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Abstract

The Strong Lottery Ticket Hypothesis (SLTH) states that randomly-initialised neural networks likely
contain subnetworks that perform well without any training. Although unstructured pruning has been
extensively studied in this context, its structured counterpart, which can deliver significant computational
and memory efficiency gains, has been largely unexplored. One of the main reasons for this gap is the
limitations of the underlying mathematical tools used in formal analyses of the SLTH. In this paper,
we overcome these limitations: we leverage recent advances in the multidimensional generalisation of
the Random Subset-Sum Problem and obtain a variant that admits the stochastic dependencies that
arise when addressing structured pruning in the SLTH. We apply this result to prove, for a wide class of
random Convolutional Neural Networks, the existence of structured subnetworks that can approximate
any sufficiently smaller network.

This result provides the first sub-exponential bound around the SLTH for structured pruning, opening
up new avenues for further research on the hypothesis and contributing to the understanding of the role
of over-parameterization in deep learning.

1 Introduction
Much of the success of deep learning techniques relies on extreme over-parameterization [ZBH+17, ZBH+21,
NBA+18, BGMS18, DZPS19, KMH+20]. While such excess of parameters has allowed neural networks to
become the state of the art in many tasks, the associated computational cost limits both the progress of
those techniques and their deployment in real-world applications. This limitation motivated the development
of methods for reducing the number of parameters of neural networks; both in the past [Ree93] and in the
present [BOFG20, HAB+21].

Although pruning methods have traditionally targeted reducing the size of networks for inference purposes,
recent works have indicated that they can also be used to reduce parameter counts during training or
even at initialisation without sacrificing model accuracy. In particular, [FC19] proposed the Lottery Ticket
Hypothesis (LTH), which conjectures that randomly-initialised networks contain sparse subnetworks that can
be trained and reach the performance of the fully-trained original network. Empirical investigations on the
LTH [ZLLY19, RWK+20, WZX+20] pointed towards an even more striking phenomenon: the existence of
subnetworks that perform well without any training. This conjecture was named the Strong Lottery Ticket
Hypothesis (SLTH) by [PRN+20].

While the SLTH has been proved for many different classes of neural networks (see Section 2), those works
are restricted to unstructured pruning, where the subnetworks are obtained by freely removing individual
parameters from the original network. However, this lack of structure can significantly reduce the gains
that sparsity can bring, both in terms of memory and computational efficiency. The possibility of removing
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Figure 1: Illustration of neuron pruning. The left side shows the effect of pruning of neurons in the weight-
matrix of a fully-connected layer. The rows in white correspond to neurons pruned in the associated layer
while the columns in white represent the effect of removing neurons from the previous layers. On the right,
we allude to the possibility of collapsing the pruned matrix into a smaller, dense one.

Unstructured sparsity

(a) No pattern.

Structured sparsity

(b) Strided pattern. (c) Block pattern.

Figure 2: Examples of different pruning patterns.

parameters at arbitrary points of the network implies the need to store the indices of the remaining non-zero
parameters, which can become a significant overhead with its own research challenges [PN73]. Moreover, the
theoretical computational gains of unstructured sparsity can also be difficult to realise in standard hardware,
which is optimised for dense operations. Most notably, the irregularity of the memory access patterns can
lead to both data and instruction cache misses, significantly reducing the performance of the pruned network.

The limitations of parameter-level pruning have motivated extensive research on structured pruning,
which constrain the sparsity patterns to reduce the complexity of parameter indexation and, more generally,
to make the processing of the pruned network more efficient. A simple example of structured pruning is
neuron pruning of fully-connected layers: deletions in the weight matrix are constrained to the level of
whole rows/columns. As illustrated by Figure 1, pruning under this constraint produces a smaller network
that is still dense, directly reducing the computational costs without any need for extra memory to store
indices. Similarly, deleting entire filters in Convolutional Neural Networks (CNNs) [PW15] or “heads” in
attention-based architectures [MLN19] also produces direct reductions in computational costs.

It is important to note that structured pruning is a restriction of unstructured pruning so, theoretically,
the former is bound to perform at most as well as the latter. For example, by deleting whole neurons one can
remove about 70% of the weights in dense networks without significantly affecting accuracy, while through
unstructured pruning one can usually reach 95% sparsity without accuracy loss [AS16, LSZ+19]. In practice,
however, the computational advantage of structured pruning can offset this difference: a suitably structured
sparse network can be more efficient than an even sparser one that lacks structure. This trade-off between
sparsity and actual efficiency has motivated the study of less coarse sparsity patterns since weaker structural
constraints such as strided sparsity [AHS17] (Figure 2b) or block sparsity [Sis21] (Figure 2c) are already
sufficient to deliver the bulk of the computational gains that structured can offer.

Despite its benefits, structured pruning has received little attention in the context of the SLTH. In fact, the
work that first proved a version of the SLTH, [MYSSS20], has remained the only one to study this scenario,
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to the best of our knowledge. Moreover, it brings a negative result: the authors prove that removing neurons
from a randomly-initialised shallow neural network (a single hidden layer) is equivalent to the random features
model1(e.g., [RR07, RR08]), which cannot efficiently approximate even a single ReLU neuron [YS19]. As
most proofs around the SLTH involve pruning a shallow random network to build the desired approximations,
those results show that the SLTH can be challenging to tackle when restricted to neuron pruning.

In addition, we believe that a factor hindering progress toward structured versions of the SLTH more
generally is a limitation of a result underlying almost all of the theoretical works on the SLTH: a theorem by
Lueker on the Random Subset-Sum Problem (RSSP).

Theorem 1 ([Lue98, DCdG+23]). Let X1, . . . , Xn be independent uniform random variables over [−1, 1], and
let ε ∈ (0, 1/3). There exists a universal constant C > 0 such that, if n ≥ C log(1/ε), then, with probability at
least 1− ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n] for which∣∣∣z − ∑

i∈Sz

Xi

∣∣∣ ≤ ε.

In general terms, the theorem states that given a rather small number of random variables, there is a high
probability that any target value within an interval of interest can be approximated by a sum of a subset of
the random variables. An important remark is that even though Theorem 1 is stated in terms of uniform
random variables, it is not hard to extend it to a wide class of distributions.2

While Theorem 1 closely matches the setup of the SLTH, it only concerns individual random variables
and directly applying it to entire random structures, as needed when considering structured pruning, would
require an exponential number of random variables. The recent works [BDHT22, BdCC+22] reduced this
gap by proving multidimensional versions of Theorem 1. Still, the intricate manipulation of the network
parameters in proofs around the SLTH imposes restrictions that are not covered by those results.

Contributions
In this work, we overcome those obstacles and prove that random networks in a wide class of CNNs are
likely to contain structured subnetworks that approximate any sufficiently smaller CNN. To the best of our
knowledge, our results provide the first sub-exponential bounds around the SLTH for structured pruning of
deep neural networks of any kind. More precisely,

• We prove a multidimensional version Theorem 1 that is robust to some dependencies between coordinates,
which is crucial for structured pruning (Theorem 5);

• We leverage this result and, by combining two types of structured sparsity (block and neuron/filter
sparsity), we show that, with high probability and for a wide class of architectures, polynomially
over-parameterized random networks can be pruned in a structured manner to approximate any target
network (Theorem 2);

• Our results cover CNNs, which generalise fully-connected networks as well as many layer types commonly
used in modern architectures, such as pooling and normalisation layers;

• Additionally, our pruning scheme focuses on filter pruning, which, like neuron pruning, allows for a
direct reduction of the size and computational cost relative to the original CNN.

2 Related Work
SLTH Put roughly, research on the SLTH revolves around the following question:
Question. Given an error margin ε > 0 and a target neural network ftarget, how large must an architecture
frandom be to ensure that, with high probability on the sampling of its parameters, one can prune frandom to
obtain a subnetwork that approximates ftarget up to output error ε?

1In the random features model, one can only train the last layer of the network.
2Distributions whose probability density function f satisfies f(x) ≥ b for all x ∈ [−a, a], for some constants a, b > 0 (see

[Lue98, Corollary 3.3]).
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[MYSSS20] first proved that, for dense networks with ReLU activations, it was sufficient for frandom to
be twice as deep and polynomially wider than ftarget. [OHR20] showed that the width overhead could be
greatly reduced by sampling parameters from a hyperbolic distribution. [PRN+20] improved the original
result for a wide class of weight distribution, requiring only a logarithmic width overhead, which the authors
proved to be asymptotically optimal. [dCNV22] generalised those results with optimal bounds to CNNs with
non-negative inputs, which [Bur22a] extended to general inputs and to residual architectures. [Bur22a] also
reduced the depth overhead to a single extra layer and provided results that include a whole class of activation
functions. [Bur22b] obtained similar improvements to dense architectures. [FB21] modified many of the
previous arguments to take into consideration networks with non-zero biases. [FTGB22] further generalised
previous results on CNNs to general equivariant networks. [DK21] obtained similar SLTH results for binary
dense neural networks within polynomial depth and width overhead, which [SRSP22] improved to logarithmic
overhead.

Structured pruning Works on structured pruning date back to the early days of the field of neural network
sparsification with works such as [MS88] and [MS89]. Since then, a vast literature has been built around
the topic, particularly for the pruning of CNNs. For a survey of structured pruning in general, we refer the
reader to the associated sections of [HAB+21], and to [HX23] for a survey on structured pruning of CNNs.

RSSP [PRN+20] introduced the use of theoretical results on the RSSP in arguments around the SLTH,
namely [Lue98, Corollary 3.3]. The work of [DCdG+23] provides an alternative, simpler proof of this result.
[BDHT22] and [BdCC+22] proved multidimensional versions of the theorem. Theorem 5 diverges from those
results in that it supports some dependencies between the entries of random vectors.

