– we have 𝜃𝑘 (𝑡) ⩽ 𝑣 ⩽ 𝜃𝑘 (𝑡′) or 𝜃𝑘 (𝑡′) ⩽ 𝑣 ⩽ 𝜃𝑘 (𝑡).

In both cases we deduce that img (𝜃) ⊆ 𝐽1 × · · · × 𝐽𝑛 with 𝐽𝑘 either equal to 𝜒𝑎𝑘
]0, ℓ(𝑎𝑘) [ or

𝜒𝑎𝑘
]0, ℓ(𝑎𝑘) [∪{(𝑎𝑘, 𝑏𝑘)} ∪ 𝜒𝑏𝑘

]0, ℓ(𝑏𝑘) [ for a unique traversal (𝑎𝑘, 𝑏𝑘).

We have a dihomeomorphism 𝜓 : 𝐽1 × · · · × 𝐽𝑛 � R𝑛 obtained as products of dihomeomorphisms
𝜓𝑘 : 𝐽𝑘 � R. The corestriction 𝜃 of 𝜃 to img (𝜃) is a dihomeomorphism. In particular img (𝜃) is a
lattice. The ∨-preservation hypothesis about 𝜃 means that for all 𝑡, 𝑡′ ∈ dom (𝜃), 𝜃 (𝑡) ∨ 𝜃 (𝑡′) exists
in 𝑋1 × · · · × 𝑋𝑛 and is equal to 𝜃 (𝑡 ∨ 𝑡′). It is clear that the least upper bound of 𝜃 (𝑡) and 𝜃 (𝑡′)
exists in 𝑋1 × · · · × 𝑋𝑛 if, and only if, it exists in 𝐽1 × · · · × 𝐽𝑛, and that both coincide. In other words
img (𝜃) is stable under ∨, the least upper bound operator of 𝐽1 × · · · × 𝐽𝑛, which means that the
embedding img (𝜃) ↩→ 𝐽1 × · · · × 𝐽𝑛 preserves ∨. Hence the composite

R𝑛 img (𝜃) 𝐽1 × · · · × 𝐽𝑛 R𝑛𝜃 𝜓
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is a pospace embedding preserving ∨, so its image is a product of open intervals 𝐼1 × · · · × 𝐼𝑛
(Lemma 5.3) and for every 𝑘 ∈ {1, . . . , 𝑛}, the chain 𝐶𝑘 is 𝜓𝑘

−1(𝐼𝑘).

Proposition 5.22. If 𝜃 is a pospace embedding that preserves ∨ (resp. ∧) as in Lemma 5.21, then
there is a unique permutation 𝜎 ∈𝔖𝑛 and a unique tuple of pospace embedding (𝑥1, . . . , 𝑥𝑛) with
𝑥𝑘 : R→ 𝑋𝑘 for 𝑘 ∈ {1, . . . , 𝑛} such that 𝜃 = (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 – see Definition 5.1.

Proof. From Lemma 5.21 we know that the corestriction of 𝜃 to its image is a pospace isomor-
phism of the form 𝜃 : 𝐼1 × · · · × 𝐼𝑛→𝐶1 × · · · ×𝐶𝑛 with 𝐼𝑘 open interval of R and 𝐶𝑘 connected
unbounded chain of 𝑋𝑘 . Then for every 𝑘 ∈ {1, . . . , 𝑛} we have pospace isomorphisms 𝜙𝑘 : R � 𝐼𝑘
and 𝜓𝑘 :𝐶𝑘 � R. Denoting by 𝜙 and 𝜓 the pospace isomorphisms 𝜙1 × · · · × 𝜙𝑛 and 𝜓1 × · · · × 𝜓𝑛

the composite 𝜓 ◦ 𝜃 ◦ 𝜙 is a pospace automorphism of R𝑛. From Lemma 5.2 we deduce that

𝜓 ◦ 𝜃 ◦ 𝜙 = (𝜒1 × · · · × 𝜒𝑛) ◦ 𝜋𝜎

for a (unique) family 𝜒1, . . . , 𝜒𝑛 of automorphisms of the poset R and a (unique) 𝜎 ∈𝔖𝑛. It follows
from Definition 5.1 (14) that

𝜃 =

( (
𝜓1
−1 ◦ 𝜒1 ◦ (𝜙𝜎−11)−1︸                 ︷︷                 ︸

𝑦1

)
× · · · ×

(
𝜓𝑛

−1 ◦ 𝜒𝑛 ◦ (𝜙𝜎−1𝑛)−1︸                 ︷︷                 ︸
𝑦𝑛

) )
◦ 𝜋𝜎 .

The 𝑛-tuple of mappings (𝑦1, . . . , 𝑦𝑛) is uniquely defined because 𝜋𝜎 is (in particular) a bĳection.
We conclude setting 𝑥𝑘 = (𝐶𝑘 ↩→ 𝑋𝑘) ◦ 𝑦𝑘 for 𝑘 ∈ {1, . . . , 𝑛}. Assume that we have permutations
𝜎, 𝜏 ∈𝔖𝑛 and tuples (𝑥1, . . . , 𝑥𝑛), (𝑦1, . . . , 𝑦𝑛) as in the statement that satisfy (𝑥1 × · · · × 𝑥𝑛) ◦
𝜋𝜎 = 𝜃 = (𝑦1 × · · · × 𝑦𝑛) ◦ 𝜋𝜏 . In particular we have (𝑦1 × · · · × 𝑦𝑛) = (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 ◦ 𝜏−1 and
therefore 𝜎 = 𝜏.

Each desingularizator 𝛽𝐺 is characterized by a universal property (Theorem 5.3) whose statement
requires some terminology we now introduce:

Definition 5.23. A local ∨-embedding of dimension 𝑛 ∈ N is a local order morphism 𝑓 : E →Y
such that for every point 𝑝 of E, and every 𝑌 ∈ Y containing 𝑓 (𝑝), there exists 𝑈 ∈ E and 𝐸

open subset of 𝑈 containing 𝑝, dihomeomorphic with R𝑛, such that 𝑓 (𝐸) ⊆ 𝑌 and the restriction
𝑓𝐸 : 𝐸→𝑌 is a pospace embedding that preserves ∨.

Theorem. For every ∨-embedding 𝑓 : E →X𝐺1
× · · · × X𝐺𝑛

of dimension 𝑛, there is a unique
continuous map 𝑔 : E → X̃𝐺1

× · · · × X̃𝐺𝑛
such that 𝑓 = 𝛽 ◦ 𝑔 with 𝛽 = 𝛽𝐺1

× · · · × 𝛽𝐺𝑛
; moreover 𝑔

is a local ∨-embedding of dimension 𝑛.

