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Abstract

The Strong Lottery Ticket Hypothesis (SLTH) states that randomly-initialised
neural networks contain subnetworks that can perform well without any training.
Although unstructured pruning has been extensively studied in this context, its
structured counterpart, which can deliver significant computational and memory
efficiency gains, has been largely unexplored. One of the main reasons for this gap
is the limitations of the underlying mathematical tools used in formal analyses of the
SLTH. In this paper, we overcome these limitations: we leverage recent advances
in the multidimensional generalisation of the Random Subset-Sum Problem and
obtain a variant that admits the stochastic dependencies that arise when addressing
structured pruning in the SLTH. We apply this result to prove, for a wide class of
random Convolutional Neural Networks, the existence of structured subnetworks
that can approximate any sufficiently smaller network.
This is the first work to address the SLTH for structured pruning, opening up new
avenues for further research on the hypothesis and contributing to the understanding
of the role of overparameterization in deep learning.

1 Introduction

Much of the success of deep learning techniques relies on extreme overparameterization. While
such excess of parameters has allowed neural networks to become the state of the art in many tasks,
the associated computational cost limits both the progress of those techniques and their deployment
in real-world applications. This limitation motivated the development of methods for reducing the
number of parameters of neural networks; both in the past Reed [1993] and in the present Blalock
et al. [2020], Hoefler et al. [2021].

Although pruning methods have traditionally targeted reducing the size of networks for inference
purposes, recent works have indicated that they can also be used to reduce parameter counts during
training or even at initialization without sacrificing model accuracy. In particular, Frankle and Carbin
[2019] proposed the Lottery Ticket Hypothesis (LTH), which conjectures that randomly initialised
networks contain sparse subnetworks that can be trained and reach the performance of the fully-
trained original network. Empirical investigations on the LTH Zhou et al. [2019], Ramanujan et al.
[2020], Wang et al. [2020] pointed towards an even more impressive phenomenon: the existence of
subnetworks that perform well without any training. This conjecture was named the Strong Lottery
Ticket Hypothesis (SLTH) by Pensia et al. [2020].

Preprint. Under review.



Unstructured sparsity

(a) No pattern.

Structured sparsity

(b) Strided pattern. (c) Block pattern.

Figure 1: Examples of different pruning patterns.

While the SLTH has been proved for many different classes of neural networks (see Section 2), those
works are restricted to unstructured pruning, where the subnetworks are obtained by freely removing
individual parameters from the original network. However, this lack of structure can significantly
reduce the main gains of pruning, both in terms of memory and computational efficiency. Removing
parameters at arbitrary points of the network implies the need to store the indices of the remaining
non-zero parameters, which can become a significant overhead with its own research challenges
Pooch and Nieder [1973]. Moreover, the theoretical computational gains of unstructured sparsity
can also be difficult to realize in standard hardware, which is optimized for dense operations. Most
notably, the irregularity of the memory access patterns can lead to both data and instruction cache
misses, significantly reducing the performance of the pruned network.

The limitations of parameter-level pruning have motivated extensive research on structured pruning,
which constrain the sparsity patterns to reduce the complexity of parameter indexation and, more
generally, to make the processing of the pruned network more efficient. A simple example of
structured pruning is neuron pruning of fully-connected layers: deletions in the weight matrix are
constrained to the level of whole rows/columns. With this constraint, pruning results in a smaller
dense network, directly reducing the computational costs without any need for extra memory to store
indices. Similarly, deleting entire filters in Convolutional Neural Networks (CNNs) Polyak and Wolf
[2015] or “heads” in attention-based architectures Michel et al. [2019] also produces direct reductions
in computational costs.

It is important to note that structured pruning is a restriction of unstructured pruning so, theoretically,
the former is bound to perform at most as well as the latter. For example, by deleting whole
neurons one can remove about 70% of the weights in dense networks without significantly affecting
its performance. Through unstructured pruning, on the other hand, one can usually reach 95%
sparsity without accuracy loss Alvarez and Salzmann [2016]. In practice, however, the computational
advantage of structured pruning can offset this difference. This trade-off between sparsity and actual
efficiency has motivated the study of less coarse sparsity patterns. Weaker structural constraints such
as strided sparsity Anwar et al. [2017] (Figure 1b) or block sparsity Siswanto [2021] (Figure 1b) are
already sufficient to deliver the bulk of the computational gains that structured can offer.

