
HAL Id: hal-04143083
https://hal.science/hal-04143083

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Time Series Classification with
Self-Supervised Learning

Ali Ismail-Fawaz, Maxime Devanne, Jonathan Weber, Germain Forestier

To cite this version:
Ali Ismail-Fawaz, Maxime Devanne, Jonathan Weber, Germain Forestier. Enhancing Time Series
Classification with Self-Supervised Learning. International Conference on Agents and Artificial Intel-
ligence (ICAART), Feb 2023, Lisbon, France. pp.40-47, �10.5220/0011611300003393�. �hal-04143083�

https://hal.science/hal-04143083
https://hal.archives-ouvertes.fr

Enhancing Time Series Classification with
Self-Supervised Learning

Ali Ismail-Fawaz1 Maxime Devanne1 Jonathan Weber1 and Germain Forestier1

1IRIMAS, Université Haute-Alsace, Mulhouse, France
{ali-el-hadi.ismail-fawaz, maxime.devanne, jonathan.weber, germain.forestier}@uha.fr

Keywords: Self Supervised, Time Series Classification, Semi Supervised, Triplet Loss

Abstract: Self-Supervised Learning (SSL) is a range of Machine Learning techniques having the objective to reduce
the amount of labeled data required to train a model. In Deep Learning models, SSL is often implemented
using specific loss functions relying on pretext tasks leveraging from unlabelled data. In this paper, we explore
SSL for the specific task of Time Series Classification (TSC). In the last few years, dozens of Deep Learning
architectures were proposed for TSC. However, they almost exclusively rely on the traditional training step
involving only labeled data in sufficient numbers. In order to study the potential of SSL for TSC, we propose
the TRIplet Loss In TimE (TRILITE) which relies on an existing triplet loss mechanism and which does not
require labeled data. We explore two use cases. In the first one, we evaluate the interest of TRILITE to boost a
supervised classifier when very few labeled data are available. In the second one, we study the use of TRILITE
in the context of semi-supervised learning, when both labeled and unlabeled data are available. Experiments
performed on 85 datasets from the UCR archive reveal interesting results on some datasets in both use cases.

This is the author’s version of an article published at ICAART 2023 conference. The final authenticated version is available
online at: https://doi.org/10.5220/0011611300003393.

1 INTRODUCTION

Time Series Classification (TSC) has been a chal-
lenging problem addressed by many researchers.
While some approaches used basic Machine Learning
techniques, more recently, the usage of Deep Learn-
ing models has been addressed for classification (Is-
mail Fawaz et al., 2019; Ismail Fawaz et al., 2020),
clustering (Lafabregue et al., 2022; Anowar et al.,
2022), averaging (Terefe et al., 2020), adversarial at-
tacks (Pialla et al., 2022b), etc. This is particularly
due to the availability of more data, especially after
the release of the UCR archive (Dau et al., 2019). The
problem at hand is to find a function that maps each
sample in the dataset to it’s corresponding label.

Trying to learn a one-to-one mapping from sam-
ples to labels can be sometimes challenging. This is
due to the lack of labeled samples a dataset includes.
Some approaches use data augmentation, (Fawaz
et al., 2018; Pialla et al., 2022a; Kavran et al., 2022)
To overcome this problem, Self-Supervised Learning
(SSL) offers a way to learn a discriminant latent space
without learning to map each sample into a label,
which is an advantage over supervised learning.

SSL is used in two main ways, either using con-
trastive loss or triplet loss. On one hand, the con-
trastive loss aims to learn how to embed a sample
and its augmented view to the same point in the latent
space. For example, it has been used on image classi-
fication (Chen et al., 2020; Grill et al., 2020) and hu-
man action recognition (Lin et al., 2020). The triplet
loss on the other hand aims to learn how to embed a
sample and its augmented representation (called pos-
itive representation) to the same point while learning
how to differ those last two from a representation of
another sample (called negative representation). The
triplet loss was introduced in (Schroff et al., 2015) for
face recognition and used for knowledge distillation
in (Liang et al., 2021; Oki et al., 2020). The dif-
ference between the two losses is the strictness. The
contrastive loss is less strict on choosing what repre-
sentations should not be close to the original, on con-
trary to the triplet loss. In other words, the contrastive
loss does not consider a negative representation, only
positive ones.