Proof. Let 𝑝 be a point of E and 𝑋1 × · · · × 𝑋𝑛 containing 𝑓 (𝑝) with 𝑋𝑘 ∈ X𝐺𝑘
for every 𝑘 ∈

{1, . . . , 𝑛}. According to the description of the local order X𝐺𝑘
(Definition 5.6) we can suppose

that for every 𝑘 ∈ {1, . . . , 𝑛} we have

𝑋𝑘 =


{𝑎} × ]0, ℓ(𝑎) [ if proj

𝑘
( 𝑓𝐸 (𝑝)) = (𝑎, 𝑠) with

𝑎 arrow of 𝐺𝑘 and 𝑠 ∈ ]0, ℓ(𝑎) [ .

𝑈𝑣 if proj
𝑘
( 𝑓𝐸 (𝑝)) = 𝑣 vertex of 𝐺𝑘 .

(20)

Since 𝑓 is a local∨-embedding of dimension 𝑛, we have𝑈 ∈ E together with an open subpospace 𝐸
of𝑈 containing 𝑝, dihomeomorphic to R𝑛, such that the restriction 𝑓𝐸 : 𝐸→ 𝑋1 × · · · × 𝑋𝑛 induces
a pospace embedding that preserves ∨. Given a dihomeomorphism 𝜑𝐸 : 𝐸 � R𝑛 the embedding
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𝑓𝐸 ◦ 𝜑𝐸
−1 preserves ∨ so Proposition 5.22 applies to it and we obtain

𝑓𝐸 = (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜋𝜎 ◦ 𝜑𝐸

with 𝜎 ∈𝔖𝑛 and 𝑥𝑘 : R→ 𝑋𝑘 pospace embedding for every 𝑘 ∈ {1, . . . , 𝑛}. One can actually
suppose that 𝜎 is the identity even if it means replacing 𝜑𝐸 by 𝜋𝜎 ◦ 𝜑𝐸 , in which case we have

𝑓𝐸 = (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 . (21)

Let 𝑘 be an element of {1, . . . , 𝑛}. If 𝑋𝑘 = {𝑎} × ]0, ℓ(𝑎) [ – see (20), then let 𝑥𝑘 be the identity
map on {𝑎} × ]0, ℓ(𝑎) [. If 𝑋𝑘 =𝑈𝑣 then apply Proposition 5.20 to the pospace embedding 𝑥𝑘 to
obtain the unique continuous map 𝑥𝑘 : R→ 𝛽𝐺𝑘

−1𝑈𝑣 such that

𝑥𝑘 = 𝛽𝐺𝑘
◦ 𝑥𝑘 . (22)

We denote the map (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 by 𝑔𝑝; it induces a pospace embedding that preserves ∨
because each 𝑥𝑘 is an (open) pospace embedding (Proposition 5.20) defined on a totally ordered
set (so 𝑥𝑘 preserves ∨). As a consequence of (21) and the equalities (22) for 𝑘 ∈ {1, . . . , 𝑛}, we
have

𝑓𝐸 = 𝛽 ◦ (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 = 𝛽 ◦ 𝑔𝑝 . (23)

Given 𝑘 ∈ {1, . . . , 𝑛} we apply the 𝑘 th projection to the relations (21) and (23) to obtain

proj
𝑘
◦ 𝑓𝐸 = 𝑥𝑘 ◦ proj

𝑘
◦ 𝜑𝐸 = 𝛽𝐺𝑘

◦ 𝑥𝑘 ◦ proj
𝑘
◦ 𝜑𝐸 . (24)

Since proj
𝑘
◦ 𝜑𝐸 is onto, we have img (𝑥𝑘) = img (proj

𝑘
◦ 𝑓𝐸). In the light of relation (24), for 𝑒 ∈ 𝐸 ,

we deduce from Proposition 5.20 (18) that 𝑥𝑘 (proj
𝑘
(𝜑(𝑒))) = proj

𝑘
( 𝑓𝐸 (𝑒)) if proj

𝑘
( 𝑓𝐸 (𝑒)) ≠ 𝑣, and

𝑥𝑘 (proj
𝑘
(𝜑(𝑒))) = (𝑎, 𝑏) if proj

𝑘
( 𝑓𝐸 (𝑒)) = 𝑣, with (𝑎, 𝑏) being the unique traversal at 𝑣 in the graph

𝐺𝑘 such that img (proj
𝑘
◦ 𝑓𝐸) ⊆ img (𝜉𝑎𝑏) – see Definition 5.4 (16) for 𝜉𝑎𝑏. What really matters

here is that 𝑥𝑘 (proj𝑘 (𝜑(𝑒))) only depends on 𝑓 . Its image is open because each map 𝑥𝑘 is open
(Proposition 5.20) and 𝜑𝐸 is (in particular) onto. Thus we have a family of ∨-preserving open
pospace embeddings {

𝑔𝑝 : 𝐸𝑝→ 𝛽𝐺1

−1𝑋
(𝑝)

1 × · · · × 𝛽𝐺𝑛

−1𝑋 (𝑝)
𝑛

�� 𝑝 ∈ E }
such that:

– 𝐸𝑝 is an open neighborhood of 𝑝 that is dihomeomorphic to R𝑛,
– 𝑋

(𝑝)
𝑘 ∈ X𝐺𝑘

for every 𝑘 ∈ {1, . . . , 𝑛}, and
– for all 𝑝, 𝑞 ∈ E, the mappings 𝑔𝑝 and 𝑔𝑞 coincide on 𝐸𝑝 ∩ 𝐸𝑞.

The mapping 𝑔 defined by 𝑔(𝑝) = 𝑔𝑝 (𝑝) for every 𝑝 ∈ E fulfills the requirements of the statement.
It remains to see that it is the only one. To this aim, assume that the continuous map ℎ : E →
X̃𝐺1

× · · · × X̃𝐺𝑛
satisfies 𝛽 ◦ ℎ = 𝛽 ◦ 𝑔. Given 𝑝 ∈ E we have 𝛽 ◦ (𝑥1 × · · · × 𝑥𝑛) ◦ 𝜑𝐸 = 𝛽 ◦ ℎ𝐸𝑝

with
ℎ𝐸𝑝

the restriction of ℎ to 𝐸𝑝. We deduce that we have 𝛽𝐺𝑘
◦ 𝑥𝑘 ◦ proj

𝑘
◦ 𝜑𝐸 = 𝛽𝐺𝑘

◦ proj
𝑘
◦ ℎ𝐸𝑝

for
every 𝑘 ∈ {1, . . . , 𝑛}. Since ℎ is continuous, so is proj

𝑘
◦ ℎ𝐸𝑝

; we deduce from the uniqueness
property in Proposition 5.20 that 𝑥𝑘 ◦ proj

𝑘
◦ 𝜑𝐸 = proj

𝑘
◦ ℎ𝐸𝑝

for every 𝑘 ∈ {1, . . . , 𝑛}. In other
words we have 𝑔𝑝 = ℎ𝐸𝑝

. Since the latter equality holds for every 𝑝 ∈ E we have ℎ = 𝑔.