Despite its benefits, there have been no results on structured pruning in the context of the SLTH. We
believe this gap can be attributed to the limitations of a central result underlying almost all of the
theoretical works on the SLTH: a theorem by Lueker on the Random Subset-Sum Problem (RSSP).

Theorem 1 ([Lueker, 1998, da Cunha et al., 2022a]). Let X1, . . . , Xn be independent uniform
random variables over [−1, 1], and let ε ∈ (0, 1/3). There exists a universal constant C > 0 such
that, if n ≥ C log(1/ε), then, with probability at least 1− ε, for all z ∈ [−1, 1] there exists Sz ⊆ [n]
for which ∣∣∣z − ∑

i∈Sz

Xi

∣∣∣ ≤ ε.

In general terms, the theorem states that given a rather small number of random variables, there is a
high probability that any target value (within an interval of interest) can be approximated as a sum of
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a subset of the random variables. An important remark is that even though Theorem 1 is stated in
terms of uniform random variables, it is not hard to extend it to a wide class of distributions.1

While Theorem 1 closely matches the setup of the SLTH, it only concerns individual random variables,
so it does not apply to entire random structures directly. The recent works Borst et al. [2022], Becchetti
et al. [2022a] reduced this gap by proving multidimensional versions of Theorem 1. Still, the intricate
manipulation of the network parameters in proofs around the SLTH imposes restrictions that are not
covered by those results.

Contributions

In this work, we close this gap by providing a version of Theorem 1 that allows us to prove that
networks in a wide class of CNNs are likely to contain structured subnetworks that approximate any
sufficiently smaller CNN in the class. To the best of our knowledge, this is the first result around the
SLTH for structured pruning of neural networks of any kind. More precisely,

• We prove a multidimensional version Theorem 1 that is robust to some dependencies between
coordinates, which is crucial for structured pruning (Theorem 5);

• We use this result to show that, with high probability, a rather wide class of random CNNs
can be pruned (in a structured manner) to approximate any sufficiently smaller CNN in this
class (Theorem 3);

• Additionally, our pruning scheme focuses on filter pruning, which, like neuron pruning,
allows for a direct reduction of the size of the original CNN.

2 Related Work

SLTH Put roughly, research on the SLTH revolves around the following question:
Question. Given an error margin ϵ > 0 and a target network architecture ftarget, how large must
an architecture frandom be to ensure that, with high probability on the sampling of parameters of
frandom, one can prune frandom to obtain a subnetwork that approximates ftarget up to output error
ϵ?

Malach et al. [2020] first proved that, for dense networks with ReLU activations, it was sufficient for
frandom to be twice as deep and polynomially wider than ftarget. Orseau et al. [2020] showed that
the width overhead could be greatly reduced by sampling parameters from a hyperbolic distribution.
Pensia et al. [2020] improved the original result for a wide class of weight distribution, requiring
only a logarithmic width overhead, which they proved to be asymptotically optimal. da Cunha et al.
[2022b] generalised those results with optimal bounds to CNNs with non-negative inputs, which
Burkholz [2022a] extended to general inputs and to residual architectures. Burkholz [2022a] also
reduced the depth overhead to a single extra layer and provided results that include a whole class of
activation functions. Burkholz [2022b] obtained similar improvements to dense architectures. Fischer
and Burkholz [2021] modified many of the previous arguments to take into consideration networks
with non-zero biases. Ferbach et al. [2022] further generalise previous results on CNNs to general
equivariant networks. Diffenderfer and Kailkhura [2021] obtained similar SLTH results for binary
dense neural networks within polynomial depth and width overhead, which Sreenivasan et al. [2022]
improved to logarithmic overhead.

Structured pruning Works on structured pruning date back to the early days of the field of neural
network sparsification with works such as Mozer and Smolensky [1988] and Mozer and Smolensky
[1989]. Since then, a vast literature was built around the topic, particularly for the pruning of CNNs.
For a survey of structured pruning in general, we refer the reader to the associated sections of Hoefler
et al. [2021], and to He and Xiao [2023] for a survey on structured pruning of CNNs.