Inspired by all those applications, we are inter-
ested in adapting the SSL into the time series do-
main using the triplet loss (Schroff et al., 2015) with
our own augmentation method adapted to time se-
ries. Although in imaging we have access to large
archives such as Imagenet (Deng et al., 2009), it is

https://doi.org/10.5220/0011611300003393

not the same in the time series domain. In addi-
tion, the problem of annotating time series datasets
is more frequent than in imaging. For instance, in
imaging, for the majority of datasets, one can use
crowd-sourcing to annotate the data samples. This
approach is not that easily suitable in the time se-
ries domain, given that most of the times, it would
be difficult to differentiate between time series sam-
ples and annotate them. As a result, for time series,
usually one should refer to an expert for the annota-
tion part. To the best of our knowledge, most of the
methods that have been developed for SSL on time se-
ries evaluate their model considering fully unlabeled
data, which is usually not the case in real-world sce-
narios. In most of these work, SSL is first applied
on the data and then a 1-Nearest Neighbor (1-NN)
strategy is employed on the output representations for
the classification task. However, in real-world sce-
narios, due to the difficulty to annotate time series,
we usually are in one of these two cases: (1) only
a small annotated dataset is available or (2) a larger
dataset may be available but only a small part of it is
annotated. In both of these cases, supervised learn-
ing usually overfits quickly because the few amount
of annotated samples makes the dataset hard to learn
from. To overcome this limitation, SSL is one possi-
ble solution by learning representations of time series
without the labels information. The question that re-
mains is how to evaluate the self-supervised model?,
i.e, how can we know if the model learns meaningful
representation of input time series? In this paper we
propose a new SSL approach, TRIplet Loss In TimE
(TRILITE) and evaluate it for theses two cases. First,
we consider the case of having small annotated time
series datasets (Use case 1), which we tackle using
a self-supervised approach in combination of super-
vised learning, by concatenating the output represen-
tations in order to learn more features. This can be
considered as a booster for supervised models if the
SSL features are learned in a good way. Second, we
consider the case of having lager time series datasets
but still with few labeled samples (Use case 2), which
we tackle using a semi-supervised approach leverag-
ing unlabeled samples. This is to prove that SSL can
also take into account unlabeled data in order to learn
a more discriminant latent space and produce better
representations for the labeled samples.

The main contributions of this papers are:

• a new method of time series augmentation
adapted to the context of SSL.

• a new SSL approach based on the triplet loss in-
troduced by (Schroff et al., 2015). Usually other
methods use the contrasitve loss and we want to
assess the triplet loss’s contribution in SSL for

TSC.

• a new way of evaluating self-supervised model
which to the best of our knowledge was not em-
ployed before. Here we showed that with the
help of self-supervised combined with supervised
learning we can achieve better performance than
supervised learning alone on some datasets.

The rest of the paper is organized as follows: in
section 2 we introduce some related work on SSL
for time series, in section 3 we explain in details our
method, in section 4 we evaluate our self-supervised
model on the UCR archive (Dau et al., 2019) and we
finish with a conclusion in section 5.

2 Related work

2.1 Self-Supervised Learning

SSL for time series was addressed in two main
ways, using contrastive learning and triplet loss.
It was first addressed for univariate time series
in (Franceschi et al., 2019). The authors used a triplet
loss to make the model learn how to differentiate be-
tween the latent representations of an anchor time se-
ries, a positive representation of it and several neg-
ative representations. The authors used an unsuper-
vised way to generate their triplets motivated by the
problem of variable length time series. While their
anchor time series is a sub-sequence of a chosen sam-
ple, the positive representation is defined as a sub-
sequence of the anchor and the negative representa-
tion as a sub-sequence of a randomly selected sample.
The advantage of their approach is the insensitivity to
variable length time series. Its disadvantage is that
it does not perturb the positive representations, hence
it facilitates the learning task. This is due to the re-
semblance between the reference time series and its
positive representation.