3 Preliminaries and contribution
Given n ∈ N, we denote the set {1, . . . , n} by [n]. The symbol ∗ represents the convolution operation, ⊙
represents the element-wise (Hadamard) product, and ϕ represents the ReLU activation function. The
notation ∥·∥1 refers to the sum of the absolute values of each entry in a tensor. Similarly, ∥·∥2 refers to the
square root of the sum of the squares of each entry in a tensor. ∥·∥max denotes the maximum norm: the
maximum among the absolute value of each entry. Sometimes we represent a tensor X ∈ Rd1×···×dn by the
notation X = (Xi1,...,in)i1∈[d1],...,in∈[dn]. We denote the normal probability distribution with mean µ and
variance σ2 by N(µ, σ2). We write U ∼ N d1×···×dn to denote that U is a random tensor of size d1 × · · · × dn
with entries independent and identically distributed (i.i.d.), each following N(0, 1). We refer to such random
tensors as normal tensors. Finally, we refer to the axis of a 4-D tensor as rows, columns, channels, and kernels
(a.k.a. filters), in this order.

For the sake of simplicity, we assume CNNs to be of the form N : [−1, 1]D×D×c0 → RD×D×cℓ given by

N(X) = Kℓ ∗ ϕ(Kℓ−1 ∗ · · ·ϕ(K1 ∗X)),

where Ki ∈ Rdi×di×ci−1×ci for i ∈ [ℓ], and the convolutions have no bias and are suitably padded with zeros.
Moreover, when the kernels K(i) are normal tensors, we say that N is a random CNN.

Our main result is the following.

Theorem 2 (Structured SLTH). Let D, c0, ℓ ∈ N, and ε ∈ R>0. For i ∈ [ℓ], let di, ci, ni ∈ N. Let F be the
class of functions from [−1, 1]D×D×c0 to RD×D×cℓ such that, for each f ∈ F

f(X) = K(ℓ) ∗ ϕ(K(ℓ−1) ∗ · · ·ϕ(K(1) ∗X)), (1)

where, for i ∈ [ℓ], K(i) ∈ Rdi×di×ci−1×ci and
∥∥K(i)

∥∥
1
≤ 1.

Let also N0 : [−1, 1]D×D×c0 → RD×D×cℓ be a 2ℓ-layered random CNN given by

N0(X) = L(2ℓ) ∗ ϕ(L(2ℓ−1) ∗ · · ·ϕ(L(1) ∗X)), (2)

where for i ∈ [ℓ] the kernels L(2i−1) and L(2i) are normal tensors of shape 1 × 1 × ci−1 × 2nici−1 and
di × di × 2nici−1 × ci, respectively.

4



Finally, let G be the class of subnetworks that can be obtained by pruning contiguous blocks of parameters
and removing entire filters from N0.

Then, there exists a universal constant C > 0, such that if, for i ∈ [ℓ],

ni ≥ Cd13i c6i log
3 d2i cici−1ℓ

ε
,

then, with probability at least 1− ε, we have that, for all f ∈ F ,

sup
X∈[−1,1]D×D×c0

min
g∈G

∥f(X)− g(X)∥max ≤ ε.

The filter removals ensured by Theorem 2 take place at layers 1, 3, . . . , 2ℓ− 1 and imply the removal of the
corresponding channels in the next layer. The overall modification yields a CNN with kernels L̃(1), . . . , L̃(2ℓ)

such that, for i ∈ [ℓ], the kernels L̃(2i−1) and L̃(2i) have shape 1×1×ci−1×2ci−1mi and di×di×2ci−1mi×ci,
respectively, where mi =

√
ni/(C1di log(1/ε)) for a universal constant C1. Moreover, our proof ensures that

the kernels L̃(2i−1) can be required to have a specific type of block sparsity: they can be structured as if
pruned by 2mi-channel-blocked masks, defined as follows.

Definition 3 (n-channel-blocked mask). Given a positive integer n, a binary tensor S ∈ {0, 1}d×d×c×cn is
called n-channel-blocked if and only if

Si,j,k,l =

{
1 if

⌈
l
n

⌉
= k,

0 otherwise,

for all i, j ∈ [d], k ∈ [c], and l ∈ [cn].

We remark that, from a broader perspective, the central aspect of Theorem 2 is that the lower bound on
the size of the random CNN depends only on the kernel sizes of the CNNs being approximated.

In subsection 4.2 we discuss the proof of Theorem 2. It requires handling subset-sum problems on multiple
random variables at once (random vectors). Furthermore, the inherent parameter-sharing of CNNs creates a
specific type of stochastic dependency between coordinates of the random vectors, which we capture with the
following definition.

Definition 4 (NSN vector). A d-dimensional random vector Y follows a normally-scaled normal (NSN)
distribution if, for each i ∈ [d], Yi = Z ·Zi where Z,Z1, . . . , Zd are i.i.d. random variables following a standard
normal distribution.

A key technical contribution of ours is a Multidimensional Random Subset Sum (MRSS) result that
supports NSN vectors. In subsection 4.1 we discuss the proof of the next theorem, which follows a strategy
similar to that of [BDHT22, Lemmas 1, 15].

Theorem 5 (Normally-scaled MRSS). Let 0 < ε ≤ 1/4, and let d, k, and n be positive integers such
that n ≥ k2 and k ≥ Cd3 log d

ε for some universal constant C ∈ R>0. Furthermore, let X1, . . . , Xn be
d-dimensional i.i.d. NSN random vectors. For any z⃗ ∈ Rd with ∥z⃗∥1 ≤

√
k, there exists with constant

probability a subset S ⊆ [n] of size k such that
∥∥(∑

i∈S Xi

)
− z⃗
∥∥
max

≤ ε.

While it is possible to naïvely apply Theorem 1 to obtain a version of Theorem 2, doing so leads to an
exponential lower bound on the required number of random vectors.

4 Analysis
In this section, after proving our MRSS result (Theorem 5), we discuss how to use it to obtain our main
result on structured pruning (Theorem 2). Full proofs are deferred to Appendix B.
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4.1 Multidimensional Random Subset Sum for normally-scaled normal vectors
Notation. Given a set S and a positive integer n, we denote by

(
S
n

)
the family of all subsets of S containing

exactly n elements of S. Given ε ∈ R>0, we define the interval Iε (zi) = [zi − ε, zi + ε] and the multi-interval
Iε (z⃗) = [z⃗ − ε1, z⃗ + ε1], where 1 = (1, 1, . . . , 1) ∈ Rd. Moreover, for any event E , we denote its complementary
event by E .

In this subsection, we estimate the probability that a set of n random vectors contains a subset that sums
up to a value that is ε-close to a given target. The following definition formalises this notion.

Definition 6 (Subset-sum number). Given (possibly random) vectors X1, . . . , Xn and a vector z⃗, we define
the ε-subset-sum number of X1, . . . , Xn for z⃗ as

T k
X1,...,Xn

(z⃗) =
∑

S∈([n]
k )

1E(z⃗)
S

,

where E(z⃗)
S denotes the event

∥∥(∑
i∈S Xi

)
− z⃗
∥∥
max

≤ ε. We write simply Tn,k when X1, . . . , Xn and z⃗ are
clear from the context.

To prove Theorem 5 we use the second moment method to provide a lower bound on the probability that
the subset-sum number Tn,k is strictly positive, which implies that at least one subset of the random vectors
suitably approximates z⃗. Hence, we seek a lower bound on E[Tn,k]

2
/E[T 2

n,k].
Our first lemma provides a lower bound on the probability that a sum of NSN vectors is ε-close to a

target vector, through which one can infer a lower bound on E [Tn,k].

Lemma 7 (Sum of NSN vectors). Let k ∈ N, ε ∈
(
0, 1

4

)
, z⃗ ∈ Rd such that ∥z⃗∥1 ≤

√
k and k ≥ 16.

Furthermore, let X1, . . . , Xk be d-dimensional i.i.d. NSN random vectors with d ≤ k, and let cd = min
{

1
d2 ,

1
16

}
.

It holds that

Pr

( k∑
i=1

Xi ∈ Iε (z⃗)

)
≥ 1

16

(
2ε√

π
(
1 + 2

√
cd + 2cd

)
k

)d

.

Overview of the proof. The main technical difficulty lies in the fact that the random vectors X1, . . . , Xk are
NSN vectors. Bounds can be easily derived for the case where the Xi are i.i.d. normal random vectors by
observing that the sum of normal random variables is also normal.

For i ∈ [k], each entry of Xi can be written as Zi ·Zi,j where Zi and Zi,j are i.i.d. normal random variables.
Conditional on Z1, . . . , Zk, the d entries of X =

∑k
i=1 Xi are independent and distributed as N(0,

∑k
i=1 Z

2
i ).

By noticing that Z2
i is a chi-squared random variable and employing standard concentration inequalities

(Lemma 17 in Appendix A) combined with the law of total probability, we can proceed as if the entries of X
were normal, up to some correction factors.

Bounding E[T 2
n,k] requires handling stochastic dependencies. Thus, we estimate the joint probability

that two subsets of k elements of X1, . . . , Xn sum ε-close to the same target, taking into account that the
intersection of the subsets might not be empty. The next lemma provides an upper bound on this joint
probability that depends only on the size of the symmetric difference between the two subsets.