5.4 Cone fields and local orders
For any manifold 𝑀 , there is an equivalence (in the categorical sense) between the local orders on
(the support of) 𝑀 whose elements are locally order convex, and the upper semicontinuous conal
fields on 𝑀 admitting sections at every point (Lawson, 1989, 2.7). Strictly speaking, the above
statement involves a manifold instead of an atlas, and Lawson (1989) does not make the topological
properties required on 𝑀 explicit. However, this statement is local by nature, and its proof does
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not seem to suppose anything about the underlying topology of 𝑀; assuming that it holds for the
atlas A𝐺1

× · · · × A𝐺𝑛
, the conal field associated to the standard parallelization and the standard

local order on X̃𝐺1
× · · · × X̃𝐺𝑛

are related by this equivalence (Proposition 5.26 and Theorem 5.4).
Except for the latter results, this section is entirely based on (Lawson, 1989, §1 and §2).

A wedge is a topologically closed subset 𝑊 of a finite dimensional real vector space such that
R+𝑊 ⊆𝑊 and 𝑊 +𝑊 ⊆𝑊 . A cone is a wedge 𝐶 such that 𝐶 ∩ −𝐶 = {0}. A cone field on an atlas
A is a map assigning a cone 𝐶 (𝑝) of the tangent space 𝑇𝑝A to every point 𝑝 ofA. A conal atlas
is an atlas together with a cone field. If 𝐶 and 𝐷 are cone fields on the atlases A and B then the
mapping 𝐶 × 𝐷 is a cone field on A ×B.

Examples 5.24. Any parallelization ( 𝑓1, . . . , 𝑓𝑛) canonically induces a cone field:

𝐶 (𝑝) =
{
𝜆1 𝑓1(𝑝) + · · · + 𝜆𝑛 𝑓𝑛 (𝑝)

�� 𝜆𝑖 ⩾ 0 for all 𝑖 ∈ {1, . . . , 𝑛}
}
.

Such cone fields are said to be cartesian. If 𝐶 and 𝐷 are the cartesian cones induced by the
parallelizations ( 𝑓1, . . . , 𝑓𝑛) and (𝑔1, . . . , 𝑔𝑚), then 𝐶 × 𝐷 is the cartesian cone induced by the
parallelization ( 𝑓1, . . . , 𝑓𝑛, 𝑔1, . . . , 𝑔𝑚).

Examples 5.25. The standard cone field 𝐶𝐺 on A𝐺 is the cartesian cone field induced by the
vector field of Definition 3.29, that is to say:

𝐶𝐺 : 𝑝 ∈ ∥𝐺∥ ↦→
{
(𝑝, 𝑡)

�� 𝑡 ∈ R+
}

cone of {𝑝} × R .

Conal preorder. For every curve 𝑐 extending a smooth path 𝛾 (Definition 3.11) and every 𝑡 ∈
dom (𝛾) we have the left hand and the right hand derivatives of 𝛾 at 𝑡, namely

lim
𝑥→𝑡−

D𝛾𝑥 = Dc𝑡 and lim
𝑥→𝑡+
(D𝛾)𝑥 = Dc𝑡 ;

which we denote by D𝛾𝑡− and D𝛾𝑡+ . A piecewise smooth path admits derivatives on both sides at
every 𝑡, although there is finitely many 𝑡’s at which they may not coincide.

A piecewise smooth path 𝛾 is said to be conal on (A, 𝐶) if D𝛾𝑡+ ∈𝐶 (𝛾(𝑡)) for all 𝑡 ∈ dom (𝛾).
Given the points 𝑝 and 𝑞 of an open subset𝑈 ofA, we write 𝑝≼𝑈𝑞 when there exists a conal curve
on 𝑈 from 𝑝 to 𝑞. The relation ≼𝑈 thus defined is the conal preorder on 𝑈.

Infinitesimal preorder. A partial curve on an atlas A is a map 𝛾 : 𝐷→ |A| with 0 ∈ 𝐷 ⊆ R+ and
0 cluster point of 𝐷 \ {0}. Given 𝑋 ⊆ |A|, we say that 𝑣 ∈ 𝑇𝑝A is a subtangent vector of 𝑋 at
𝑝 when there exists a partial curve 𝛾 : 𝐷→ |A| with 𝛾(0) = 𝑝 and 𝛾(𝐷 \ {0}) ⊆ 𝑋 , and a chart
𝜙 ∈ A, such that

J𝑣K𝜙

𝑝
= lim

0←𝑡∈𝐷
1
𝑡

(
𝜙(𝛾(𝑡)) − 𝜙(𝑝)

)
.

Given 𝜓 ∈ A with 𝑝 ∈ dom 𝜓, it suffices to write 𝜓 ◦ 𝛾 = (𝜓 ◦ 𝜙−1) ◦ (𝜙 ◦ 𝛾) and apply the chain
rule (i.e. a form of the chain rule adapted to partial curves) to check that the above equality still
holds with 𝜓 instead of 𝜙.

Assume that the local order X and the atlas A are based on the same topological space. The
infinitesimal preorder ofX is the map assigning to each point 𝑝 ∈ A the smallest wedge𝑊𝑝 of 𝑇𝑝A
containing all the subtangent vectors of the set {𝑝 ⩽𝑈 𝑢 | 𝑢 ∈𝑈} at 𝑝 for some pospace (𝑈, ⩽) ∈ X
such that 𝑝 ∈𝑈. Because of the coherence condition satisfied by a local order, the wedge 𝑊𝑝 does
not depend on (𝑈, ⩽).
Lawson correspondence. We say that the cone 𝐶′ surrounds the cone 𝐶 when 𝐶 \ {0} is contained
in the interior of 𝐶′ (see (Hilgert et. al, 1989, IV.6.4, p.342) for a more conceptual definition of
surrounding cones). Given a chart 𝜙 ∈ A and 𝑝, 𝑞 ∈ dom 𝜙, the composite (J_K𝜙

𝑞
)−1◦ J_K𝜙

𝑝
:𝑇𝑝A→
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𝑇𝑞A is a tvs isomorphism (Example 3.20) which we denote by J_K𝜙