RSSP Pensia et al. [2020] introduced the use of theoretical results on the RSSP in arguments
around the SLTH, namely [Lueker, 1998, Corollary 3.3]. The work da Cunha et al. [2022a] provides
an alternative, simpler proof of this result. Borst et al. [2022] and Becchetti et al. [2022b] prove

1Distributions whose probability density function f satisfies f(x) ≥ b for all x ∈ [−a, a], for some constants
a, b > 0 (see [Lueker, 1998, Corollary 3.3]).
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multidimensional versions of the theorem. Theorem 5 diverges from those results in that it supports
some dependencies between the entries of random vectors.

3 Preliminaries and contribution

Given n ∈ N, we denote the set {1, . . . , n} by [n]. The symbol ∗ represents the convolution operation,
⊙ represents the element-wise (Hadamard) product, and ϕ represents the ReLU activation function.
The notation ∥·∥1 refers to the sum of the absolute values of each entry in a tensor. Similarly, ∥·∥2
refers to the square root of the sum of the squares of each entry in a tensor. ∥·∥max denotes the
maximum norm: the maximum among the absolute value of each entry. Sometimes we represent
a tensor X ∈ Rd1×···×dn by the notation X = (Xi1,...,in)i1∈[d1],...,in∈[dn]. We denote the normal
probability distribution with mean µ and variance σ2 by N(µ, σ2). We write U ∼ N d1×···×dn to
denote that U is a random tensor of size d1 × · · · × dn with entries independent and identically
distributed (i.i.d.), each following N(0, 1). We refer to such random tensors as normal tensors.
Finally, we refer to the axis of a 4-D tensor as rows, columns, channels, and kernels (a.k.a. filters), in
this order.

For the sake of simplicity, we assume CNNs to be of the form N : [−1, 1]D×D×c0 → RD×D×cℓ

given by
N(X) = Kℓ ∗ ϕ(Kℓ−1 ∗ · · ·ϕ(K1 ∗X)),

where Ki ∈ Rdi×di×ci−1×ci for i ∈ [ℓ], and the convolutions have no bias and are suitably padded
with zeros. Moreover, when the kernels K(i) are normal tensors, we say that N is a random CNN.

Before we proceed to our main theorem, we introduce a definition that encompasses the sparsity
structure underlying our proofs.
Definition 2 (n-channel-blocked mask). Given a positive integer n, a binary tensor S ∈
{0, 1}d×d×c×cn is called n-channel-blocked if and only if

Si,j,k,l =

{
1 if

⌈
l
n

⌉
= k,

0 otherwise,

for all i, j ∈ [d], k ∈ [c], and l ∈ [cn].
Theorem 3 (SLTH for kernel pruning). Let D, d, c0, c1 and ℓ be positive integers and let ϵ and
C be positive real numbers. For each i ∈ [ℓ], let L(2i−1) ∼ N 1×1×ci−1×2ci−1ni and L(2i) ∼
N di×di×2ci−1ni×ci with ni ≥ Cd12c6i log

3 d2cici−1ℓ
ϵ for some positive integers ni and ci. Let then

N0 : [−1, 1]D×D×c0 → RD×D×cℓ be a random CNN of the form

N0 (X) = L(2ℓ) ∗ · · ·ϕ
(
L(1) ∗X

)
.

Given 2ni-channel-blocked masks S(2i−1) ∈ {0, 1}1×1×ni×ci for each tensor L(2i−1), for i ∈ [ℓ];
let

N
(S(1),...,S(2ℓ−1))
0 = L(2ℓ) ∗ ϕ

(
· · ·
(
L(2) ∗ ϕ

((
S(1) � L(1)

)
∗X

)))
.

Finally, let F be the class of functions f : [−1, 1]D×D×c0 → RD×D×cℓ of the form

f (X) = K(ℓ) ∗ · · ·ϕ
(
K(1) ∗X

)
,

where K(i) ∈ Rdi×di×ci−1×ci with ∥K(i)∥1 ≤ 1, for i ∈ [ℓ].

There exists a universal value of C such that, with probability 1− ϵ, for every f ∈ F it is possible to

remove filters from N
(S(1),...,S(2ℓ−1))
0 to obtain a CNN Ñ0 for which

sup
X∈[−1,1]D×D×c0

∥∥∥f(X)− Ñ0(X)
∥∥∥
max

≤ ϵ.