On the other hand, in (Wickstrøm et al., 2022),
the authors addressed the mixing up proposal between
two time series. They used a contrastive learning ap-
proach to predict the amount of mixing up from two
different time series in order to learn representations
in the latent space.
For each pair of input time series randomly sampled,
they create a third sample mixed up from it. This
method overcomes the lack of perturbation added to
the time series in (Franceschi et al., 2019) but to the
best of our knowledge was never tested using a triplet
loss.

Originally, in (Schroff et al., 2015), the authors
introduced the SSL world with the triplet loss which

was motivated from the Siamese network. The au-
thors applied it for face detection using positive and
negative examples of the reference image. This in-
duces into the network not only features of the ref-
erence image but also similarities and dissimilarities
with other images. This was motivated by the lack of
available samples.

Differently, the authors of (Yang et al., 2022) pro-
posed an adaptation of SimCLR (Chen et al., 2020)
but with taking into consideration the temporal depen-
dencies between data points in time series.

In addition, some authors contribute in SSL for
Multivariate Time Series (MTS), like in (Chen et al.,
2022) where the authors constructed a channel-aware
self-supervised model using a transformer encoder for
MTS. Taking into consideration both channel-wise
and time-wise features by training two encoders, one
to find the similarity using the contrastive loss and the
other to predict the next trend. Another contribution
was made in SSL for MTS in (Mohsenvand et al.,
2020) where the authors introduced SeqCLR which
was an adaptation of SimCLR (Chen et al., 2020).
The authors worked on SSL for electroencephalogram
classification where they faced two problems. The
first was the lack of data and the second was what
the type of data augmentation they should use for the
contrastive learning.

Distinctively, some work addressed the dimen-
sionality reduction problem like in (Garg, 2021). The
authors used an autoencoder where their encoder and
decoder were adapted from a LeNet (LeCun et al.,
1998) trained on both the reconstruction loss at the
output of the decoder and the triplet loss (Schroff
et al., 2015) using the triplets generated in the bot-
tleneck layer.

Moreover, the authors in (Eldele et al., 2021) sug-
gested a method based on temporal and contextual
contrastive learning using transformers. First they
suggested using two different augmentations for the
same input time series and feed them to a Siamese
network with a FCN encoder. This was followed by
a transformer to learn cross-view prediction task of
time steps while maximizing similarities between two
predictions from different views. This was to help
with the forecasting part of the model but at the same
time apply contrastive learning on the two predicted
representations.

In addition, a review (Lafabregue et al., 2022) on
deep representation learning for time series cluster-
ing sets the benchmark of clustering techniques on
the UCR archive (Dau et al., 2019). The authors var-
ied between which architecture to use, which clus-
tering loss and pretext loss to use. One of the pre-
text loss in this review was the triplet loss proposed

in (Franceschi et al., 2019). The clustering loss is ap-
plied on the latent representations.

2.2 Deep learning methods for Time
Series Classification

Deep learning for TSC has been a very targeted
domain in the past few years. In (Ismail Fawaz
et al., 2019), a comparison was made between differ-
ent architectures starting from Multi Layer Perceptron
(MLP) to end up with ResNet (Wang et al., 2017).
It was shown in (Ismail Fawaz et al., 2019) how the
use of convolution networks like Fully Convolutional
Network (FCN) (Wang et al., 2017) and residual con-
nections (ResNet) (He et al., 2016) are significantly
better than other approaches. Some work (Mercier
et al., 2022) also analyse the explanation of con-
volution classifiers for time series. More recently,
the InceptionTime (Ismail Fawaz et al., 2020) model
showed a significant difference in performance by
concatenating the output of many convolution lay-
ers with different characteristics instead of tuning on
one convolution layer. This creates several receptive
fields for the model to learn from. In addition, knowl-
edge distillation techniques (Hinton et al., 2015) have
been adapted for Time Series Classification (Ay et al.,
2022) where the authors transfer the knowledge from
a FCN to a smaller convolution neural network.