Lemma 8 (Sum of NSN vectors). Let k, j ∈ N0 with 1 ≤ j ≤ k Furthermore, let X1, . . . , Xk+j be i.i.d. d-
dimensional NSN random vectors with k ≥ Cd3 log d

ε . Let cd = min
{

1
d2 ,

1
16

}
, A =

∑j
i=1 Xi, B =

∑k
i=j+1 Xi,

and C =
∑k+j

i=k+1 Xi.3 Then, it holds that

Pr (A+B ∈ Iε (z⃗) , B + C ∈ Iε (z⃗)) ≤ 3

(
4ε2

π
(
1− 2

√
cd
)
j

)d

.

Overview of the proof. Let n = k + j. We exploit once more the fact that, for all i ∈ [n], each entry Xi can
be written as Zi · Zi,j where Zi and Zi,j are i.i.d. normal random variables. Conditional on Z1, . . . , Zk+j ,

3We adopt the convention that
∑0

i=1 Xi = 0.
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the d entries of A, B, and C are independent and distributed as N(0,
∑j

i=1 Z
2
i ), N(0,

∑k
i=j+1 Z

2
i ), and

N(0,
∑k+j

i=k+1 Z
2
i ), respectively. Hence, by the concentration inequalities for the sum of chi-squared random

variables (Lemma 17 in Appendix A) and by the law of total probability, we can focus on the term

Pr (Ai +Bi ∈ Iε (zi) , Bi + Ci ∈ Iε (zi) |Z1, . . . , Zn) ,

where Ai, Bi, and Ci indicate the i-th entries of A, B, and C, respectively.
Another concentration argument for normal random variables (Lemma 14 in Appendix A), allow us to

show that

Pr (Ai +Bi ∈ Iε (zi) , Bi + Ci ∈ Iε (zi) |Z1, . . . , Zn)

= EBi [Pr (Ai ∈ Iε (zi −Bi) , Ci ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi)]

= EBi [Pr (Ai ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi)]

≤ EBi [Pr (Ai ∈ Iε (0) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iε (0) |Z1, . . . , Zn, Bi)]

= Pr (Ai ∈ Iε (0) |Z1, . . . , Zn) Pr (Ci ∈ Iε (0) |Z1, . . . , Zn) .

Thus, we have reduced our argument to the estimation of probabilities of independent normal random
variables being close to zero.

The following lemma provides an explicit expression for the variance of the ε-subset-sum number.

Lemma 9 (Second moment of Tn,k). Let k, n be positive integers. Let S0, S1, . . . , Sk be subsets of [n] such
that |S0 ∩ Sj | = k − j for j = 0, 1, . . . , k. Let S, S′ be two random variables yielding two subsets of [n] drawn
independently and uniformly at random. Let X1, . . . , Xn be d-dimensional i.i.d. NSN random vectors. For
any ε > 0 and z⃗ ∈ Rd, the second moment of the ε-subset sum number is

E
[
T 2
n,k

]
=

(
n

k

)2 k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
,

where E(z⃗)
S denotes the event

∥∥(∑
i∈S Xi

)
− z⃗
∥∥
max

≤ ε.

Proof. Let S,S′ two random variables yielding two elements of
(
[n]
k

)
drawn independently and uniformly at

random. By the definition of Tn,k, we have that

E
[
T 2
n,k

]
= E

[( ∑
S∈([n]

k )

1E(z⃗)
S

)( ∑
S′∈([n]

k )

1E(z⃗)

S′

)]

= E
[ ∑
S,S′∈([n]

k )

1E(z⃗)
S

1E(z⃗)

S′

]

=
∑

S,S′∈([n]
k )

Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

)
=

∑
S,S′∈([n]

k )

Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

∣∣∣ S = S, S′ = S′
)
Pr (S = S, S′ = S′)

=

(
n

k

)2 k∑
j=0

Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

∣∣∣ |S ∩ S′| = k − j
)
Pr (|S ∩ S′| = k − j) ,

as Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

)
depends only on the size of S ∩ S′.
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Overview of the proof of Theorem 5

We use the second moment method (Lemma 15 in Appendix A) on the ε-subset-sum number Tn,k of
X1, . . . , Xn. Thus, we want to lower bound the right-hand side of

Pr (T > 0) ≥ E[Tn,k]
2

E[T 2
n,k]

.

Equivalently, we can provide an upper bound on the inverse, E[T 2
n,k]

E[Tn,k]2
. By Lemma 9,

E
[
T 2
n,k

]
=

(
n

k

)2 k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
where S,S′, Si and E(z⃗)

S are defined as in the statement of the lemma. Observe also that

E [Tn,k] =
∑

S∈([n]
k )

E
[
1E(z⃗)

S

]
=

∑
S∈([n]

k )

Pr
(
E(z⃗)
S

)
=

(
n

k

)
Pr
(
E(z⃗)
S0

)
.

By using the two above observations, we have

E[Tn,k]
2

E[T 2
n,k]

=

(
n
k

)2
E [Tn,k]

2

k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)

=

k∑
j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 .

Lemma 7 provides a lower bound on the term Pr
(
E(z⃗)
S0

)
while Lemma 8 gives an upper bound on the term

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
.

In the full proof, we then show that Pr (|S ∩ S′| ≥ k/d) can be bounded using the Chernoff bound
(Lemma 16 in Appendix A) even if we do not deal directly with Binomial random variables. This allows
us to discard the indices j for which Pr

(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
is large, which leads to the result after some technical

manipulations.

4.2 Proving SLTH for structured pruning
To prove Theorem 2, we first show how to obtain the same approximation result for a single-layer CNN. Then,
we iteratively apply the same argument for all layers of a larger CNN and show that the approximation error
stays small.

We define the positive and negative parts of a tensor.

Definition 10. Given a tensor X ∈ Rd1×···×dn , the positive and negative parts of X are respectively defined
as X+

i⃗
= Xi⃗ · 1Xi⃗>0 and X−

i⃗
= −Xi⃗ · 1Xi⃗<0, where i⃗ ∈ [d1]× · · · × [dn] points at a generic entry of X.

Approximating a single-layer CNN

We first present a preliminary lemma that shows how to prune a single-layer convolution ϕ (V ∗X) in a way
that dispenses us from dealing with the ReLU ϕ.

Lemma 11. Let D, d, c, n ∈ N be positive integers, V ∈ R1×1×c×2nc, and X ∈ RD×D×c. Let S1 ∈ {0, 1}size(V )

be a 2n-channel-blocked mask. There exists a mask S2 ∈ {0, 1}size(V ) which only removes filters such that, for
each (i, j, k) ∈ [D]× [D]× [2nc], if S̃ = S1 � S2, then(

ϕ
((

V � S̃
)
∗X

))
i,j,k

=
((

V � S̃
)+

∗X+ +
(
V � S̃

)−
∗X−

)
i,j,k

.
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Overview of the proof. S2 ∈ {0, 1}size(V ) is such that Ṽ = V � S̃ = (V � S1)� S2 contains only non-negative
edges going from each input channel t to the output channels 2(t−1)n+1, . . . , (2t−1)n, and only non-positive
edges going from each input channel t to the output channels (2t − 1)n + 1, . . . , 2tn. Notice that, after
applying the 2n-channel-blocked mask S1, the only possible non-zero entry of the k-th filter is located at its
t =

⌈
k
2n

⌉
-th channel. Hence, for each k ∈ [2nc], we keep filter k if the entry of its t-th channel is non-negative

and 2t− 1 =
⌈
k
n

⌉
, or it is non-positive and 2t =

⌈
k
n

⌉
.

We approximate a single convolution K ∗X by pruning a polynomially larger neural network of the form
U ∗ ϕ(V ∗X) exploiting only a channel-blocked mask and filter removal: this is achieved using the MRSS
result (Theorem 5).

Lemma 12 (Kernel pruning). Let D, d, c0, c1, n ∈ N be positive integers, ε ∈
(
0, 1

4

)
,M ∈ R>0, and C ∈ R>0

be a universal constant with

n ≥ Cd13c61 log
3 d2c1c0

ε
.

Let U ∼ N d×d×2nc0×c1 , V ∼ N 1×1×c0×2nc0 and S ∈ {0, 1}size(V ), with S being a 2n-channel-blocked mask. We
define N0 (X) = U ∗ ϕ (V ∗X) where X ∈ RD×D×c0 , and its pruned version N

(S)
0 (X) = U ∗ ϕ ((V � S) ∗X).

With probability 1− ε, for all K ∈ Rd×d×c0×c1 with ∥K∥1 ≤ 1, it is possible to remove filters from N
(S)
0 to

obtain a CNN Ñ
(S)
0 for which

sup
X:∥X∥max≤M

∥∥∥K ∗X − Ñ
(S)
0 (X)

∥∥∥
max

< εM.

Overview of the proof. Exploiting Lemma 11, for each (r, s, t1) ∈ [d]× [d]× [c1], one can show that(
U ∗ ϕ

((
V � S̃

)
∗X

))
r,s,t1

=
∑

i,j∈[d],t0∈[c0]

( ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

)
·X+

r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

( ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

)
·X−

r−i+1,s−j+1,t0
,

where S̃ = S1 � S2, with S1 being a 2n-channel-blocked mask and S2 being a mask that removes filters.
Through a Chernoff bound, we show that Ṽ +

1,1,t0,:
has at least n/3 non-zero entries. Up to reshaping the tensor

as a one-dimensional vector, we observe that U:,:,k,:Ṽ
+
1,1,t0,k

is an NSN vector (Lemma 18 in Appendix A).
Hence, we can apply a boosted version of the MRSS result (Corollary 19 in Appendix A) and show that,

with high probability, for all target filters K with ∥K∥1 ≤ 1, we can prune all but roughly
√
n/(C1d log

1
ε )

positive entries of Ṽ +
1,1,t0,k

, with C1 being a universal constant, such that
∑

k∈[nc0]
U:,:,k,:Ṽ

+
1,1,t0,:

approximates
the channels K:,:,t0,: up to error ε/(2d2c0c1). The same holds for

∑
k∈[nc0]

U:,:,k,:Ṽ
−
1,1,t0,:

. This pruning can
be achieved by applying a third mask S3 that only removes filters. Through some non-trivial calculations
and by applying the Tensor Convolution Inequality (Lemma 20 in Appendix A), one can combine the above
results to get the thesis. Notice that the overall pruning can be represented by the mask S1 � (S2 � S3),
where S2 � S3 is a mask that only removes filters, and S = S1 is a 2n-channel-blocked mask.