The filter removals ensured by Theorem 3 take place at layers 1, 3, . . . , 2ℓ− 1 and imply the removal
of the corresponding channels in the next layer. The overall modification yields a CNN with kernels
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L̃(1), . . . , L̃(2ℓ) such that, for i ∈ [ℓ], L̃(2i−1) ∈ R1×1×ci−1×2ci−1mi and L̃(2i) ∈ Rdi×di×2ci−1mi×ci ,

where mi =
√
ni/(C1 log

1
ϵ ) for a universal constant C1. Moreover, the kernels L̃(2i−1) are

structured as if pruned by 2mi-channel-blocked masks.

We remark that, from a broader perspective, the central aspect of Theorem 3 is that the lower bound
on the size of the random CNN depends only on the kernel sizes of the CNNs being approximated.

In subsection 4.2 we discuss the proof of Theorem 3. It requires handling subset-sum problems on
multiple random variables at once (random vectors). Furthermore, the inherent parameter-sharing of
CNNs creates a specific type of stochastic dependency between coordinates of the random vectors,
which we capture with the following definition.
Definition 4 (NSN vector). A d-dimensional random vector Y follows a normally-scaled normal
(NSN) distribution if, for each i ∈ [d], Yi = Z · Zi where Z,Z1, . . . , Zd are i.i.d. random variables
following a standard normal distribution.

A key technical contribution of ours is a Multidimensional Random Subset Sum (MRSS) result that
supports NSN vectors. In subsection 4.1 we discuss the proof of the next theorem, which follows a
strategy similar to that of [Borst et al., 2022, Lemmas 1, 15].
Theorem 5 (Normally-scaled MRSS). Let 0 < ϵ ≤ 1/4, and let d, k, and n be positive integers such
that n ≥ k2 and k ≥ Cd3 log d

ϵ for some universal constant C ∈ R>0. Furthermore, let X1, . . . , Xn

be d-dimensional i.i.d. NSN random vectors. For any z⃗ ∈ Rd with ∥z⃗∥1 ≤
√
k, there exists with

constant probability a subset S ⊆ [n] of size k such that
∥∥(∑

i∈S Xi

)
− z⃗
∥∥
max

≤ ϵ.

While it is possible to naïvely apply Theorem 1 to obtain a version of Theorem 3, doing so would
lead to an exponential lower bound on the required number of random vectors.

4 Analysis

In this section, after proving our MRSS result (Theorem 5), we discuss how to use it to obtain our
main result on structured pruning (Theorem 3). Full proofs are deferred to the supplementary material
(SM).

4.1 Multidimensional Random Subset Sum for normally-scaled normal vectors

Notation. Given a set S and a positive integer n, the notation
(
S
n

)
denotes the family of subsets of S

containing exactly n elements of S. Given ϵ ∈ R>0, we define the interval Iϵ (zi) = [zi − ϵ, zi + ϵ]
and the multi-interval Iϵ (z⃗) = [z⃗ − ϵ1, z⃗ + ϵ1], where 1 = (1, 1, . . . , 1) ∈ Rd. Moreover, for any
event E , we denote its complementary event by E .

In this subsection, we estimate the probability that a set of n random vectors contains a subset that
sums up to a value that is ϵ-close to a given target. The following definition formalizes this notion.
Definition 6 (Subset-sum number). Given (possibly random) vectors X1, . . . , Xn and a vector z⃗, we
define the ϵ-subset-sum number of X1, . . . , Xn for z⃗ as

T k
X1,...,Xn

(z⃗) =
∑

S∈([n]
k )

1E(z⃗)
S

,

where E(z⃗)
S denotes the event

∥∥(∑
i∈S Xi

)
− z⃗
∥∥
max

≤ ϵ. We write simply Tn,k when X1, . . . , Xn

and z⃗ are clear from the context.

To prove Theorem 5 we use the second moment method to provide a lower bound on the probability
that the subset-sum number Tn,k is strictly positive, which implies that at least one subset of the ran-
dom vectors can approximate the target value z⃗. Hence, we seek a lower bound on E[Tn,k]

2
/E[T 2

n,k].

Our first lemma provides a lower bound on the probability that a sum of NSN vectors is ϵ-close to a
target vector, through which one can infer a lower bound on E [Tn,k].