In our case, we are interested in evaluating the
contribution of the triplet loss in the case of TSC.
Hence we chose a simple FCN architecture as a back-
bone of our TRILITE model detailed in the next sec-
tion.

3 Triplet Loss In Time

3.1 Definitions

Before describing the model, we define some impor-
tant terms used in the rest of the paper.

Time series. A time series is a sequential data rep-
resentation of an event changing over time in an
equally separated manner. We define a univariate time
series as X = [x1,x2, ...,xL], L being the number of
time steps of this time series. A batch X = {X}N

1 is
set of N time series of length L.

Representations. An anchor time series is referred
to as re f , a positive representation of the anchor as
pos and a negative representation of the anchor as neg.

Triplet LossEncoder

ref

pos

neg

Figure 1: Overview of our TRILITE model.

Metrics. A distance between 2 representations
d(., .) is referred to the Euclidean distance between
2 vectors.

3.2 Model

Our proposed TRILITE model is composed of three
encoders with weights shared between them. It cor-
responds to one encoder fed by the triplets generated
as it can be seen in Figure 1. In our case, the encoder
architecture is the FCN from (Wang et al., 2017) and
implemented in (Ismail Fawaz et al., 2019). However,
we remove the classification layer as we are consider-
ing a self-supervised case. Each triplet’s sample re f ,
pos and neg are passed through the model to obtain
the latent representation re fl , posl and negl . These
latent representations are of size 128.

3.3 Triplet Loss

Inspired by (Schroff et al., 2015) where triplet loss
was used for face recognition, we propose to use a
similar loss for the case of time series. The triplet
loss for a given triplet is defined as:

Loss=max(0,α+d(re fl , posl)−d(re fl ,negl)). (1)

The goal of this loss is to increase the distance be-
tween the re fl and negl but to decrease the distance
between re fl and posl . In order to relax this mini-
mization problem, an α hyperparameter is added to
control the margin between these two distances. As a
result we can identify 3 types of triplets as shown in
Figure 2:

• Easy triplet: The Loss = 0 because
d(re fl , posl)+α < d(re fl ,negl)

• Hard Triplet: The negl is closer to the re fl than
posl , d(re fl ,negl)< d(re fl , posl)

• Semi-Hard Triplet: The case is good
d(re fl , posl) < d(re fL,negl) but we got a
positive loss

m
ar

gin
 α

semi-hard negatives

easy negatives

hard negatives

ref

neg

neg
neg

pos

Figure 2: Schema of the relaxed spaced controlled by the
margin α

.

We note that if α = 0, only two triplets can be de-
fined, the easy triplets and the hard triplets. Using
only easy triplets would overfit the model and using
only the hard triplets would underfit the model. This
motivates the use of the hyperparameter α to create
the in-between space of semi-hard triplets. In addi-
tion, in 1, the max operation in the loss aims to trans-
form the problem into a convex one.

3.4 Triplet generation

In order to generate triplets i.e.pos and neg generated
from re f , two main approaches have been proposed.
In (Wickstrøm et al., 2022) a mixing up strategy is
employed. In (Franceschi et al., 2019) a masking ap-
proach is used. In this work, our triplet generation ap-
proach consists of combining both methods into one,
as detailed in Algorithm 1. First, a pos is created us-
ing a weighted sum of three time series, the re f in-
cluded. For the neg, the same process is applied ex-
cept that the re f is not included in the weighted sum.
We limit the number of mixed up samples to three to
ensure that each sample can contribute in a significant
manner. This generation process is summarized in the
following equations:

pos = w∗ re f +
1−w

2
∗ (ts1 + ts2) (2)

neg = w∗ ¯re f +
1−w

2
∗ (ts1 + ts2) (3)

In 2 and 3, ts1 and ts2 are randomly selected time
series different from the re f . Moreover the contribu-
tion weight w is randomly selected between 0.6 and
1.0. This ensures the pos has more contribution com-
ing from the re f than ts1 and ts2.

Second, a mask is generated with a random length
and applied on the pos and the neg. We employed the
masking strategy to simplify the training procedure
by learning parts of the representations instead of the
whole representations.