𝑝𝑞
; its inverse is J_K𝜙

𝑞𝑝
, and J_K𝜙

𝑝𝑝

is the identity map.
A cone field 𝐶 onA is said to be upper semicontinuous at point 𝑝 when for every chart 𝜙 ∈ A

around 𝑝, and every cone 𝐶′ that surrounds 𝐶 (𝑝), there exists a neighborhood𝑈 of 𝑝 such that 𝐶′
surrounds J𝐶 (𝑞)K𝜙

𝑞𝑝
for every 𝑞 ∈𝑈. We say that 𝐶 admits sections at 𝑝 when for every 𝑣 ∈𝐶 (𝑝)

there exists a vector field 𝑓 on A such that 𝑓 (𝑝) = 𝑣.
An open cover U of the atlas A is said to be admissible for the cone field 𝐶 on A when for

every 𝑈 ∈U the conal preorder ≼𝑈 is antisymmetric, the pospace (𝑈, ≼𝑈) is locally order convex
(§5.1), and the collection {(𝑈, ≼𝑈) |𝑈 ∈U} is a local order. Given an atlas A, Lawson’s result
(Lawson, 1989, 2.7) states that:

(1) For every upper semicontinuous cone field 𝐶 on A admitting sections at every point, there
exists an open coverU admissible for 𝐶. Moreover, for every open coverU admissible for
𝐶, the infinitesimal preorder of {(𝑈, ≼𝑈) |𝑈 ∈U} is 𝐶.

(2) For every local order X made of locally convex pospaces, the infinitesimal preorder of X is
an upper semicontinous cone field 𝐶 on A admitting sections at every point. Moreover, the
local order X is equivalent (in the sense of §5.2) to {(𝑈, ≼𝑈) |𝑈 ∈U} for every open cover
U admissible for 𝐶.

Proposition 5.26. The standard local order X̃𝐺 on ∥𝐺∥ (Definition 5.8) and the standard cone
field 𝐶𝐺 on A𝐺 (Example 5.25) are deduced from each other through Lawson’s correspondence.

Proof. The fact that 𝐶𝐺 is upper semicontinuous and admits sections at every point is immediate.
Denote by ⊑𝑎𝑏 the partial order on dom (𝜙𝑎𝑏) that comes from 𝜙𝑎𝑏 ∈ X̃𝐺 . Denote by ≼𝑎𝑏 the conal
preorder on dom (𝜙𝑎𝑏) induced by 𝐶𝐺 . Let 𝑝, 𝑞 ∈ dom 𝜙𝑎𝑏. The inequality 𝑝 ⊑𝑎𝑏𝑞 amounts to
𝜙𝑎𝑏 𝑝 ⩽ 𝜙𝑎𝑏𝑞 in R. The restriction of 𝜙𝑎𝑏

−1 to the segment [𝜙𝑎𝑏 𝑝, 𝜙𝑎𝑏𝑞] is a conal curve on dom 𝜙𝑎𝑏,
which implies that 𝑝 ≼𝑎𝑏𝑞. The other way round, if 𝑝 ≼𝑎𝑏𝑞, then we have a piecewise smooth conal
curve 𝛾 on dom 𝜙𝑎𝑏 from 𝑝 to 𝑞. The fact that 𝛾 is conal means that for every 𝑡 ∈ dom (𝛾) we have
D𝛾𝑡 (1) = 𝑟𝐶𝐺 (𝑝) with 𝑟 > 0, and therefore the map 𝜙𝑎𝑏

−1 ◦ 𝛾 is a piecewise derivative map between
intervals of R whose derivative is non-negative; it is thus non-decreasing. The map 𝜙𝑎𝑏 (Definition
3.12) is a dihomeomorphism (Definition 5.8 and its preamble), hence 𝛾 is a pospace morphism; we
deduce that 𝑝 ⊑𝑎𝑏𝑞. Given 𝜙𝑎 ∈ X̃𝐺 the same reasoning holds for the partial order ⊑𝑎 on dom (𝜙𝑎),
and ≼𝑎 the conal preorder on dom (𝜙𝑎) induced by 𝐶𝐺 . So we have proven that ⊑𝑎𝑏 (resp. ⊑𝑎) is the
conal preorder on dom (𝜙𝑎𝑏) (resp. dom (𝜙𝑎)) induced by 𝐶𝐺 . It follows that the collection

U =
{
dom (𝜙𝑎), dom (𝜙𝑎𝑏)

�� 𝑎 and (𝑎, 𝑏) arrow and traversal of 𝐺
}

is admissible for 𝐶𝐺 , and that the local order {(𝑈, ≼𝑈) |𝑈 ∈U} is X̃𝐺 . From the first point of
Lawson’s result, we deduce that 𝐶𝐺 is the infinitesimal preorder of X̃𝐺 .

The following lemmas derive from the fact that given atlases A and B, partial curves (resp.
piecewise smooth paths) onA ×B are of the form 𝛼 × 𝛽with 𝛼 and 𝛽 partial curves (resp. piecewise
smooth paths) on A and B.

Lemma 5.27. If 𝐶 and 𝐷 are the infinitesimal preorders of the local orders X and Y (whose
elements are supposed to be locally convex), then 𝐶 × 𝐷 is the infinitesimal preorder of the local
order X×Y.

Lemma 5.28. IfX andYare local orders associated to the upper semicontinuous cone fields𝐶 and
𝐷, then the local orderX×Y is associated to the cone field𝐶 × 𝐷 (which is upper semicontinuous).
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Let 𝐺1, . . . , 𝐺𝑛 be a tuple of graphs. For each 𝑘 ∈ {1, . . . , 𝑛} we have the standard local order X̃𝐺𝑘

(Definition 5.8) and the standard cone field 𝐶𝐺𝑘
(Example 5.25) both admitting ∥𝐺𝑘 ∥ as underlying

set. As an immediate consequence of Proposition 5.26 and Lemmas 5.27 and 5.28 we have:

Theorem. The cone field 𝐶𝐺1
× · · · ×𝐶𝐺𝑛

and the local order X̃𝐺1
× · · · × X̃𝐺𝑛

are deduced from
each other through Lawson’s correspondence.

6. Execution time
The smooth model ∥𝑃∥ of a program 𝑃 (Definition 2.17) is equipped with a pseudometric
inherited from that of ∥𝐺1∥ × · · · × ∥𝐺𝑛∥; while the pseudometric of each ∥𝐺𝑖∥ is derived from
ℓ𝑖 : {arrows of 𝐺𝑖} → [𝑅,∞[ (Definitions 4.19, 4.24, and 4.37) that of ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ depends
on 𝛼 ∈ [1,∞] (Definitions 4.40 and 4.47, and Theorem 4.3). In order that the length of any directed
path on ∥𝑃∥ coincides with the execution time of its sequence of multi-instructions, we should
take 𝛼 =∞. We explain why in §6.1 and prove in §6.2 that directed paths admit piecewise affine
approximations (Theorem 6.2 and Corollary 6.10).

