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Université de Pau et des Pays de l’Adour, France, E-mail:

cherif.amrouche@univ-pau.fr
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Abstract

We consider a toy model with the Prandtl mixing lenght as eddy viscosity, that
vanishes at the boundary, and a Navier like friction law as boundary condition. We ad-
dress the paradox of the degeneracy of the boundary condition, which we approach by
a problem of singular perturbations. We show a convergence theorem for well-prepared
source terms, and we illustrate our analysis with a series of analytical examples, show-
ing blow up cases and convergence cases for well-prepared data.
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1 Introduction

The two main characteristics of a turbulence model for the simulation of a fluid in the
vicinity of a wall are the turbulent viscosity and the condition of friction at the wall,
often called the wall law. In many cases, the turbulent viscosity νturb is proportional to
a power of the mixing length %, which is of the order of the distance from the wall in
many physical models. If we consider that molecular diffusion is negligible compared to
turbulent diffusion, we are led to write as wall law, where Γ denotes the boundary of the
flow domain Ω, uτ the tangential fluid velocity at Γ:

(1.1) νturb
∂uτ
∂n

= f(uτ ).

Obviously this doesn’t make much sense because νturb is zero over Γ according to the
above, which would mean that ∂uτ

∂n is infinite over Γ, unless f(uτ ) vanishes, so far f
satisfies appropriate conditions (see in [3]). This means that no friction occurs in some
sense when f vanishes only at 0 such as f(w) = CDw|w|, and we are left with a no
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slip boundary condition. This is an old debate. The paradox here is that in a classical
variational formulation, we will formally have a term of the form∫

Γ
f(uτ ) · vτ

which is totally well defined, even if uτ 6= 0 at Γ.
Following J.-L. Lions [5], it is natural to introduce a problem of singular perturbations
to understand this paradox. In particular in this present case, we are led to consider
a viscosity of the form νturb + ε, ε > 0, which amounts to reconsidering the molecular
viscosity, and to asking the question of the limit problem when ε→ 0.
We study in this paper a toy model, considering only the tangential velocity denoted u,
f(u) = u, νturb(x) = %(x), and only a diffusion term with a source term. Therefore, the
singular pertubation problem we consider is the following:

(1.2)

{ −div((%+ ε)∇u) = f over Ω,

−ε∂u
∂n

= u at Γ,

where Ω ⊂ IRN (N ≤ 3) is a C2-domain and % is given by (2.1) below. We show in this
paper that when the source term satisfies appropriate compatibility conditions, then it is
possible to pass to the limit in this problem in a certain sense. Then we provide several
analytical examples of blowing up cases for not well prepared data, as well as examples
as for well prepared data, for which convergence holds. In all these positive examples we
find u = 0 at Γ when passing to the limit, which we are not able to prove theoreticaly at
the time being.

2 Limit problem

2.1 Well prepared source term and energy balance

2.1.1 Mixing lenght

We assume that % : Ω→ IR a C2 ∩W 2,∞ function that satisfies

(2.1) lim
d(x,Γ)→0
x∈Ω

%(x)

d(x,Γ)
= 1, inf

d(x,Γ)≥ 1
n

x∈Ω

%(x) > 0,

In what follows, we set

(2.2) %ε = %+ ε

2.1.2 Well prepared source term

We take as a source term f ∈ C0(Ω) ∩ L∞(Ω) such that

(2.3)

∫
Ω
f = 0.

Let g ∈ C1(Ω) be the unique solution to

(2.4)

{
divg = f in Ω,
g · n = 0 on Γ.
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Notice that g does exist and is unique up to the constants, by the compatibility condition
(2.3) (see in [4]).
We assume that there exists a constant C such that for all ε > 0 one has

(2.5)

∫
Ω

|g|2

%ε
≤ C.

The reason for this choice will be clear in what follows.

2.1.3 Energy balance

Assume that (2.3), (2.4) and (2.5) hold. We say that u ∈ H1(Ω) is a weak solution to
(1.2) if ∀v ∈ H1(Ω), we have

(2.6)

∫
Ω
%ε∇u · ∇v +

∫
Γ
uv =

∫
Ω
fv.

Lemma 2.1. Problem (1.2) has a unique weak solution u ∈ H1(Ω). In addition, u ∈
C2(Ω) and we have

(2.7)

∫
Ω
%ε|∇u|2 +

∫
Γ
|u|2 ≤

∫
Ω

|g|2

%ε
≤ C.