Third, the unmasked parts of the time series is re-
placed by a random Gaussian noise. A visualization
of the pos sample generation can be seen in Figure 3.

We note that during training, the triplet generation
is done in an online way at each epoch in order to
make the model generalize better.

Algorithm 1 Triplet Generation

1: Input: data
2: shuffle(data)
3: N← data.shape[0] . Number of samples in data
4: l← data.shape[1] . Length of input samples
5: w← random(0.6,1) . The amount of mixing up

contribution
6: for i : 0→ N do
7: re f [i]← data[i]
8: ts1← random sample(data)
9: ts2← random sample(data)

10: pos[i]← w.re f [i]+ (1−w
2).(ts1 + ts2)

11:
12: ts1← random sample(data)
13: ts2← random sample(data)
14: ts2← random sample(data)
15: neg[i] = w.ts1 +(1−w

2).(ts2 + ts3)
16:
17: pos[i],neg[i]←Mask(pos[i],neg[i])
18: end for
19: pos← Znormalize(pos)
20: neg← Znormalize(neg)
21: return re f , pos,neg

Algorithm 2 Mask

1: Input: x,y
2: Output: x,y
3: l← len(x)
4: start← random randint(0, l−1)
5: stop← random randint(start+ l−1−start

10 ,start+
l−1−start

2.5)
6: x[0 : start]← noise
7: x[stop+1 :]← noise
8: y[0 : start← noise
9: y[stop+1 :]← noise

10: return x,y

4 Experimental Evaluations

In this section we evaluate the proposed model con-
sidering the two use cases identified in Section 1.

4.1 Datasets and implementation details

We based all of our experiments on the UCR
archive (Dau et al., 2019) which is the largest open
source archive for TSC. We used the 2015 version
of the UCR archive made of 85 univariate time se-
ries. We z-normalized the datasets before applying
our TRILITE model. All of the results are averaged
on five runs. We used the Adam optimizer with an
initial learning rate of 10−3. For the choice of the
hyperparameter α, we tried to tune it on the set of
values {10−6,10−5,10−4,10−3,10−2,10−1}. We ob-
served, by visualizing the latent representations, that
when we change the value of α the model changes
the scale of the representations. By this change of
scale, the type of the triplet (as explained in Sec-
tion 2) would not change. After this observations
we fixed the value of α to 10−2 tuned on a sub-
set of the UCR archive. We trained the model for
1000 epochs with a batch size of 32. For the evalu-
ation on the test set, we used the last model. We did
the experiments on a NVIDIA GeForce GTX 1080
with 8GB of memory. The code is publicly available
https://github.com/MSD-IRIMAS/TRILITE.

4.2 Use case 1: Small annotated time
series datasets

To address this first case where a small annotated time
series dataset is available, we compared the TRILITE
model, followed by a fully connected layer with soft-
max activation (denoted as TRILITE 1-LP), with the
single FCN. The Win-Tie-Loss visualization is re-
ported in Figure 4. We can observe that not sur-
prisingly, the supervised model outperforms the self-
supervised one. However, for some datasets we can
see that self-supervised features allow to improve the
classification accuracy (blue points). This motivated
us to evaluate the contribution of self-supervised fea-
tures in a supervised problem. In order to do that we
simply concatenate the latent representations of the
self-supervised TRILITE model (of size 128) and the
latent representations of the supervised FCN model
(of size 128) for the train and test sets. Then, these
concatenated features are fed to a classifier, a one
fully connected layer with a softmax activation. We
compare this approach, denoted as TRILITE+FCN,
with the single FCN and the single TRILITE mod-
els. For each model we compute the classification
accuracy and rank them accordingly on each dataset.
Ranking results are reported in Table 1 and visual-
ized in the Critical Difference Diagram in Figure 6.
These results show that the TRILITE+FCN approach
occurs at the first rank position more often than the

MixUp

Mask

mixed information

Masking
interval

ref TS1 TS2

pos
pos masked

Figure 3: A pos (in orange) is built from three time series including the re f (in blue). The resulting time series is close to
the re f except some areas as highlighted in the red circle. A mask is then applied on the mixed up pos to generate the final
sample (in green), where the unmasked parts are replaced by a Gaussian noise.