6.1 The parallel execution time principle
We are concerned with concurrency theory so we wish to fix the parameter 𝛼 according to the
parallel execution time principle, which states that for every multi-instruction 𝜇, if 𝑇𝑖 is the time
required by the 𝑖th process to execute the instruction 𝜇(𝑖) (for 𝑖 ∈ dom 𝜇), then the time 𝑇 required
by 𝑃 to execute 𝜇 is

𝑇 = max
{
𝑇𝑖

�� 𝑖 ∈ dom 𝜇
}
. (25)

Let us examine the consequences of this principle on the discrete model first. Following
(Haucourt, 2018, 3.4) a directed path on𝐺1 × · · · ×𝐺𝑛 is a sequence of points 𝑝0, . . . , 𝑝𝑁 satisfying
for 𝑖 ∈ {1, . . . , 𝑁}

(
pr

𝑘
(𝑝𝑖) ≠ pr

𝑘
(𝑝𝑖−1) ⇒ src(pr

𝑘
(𝑝𝑖)) = pr

𝑘
(𝑝𝑖−1) for all 𝑘 ∈ {1, . . . , 𝑛}

)
, or(

pr
𝑘
(𝑝𝑖) ≠ pr

𝑘
(𝑝𝑖−1) ⇒ pr

𝑘
(𝑝𝑖) = tgt(pr

𝑘
(𝑝𝑖−1)) for all 𝑘 ∈ {1, . . . , 𝑛}

)
with pr

𝑘
: 𝐺1 × · · · ×𝐺𝑛→𝐺𝑘 denoting the 𝑘 th projection (this definition is motivated by topological

arguments (Haucourt, 2018, Lemma 6.1)). Depending on the case, the indices 𝑖 such that pr
𝑘
(𝑝𝑖) ≠

pr
𝑘
(𝑝𝑖−1) are those of the processes that start or finish the execution of an instruction. The ‘geometric

length’ of the path 𝑝0, . . . , 𝑝𝑁 is 𝑁 , which means that each step 𝑝𝑖−1→ 𝑝𝑖 requires ‘one unit of
time’. Indeed the arrows that have appeared (in the first case), or disappeared (in the second one),
represent actions that have been executed simultaneously.

Every discrete path 𝑝0, . . . , 𝑝𝑁 induces (in the sense of (Haucourt, 2018, Definition 6.2))
a piecewise affine path on the continuous model |𝑃 | (Definition 2.9); this path is lifted to a
piecewise affine path 𝛾 on ∥𝑃∥ according to Theorem 5.3. The infinitesimal step of 𝛾 at time
𝑡 is the tangent vector 𝛾′ (𝑡) (it is required to belong to the positive cone of the tangent space
𝑇𝛾 (𝑡 ) (A1 × · · · × A𝑛) – Definition 3.29). In order to compare with the discrete case, we assume
that the scheduler is only allowed to decide whether a given process of 𝑃 is active or not, its
speed being fixed at 1. In other words we assume that 𝛾′ (𝑡) ∈ {0, 1}𝑛. Following these observa-
tions, the norm |𝑣 |∞ = max{|𝑣1 |, . . . , |𝑣𝑛 |} for 𝑣 ∈ R𝑛 (i.e. 𝛼 =∞) is the one for which the length
of any directed path corresponds to the parallel execution time of its sequence of multi-instructions.

Analogously, if we had been to measure the energy consumed along 𝑝0, . . . , 𝑝𝑁 , each step
would have contribute with the number of appearing/disappearing arrows. The parallel execution
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energy principle indeed states that given a multi-instruction 𝜇, if 𝐸𝑖 is the energy consumed by
the 𝑖th process to execute the instruction 𝜇(𝑖) (for 𝑖 ∈ dom 𝜇) then the energy 𝐸 consumed by 𝑃 to
execute 𝜇 is

𝐸 =
∑︁

𝑖∈dom 𝜇

𝐸𝑖 .

Compare to the parallel execution time principle (25). Suppose that the energy consumed by the
𝑖th process at time 𝑡 is the 𝑖th component of 𝛾′ (𝑡). Accordingly, the energy consumed along 𝛾 is
given by its length relative to the distance induced by the norm |𝑣 |1 = |𝑣1 | + · · · + |𝑣𝑛 | for 𝑣 ∈ R𝑛

(i.e. 𝛼 = 1). We observe that∫ 𝑇

0
|𝛾′ (𝑡) |1𝑑𝑡 =

∫ 𝑇

0

( 𝑛∑︁
𝑖=1
|𝛾′𝑖 (𝑡) |𝑑𝑡

)
=

𝑛∑︁
𝑖=1

( ∫ 𝑇

0
|𝛾′𝑖 (𝑡) |𝑑𝑡

)
.

The energy consumed depends less on the scheduling than the execution time does.

6.2 Piecewise affine approximations
As long as we are only interested in minimizing the length of directed paths between two points
of a tile compatible set (Definitions 2.8 and 2.11) we can restrict our attention to piecewise affine
paths (Definition 4.19): this claim is formalized in Theorem 6.2 and Corollary 6.10.

The sets |𝐺1 | × · · · × |𝐺𝑛 | and ∥𝐺1∥ × · · · × ∥𝐺𝑛∥ are equipped with their standard local orders
(Definitions 5.6 and 5.8) from which their topologies are inherited (§5.2). The pseudometrics 𝑑𝑖

on |𝐺𝑖 | and ∥𝐺𝑖∥ are given by Definitions 4.24 and 4.37. Following the previous execution time
considerations, the chosen product metric is

𝑑∞
(
(𝑝1, . . . , 𝑝𝑛), (𝑞1, . . . , 𝑞𝑛)

)
= max

{
𝑑𝑖 (𝑝𝑖, 𝑞𝑖)

�� 𝑖 ∈ {1, . . . , 𝑛}} .
Let 𝜉 : 𝐼→ 𝑋 be a path with 𝑋 subset of |𝐺1 | × · · · × |𝐺𝑛 | or ∥𝐺1∥ × · · · × ∥𝐺𝑛∥.

Definition 6.1. An 𝜀-approximation of 𝜉 on 𝑋 is a path 𝛼 : 𝐼→ 𝑋 such that:

– 𝛼 and 𝜉 have the same starting and the same finishing points,
– 𝛼 and 𝜉 are 𝜀-close, i.e. 𝑑∞(𝛼(𝑡), 𝜉 (𝑡)) < 𝜀 for every 𝑡 ∈ 𝐼,
– 𝛼 is shorter than 𝜉, and
– if 𝜉 is directed, then so is 𝛼.