Remark 13. From the proofs of Lemmas 12 and 11, we can see that the overall modification yields a pruned
CNN Û ∗ ϕ(V̂ ∗ X) with V̂ ∈ R1×1×c0×2mc0 and Û ∈ Rd×d×2mc0×c1 , where m =

√
n/(C1d log

1
ε ) for a

universal constant C1. Moreover, the kernel V̂ is obtained through a 3-stage pruning process: First, we apply
a 2n-channel-blocked mask S1. Second, we remove filters based on entries’ signs through a mask S2. Third,
we remove filters according to the MRSS result through a mask S3. Masks S2 and S3 can be combined into a
single mask S2 � S3 that only removes filters: overall the pruning process consists of a 2n-channel-blocked
mask and filter removal, which justifies the statement of Theorem 2.
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Overview of the proof of Theorem 2

We iteratively apply Lemma 12 to each layer while carefully controlling the approximation error via tools such
as the Lipschitz property of ReLU and the Tensor Convolution Inequality (Lemma 20). More precisely, we show
that (i) the approximation error does not increase too much at each layer; and (ii) all layer approximations
can be combined to approximate the entire target network. Notice that Lemma 12 guarantees that, with
high probability, we can approximate all possible target filters K (with ∥K∥1 ≤ 1) from the same 2-layered
network. Hence, we get the result for the supremum over all possible choices of target filters.

5 Limitations and future work
In previous works [dCNV22, Bur22a] the assumption that the kernel of every second layer has shape 1×1× . . .
is only an artifact of the proof since one can readily prune entries of an arbitrarily shaped tensor to enforce
the desired shape. In our case, however, the concept of structured pruning can be quite broad, and such
reshaping via pruning might not fit some sparsity patterns, depending on the context. The hypothesis on the
shape can be a relevant limitation for such use cases. The constructions proposed by [Bur22a, Bur22b] appear
as a promising direction to overcome this limitation, with the added benefit of reducing the depth overhead.

The convolution operation commonly employed in CNNs can be cumbersome at many points of our
analysis. Exploring different concepts of convolution can be an interesting path for future work as it could
lead to tidier proofs and more general results. For instance, employing a 3D convolution would spare a factor
c in Theorem 2.

Another limitation of our results is the restriction to ReLU as the activation function. Many previous
works on the SLTH exploit the fact that ReLU satisfies the identity x = ϕ(x)− ϕ(−x). [Bur22a] leveraged
that to obtain an SLTH result for CNNs with activation functions f for which f(x)− f(−x) ≈ x around the
origin. Our analysis, on the other hand, does not rely on such property, so adapting the approach of [Bur22a]
to our setting is not straightforward.

Finally, we remark that the assumption of normally distributed weights might be relaxed. [BDHT22]
provided an MRSSP result for independent random variables whose distribution converges “fast enough” to a
Gaussian one.4 We believe our arguments can serve well as baselines to generalise our results to support
random weights distributed as such.
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Appendix

A Technical tools

A.1 Concentration inequalities
Lemma 14 (Most-probable normal interval). Let X follow a zero-mean normal distribution with variance
ϕ2. For any z, ε ∈ R

Pr (X ∈ [z − ε, z + ε]) ≤ Pr (X ∈ [−ε, ε]) .

Proof. Let φ(x) denote the probability density function of X. Then,

Pr (X ∈ [−ε, ε])− Pr (X ∈ [z − ε, z + ε]) =

∫ ε

−ε

φ(x) dx−
∫ z+ε

z−ε

φ(x) dx.

If z − ε ≥ ε or z + ε ≤ −ε, the thesis is trivial as φ(|x|) decreases in x. W.l.o.g., suppose z is positive and
z − ε < ε. Then, −ε < z − ε < ε < z + ε. It follows that∫ ε

−ε

φ(x) dx−
∫ z+ε

z−ε

φ(x) dx =

∫ z−ε

−ε

φ(x) dx−
∫ z+ε

ε

φ(x) dx

=

∫ z−ε

−ε

φ(x)− φ(x+ 2ε) dx

which is non-negative as φ(x) ≥ φ(x+ 2ε) for x ≥ −ε.

Lemma 15 (Second moment method). If Z is a non-negative random variable then

Pr (Z > 0) ≥ E [Z]
2

E [Z2]
.

Lemma 16 (Chernoff-Hoeffding bounds [DP09]). Let X1, X2, . . . , Xn be independent random variables such
that Pr (0 ≤ Xi ≤ 1) = 1 for all i ∈ [n]. Let X =

∑n
i=1 Xi and E[X] = µ. Then, for any δ ∈ (0, 1) the

following holds:

1. if µ ≤ µ+, then Pr (X ≥ (1 + δ)µ+) ≤ exp
(
− δ2µ+

3

)
;

2. if 0 ≤ µ− ≤ µ, then Pr (X ≤ (1− δ)µ−) ≤ exp
(
− δ2µ+

2

)
.

Lemma 17 (Corollary of [LM00, Lemma 1]). Let X ∼ χ2
d be a chi-squared random variable with d degrees of

freedom. For any t > 0, it holds that

1. Pr
(
X ≥ d+ 2

√
dt+ 2t

)
≤ exp (−t);

2. Pr
(
X ≤ d− 2

√
dt
)
≤ exp (−t).

A.2 Supporting results
Lemma 18 (NSN with positive scalar). If a d-dimensional random vector Y is such that, for each i ∈ [d],
Yi = Z̃ · Z̃i, where Z̃1, . . . , Z̃n are identically distributed random variables following a standard normal
distribution, Z̃ is a half-normal distribution,5 and Z̃, Z̃1, . . . , Z̃n are independent, then Y follows an NSN
distribution.

5I.e. Z̃ = |Z| where Z is a standard normal distribution.
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Proof. By Definition 4, Y is NSN if, for each i ∈ [d], Yi = Z · Zi where Z,Z1, . . . , Zn are i.i.d. random
variables following a standard normal distribution. If Z̃ = |Z|, we can rewrite Z̃i = sign (Z) sign (Zi) |Zi| for
each i = 1, . . . , n, where Z,Z1, . . . , Zn are i.i.d. standard normal random variables, as sign (Z) sign (Zi) is
independent of sign (Z) and of sign (Z) sign (Zj) for i ̸= j. Then,

Yi = Z̃ · Z̃i

= |Z| · sign (Z) sign (Zi) |Zi|
= sign (Z) |Z| · sign (Zi) |Zi|
= Z · Zi,

implying the thesis.

Corollary 19 (of Theorem 5). Let d, k, and n be positive integers with n ≥ C1dk
2 log

(
1
ε

)
and k ≥ C2d

3 log d
ε

for some universal constants C1, C2 ∈ R>0. Let X1, . . . , Xn be d-dimensional i.i.d. NSN random vectors. For
any 0 < ε ≤ 1

4 it holds

Pr

(
∀z⃗ ∈ Rd : ∥z⃗∥1 ≤ 1,∃S : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ε

)
≥ 1− ε.

Proof. Observe that the set [−1, 1]d can be partitioned in 1/εd many infinity norm balls of radius ε. Let
s =

⌈
C1d log

(
1
ε

)⌉
and let us partition the n vectors X1, . . . , Xn in s disjoint sets G1, . . . , Gs of at least k2

vectors each. By Theorem 5, there is a constant c ∈ (0, 1) such that for each group Gi (i ∈ [s])

Pr

(
∃S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ε

)
≥ c. (3)

It follows that

Pr

(
∀z⃗ ∈ Rd : ∥z⃗∥1 ≤ 1,∃S : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ε

)

≥ Pr

(
∀z⃗ ∈ Rd : ∥z⃗∥1 ≤ 1,∃i ∈ [s] ,∃S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ε

)

= 1− Pr

(
∃z⃗ ∈ Rd : ∥z⃗∥1 ≤ 1,∀i ∈ [s] ,∀S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

> ε

)

≥ 1− 1

εd
Pr

(
∀i ∈ [s] ,∀S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

> ε

)

≥ 1− 1

εd
(1− c)⌈C1d log( 1

ε )⌉ ,

where the latter inequality comes from Eq. 3, the independence of the variables across different Gi, and the
union. By choosing C1 large enough,

1− ε−d (1− c)⌈C1d log( 1
ε )⌉ = 1− 2d log 1

ε−⌈C1d log( 1
ε )⌉ log 1

1−c ≥ 1− ε.

Lemma 20 (Tensor Convolution Inequality). Given real tensors K and X of respective sizes d× d′ × c0 × c1
and D ×D′ × c0, it holds

∥K ∗X∥max ≤ ∥K∥1 · ∥X∥max .
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Proof. We have

∥K ∗X∥max

≤ max
i,j∈[D],ℓ∈[c1]

∑
i′,j′∈[d],k∈[c]

|Ki′,j′,k,ℓXi−i′+1,j−j′+1,k|

≤ max
i,j∈[D],ℓ∈[c1]

 ∑
i′,j′∈[d],k∈[c]

|Ki′,j′,k,ℓ|

 ∥X∥max

≤ max
i,j∈[D],ℓ∈[c1]

∥K∥1 · ∥X∥max

= ∥K∥1 · ∥X∥max .