Proof. Given ε > 0, the existence and the uniqueness of a weak solution to Problem (1.2)
is straighforward by Lax-Milgram Theorem. To check the regularity, write

(2.8) −∆u =
1

%ε
(∇%ε · ∇u+ f) .

In a first analysis, we see that the r.h.s is in L2, then u ∈ H2(Ω) (see in [1]). Therefore,
the r.h.s is in C0(Ω) when N = 2, hence u ∈ C2(Ω). When N = 3, we get u ∈W 2,6, then
∇u ∈ C0, hence u ∈ C2(Ω) since ∇%ε ∈ C0.
We now check the energy balance (2.7), which explains why (2.5). Take u as test function.
By the particular choice of the source term, we have

(2.9)

∣∣∣∣∫
Ω
uf

∣∣∣∣ =

∣∣∣∣−∫
Ω
g · ∇u

∣∣∣∣ ≤ (∫
Ω

|g|2

%ε

) 1
2
(∫

Ω
%ε|∇u|2

) 1
2

.

Estimate (2.7) follows from standard calculus.

2.2 Functional space

We equip C1(Ω) with the norm

(2.10) ||u||1,% =

(∫
Ω
%|∇u|2 +

∫
Γ
|u|2
) 1

2

.

Let W be the completion of C1(Ω) for the norm || · ||1,%.

Theorem 2.1. The space W is isomorphic to a close subspace of

(2.11) Z = (H1/2(Ω)/IR)× L2(Γ).
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Proof. We equip the space Z with the natural product norm. We know that if
√
%∇u ∈

L2(Ω)N , then u ∈ H1/2(Ω)/IR (see in [2] for instance). Therefore

(2.12) ψ :

{
W → Z
u → (u, tru),

is an isomorphim from W to Imψ which is closed in Z.

2.3 Passing to the limit: main result

We still assume that (2.3), (2.4) and (2.5) hold. We study in this section how to pass to
the limit when ε→ 0. We still denote by ψ the isomorphism defined by (2.12). We assume
in addition that Ω is bounded. Our main result is the following.

Theorem 2.2. Let u = uε be the solution of Problem (1.2) for a given ε > 0. Then there
exists (εn)n∈IN that converges to 0, u ∈ W , such that (uεn)n∈IN weakly converges in W to
u, that satisfies ∀ v ∈W ,

(2.13)

∫
Ω
%∇u · ∇v +

∫
Γ
uv =

∫
Ω
fv

Proof. Let uε be the solution of Problem (1.2) for a given ε > 0. It verifies the estimate
(2.7), i.e1 ∫

Ω
%ε|∇uε|2 +

∫
Γ
|uε|2 ≤ C,

which yields

(2.14) ε

∫
Ω
|∇uε|2 ≤ C

and
‖uε‖W ≤ C.

Therefore, there exists (εn)n∈IN that converges to 0, u ∈ W , such that (uεn)n∈IN weakly
converges to u in W . It remains to check what variational problem is satisfied by u. From
the weak convergence in W we deduce that ∀ v ∈W ,

(2.15)

∫
Ω
%∇uεn · ∇v +

∫
Γ
uεnv −→n→∞

∫
Ω
%∇u · ∇v +

∫
Γ
hv.

Since uεn ∈ C2(Ω) is a weak solution to (1.2), we have ∀ v ∈ C1(Ω),

(2.16)

∫
Ω
%εn∇uεn · ∇v +

∫
Γ
uεnv =

∫
Ω
fv.

In particular,

(2.17)

∫
Ω
%εn∇uεn · ∇v = εn

∫
Ω
∇uεn · ∇v +

∫
Ω
%∇uεn · ∇v.