Table 1: Ranking each method on the 85 UCR archive
datasets

Method Rank 1 Rank 2 Rank 3
TRILITE 1-LP 8 4 73

FCN 37 37 11
TRILITE+FCN 40 44 1

single FCN model. This is emphasized in the Win-
Tie-Loss comparison in Figure 5. We can see that the
TRILITE+FCN approach is never worse than the sin-
gle FCN in a significant manner. This is due to the
fact that supervised features can not get perturbed by
the SSL features. In the worst case scenario, the linear
classifier can learn to reject the SSL features in case
they were perturbing the classification. In addition, on
average, the difference in accuracy is 3.73+−9.94
when TRILITE+FCN wins. Conversely, the differ-
ence in accuracy is only 0.64+−0.7 when the single
FCN wins. This shows that SSL produces features
different than the ones produced by supervised learn-
ing. As a result, the concatenation of both features
allows to improve the classification performance.

This suggests that the self-supervised model is
able to discriminate between classes even if it was not
it’s main objective during training. To emphasize this,
we employed T-distributed Stochastic Neighbor Em-
bedding (TSNE) (Van der Maaten and Hinton, 2008)
to visualize a two-dimensional space representing the
raw data and the self-supervised features (Figure 7)
for the SyntheticControl dataset of the UCR archive.
In the later figure, we can clearly identify distinct and
compact clusters representing the classes.

0 20 40 60 80 100

FCN

0

20

40

60

80

100

T
R

IL
IT

E
 1

-L
P

TRILITE 1-LP VS FCN

Loss 73

Win 12

Tie 0

FCN is
better here

TRILITE 1-LP
is better here

Figure 4: TRILITE with 1-LP VS supervised FCN

0 20 40 60 80 100

FCN

0

20

40

60

80

100

T
R

IL
IT

E
+

FC
N

TRILITE+FCN VS FCN

Loss 38

Win 39

Tie 8

TRILITE+FCN
is better here

FCN is
better here

Figure 5: Concatenation with 1-LP VS supervised FCN

4.3 Use case 2: Partially annotated time
series datasets

In this second case where, we consider a semi-
supervised scenario where only a part of the data is
labeled. We aim to evaluate how SSL can overcome
this lack of labels. To do that we follow these differ-
ent steps supposing that only 30% of the training set
is labeled:

123

2.7647

1.6471FCN

1.5882

TRILITE+FCN
TRILITE 1-LP

Accuracy

Figure 6: Average rank mean of the three methods on 84
datasets of the UCR archive.

30

20

10

0

-10

-20

20151050-5-10-15

-15

-5

0

5

15

10

0 10 20

TSNE on raw samples TSNE on latent representation

Class -1.0-

Class -2.0-

Class -3.0-
Class -4.0-

Class -5.0-
Class -6.0-

-10

-20 -10

Figure 7: TSNE representation on the SyntheticControl
dataset on raw samples and TRILITE latent representation.

1. Self-supervised training. We obtain self-
supervised latent representations by training our
TRILITR model:

(a) experiment 1: only on the labeled subset.
(b) experiment 2: on the whole training set.

2. Supervised learning. We feed the latent represen-
tations of the labeled set (either 1a or 1b) to a
Ridge classifier (Peng and Cheng, 2020).

3. Evaluation. The trained classifier is evaluated on
the test set.

To not be dependent on a single labeled subset, these
steps are repeated over 25 runs and the average ac-
curacy is computed. For each run, the same labeled
subset is used for both experiments The Win-Tie-Loss
comparison between experiments 1 and 2 is shown in
Figure 8.

We can see that experiment 2 obtains more wins
than experiment 1. In addition, on average, the differ-
ence in accuracy when experiment 2 wins is 2.12+
−2.13. On the contrary when experiment 1 wins, the
difference in accuracy is on average of 1.17+−1.21.
This shows that SSL can learn a more meaningful la-
tent representation when taking into consideration the
labeled and unlabeled subsets.