B Omitted proofs

B.1 Multidimensional Random Subset Sum for normally-scaled normal vectors
Proof of Lemma 7. By Definition 4, the j-th entry of each vector Xi is (Xi)j = Zi · Zi,j where each Zi

and Zi,j are i.i.d. random variables following a standard normal distribution. Let E(↕) be the event that
k
(
1− 2

√
cd
)
≤
∑k

i=1 Z
2
i ≤ k

(
1 + 2

√
cd + 2cd

)
, and denote X =

∑k
i=1 Xi. By the law of total probability, it

holds that

Pr (X ∈ Iε (z⃗)) = EZ1,...,Zn
[Pr (X ∈ Iε (z⃗) |Z1, . . . , Zk)] .

As, conditional on Z1, . . . , Zk, the d entries of X are independent, it follows that

EZ1,...,Zn [Pr (X ∈ Iε (z⃗) |Z1, . . . , Zk)]

= EZ1,...,Zn

 d∏
j=1

Pr
(
(X)j ∈ Iε (zi)

∣∣∣Z1, . . . , Zk

)
≥ EZ1,...,Zn

 d∏
j=1

Pr
(
(X)j ∈ Iε (zi)

∣∣∣Z1, . . . , Zk, E(↕)
)Pr

(
E(↕)

)
, (4)

where the inequality in Eq. 4 holds by applying again the law of total probability.
Conditional on Z1, . . . , Zk, we have that (X)j ∼ N(0,

∑k
i=1 Z

2
i ). Hence,

EZ1,...,Zn

 d∏
j=1

Pr
(
(X)j ∈ Iε (zi)

∣∣∣Z1, . . . , Zk, E(↕)
)Pr

(
E(↕)

)

≥ EZ1,...,Zk

 d∏
j=1

 2ε√
π
(∑k

i=1 Z
2
i

) exp

(
− (|zi|+ ε)

2

2
∑k

i=1 Z
2
i

)
∣∣∣∣∣∣∣∣Z1, . . . , Zk, E(↕)


· Pr

(
E(↕)

)
Notice that the term

∑
i Z

2
i is a sum of chi-square random variables, for which there are known concentration

bounds (Lemma 17). By definition of E(↕) and by applying Lemma 17 to estimate the term Pr
(
E(↕)), we get

that
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EZ1,...,Zk

 d∏
j=1

 2ε√
π
(∑k

i=1 Z
2
i

) exp

(
− (|zi|+ ε)

2

2
∑k

i=1 Z
2
i

)
∣∣∣∣∣∣∣∣Z1, . . . , Zk, E(↕)


· Pr

(
E(↕)

)
≥

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∑

i |zi|
2
+ 2ε

∑
i |zi|+ dε2

2
(
1− 2

√
cd
)
k

)
Pr
(
E(↕)

)

=

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ε ∥z⃗∥1 + dε2

2
(
1− 2

√
cd
)
k

)
Pr
(
E(↕)

)

≥

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ε ∥z⃗∥1 + dε2

2
(
1− 2

√
cd
)
k

)(
1− 2e−cdk

)
.

As cdk ≥ 1 by hypotheses, 1− 2e−cdk ≥ 1/4. Then,

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ε ∥z⃗∥1 + dε2

2
(
1− 2

√
cd
)
k

)(
1− 2e−cdk

)

≥ 1

4

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ε ∥z⃗∥1 + dε2

2
(
1− 2

√
cd
)
k

)

≥ 1

4

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−k + 2ε

√
k + dε2

2
(
1− 2

√
cd
)
k

)
(5)

=
1

4

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

−
1 + 2ε√

k
+ dε2

k

2
(
1− 2

√
cd
)


≥ 1

4

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−

1 + 1
8 + 1

16

2
(
1− 2

√
cd
)) (6)

≥ 1

16

 2ε√
π
(
1 + 2

√
cd + 2cd

)
k

d

, (7)

where we have used that ∥z⃗∥2 ≤ ∥z⃗∥1 ≤
√
k in Ineq. 5, that k ≥ 16, k ≥ d, that ε < 1/4 in Ineq. 6, and that

exp

(
−

1 + 1
8 + 1

16

2
(
1− 2

√
cd
)) ≥ exp

−
1 + 1

8 + 1
16

2
(
1− 2

√
1
16

)
 ≥ 1

16

in Ineq. 7.

Proof of Lemma 8. Let n = k + j. Since the Xis are NSN random vectors, for each i ∈ [n] and j ∈ [d] we
can write the j-th entry of Xi as (Xi)j = Zi · Zi,j where the variables in {Zi}i∈[n] and in {Zi,j}i∈[n],j∈[d] are
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i.i.d. random variables following a standard normal distribution. By the law of total probability, we have

Pr (A+B ∈ Iε (z⃗) , B + C ∈ Iε (z⃗))

= EZ1,...,Zn
[Pr (A+B ∈ Iε (z⃗) , B + C ∈ Iε (z⃗) |Z1, . . . , Zn)]

= EZ1,...,Zn

[
d∏

i=1

Pr (Ai +Bi ∈ Iε (zi) , Bi + Ci ∈ Iε (zi) |Z1, . . . , Zn)

]
, (8)

where the latter equality holds by independence.
Then,

Pr (Ai +Bi ∈ Iε (zi) , Bi + Ci ∈ Iε (zi) |Z1, . . . , Zn)

= EBi [Pr (Ai ∈ Iε (zi −Bi) , Ci ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi)]

= EBi [Pr (Ai ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi)] ,

where the latter inequality holds by independence of Ai and Ci. By Lemma 14, it holds that

EBi
[Pr (Ai ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iε (zi −Bi) |Z1, . . . , Zn, Bi)]

≤ EBi
[Pr (Ai ∈ Iε (0) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iε (0) |Z1, . . . , Zn, Bi)]

= Pr (Ai ∈ Iε (0) |Z1, . . . , Zn) Pr (Ci ∈ Iε (0) |Z1, . . . , Zn)

≤ 2ε√
π
(∑j

r=1 Z
2
r

) · 2ε√
π
(∑k+j

r=k+1 Z
2
r

) , (9)

where the latter inequality comes from the fact that, conditional on Z1, . . . , Zn, we have that Ai ∼
N(0,

∑j
r=1 Z

2
r ), Bi ∼ N(0,

∑k
r=j+1 Z

2
r ), and Ci ∼ N(0,

∑k+j
r=k+1 Z

2
r ) for each i ∈ [d].

We now proceed similarly to the proof of Lemma 7. We denote the event that
(
1− 2

√
cd
)
j ≤∑j

i=1 Z
2
i ,
∑k+j

i=k+1 Z
2
i by E(↓). Then, by Eq. 8 and the law of total probability, we have that

Pr (A+B ∈ Iε (z⃗) , B + C ∈ Iε (z⃗))

= EZ1,...,Zn

[
d∏

i=1

Pr (Ai +Bi ∈ Iε (zi) , Bi + Ci ∈ Iε (zi) |Z1, . . . , Zn)

]

≤ EZ1,...,Zn

[
d∏

i=1

Pr
(
Ai +Bi, Bi + Ci ∈ Iε (zi)

∣∣∣Z1, . . . , Zn, E(↓)
)]

+ Pr
(
E(↓)

)
.

Eq. 9 implies that

EZ1,...,Zn

[
d∏

i=1

Pr
(
Ai +Bi, Bi + Ci ∈ Iε (zi)

∣∣∣Z1, . . . , Zn, E(↓)
)]

+ Pr
(
E(↓)

)

≤ EZ1,...,Zn

 d∏
i=1

2ε√
π
(∑j

r=1 Z
2
r

) · 2ε√
π
(∑k+j

r=k+1 Z
2
r

)
∣∣∣∣∣∣∣∣ E

(↓)

+ Pr
(
E(↓)

)

= EZ1,...,Zn


 4ε2

π

√(∑j
r=1 Z

2
r

)(∑k+j
r=k+1 Z

2
r

)


d ∣∣∣∣∣∣∣∣ E
(↓)

+ Pr
(
E(↓)

)
.

By independence of
∑j

r=1 Z
2
r and

∑k+j
r=k+1 Z

2
r and by Lemma 17, we obtain that
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EZ1,...,Zn


 4ε2

π

√(∑j
i=1 Z

2
i

)(∑k+j
i=k+1 Z

2
i

)


d ∣∣∣∣∣∣∣∣ E
(↓)

+ Pr
(
E(↓)

)

≤

(
4ε2

πj
(
1− 2

√
cd
))d

+ Pr
(
E(↓)

)

≤

(
4ε2

πj
(
1− 2

√
cd
))d

+ 2 exp (−cdj)

= exp

(
−d log

πj
(
1− 2

√
cd
)

4ε2

)
+ 2 exp (−cdk)

≤ 3

(
4ε2

π
(
1− 2

√
cd
)
k

)d

.

Finally, for a large enough constant C, the hypothesis on k implies that k ≥ 2 d
cd

log
πk(1−2

√
cd)

4ε2 . Hence,

exp

(
−d log

πj
(
1− 2

√
cd
)

4ε2

)
+ 2 exp (−cdk) ≤ 3

(
4ε2

π
(
1− 2

√
cd
)
k

)d

.