Lemma 7 (Sum of NSN vectors). Let k ∈ N, ϵ ∈
(
0, 1

4

)
, z⃗ ∈ Rd such that ∥z⃗∥1 ≤

√
k and

k ≥ 16. Furthermore, let X1, . . . , Xk be d-dimensional i.i.d. NSN random vectors with d ≤ k, and
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let cd = min
{

1
d2 ,

1
16

}
. It holds that

Pr

( k∑
i=1

Xi ∈ Iϵ (z⃗)

)
≥ 1

16

(
2ϵ√

π
(
1 + 2

√
cd + 2cd

)
k

)d

.

Proof. By Definition 4, the j-th entry of each vector Xi is (Xi)j = Zi · Zi,j where each Zi and
Zi,j are i.i.d. random variables following a standard normal distribution. Let E(↕) be the event that
k
(
1− 2

√
cd
)
≤
∑k

i=1 Z
2
i ≤ k

(
1 + 2

√
cd + 2cd

)
, and denote X =

∑k
i=1 Xi. By the law of total

probability, it holds that

Pr (X ∈ Iϵ (z⃗)) = EZ1,...,Zn [Pr (X ∈ Iϵ (z⃗) |Z1, . . . , Zk)] .

As, conditional on Z1, . . . , Zk, the d entries of X are independent, it follows that

EZ1,...,Zn [Pr (X ∈ Iϵ (z⃗) |Z1, . . . , Zk)]

= EZ1,...,Zn

 d∏
j=1

Pr
(
(X)j ∈ Iϵ (zi)

∣∣∣Z1, . . . , Zk

)
≥ EZ1,...,Zn

 d∏
j=1

Pr
(
(X)j ∈ Iϵ (zi)

∣∣∣Z1, . . . , Zk, E(↕)
)Pr

(
E(↕)

)
, (1)

where the inequality in Eq. 1 holds by applying again the law of total probability.

Conditional on Z1, . . . , Zk, we have that (X)j ∼ N(0,
∑k

i=1 Z
2
i ). Hence,

EZ1,...,Zn

 d∏
j=1

Pr
(
(X)j ∈ Iϵ (zi)

∣∣∣Z1, . . . , Zk, E(↕)
)Pr

(
E(↕)

)

≥ EZ1,...,Zk

 d∏
j=1

 2ϵ√
π
(∑k

i=1 Z
2
i

) exp

(
− (|zi|+ ϵ)

2

2
∑k

i=1 Z
2
i

)
∣∣∣∣∣∣∣∣Z1, . . . , Zk, E(↕)


· Pr

(
E(↕)

)
Notice that the term

∑
i Z

2
i is a sum of chi-square random variables, for which there are known

concentration bounds (Lemma 17). By definition of E(↕) and by applying Lemma 17 to estimate the
term Pr

(
E(↕)), we get that

EZ1,...,Zk

 d∏
j=1

 2ϵ√
π
(∑k

i=1 Z
2
i

) exp

(
− (|zi|+ ϵ)

2

2
∑k

i=1 Z
2
i

)
∣∣∣∣∣∣∣∣Z1, . . . , Zk, E(↕)


· Pr

(
E(↕)

)
≥

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∑

i |zi|
2
+ 2ϵ

∑
i |zi|+ dϵ2

2
(
1− 2

√
cd
)
k

)
Pr
(
E(↕)

)

=

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ϵ ∥z⃗∥1 + dϵ2

2
(
1− 2

√
cd
)
k

)
Pr
(
E(↕)

)
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≥

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ϵ ∥z⃗∥1 + dϵ2

2
(
1− 2

√
cd
)
k

)(
1− 2e−cdk

)
.