5 Conclusion

The difficulty to annotate time series data often results
in a lack of labeled data, and thus complicates the
training of supervised TSC models. In this paper, we
proposed a Self-Supervised approach for TSC in or-
der to address this problem. In particular, trough two
use cases, we evaluated how Self-Supervised Learn-
ing can be employed in combination with supervised

0 20 40 60 80 100

Experiment 1

0

20

40

60

80

100

E
x
p
e
ri

m
e
n
t

2

Experiment 1 VS Experiment 2

Loss 29

Win 56

Tie 0

Experiment 1
is better here

Experiment 2
is better here

Figure 8: Comparison of experiment 1 (1a) and experiment
2 (1b). In experiment 1, the TRILITE model is trained only
on the labeled subset (30% of the data). On the contrary, in
experiment 2, the TRILITE model is trained on the whole
train set. The evaluation is done on the whole test set.

learning to enhance TSC performances. First, we
consider the case of small annotated datasets. We
showed that with the help of self-supervision, the per-
formance of supervised learning can be improved in
some cases. Second, in a case partially annotated
datasets, we showed that Self-Supervised Learning
can also be a complement to learning supervised mod-
els only on labeled data. Hence, these experimental
results demonstrated that our SSL approach allows
to capture meaningful features that are complemen-
tary to features captured in supervised models. The
main problem we faced is how to evaluate the self-
supervised models, which architecture to use, which
data augmentation to apply and which loss to mini-
mize. Furthermore, we aim to study the impact of
each hyperparameter on the problem at hand when us-
ing Self-Supervised Learning.

ACKNOWLEDGEMENTS

This work was supported by the ANR DELEGATION
project (grant ANR-21-CE23-0014) of the French
Agence Nationale de la Recherche. The authors
would like to acknowledge the High Performance
Computing Center of the University of Strasbourg
for supporting this work by providing scientific sup-
port and access to computing resources. Part of the
computing resources were funded by the Equipex
Equip@Meso project (Programme Investissements
d’Avenir) and the CPER Alsacalcul/Big Data. The
authors would also like to thank the creators and
providers of the UCR Archive.

REFERENCES

Anowar, F., Sadaoui, S., and Dalal, H. (2022). Cluster-
ing quality of a high-dimensional service monitoring
time-series dataset. In ICAART (2), pages 183–192.

Ay, E., Devanne, M., Weber, J., and Forestier, G. (2022).
A study of knowledge distillation in fully convolu-
tional network for time series classification. In Int.
Joint Conference on Neural Networks (IJCNN).

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020).
A simple framework for contrastive learning of visual
representations. In Int. conference on machine learn-
ing, pages 1597–1607. PMLR.

Chen, Y., Zhou, X., Xing, Z., Liu, Z., and Xu, M. (2022).
Cass: A channel-aware self-supervised representation
learning framework for multivariate time series classi-
fication. In Int. Conference on Database Systems for
Advanced Applications, pages 375–390. Springer.

Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu,
Y., Gharghabi, S., Ratanamahatana, C. A., and Keogh,
E. (2019). The ucr time series archive. IEEE/CAA
Journal of Automatica Sinica, 6(6):1293–1305.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.

Eldele, E., Ragab, M., Chen, Z., Wu, M., Kwoh, C. K.,
Li, X., and Guan, C. (2021). Time-series representa-
tion learning via temporal and contextual contrasting.
arXiv preprint arXiv:2106.14112.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., and
Muller, P.-A. (2018). Data augmentation using syn-
thetic data for time series classification with deep
residual networks. arXiv preprint arXiv:1808.02455.

Franceschi, J.-Y., Dieuleveut, A., and Jaggi, M. (2019). Un-
supervised scalable representation learning for multi-
variate time series. Advances in neural information
processing systems, 32.