Of course any path is its own 𝜀-approximation whatever 𝜀 and 𝑋 are. From now on we assume
that 𝑋 is tile-compatible; our goal is to prove that any directed path 𝜉 on 𝑋 has a piecewise affine
𝜀-approximation for arbitrarily small 𝜀 > 0. We first deal with the case where 𝑋 ⊆ |𝐺1 | × · · · × |𝐺𝑛 |,
which requires more technicalities.

Definition 6.2. The closure of a tile 𝜏 is denoted by 𝜏. The starred neighborhood N𝜏 of 𝜏 is the
union of all the tiles 𝜏′ such that 𝜏 ⊆ 𝜏′.

Lemma 6.3. The closure of the tile over 𝑝 ∈𝐺1 × · · · ×𝐺𝑛 (Definition 2.8) is the union of the tiles
over the points 𝑞 such that 𝑞𝑖 = 𝑝𝑖 or 𝑞𝑖 ∈ {src(𝑝𝑖), tgt(𝑝𝑖)} for every 𝑖 ∈ {1, . . . , 𝑛}.

Proof. It suffices to remind that the tile 𝜏 is the product 𝜏1 × · · · × 𝜏𝑛 (Definition
2.8) so 𝜏 = 𝜏1 × · · · × 𝜏𝑛. The closure of {𝑎} × ]0, ℓ(𝑎) [, for any arrow 𝑎, is the set
{𝑎} × ]0, ℓ(𝑎) [ ∪ {src(𝑎), tgt(𝑎)} (Remark 2.6).
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Lemma 6.4. Let 𝑝 ∈ |𝐺1 | × · · · × |𝐺𝑛 | and (𝑦1, . . . , 𝑦𝑛) ∈𝐺1 × · · · ×𝐺𝑛 with 𝑦𝑖 = 𝜋𝐺𝑖
𝑝 (Definition

2.3). If 𝜏 is the tile over (𝑥1, . . . , 𝑥𝑛) then we have:

– 𝑝 ∈ N𝜏 if, and only if, for every 𝑖 ∈ {1, . . . , 𝑛} we have 𝑦𝑖 = 𝑥𝑖 or 𝑥𝑖 ∈ {src(𝑦𝑖), tgt(𝑦𝑖)}, i.e.
N𝜏 = 𝐼1 × · · · × 𝐼𝑛 with 𝐼𝑘 = {𝑥𝑘} × ]0, ℓ(𝑥𝑘) [ if 𝑥𝑘 ∈𝐺 (1), and 𝐼𝑘 = 𝑆(𝑥𝑘) the star centered at 𝑥𝑘

(Definition 2.4) if 𝑥𝑘 ∈𝐺 (0).
– 𝑝 ∈ N̄ 𝜏 if, and only if, for every 𝑖 ∈ {1, . . . , 𝑛} we have 𝑦𝑖 = 𝑥𝑖 or 𝑥𝑖 ∈ {src(𝑦𝑖), tgt(𝑦𝑖)} or
𝑦𝑖 ∈ {src(𝑥𝑖), tgt(𝑥𝑖)} or there exists an arrow 𝑎 such that {src(𝑎), tgt(𝑎)} = {𝑥𝑖 , 𝑦𝑖}.

Proof. The first equivalence is an immediate consequence of Lemma 6.3. It follows that N̄ 𝜏 =

𝐼1 × · · · × 𝐼𝑛, each closure 𝐼 𝑘 being given by Remark 2.6.

Corollary 6.5. The starred neighborhood of a tile is open (in the metric topology).

Proof. It is indeed a finite product (Lemma 6.4) of open sets (Remark 2.6).

Remark 6.6. The starred neighborhood of a tile 𝜏 is actually the least tile compatible open subset
containing 𝜏.

Uniqueness of geodesics and stability under geodesics are not preserved under∞-product metric:
for example, the length of the broken line 𝛾 (on the following picture) is equal to the length of the
vertical segment from 𝑝 to 𝑞. In particular 𝛾 is a geodesic joining two points of the ball 𝐵 which
gets out of 𝐵.

𝛾

𝑝

𝑞

𝐵

Let 𝑝, 𝑞 ∈ |𝐺1 | × · · · × |𝐺𝑛 | such that 𝑑∞(𝑝, 𝑞) < 𝑅
2 . For every 𝑘 ∈ {1, . . . , 𝑛}, the unique geodesic

𝛾𝑘 on |𝐺𝑘 | from 𝑝𝑘 to 𝑞𝑘 is given by 𝑝𝑘→ 𝑞𝑘 or 𝑝𝑘→ 𝑣𝑘→ 𝑞𝑘 depending on whether we are in the
first or the second case of Lemma 4.29.

Lemma 6.7. Denote by 𝑝 the centre of a closed ball 𝐵 of radius 𝑟 < 𝑅
4 such that for every

𝑘 ∈ {1, . . . , 𝑛}, if the 𝑘 th projection 𝑝𝑘 is not a vertex, then 𝐵𝑘 contains no vertex. Then, for
every 𝑞 ∈ 𝐵 and every 𝑘 ∈ {1, . . . , 𝑛}, the shortest path from 𝑝𝑘 to 𝑞𝑘 is the dash 𝑝𝑘→ 𝑞𝑘 . The
higher dimensional dash 𝑝→ 𝑞 = (𝑝1→ 𝑞1) × · · · × (𝑝𝑛→ 𝑞𝑛) (with affine parametrization) is of
length 𝑑 (𝑝, 𝑞) and its image is contained in the union of the tiles containing 𝑝 and 𝑞 respectively.
Moreover, if 𝑝⩽𝑈𝑞 (resp. 𝑞⩽𝑈 𝑝) for some pospace 𝑈 of the standard local order X𝐺1

× · · · × X𝐺𝑛

(Definition 5.6), then 𝑝→ 𝑞 (resp. 𝑞→ 𝑝) induces (as a map) a pospace morphism with values in
𝑈, and therefore a directed path on X𝐺1

× · · · × X𝐺𝑛
.

Proof. Let 𝑞 ∈ 𝐵 and 𝑘 ∈ {1, . . . , 𝑛}. The (image of the) shortest arc 𝛼 from 𝑝𝑘 to 𝑞𝑘 (Definition
4.31) is contained in 𝐵 (the distance from any point along it to 𝑝 is less that 𝑑 |𝐺 |𝑘 (𝑝𝑘, 𝑞𝑘) < 𝑟).
The arc 𝛼 is either of the form 𝑝𝑘→ 𝑞𝑘 or 𝑝𝑘→ 𝑣𝑘→ 𝑞𝑘 for a unique vertex 𝑣𝑘 (Lemma 4.29);
however, the second form is excluded by hypothesis on 𝐵 (if 𝑝𝑘 is not a vertex then 𝐵𝑘 contains no
vertex). We have img (𝛾) \ {𝑝} ⊆ 𝜏 with 𝜏 the tile containing 𝑞 (Corollary 4.36). The last point is
an immediate consequence of Definitions 4.27 and 5.6.