We deduce from (2.14)

(2.18)
εn

∣∣∣∣∫
Ω
∇uεn · ∇v

∣∣∣∣ ≤ εn‖∇uεn‖L2‖∇v‖L2

≤ √εn
√
C‖∇v‖L2 →

n→∞
0,

hence (2.13) by (2.15), (2.18) and the density of C1(Ω) in W .
1C denotes any generic constant
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3 1D case example

3.1 Example of convergence

We seek for u = u(z) : [0, 1]→ IR, solution of

(3.1)


−((z + ε)u′)′ = 1 over ]0, 1[,
εu′(0) = u(0) = u0,
−(ε+ 1)u′(1) = u(1) = u1

In this 1D case, Ω = [0, 1], Γ = {0, 1}, %(z) = z, f = div%. Notice that %(z) = d(z, 0),
and is not of order of d(z,Γ). It is just the distance to the ground, which is a case slightly
different from the general case studied in section 2.3, which does not change much in our
study and our conclusions. In particular (2.5) is satisfied. We observe that one can pass
to the limit, and that the limit u given by (3.6) below satisfies u(0) = 0. However, u′ is
singular since it a Dirac mass at 0. In what follows we develop the analytical calculations.

By integrating the equation over [0, z], we get

−(z + ε)u′(z) + εu′(0) = z,

which yields by using the boundary condition:

(3.2) u′(z) =
u0 − z
z + ε

=
u0 + ε

z + ε
− 1,

that we integrate once again over [0, z] to get,

(3.3) u(z) = (u0 + ε) ln

(
z + ε

ε

)
− z + u0.

In oder to close the formula, we use the second boundary condition at z = 1. By (3.3) we
have on one hand:

(3.4) u1 = (u0 + ε) ln

(
1 + ε

ε

)
− 1 + u0,

and on the other hand by (3.2),

u′(1) =
u0 − 1

1 + ε
= − u1

(1 + ε
),

giving
u1 = 1− u0,

which, combined with (3.4) yields

u0 =
2 + ε ln

(
ε

1+ε

)
2− ln

(
ε

1+ε

) ∼
ε→0
− 2

ln ε
→
ε→0

0,

and for z > 0,

(3.5) u(z) ∼
ε→0
−2 ln(z + ε)

ln ε
+ 2− z,
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and therefore the limit as ε→ 0 is the discontinous function

(3.6)

{
u(z) = 2− z z > 0,
u(0) = 0,

which solves the boundary problem

(3.7)


−(z u′)′ = 1 over ]0, 1[,
u(0) = 0
u(1) = 1.

4 Case of the Disk

We assume in this section that the domain Ω is the unit ball IB(0, 1) ⊂ IR2. What is
convenient in this geometry is the fact that one can look for radial solutions as long as the
source f is radial. In particular, the function % is given by

(4.1) %(r) = 1− r.

The equation gets:

(4.2) − ∂uε
∂r

+ (1− r + ε)

(
∂2uε
∂r2

+
1

r

∂uε
∂r

)
= f(r).

4.1 Homogeneous equation

We start with the corresponding homogeneous equation is

(4.3)
∂2uε
∂r2

+

(
1 + ε− 2r

1 + ε− r

)
1

r

∂uε
∂r

= 0,

for every r > 0. As (
1 + ε− 2r

1 + ε− r

)
1

r
=

1

r
− 1

1 + ε− r
,

we find that the fundamental solution of (4.3) is the function

r 7→ 1

r(1 + ε− r)
,

4.2 Blow up example

Assume that the source f is constant equal to 1, that does not longer satisfies (2.3), (2.4)
and (2.5). The equation (4.2) becomes

(4.4)
∂2uε
∂r2

+

(
1 + ε− 2r

1 + ε− r

)
1

r

∂uε
∂r

=
1

1− r + ε
.

Thanks to the variation of constants method, the solutions of (4.4) are

(4.5) r 7→ K1

r(1 + ε− r)
+

1

2

r

(1 + ε− r)
.

Since
K1

r(1 + ε− r)
=

K1

1 + ε

(
1

r
+

1

1 + ε− r

)
,
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and
r

1 + ε− r
=

1 + ε

1 + ε− r
− 1,

the radial solution uε is given by

(4.6) uε(r) =
K1

1 + ε
log

(
r

1 + ε− r

)
− r

2
− (1 + ε)

2
log(1 + ε− r) +K2,

where the constants K1 and K2 can be retrieved from the boundary conditions. From the
condition

ε
∂uε
∂r

(1) = uε(1),

we get

K1 +
1

2
=

K1

1 + ε
log

(
1

ε

)
− 1

2
− (1 + ε)

2
log(ε) +K2,

and the relation

K1

(
1 +

log(ε)

1 + ε

)
+ 1 = K2 −

(1 + ε)

2
log(ε).