Garg, Y. (2021). Retrim: Reconstructive triplet loss for
learning reduced embeddings for multi-variate time
series. In 2021 Int. Conference on Data Mining Work-
shops (ICDMW), pages 460–465. IEEE.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P.,
Buchatskaya, E., Doersch, C., Avila Pires, B., Guo,
Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your
own latent-a new approach to self-supervised learn-
ing. Advances in Neural Information Processing Sys-
tems, 33:21271–21284.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling
the knowledge in a neural network.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data mining and knowledge
discovery, 33(4):917–963.

Ismail Fawaz, H., Lucas, B., Forestier, G., Pelletier, C.,
Schmidt, D. F., Weber, J., Webb, G. I., Idoumghar, L.,
Muller, P.-A., and Petitjean, F. (2020). Inceptiontime:
Finding alexnet for time series classification. Data
Mining and Knowledge Discovery, 34(6):1936–1962.

Kavran, D., Zalik, B., and Lukac, N. (2022). Time series
augmentation based on beta-vae to improve classifica-
tion performance. In ICAART (2), pages 15–23.

Lafabregue, B., Weber, J., Gançarski, P., and Forestier, G.
(2022). End-to-end deep representation learning for
time series clustering: a comparative study. Data Min-
ing and Knowledge Discovery, 36(1):29–81.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Liang, Y., Pan, Y., Lai, H., Liu, W., and Yin, J. (2021).
Deep listwise triplet hashing for fine-grained image
retrieval. IEEE Transactions on Image Processing.

Lin, L., Song, S., Yang, W., and Liu, J. (2020). Ms2l: Multi-
task self-supervised learning for skeleton based action
recognition. In Proceedings of the 28th ACM Int. Con-
ference on Multimedia, pages 2490–2498.

Mercier, D., Bhatt, J., Dengel, A., and Ahmed, S. (2022).
Time to focus: A comprehensive benchmark us-
ing time series attribution methods. arXiv preprint
arXiv:2202.03759.

Mohsenvand, M. N., Izadi, M. R., and Maes, P. (2020).
Contrastive representation learning for electroen-
cephalogram classification. In Machine Learning for
Health, pages 238–253. PMLR.

Oki, H., Abe, M., Miyao, J., and Kurita, T. (2020). Triplet
loss for knowledge distillation. In 2020 Int. Joint
Conference on Neural Networks (IJCNN), pages 1–7.
IEEE.

Peng, C. and Cheng, Q. (2020). Discriminative ridge ma-
chine: A classifier for high-dimensional data or imbal-
anced data. IEEE Transactions on Neural Networks
and Learning Systems, 32(6):2595–2609.

Pialla, G., Devanne, M., Weber, J., Idoumghar, L., and
Forestier, G. (2022a). Data augmentation for time
series classification with deep learning models. In
Advanced Analytics and Learning on Temporal Data
(AALTD), page undefined. undefined.

Pialla, G., Fawaz, H. I., Devanne, M., Weber, J., Idoumghar,
L., Muller, P.-A., Bergmeir, C., Schmidt, D., Webb,
G., and Forestier, G. (2022b). Smooth perturbations
for time series adversarial attacks. In Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, pages 485–496. Springer.

Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
Facenet: A unified embedding for face recognition
and clustering. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
815–823.

Terefe, T., Devanne, M., Weber, J., Hailemariam, D., and
Forestier, G. (2020). Time series averaging using
multi-tasking autoencoder. In 2020 IEEE 32nd Int.
Conference on Tools with Artificial Intelligence (IC-
TAI), pages 1065–1072. IEEE.

Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(11).

Wang, Z., Yan, W., and Oates, T. (2017). Time series clas-
sification from scratch with deep neural networks: A
strong baseline. In 2017 Int. joint conference on neu-
ral networks (IJCNN), pages 1578–1585. IEEE.

Wickstrøm, K., Kampffmeyer, M., Mikalsen, K. Ø., and

Jenssen, R. (2022). Mixing up contrastive learning:
Self-supervised representation learning for time se-
ries. Pattern Recognition Letters, 155:54–61.

Yang, X., Zhang, Z., and Cui, R. (2022). Timeclr: A self-
supervised contrastive learning framework for univari-
ate time series representation. Knowledge-Based Sys-
tems, page 108606.