Definition 6.8. An 𝜀-discretization (𝜀 > 0) of the path 𝛾 : [𝑥, 𝑦] → |𝐺1 | × · · · × |𝐺𝑛 | is a sequence
𝑥 = 𝑡0< · · · <𝑡𝑘⩽𝑦 with open balls 𝐵0, . . . , 𝐵𝑘 such that i) each 𝐵𝑖 is centered at 𝛾(𝑡𝑖), with
radius at most 𝜀, and satisfies the requirements of Lemma 6.7, ii) for every 𝑖 ∈ {1, . . . , 𝑘},
]𝑡𝑖−1, 𝑡𝑖 [ ∩ 𝛾−1(𝐵𝑖−1 ∩ 𝐵𝑖) ≠ ∅, and iii) img (𝛾) ⊆ 𝐵0 ∪ · · · ∪ 𝐵𝑘 .
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Lemma 6.9. For every 𝜀 > 0, every path on |𝐺1 | × · · · × |𝐺𝑛 | admits an 𝜀-discretization.

Proof. Suppose that dom (𝛾) = [𝑥, 𝑦] and denote by 𝑡∞ the least upper bound of the set of elements
𝑡 ∈ dom (𝛾) such that the restriction 𝛾 | [𝑥, 𝑡] has an 𝜀-discretization. Choose an open ball 𝐵∞ centered
at 𝛾(𝑡∞) with radius less than 𝜀 and satisfying the requirements of Lemma 6.7. Let 𝑡 < 𝑡∞ such that
𝛾 [𝑡, 𝑡∞] ⊆ 𝐵∞. Let 𝑡0< · · · <𝑡𝑘 ⩽ 𝑡 with open balls 𝐵0, . . . , 𝐵𝑘 be an 𝜀-discretization of the restriction
𝛾 | [𝑥, 𝑡] . Even if it means taking 𝑡 a bit bigger, we can suppose that 𝑡𝑘 < 𝑡 < 𝑡∞ with 𝛾(𝑡) ∈ 𝐵𝑘 ∩ 𝐵∞.
Then 𝑡0< · · · <𝑡𝑘 < 𝑡∞ ⩽ 𝑡∞ with open balls 𝐵0, . . . , 𝐵𝑘 , 𝐵∞ is an 𝜀-discretization of the restriction
𝛾 | [𝑥, 𝑡∞] . If we had 𝑡∞ < 𝑦 then we would have 𝑡′ ∈ ]𝑡∞, 𝑦[ such that 𝛾 [𝑡∞, 𝑡′] ⊆ 𝐵∞ so the precedent
𝜀-discretization of 𝛾 | [𝑥, 𝑡∞] would also be an 𝜀-discretization of 𝛾 | [𝑥, 𝑡′] , which would contradict the
definition of 𝑡∞.

We deduce the approximation result:

Theorem. Every path on 𝑋 admits a piecewise affine 𝜀-approximation.

Proof. Let 𝜀 > 0 and suppose that 𝑥 = 𝑡0< · · · <𝑡𝑘⩽𝑦 with open balls 𝐵0, . . . , 𝐵𝑘 is an 𝜀-
discretization of 𝛾 defined on [𝑥, 𝑦]. For every 𝑖 ∈ {1, . . . , 𝑘} choose 𝑡′𝑖 ∈ ]𝑡𝑖−1, 𝑡𝑖 [ such that
𝛾(𝑡′𝑖) ∈ 𝐵𝑖−1 ∩ 𝐵𝑖 and define 𝑡′𝑘+1 = 𝑦. We have the sequence

𝛾(𝑡0) , 𝛾(𝑡′1) , 𝛾(𝑡1) , . . . , 𝛾(𝑡′𝑘) , 𝛾(𝑡𝑘) , 𝛾(𝑦)
and for every 𝑖 ∈ {0, . . . , 𝑘} we apply Lemma 6.7 from 𝛾(𝑡′𝑖) to 𝛾(𝑡𝑖) and from 𝛾(𝑡𝑖) to 𝛾(𝑡′𝑖+1) in
the ball 𝐵𝑖 (omitting 𝛾(𝑡′0) which is not defined). The concatenation of dashes

𝛾(𝑡0) → 𝛾(𝑡′1) → 𝛾(𝑡1) → · · · → 𝛾(𝑡′𝑘) → 𝛾(𝑡𝑘) → 𝛾(𝑦)
is the expected 𝜀-approximation.

Now suppose that 𝑌 is a tile compatible subset of ∥𝐺1∥ × · · · × ∥𝐺𝑛∥.

Corollary 6.10. Every directed path on 𝑌 admits a piecewise affine 𝜀-approximation on 𝑌 .

Proof. Let 𝜉 be a directed path on 𝑌 . According to Lemma 2.14 the set 𝑋 = (𝛽1 × · · · × 𝛽𝑛) (𝑌 ) is
tile compatible. The composite (𝛽1 × · · · × 𝛽𝑛) ◦ 𝜉 is a directed path on 𝑋 which admits a (directed)
piecewise affine 𝜀-approximation 𝛼 for any 𝜀 > 0 (Theorem 6.2). The expected approximation is
the lifting of 𝛼 (Theorem 5.3).

7. Afterword
A glimpse of Finsler geometry. Finsler metrics are motivated by the observation that measuring the
length of a curve on a manifoldM only requires a way of measuring the length of tangent vectors,
see (Papadopoulos, 2013, p.40), (Chern & Shen, 2005, p.1). In this context, we call (geometric)
action functional any map 𝐹 from𝑇M to R+ such that 𝐹 (𝑥 + 𝑦) ⩽ 𝐹 (𝑥) + 𝐹 (𝑦) and 𝐹 (𝜆𝑥) = 𝜆𝐹 (𝑥)
for all 𝑝 ∈M, 𝑥, 𝑦 ∈ 𝑇𝑝M, and 𝜆 > 0. As suggested by the physical motivations described in (Bao
et. al., 2000, p.1,2), the action functional 𝐹 can be chosen so that the length of every curve 𝛾 with
respect to 𝐹 has a physical meaning. Hence minimizing length amounts to minimizing action. Any
map arising from Definition 4.46 (11) is an action functional because |_|

★
is a norm. When the

latter is |_|∞ the length of 𝛾 is the time required to execute the sequence of multi-instructions that
𝛾 represents – see §6.1, and compare to the navigation problem (Chern & Shen, 2005, 1.4).