Proof of Theorem 5. We use the second moment method (Lemma 15) on the ε-subset-sum number Tn,k of
X1, . . . , Xn. Thus, we aim to provide a lower bound on the right-hand side of

Pr (T > 0) ≥ E[Tn,k]
2

E[T 2
n,k]

. (10)

Equivalently, we can provide an upper bound on the inverse
E[T 2

n,k]
E[Tn,k]

2 . By Lemma 9

E
[
T 2
n,k

]
=

(
n

k

)2 k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
(11)

where S,S′, Si and E(z⃗)
S are defined as in the statement of the lemma. Observe also that

E [Tn,k] =
∑

S∈([n]
k )

E
[
1E(z⃗)

S

]
=

∑
S∈([n]

k )

Pr
(
E(z⃗)
S

)
=

(
n

k

)
Pr
(
E(z⃗)
S0

)
. (12)

By Eq.s 11 and 12, we have

E
[
T 2
n,k

]
E [Tn,k]

2 =

(
n
k

)2
E [Tn,k]

2

k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)

=

k∑
j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 . (13)

As for the denominator of the second term in Eq. 13, by Lemma 7 we have

Pr
(
E(z⃗)
S0

)2
≥ 1

256

(
4ε2

π
(
1 + 2

√
cd + 2cd

)
k

)d

. (14)
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As for the numerator of the second term in Eq. 13, Lemma 8 implies that we have

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
≤ 3

(
4ε2

π
(
1− 2

√
cd
)
j

)d

. (15)

By plugging Eq. 15 and Eq. 14 in Eq. 13, for j ≥ k
(
1− 1

d

)
and d > 1 we can upper bound the factor

Pr
(
E(z⃗)
S0

∩E(z⃗)
Sj

)
Pr

(
E(z⃗)
S0

)2 of the summation as follows:

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 ≤
3

(
4ε2

π(1−2
√
cd)j

)d

1
256

(
4ε2

π(1+2
√
cd+2cd)k

)d

= 768

((
1 + 2

√
cd + 2cd

)
k(

1− 2
√
cd
)
j

)d

.

As j ≥ k
(
1− 1

d

)
with d > 1, then

768

((
1 + 2

√
cd + 2cd

)
k(

1− 2
√
cd
)
j

)d

≤ 768

( (
1 + 2

√
cd + 2cd

)(
1− 2

√
cd
) (

1− 1
d

))d

≤ 768

(
2 + 7

√
cd

2− 7
√
cd

)d

≤ 270801, (16)

because
(

(1+2
√
cd+2cd)

(1−2
√
cd)(1− 1

d )

)d

is maximised or d = 4. Let C ′ = 270801. If d > 1, by plugging Eq. 16 in Eq. 13,

we have that

E
[
T 2
n,k

]
E [Tn,k]

2 =

⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2
+

k∑
j=⌈k− k

d⌉
Pr (|S ∩ S′| = k − j)

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2
≤

⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 + C ′.

As Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
≤ Pr

(
E(z⃗)
S0

)
, then

⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 + C ′

≤ 1

Pr
(
E(z⃗)
S0

) ⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j) + C ′
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≤
Pr
(
|S ∩ S′| > k

d

)
Pr
(
E(z⃗)
S0

) + C ′. (17)

Notice that, if d = 1, the same bound holds as Pr
(
|S ∩ S′| > k

d

)
= 0. We now observe that, by the law of

total probability

Pr

(
|S ∩ S′| ≥ k

d

)
=

∑
S̃∈([n]

k )

Pr
(
S = S̃

)
Pr

(
|S ∩ S′| ≥ k

d

∣∣∣∣ S = S̃

)
. (18)

Conditional on S = S̃, |S ∩ S′| is a hypergeometric random variable with

E
[
|S ∩ S′|

∣∣∣S = S̃
]
=
∑
i∈S̃

Pr (i ∈ S′) = kPr (1 ∈ S) =
k2

n
.

Since n ≥ k2, then k2

n ≤ 1. Hence, since Chernoff bounds holds for the hypergeometric distribution [Doe20,
Theorem 1.10.25]

Pr

(
|S ∩ S′| ≥ k

d

∣∣∣∣S = S̃

)
≥ Pr

(
|S ∩ S′| ≥ k2

n
+

(
k

d
− 1

) ∣∣∣∣S = S̃

)
≤ exp

(
−2

(
k
d − 1

)2
k

)

≤ exp

(
−2

k

d2

(
1− d

k

)2
)
. (19)

Substituting Eq. 19 in Eq. 18 we get

Pr

(
|S ∩ S′| ≥ k

d

)
≤ exp

(
−2

k

d2

(
1− d

k

)2
)
. (20)

We can now keep bounding from above
E[T 2

n,k]
E[Tn,k]

2 by plugging Eq. 20 in Eq. 17:

Pr
(
|S ∩ S′| ≥ k

d

)
Pr
(
E(z⃗)
S0

) + C ′ ≤
exp

(
−2 k

d2

(
1− d

k

)2)
Pr
(
E(z⃗)
S0

) + C ′. (21)

By Lemma 7, and since 1 + 2
√
cd + 2cd ≤ 2, we have

exp
(
−2 k

d2

(
1− d

k

)2)
Pr
(
E(z⃗)
S0

) + C ′

≤
16 exp

(
−2 k

d2

(
1− d

k

)2)(
2ε√
π2k

)d + C ′

= 16 exp

(
−2

k

d2

(
1− d

k

)2

+ d log

(√
π2k

2ε

))
+ C ′. (22)

By the hypothesis, since k ≥ Cd3 log d
ε for a large enough C, it holds that

16 exp

(
−2

k

d2

(
1− d

k

)2

+ d log

(√
π2k

2ε

))
+ C ′

21



≤ C ′ + 16 exp

(
−d log

d

ε

)
< C ′ +

16

e
, (23)

where the latter inequality holds as ε ≤ 1/4.
Plugging the inverse of the expression in Eq. 23 in Eq. 10 we obtain the thesis.

B.2 Kernel Pruning

Proof of Lemma 11. S2 ∈ {0, 1}size(V ) is such that Ṽ = V � S̃ = (V � S1) � S2 contains only non-negative
edges going from each input channel t to the output channels 2(t−1)n+1, . . . , (2t−1)n, and only non-positive6

edges going from each input channel t to the output channels (2t− 1)n+1, . . . , 2tn, while all remaining edges
are set to zero. Let us define some convenient notations before proceeding with the proofs. By [n,m] we
denote the set {n, n+ 1, . . . ,m} for each pair of integers n ≤ m ∈ N. In formulas, we obtain a tensor Ṽ such
that, for each (t, k) ∈ [c] ,× [2nc]:

(
V � S̃

)
1,1,t,k

=


V1,1,t,k · 1V1,1,t,k>0 if k ∈ [(2t− 2)n+ 1, (2t− 1)n] ,

V1,1,t,k · 1V1,1,t,k<0 if k ∈ [(2t− 1)n+ 1, 2tn] ,

0 otherwise.
(24)

To simplify the notation, we define the following indicator functions: for any (t, k) ∈ [c]× [2nc],

1 k
2n∈(t−1,t− 1

2 ]
= 1 iff k ∈ [(2t− 2)n+ 1, (2t− 1)n] , and

1 k
2n∈(t− 1

2 ,t]
= 1 iff k ∈ [(2t− 1)n+ 1, 2tn] . (25)

For each (i, j, k) ∈ [D]× [D]× [2nc], applying Eq. 24 and using Definition 10, it then holds(
ϕ
((

V � S̃
)
∗X

))
i,j,k

= ϕ

(
c0∑
t=1

Ṽ1,1,t,kXi,j,t

)

= ϕ

( c0∑
t=1

(
V1,1,t,kXi,j,t · 1V1,1,t,k>01 k

2n∈(t−1,t− 1
2 ]

+ V1,1,t,kXi,j,t · 1V1,1,t,k<01 k
2n∈(t− 1

2 ,t]
))

= ϕ

(
c0∑
t=1

(
V +
1,1,t,kXi,j,t1 k

2n∈(t−1,t− 1
2 ]

− V −
1,1,t,kXi,j,t1 k

2n∈(t− 1
2 ,t]

))

= ϕ

( c0∑
t=1

(
V +
1,1,t,k(X

+
i,j,t −X−

i,j,t)1 k
2n∈(t−1,t− 1

2 ]

+ V −
1,1,t,k(X

−
i,j,t −X+

i,j,t)1 k
2n∈(t− 1

2 ,t]
))

. (26)

Observe that only one term survives in the summation in Eq. 26, as there exists only one t ∈ [c0] such that
k ∈ [(2t− 2)n+ 1, 2tn], say t⋆. Moreover, out of the four additive terms in the expression

V +
1,1,t⋆,k(X

+
i,j,t⋆ −X−

i,j,t⋆)1 k
2n∈(t⋆−1,t⋆− 1

2 ]
+ V −

1,1,t⋆,k(X
−
i,j,t⋆ −X+

i,j,t⋆)1 k
2n∈(t⋆− 1

2 ,t
⋆],

at most one is non-zero, due to Definition 10. The ReLU cancels out negative ones, implying that Eq. 26 can
be rewritten without the ReLU as a sum of only non-negative terms (out of which, at most one is non-zero)

6We consider 0 to be both non-negative and non-positive.
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as follows

ϕ

( c0∑
t=1

(
V +
1,1,t,k(X

+
i,j,t −X−

i,j,t)1 k
2n∈(t−1,t− 1

2 ]

+ V −
1,1,t,k(X

−
i,j,t −X+

i,j,t)1 k
2n∈(t− 1

2 ,t]
))

=

c0∑
t=1

(
V +
1,1,t,kX

+
i,j,t1 k

2n∈(t−1,t− 1
2 ]

+ V −
1,1,t,kX

−
i,j,t1 k

2n∈(t− 1
2 ,t]

)
. (27)

Finally, by Eq. 24 and Eq. 25, Ṽ +
1,1,t,k = 0 if k

2n ̸∈
(
t− 1, t− 1

2

]
, and Ṽ −

1,1,t,k = 0 if k
2n ∈

(
t− 1

2 , t
]
, which

means that in Eq. 27 we can ignore the indicator functions and further simplify the expression as

c0∑
t=1

(
V +
1,1,t,kX

+
i,j,t1 k

2n∈(t−1,t− 1
2 ]

+ V −
1,1,t,kX

−
i,j,t1 k

2n∈(t− 1
2 ,t]

)
=

c0∑
t=1

(
Ṽ +
1,1,t,kX

+
i,j,t + Ṽ −

1,1,t,kX
−
i,j,t

)
=

(
c0∑
t=1

Ṽ +
1,1,t,kX

+
i,j,t +

c0∑
t=1

Ṽ −
1,1,t,kX

−
i,j,t

)
=
(
Ṽ + ∗X+ + Ṽ − ∗X−

)
i,j,k

.