As cdk ≥ 1 by hypotheses, 1− 2e−cdk ≥ 1/4. Then,

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ϵ ∥z⃗∥1 + dϵ2

2
(
1− 2

√
cd
)
k

)(
1− 2e−cdk

)

≥ 1

4

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−
∥z⃗∥22 + 2ϵ ∥z⃗∥1 + dϵ2

2
(
1− 2

√
cd
)
k

)

≥ 1

4

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−k + 2ϵ

√
k + dϵ2

2
(
1− 2

√
cd
)
k

)
(2)

=
1

4

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

−
1 + 2ϵ√

k
+ dϵ2

k

2
(
1− 2

√
cd
)


≥ 1

4

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

exp

(
−

1 + 1
8 + 1

16

2
(
1− 2

√
cd
)) (3)

≥ 1

16

 2ϵ√
π
(
1 + 2

√
cd + 2cd

)
k

d

, (4)

where we have used that ∥z⃗∥2 ≤ ∥z⃗∥1 ≤
√
k in Ineq. 2, that k ≥ 16, k ≥ d, that ϵ < 1/4 in Ineq. 3,

and that

exp

(
−

1 + 1
8 + 1

16

2
(
1− 2

√
cd
)) ≥ exp

−
1 + 1

8 + 1
16

2
(
1− 2

√
1
16

)
 ≥ 1

16

in Ineq. 4.

Bounding E[T 2
n,k] requires handling stochastic dependencies. Thus, we estimate the joint probability

that two subsets of k elements of X1, . . . , Xn sum ϵ-close to the same target, taking into account that
the intersection of the subsets might not be empty. The next lemma provides an upper bound on this
joint probability that depends only on the size of the symmetric difference between the two subsets.
Lemma 8 (Sum of NSN vectors). Let k, j ∈ N0 with 1 ≤ j ≤ k Furthermore, let X1, . . . , Xk+j

be i.i.d. d-dimensional NSN random vectors with k ≥ Cd3 log d
ϵ . Let cd = min

{
1
d2 ,

1
16

}
, A =∑j

i=1 Xi, B =
∑k

i=j+1 Xi, and C =
∑k+j

i=k+1 Xi.2 Then, it holds that

Pr (A+B ∈ Iϵ (z⃗) , B + C ∈ Iϵ (z⃗)) ≤ 3

(
4ϵ2

π
(
1− 2

√
cd
)
j

)d

.

Proof. Since the Xis are NSN random vectors, for each i ∈ [n] and j ∈ [d] we can write the j-th
entry of Xi as (Xi)j = Zi · Zi,j where the variables in {Zi}i∈[n] and in {Zi,j}i∈[n],j∈[d] are i.i.d.
random variables following a standard normal distribution. By the law of total probability, we have

Pr (A+B ∈ Iϵ (z⃗) , B + C ∈ Iϵ (z⃗))

2We adopt the convention that
∑0

i=1 Xi = 0.
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= EZ1,...,Zn [Pr (A+B ∈ Iϵ (z⃗) , B + C ∈ Iϵ (z⃗) |Z1, . . . , Zn)]

= EZ1,...,Zn

[
d∏

i=1

Pr (Ai +Bi ∈ Iϵ (zi) , Bi + Ci ∈ Iϵ (zi) |Z1, . . . , Zn)

]
, (5)

where the latter equality holds by independence.

Then,

Pr (Ai +Bi ∈ Iϵ (zi) , Bi + Ci ∈ Iϵ (zi) |Z1, . . . , Zn)

= EBi
[Pr (Ai ∈ Iϵ (zi −Bi) , Ci ∈ Iϵ (zi −Bi) |Z1, . . . , Zn, Bi)]

= EBi
[Pr (Ai ∈ Iϵ (zi −Bi) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iϵ (zi −Bi) |Z1, . . . , Zn, Bi)] ,

where the latter inequality holds by independence of Ai and Ci. By Lemma 14, it holds that

EBi
[Pr (Ai ∈ Iϵ (zi −Bi) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iϵ (zi −Bi) |Z1, . . . , Zn, Bi)]

≤ EBi
[Pr (Ai ∈ Iϵ (0) |Z1, . . . , Zn, Bi) Pr (Ci ∈ Iϵ (0) |Z1, . . . , Zn, Bi)]

= Pr (Ai ∈ Iϵ (0) |Z1, . . . , Zn) Pr (Ci ∈ Iϵ (0) |Z1, . . . , Zn)

≤ 2ϵ√
π
(∑j

r=1 Z
2
r

) · 2ϵ√
π
(∑k+j

r=k+1 Z
2
r

) , (6)

where the latter inequality comes from the fact that, conditioned on Z1, . . . , Zn, we have that
Ai ∼ N(0,

∑j
r=1 Z

2
r ), Bi ∼ N(0,

∑k
r=j+1 Z

2
r ), and Ci ∼ N(0,

∑k+j
r=k+1 Z

2
r ) for each i ∈ [d].