Following this idea, a Finsler metric is a family of Minkowski norms on 𝑇𝑝M smoothly varying
with 𝑝 ∈M (Bao et. al., 2000, p.5). More formally, it is a map 𝐹 :𝑇M→ R+ which is smooth on
the slit tangent bundle (i.e. 𝑇M \ {zero tangent vectors}) and whose restrictions to tangent spaces
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are Minkowski norms (Chern & Shen, 2005, 1.2.1). These axioms are motivated by the notion
of curvature, which plays a central role in the study of both Riemannian and Finsler geometries.
Indeed, the latter are meant to generalize the former, for which the importance of curvature is
well-known (Bao et. al., 2000, Introduction).

Although our mathematical framework arises from the same motivations, technicalities rule it
out of the scope of standard Finsler geometry. First, manifolds of the form A𝐺1

× · · · × A𝐺𝑛
are

non-Hausdorff (in all relevant cases) so their topologies are not induced by their (pseudo)metrics.
This defect is related to the non-determinism specific to our topic, and it seems impossible to get rid
of it. The other issue is about the regularity of the action functional introduced in Definition 4.46
(11): it fails to be smooth on the slit tangent bundle when it is built from the norm we are interested
in, namely |_|∞ (§6.1). The reason is that the norm |_|∞ is derivative at (𝑥1, . . . , 𝑥𝑛) if, and only if,
𝑥𝑖 ≠ 𝑥𝑗 for all 𝑖 ≠ 𝑗 . About this last point, one may argue that ‘ill-behaved’ points form a neglectable
closed subset of R𝑛 (with respect to Lebesgue measure), so they may be manageable. Indeed,
the problem of finding minimum action curves in degenerate (i.e. non-smooth) Finsler metrics
is studied in Heymann (2015) whose preface indicate concrete situations in which they naturally
occur. Heymann’s theory is designed for action functional defined on R𝑛, yet we are confident that
this limitation can be easily overcome, at least for manifolds of the formA𝐺1

× · · · × A𝐺𝑛
(although

we will have to renounce uniqueness of geodesics, which is not prohibitive in computer science).
Apart from this problem, Heymann theory satisfies many desirable properties (Heymann, 2015,
p.6), in particular it applies to any action functional 𝐹 on R𝑛 that follows Definition 4.46 (11)
(Heymann, 2015, Definition 2.4). In view of applications to geometric models of concurrency, we
would like to adapt it to find directed minimizing curves.

More about Non-Hausdorff manifolds. Differential geometry (resp. topology) is really about
metrisable manifolds, which are precisely those that can be embedded into R𝑛 (Whitney’s embed-
ding theorem (Hirsch, 1976, Theorem 2.14, p.55)). Indeed, the standard tools of these two branches
of mathematics are of little help as it is about global properties of non-Hausdorff manifolds. Some
easy facts illustrate this claim.

A Hausdorff manifold is metrisable if, and only if, it satisfies any of the 119 topological
property listed in (Gauld, 2014, §2.2, p.27) (second countability and paracompactness are those
usually given in textbooks). The study of non-metrisable Hausdorff manifolds can lead to subtle
set theoretic considerations (Gauld, 2014, Chapter 6). Non-Hausdorff manifolds fail to satisfy the
most elementary results of Differential Geometry. For example they cannot be embedded in R𝑛

(because any subspace of a Hausdorff space is Hausdorff). Also, while the circle and the real line
are the only 1-dimensional metrisable manifolds (Hirsch, 1976, Exercise 6, p.20), «a reasonable
classification of non-Hausdorff manifolds seems infeasible even in dimension 1» (Gauld, 2014,
p.153).

Dealing with non-Hausdorff manifolds also has an impact on cobordism. A cobordism between
the compact 𝑛-manifolds 𝑀0 and 𝑀1 is a (𝑛+1)-manifold 𝑊 whose boundary 𝜕𝑊 is isomorphic to
the disconnected union 𝑀0 ∪𝑀1 (Hirsch, 1976, §7.1,p.169). This definition tacitly assumes that𝑊
is metrisable. In this case, two 0-manifolds (i.e. finite sets) are related by a cobordism if, and only
if, their cardinals have the same parity. Indeed, a set with 2𝑘 elements (seen as a 0-manifold) is
the boundary of the disconnected union of 𝑘 copies of [0, 1]. The only compact 1-manifold is the
circle S1, and the well-known ‘trouser manifold’ (Gauld, 1982, Figure 55, p.166) is a cobordism
between S1 and two copies of S1; therefore every compact 1-manifold is equivalent to the circle
(up to cobordism).

What if we allow the manifold 𝑊 (from the definition of cobordism) to be non-Hausdorff ?
For 𝑘 ∈ N with 𝑘 ⩾ 2 let 𝐺𝑘 be the graph with vertices {0, . . . , 𝑘} and arrows 0→ 1 and 1→ 𝑖 for
every 2 ⩽ 𝑖 ⩽ 𝑘 (see Example 2.16 for 𝑘 = 3). Provided we adapt our presentation to encompass
manifolds with boundary, the manifold associated to the standard atlas A𝐺𝑘

(Definition 3.14) is
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non-Hausdorff, connected, and its boundary has 𝑘 elements. Moreover, the product A𝐺𝑘
× S1 is a

non-Hausdorff manifold whose boundary is the disjoint union of 𝑘 copies of the circle.
A standard way to build new metrisable manifolds from existing ones is to glue them along

(certain connected components of) their boundaries (Wall, 2016, 2.7, p.63). Dealing with non-
Hausdorff manifolds allows a more drastic construction: one can glue two 𝑛-manifolds by making
them share an 𝑛-submanifold. For example, consider two copies of the segment ]0, 2[ and identify
their initial segments ]0, 1[; the resulting manifold is isomorphic to the one described in Example
2.16, see also (Baillif & Gabard, 2008, Figure 1, p.1106).

Non-Hausdorff manifolds are not much studied in mathematics, nevertheless they could play
some role in computer science, where graphs are pervasive (because, for example, automata
are based on graphs). Moreover, graphs can be seen as 1-dimensional precubical sets; Higher
Dimensional Automata (HDA) are built on precubical sets as automata are built on graphs
(Haucourt, 2016, 2.4.9, p.45). Due to their expressiveness, HDA are important in concurrency
theory van Glabbeek (2006𝑎,b), so it would be interesting to determine which precubical sets can
be blown up. The present paper already contains a partial answer: the blowup of a tensor product
of graphs 𝐺1 ⊗ · · · ⊗𝐺𝑛 (Haucourt, 2016, 2.4.12) is the atlas product A𝐺1

× · · · × A𝐺𝑛
(Definition

3.14).
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