We want uε ∈ H1(Ω). In particular, as u′ε(r) ∼ K1
(1+ε)r , we have to take K1 = 0 to assure

that u′ε ∈ L2(Ω). It gives :

K2 = 1 +
1 + ε

2
log(ε),

and

(4.7) uε(r) = 1− r

2
+

(1 + ε)

2
log

(
ε

1 + ε− r

)
= 1− r

2
+

(1 + ε)

2
log

(
1 +

r − 1

1 + ε− r

)
.

We observe that in this case, the solution blows up everywhere when ε→ 0.

4.3 Example of a case with a limit

We show how to choose the source term by directly finding an appropriate g to satisfy
(2.3), (2.4) and (2.5) in order to pass to the limit. The polar basis (er, eθ) is defined by

(4.8)

(
er
eθ

)
=

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)(
ex
ey

)
.

We are looking for g such that
g · n|Γ = 0,

To avoid any singularities at 0, we take

g = r%(r)er,

Therefore, f = ∇ · g is given by:

f(r) =
1

r

(
∂

∂r
(r2%(r)

)
=2%(r)− r.

We take this function as a source term. Using the same notation as before, this gives

K ′1(r)

r%ε(r)
=

f(r)

%ε(r)
,
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and
K ′1(r) = 2r − 3r2.

Thus, K1(r) = r2 − r3 = r2%(r), which gives as a solution:

(4.9) u′ε(r) = r
%(r)

%ε(r)
.

In particular, u′ε(1) = 0. The boundary condition implies that uε(1) = 0. We finally get

(4.10) uε(r) = −
∫ r

1
r
%(r)

%ε(r)
dr,

and by the Lebesgue dominated convergence theorem,

(4.11) uε(r) →
ε→0

1− r2

2
,

which is a C∞ function that satisfies u = 0 at Γ = {r = 1}.

4.4 A general class of solutions

We consider now that the source f depends on ε. Let α and β be two real numbers, with
α ≥ 0 and β ≥ 1. The idea is to take the source fε such that the product rfε(r) gives a
derivative with ”good” properties. We define the source f = fε,α,β for every r in (0, 1) as

fε(r) = (α+ 1)rα−1(1 + ε− r)β − β(1 + ε− r)β−1rα.

In particular, when doing the variation of constants method, we obtain

K ′1(r) = fε(r)r = (α+ 1)rα(1 + ε− r)β − β(1 + ε− r)β−1rα+1,

which gives
K1(r) = rα+1(1 + ε− r)β,

and the solutions of (4.2) are the functions

r 7→ K1

r(1 + ε− r)
+ rα(1 + ε− r)β−1.

The integrability of |u′ε|2 implies that K1 = 0, so u′ε is given by

(4.12) u′ε(r) = rα(1 + ε− r)β−1.

If β is an integer, we can give an explicit expression of u. We will make this assumption
in what follows and rename β = k to make it more clear. We can write

u′ε(r) =

k−1∑
i=0

(
k − 1

i

)
(−1)irα+i(1 + ε)k−1−i,

which gives by integration

(4.13) uε(r) =

k−1∑
i=0

(
k − 1

i

)
(−1)i

α+ i+ 1
rα+i+1(1 + ε)k−1−i +K2,
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where K2 ∈ IR is a constant we will determine thanks to the boundary condition εu′ε(1) =
uε(1). On the one hand,

εu′ε(1) = εk,

on the other hand,

uε(1) =

k−1∑
i=0

(
k − 1

i

)
(−1)i

α+ i+ 1
(1 + ε)k−i−1 +K2.

Thus, K2 is a polynomial on ε of degree k:

K2 = εk +
k−1∑
i=0

(
k − 1

i

)
(−1)i+1

α+ i+ 1
(1 + ε)k−i−1 =

(−1)k

α+ k
+O(ε).

For instance, if we take k = 1, we have:

uε(r) =
rα+1

α+ 1
+ ε− 1

α+ 1

and for k = 2:

uε(r) = − r
α+2

α+ 2
+

(
1 + ε

1 + α

)
rα+1 + ε2 − 1 + ε

1 + α
+

1

α+ 2
.

We can show that when ε goes to 0, uε(r) goes to the limit function r 7→ (−1)k

α+k

(
1− rα+k

)
.

In all cases, it vanishes at the boundary.
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