Proof of Lemma 12. Adopting the same definitions as in Lemma 11 (and Eq. 24), for each (r, s, t1) ∈
[d]× [d]× [c1] we have, by Lemma 11,(

U ∗ ϕ
((

V � S̃
)
∗X

))
r,s,t1

=
(
U ∗

((
Ṽ + ∗X+

)
+
(
Ṽ − ∗X−

)))
r,s,t1

=
∑

i,j∈[d],k∈[2nc0]

Ui,j,k,t1 ·
((

Ṽ + ∗X+
)
+
(
Ṽ − ∗X−

))
r−i+1,s−j+1,k

=
∑

i,j∈[d],k∈[2nc0]

Ui,j,k,t1 ·
∑

t0∈[c0]

(
Ṽ +
1,1,t0,k

·X+
r−i+1,s−j+1,t0

+ Ṽ −
1,1,t0,k

·X−
r−i+1,s−j+1,t0

)
=

∑
t0∈[c0]

∑
i,j∈[d],k∈[2nc0]

(
Ui,j,k,t1 · Ṽ +

1,1,t0,k

)
·X+

r−i+1,s−j+1,t0

+
∑

t0∈[c0]

∑
i,j∈[d],k∈[2nc0]

(
Ui,j,k,t1 · Ṽ −

1,1,t0,k

)
·X−

r−i+1,s−j+1,t0

=
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[2nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

 ·X+
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[2nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

 ·X−
r−i+1,s−j+1,t0

.

We remind the reader that S̃ = S1 � S2, with S1 being a 2n-channel-blocked mask and S2 being a mask that
removes filters. Define L+

i,j,t0,t1
=
∑

k∈[nc] Ui,j,k,t1 · Ṽ +
1,1,t0,k

and, similarly, L−
i,j,t0,t1

=
∑

k∈[nc] Ui,j,k,t1 · Ṽ −
1,1,t0,k

.
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Then,

∑
i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

 ·X+
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

 ·X−
r−i+1,s−j+1,t0

=
∑

i,j∈[d],t0∈[c0]

L+
i,j,t0,t1

·X+
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

L−
i,j,t0,t1

·X−
r−i+1,s−j+1,t0

.

We now show that, for each t0 ∈ [c0], K:,:,t0,: can be ε-approximated by L+
:,:,t0,: by suitably pruning Ṽ +, i.e.

by further zeroing entries of S̃, and that such pruning corresponds to solving an instance of MRSS according
to Theorem 5. The same reasoning applies to K− and L−.

For each t0 ∈ [c0], let

I
(t0)
+ =

{
k ∈ {(2t0 − 2)n+ 1, . . . , (2t0 − 1)n} : S̃1,1,t0,k = 1

}
.

Observe that I(t0)+ consists of the strictly positive entries of Ṽ +
1,1,t0,:

.7 Since the entries of V follow a standard
normal distribution, each entry is positive with probability 1/2. By a standard application of Chernoff bounds
(Lemma 16 in Appendix A), we then have

Pr
(∣∣∣I(t0)+

∣∣∣ > n

3

)
≥ 1− ε

4
, (28)

provided that the constant C in the bound on n is sufficiently large.
For each k ∈ I

(t0)
+ , up to reshaping the tensor as a one-dimensional vector, U:,:,k,: · Ṽ +

1,1,t0,k
is an NSN

vector (Definition 4) by Lemma 18 (Appendix A). Thus, for each t0 ∈ [c0] and a sufficiently-large value of C,
since we have n ≥ Cd13c61 log

3 d2c1c0
ε , we can apply an amplified version of Theorem 5 (i.e. Corollary 19 in

Appendix A with vectors of dimension d2c1) to show that, with probability 1− ε
4c0

, for all target filter K

such that ∥K:,:,t0,:∥1 ≤ 1, there exists a way to zero the entries indexed by I
(t0)
+ of S̃ (and thus Ṽ +

1,1,t0,:
), so

that the pruned version of L+
:,:,t0,: =

∑
k∈[nc0]

U:,:,k,: · Ṽ +
1,1,t0,k

approximates K:,:,t0,:. In particular, there exists

another binary mask S+
3 ∈ {0, 1}size S̃ such that L̂+

:,:,t0,: =
∑

k∈[nc0]
U:,:,k,: · V̂ +

1,1,t0,k
approximates K:,:,t0,:,

where V̂ + = Ṽ + �S+
3 . An analogous argument carries on for a binary mask S−

3 and −L̂−
:,:,t0,:.

8 More formally,
let

E(kernel)
t0,+ =

{
∀K : ∥K∥1 ≤ 1,∃S+

3 ∈ {0, 1}size S̃
∣∣∣∣ ∥∥∥L̂+

:,:,t0,: −K:,:,t0,:

∥∥∥
max

≤ ε

2d2c1c0

}
,

E(kernel)
t0,− =

{
∀K : ∥K∥1 ≤ 1,∃S−

3 ∈ {0, 1}size S̃
∣∣∣∣ ∥∥∥L̂−

:,:,t0,: +K:,:,t0,:

∥∥∥
max

≤ ε

2d2c1c0

}
, and

E(kernel) =

 ⋂
t0∈[c0]

E(kernel)
t0,+

⋂ ⋂
t0∈[c0]

E(kernel)
t0,−

 .

Then, by Corollary 19,

Pr
(
E(kernel)
t0,+

∣∣∣ ∣∣∣I(t0)+

∣∣∣ > n

3

)
≥ 1− ε

4c0
, and

Pr
(
E(kernel)
t0,−

∣∣∣ ∣∣∣I(t0)−

∣∣∣ > n

3

)
≥ 1− ε

4c0
.

7Notice that excluding zero entries implies conditioning on the event that the entry is not zero. However, such an event has
zero probability and, thus, does not impact the analysis.

8The negative sign in front of L̂−
:,:,t0,:

does not affect the random subset sum result as each entry is independently negative or
positive with the same probability.
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By the union bound, we have the following:

Pr
(
E(kernel)

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
= 1− Pr

 ⋃
t0∈[c0]

E(kernel)
t0,+

⋃ ⋃
t0∈[c0]

E(kernel)
t0,−

∣∣∣∣∣∣
∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3


≥ 1−

∑
t0∈[c0]

[
Pr
(
E(kernel)
t0,+

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
+ Pr

(
E(kernel)
t0,−

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)]
≥ 1− 2

∑
t0∈[c0]

ε

4c0

≥ 1− ε

2
.

Since Pr
(∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n
3

)
≥ 1− ε

2 , then we can remove the conditional event obtaining

Pr
(
E(kernel)

)
≥ Pr

(
E(kernel)

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
Pr
(∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
≥
(
1− ε

2

)2
≥ 1− ε. (29)

To rewrite the latter in terms of the filter K and a mask Ŝ, we notice that pruning L+
:,:,t0,: and L−

:,:,t0,:

separately, with two binary masks, is equivalent to say that there exists a single binary mask S3 ∈ {0, 1}size S̃
such that, L̂:,:,t0,: can be written as L̂:,:,t0,: =

∑
k∈[nc0]

U:,:,k,: · V̂1,1,t0,k, where V̂ = Ṽ � S3. Ineq. 29 implies
that, with probability 1− ε, for all target filters K with ∥K∥1 ≤ 1 such S3 exists and hence,∥∥∥K − L̂+

∥∥∥
max

+
∥∥∥K + L̂−

∥∥∥
max

≤ ε

d2c1c0
. (30)

Let Ŝ = S̃ � S3: then Ŝ = S1 � S2 � S3 is the combination of a 2n-channel-blocked mask S = S1 and a mask
S2 � S3 that only removes filters.

Notice that, with probability 1− ε, for all target filters K with ∥K∥1 ≤ 1, such binary masks Ŝ exists and
the following holds:

sup
X:∥X∥max≤M

∥∥∥∥K ∗X −N
(Ŝ)
0 (X)

∥∥∥∥
max

= sup
X:∥X∥max≤M

∥∥∥K ∗X − U ∗ ϕ
(
(V � Ŝ) ∗X

)∥∥∥
max

= sup
X:∥X∥max≤M

∥∥∥K ∗X − U ∗ ϕ
(
(V � S̃ � S3) ∗X

)∥∥∥
max

= sup
X:∥X∥max≤M

∥∥∥K ∗
(
X+ −X−)− U ∗

((
V̂ + ∗X+

)
+
(
V̂ − ∗X−

))∥∥∥
max

,

where the latter holds by Lemma 11.9 Then, by the distributive property of the convolution and the triangle
inequality,

sup
X:∥X∥max≤M

∥∥∥K ∗
(
X+ −X−)− U ∗

((
V̂ + ∗X+

)
+
(
V̂ − ∗X−

))∥∥∥
max

= sup
X:∥X∥max≤M

∥∥∥K ∗X+ − U ∗
(
V̂ + ∗X+

)
−K ∗X− − U ∗

(
V̂ − ∗X−

)∥∥∥
max

9The presence of S3 does not influence the proof of Lemma 11.
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≤ sup
X:∥X∥max≤M

∥∥∥K ∗X+ − U ∗
(
V̂ + ∗X+

)∥∥∥
max

+ sup
X:∥X∥max≤M

∥∥∥K ∗X− + U ∗
(
V̂ − ∗X−

)∥∥∥
max

.

One can now apply the Tensor Convolution Inequality (Lemma 20) and obtain

sup
X:∥X∥max≤M

∥∥∥K ∗X+ − U ∗
(
V̂ + ∗X+

)∥∥∥
max

+ sup
X:∥X∥max≤M

∥∥∥K ∗X− + U ∗
(
V̂ − ∗X−

)∥∥∥
max

≤ sup
X:∥X∥max≤M

∥∥X+
∥∥
max

·
∥∥∥K − U ∗ V̂ +

∥∥∥
1

+ sup
X:∥X∥max≤M

∥∥X−∥∥
max

·
∥∥∥K + U ∗ V̂ −

∥∥∥
1

= M ·
∥∥∥K − U ∗ V̂ +

∥∥∥
1
+M ·

∥∥∥K + U ∗ V̂ −
∥∥∥
1
.

Now, observing that the number of entries of the two tensors in the expression above is d2c1c0, and using
Ineq. 30, we get that

M ·
∥∥∥K − U ∗ V̂ +

∥∥∥
1
+M ·

∥∥∥K − U ∗ V̂ −
∥∥∥
1

≤ d2c1c0

(∥∥∥K − U ∗ V̂ +
∥∥∥
max

+
∥∥∥K − U ∗ V̂ −

∥∥∥
max

)
≤ d2c1c0M

ε

d2c1c0
= εM.

proving the thesis.

Proof of Theorem 2. To bound the error propagation across layers, we define the layers’ outputs

X(0) = X,

X(i) = ϕ
(
K(i) ∗X(i−1)

)
for 1 ≤ i ≤ ℓ. (31)

Notice that X(ℓ) is the output of the target function, i.e., f (X) = X(ℓ).
For brevity’s sake, given masks S(2i−1) ∈ {0, 1}size(L(2i−1)) for each i = 1, . . . , ℓ, let us denote

L̃(2i−1) = L(2i−1) � S(2i−1). (32)

We now show that the random network approximates the target one after being pruned only at layers L(2i−1)

for all i = 1, . . . , ℓ, by masks S(2i−1) which are the composition of a 2n2i−1-channel-blocked mask and a mask
that only removes filters. The key idea is to iteratively applying Lemma 12. Since the ReLU function is
1-Lipschitz, for all i it holds∥∥∥ϕ(K(i) ∗X(i−1)

)
− ϕ

(
L(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

))∥∥∥
max

≤
∥∥∥K(i) ∗X(i−1) − L(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

)∥∥∥
max

. (33)

The key step of the proof is that, for each layer i, since ni ≥ Cd13c6i log
3 d2cici−1ℓ

ε for a suitable constant C,
we can apply Lemma 12 to get that, with probability at least 1− ε

2ℓ , for all i and for all choices of target
filters K(i) ∈ Rdi×di×ci−1×ci it holds∥∥∥K(i) ∗X(i−1) − L(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

)∥∥∥
max

<
ε

2ℓ
·
∥∥∥X(i−1)

∥∥∥
max

. (34)
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Hence, combining Eq. 33 and Eq. 34 we get that, with probability at least 1− ε
2ℓ , for all i and all choices of

target filters K(i) ∈ Rdi×di×ci−1×ci with
∥∥K(i)

∥∥
1
≤ 1,∥∥∥ϕ(K(i) ∗X(i−1)

)
− ϕ

(
L(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

))∥∥∥
max

<
ε

2ℓ
·
∥∥∥X(i−1)

∥∥∥
max

. (35)

By a union bound, with probability at least 1− ε, we get that Eq. 35 holds for all layers i and all choices of
target filters K(i) ∈ Rdi×di×ci−1×ci .

Analogously, we can define the pruned layers’ outputs

X̃(0) = X,

X̃(i) = ϕ
(
L(2i) ∗ ϕ

(
L̃(2i−1) ∗ X̃(i−1)

))
for 1 ≤ i ≤ ℓ. (36)

Notice that X̃(ℓ) is the output of the pruned network, i.e. N
(S(1),...,S(2ℓ))
0 (X) = X̃(ℓ).

By the same reasoning employed to derive Eq. 34 and Eq. 35 we have that, with probability 1− ε, for all
layers i and all choices of target filters K(i) ∈ Rdi×di×ci−1×ci , the output of all pruned layers satisfies∥∥∥ϕ(K(i) ∗ X̃(i−1)

)
− ϕ

(
L(2i) ∗ ϕ

(
L̃(2i−1) ∗ X̃(i−1)

))∥∥∥
max

<
ε

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

. (37)

Moreover, for each 1 ≤ i ≤ ℓ− 1, by the triangle inequality and by Eq. 37,∥∥∥X̃(i)
∥∥∥
max

=
∥∥∥X̃(i) − ϕ

(
K(i) ∗ X̃(i−1)

)
+ ϕ

(
K(i) ∗ X̃(i−1)

)∥∥∥
max

≤
∥∥∥X̃(i) − ϕ

(
K(i) ∗ X̃(i−1)

)∥∥∥
max

+
∥∥∥ϕ(K(i) ∗ X̃(i−1)

)∥∥∥
max

≤ ε

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥ϕ(K(i) ∗ X̃(i−i)

)∥∥∥
max

.

By the Lipschitz property of ϕ and Lemma 20
ε

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥ϕ(K(i) ∗ X̃(i−i)

)∥∥∥
max

≤ ε

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥K(i) ∗ X̃(i−i)

∥∥∥
max

≤ ε

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥K(i)

∥∥∥
1

∥∥∥X̃(i−i)
∥∥∥
max

=
∥∥∥X̃(i−1)

∥∥∥
max

(
1 +

ε

2ℓ

)
.

By unrolling the recurrence, we get that, with probability 1 − ε, for all choices of target filters K(i) ∈
Rdi×di×ci−1×ci , ∥∥∥X̃(i)

∥∥∥
max

≤
∥∥∥X̃(0)

∥∥∥
max

(
1 +

ε

2ℓ

)i
. (38)

Thus, combining Eq. 37 and Eq. 38, with probability 1− ε we get that, for each i ∈ [ℓ] and for all choices of
target filters K(i) ∈ Rdi×di×ci−1×ci ,∥∥∥K(i) ∗ X̃(i−1) − L(2i) ∗ ϕ

(
L̃(2i−1) ∗ X̃(i−1)

)∥∥∥
max

<
ε

2ℓ
·
(
1 +

ε

2ℓ

)i−1 ∥∥∥X̃(0)
∥∥∥
max

. (39)

We then see that with probability 1 − ε, for 1 ≤ i ≤ ℓ and for all choices of target filters K(i) ∈
Rdi×di×ci−1×ci , by Eq. 31 and Eq. 36, and by the triangle inequality,∥∥∥X(ℓ) − X̃(ℓ)

∥∥∥
max
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=
∥∥∥ϕ(K(ℓ) ∗X(ℓ−1)

)
− ϕ

(
L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

))∥∥∥
max

≤
∥∥∥ϕ(K(ℓ) ∗X(ℓ−1)

)
− ϕ

(
K(ℓ) ∗ X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥ϕ(K(ℓ) ∗ X̃(ℓ−1)

)
− ϕ

(
L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

))∥∥∥
max

.

Again by the 1-Lipschitz property of the ReLU activation function, and by the distributive property of the
convolution operation, ∥∥∥ϕ(K(ℓ) ∗X(ℓ−1)

)
− ϕ

(
K(ℓ) ∗ X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥ϕ(K(ℓ) ∗ X̃(ℓ−1)

)
− ϕ

(
L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

))∥∥∥
max

≤
∥∥∥K(ℓ) ∗X(ℓ−1) −K(ℓ) ∗ X̃(ℓ−1)

∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

=
∥∥∥K(ℓ) ∗

(
X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

.

Lemma 20 and the hypothesis
∥∥K(ℓ)

∥∥
1
≤ 1 imply that∥∥∥K(ℓ) ∗

(
X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤
∥∥∥K(ℓ)

∥∥∥
1
·
∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤
∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

.

Now, we first apply Eq. 39 and then we unroll the recurrence for all layers (as, with probability 1− ε, Eq. 39
holds for all layers and for all choices of target filters K(i) ∈ Rdi×di×ci−1×ci), obtaining∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤
∥∥∥X(ℓ−1) − X̃(ℓ−1)

∥∥∥
max

+
ε

2ℓ
·
(
1 +

ε

2ℓ

)ℓ−1

≤
ℓ∑

j=1

ε

2ℓ
·
(
1 +

ε

2ℓ

)j−1

.

By summing the geometric series and observing that ε < 1, we conclude that

ℓ∑
j=1

ε

2ℓ
·
(
1 +

ε

2ℓ

)j−1

=
(
1 +

ε

2ℓ

)ℓ
− 1

≤ e
ε
2 − 1

≤ ε.
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Hence, with probability 1− ε, for all X ∈ [−1, 1]D×D×c0 and all chocies of target filters K(i) ∈ Rdi×di×ci−1×ci ,
for all ℓ ∈ [c] it holds that ∥∥∥X(ℓ) − X̃(ℓ)

∥∥∥
max

≤ ε,

yielding the thesis.
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