We now proceed similarly to the proof of Lemma 7. We denote the event that
(
1− 2

√
cd
)
j ≤∑j

i=1 Z
2
i ,
∑k+j

i=k+1 Z
2
i by E(↓). Then, by Eq. 5 and the law of total probability, we have that

Pr (A+B ∈ Iϵ (z⃗) , B + C ∈ Iϵ (z⃗))

= EZ1,...,Zn

[
d∏

i=1

Pr (Ai +Bi ∈ Iϵ (zi) , Bi + Ci ∈ Iϵ (zi) |Z1, . . . , Zn)

]

≤ EZ1,...,Zn

[
d∏

i=1

Pr
(
Ai +Bi, Bi + Ci ∈ Iϵ (zi)

∣∣∣Z1, . . . , Zn, E(↓)
)]

+ Pr
(
E(↓)

)
.

Eq. 6 implies that

EZ1,...,Zn

[
d∏

i=1

Pr
(
Ai +Bi, Bi + Ci ∈ Iϵ (zi)

∣∣∣Z1, . . . , Zn, E(↓)
)]

+ Pr
(
E(↓)

)

≤ EZ1,...,Zn

 d∏
i=1

2ϵ√
π
(∑j

r=1 Z
2
r

) · 2ϵ√
π
(∑k+j

r=k+1 Z
2
r

)
∣∣∣∣∣∣∣∣ E

(↓)

+ Pr
(
E(↓)

)

= EZ1,...,Zn


 4ϵ2

π

√(∑j
r=1 Z

2
r

)(∑k+j
r=k+1 Z

2
r

)


d ∣∣∣∣∣∣∣∣ E
(↓)

+ Pr
(
E(↓)

)
.

By independence of
∑j

r=1 Z
2
r and

∑k+j
r=k+1 Z

2
r and by Lemma 17, we obtain that

EZ1,...,Zn


 4ϵ2

π

√(∑j
i=1 Z

2
i

)(∑k+j
i=k+1 Z

2
i

)


d ∣∣∣∣∣∣∣∣ E
(↓)

+ Pr
(
E(↓)

)
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≤

(
4ϵ2

πj
(
1− 2

√
cd
))d

+ Pr
(
E(↓)

)

≤

(
4ϵ2

πj
(
1− 2

√
cd
))d

+ 2 exp (−cdj)

= exp

(
−d log

πj
(
1− 2

√
cd
)

4ϵ2

)
+ 2 exp (−cdk)

≤ 3

(
4ϵ2

π
(
1− 2

√
cd
)
k

)d

.

Finally, for a large enough constant C, the hypothesis on k implies that k ≥ 2 d
cd

log
πk(1−2

√
cd)

4ϵ2 .
Hence,

exp

(
−d log

πj
(
1− 2

√
cd
)

4ϵ2

)
+ 2 exp (−cdk) ≤ 3

(
4ϵ2

π
(
1− 2

√
cd
)
k

)d

.

The following lemma provides an explicit expression for the variance of the ϵ-subset-sum number.

Lemma 9 (Second moment of Tn,k). Let k, n be positive integers. Let S0, S1, . . . , Sk be subsets of
[n] such that |S0 ∩ Sj | = k − j for j = 0, 1, . . . , k. Let S,S′ be two random variables yielding two
subsets of [n] drawn independently and uniformly at random. Let X1, . . . , Xn be d-dimensional i.i.d.
NSN random vectors. For any ϵ > 0 and z⃗ ∈ Rd, the second moment of the ϵ-subset sum number is

E
[
T 2
n,k

]
=

(
n

k

)2 k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
,

where E(z⃗)
S denotes the event

∥∥(∑
i∈S Xi

)
− z⃗
∥∥
max

≤ ϵ.

Proof. Let S,S′ two random variables yielding two elements of
(
[n]
k

)
drawn independently and

uniformly at random. By the definition of Tn,k, we have that

E
[
T 2
n,k

]
= E

[( ∑
S∈([n]

k )

1E(z⃗)
S

)( ∑
S′∈([n]

k )

1E(z⃗)

S′

)]

= E
[ ∑
S,S′∈([n]

k )

1E(z⃗)
S

1E(z⃗)

S′

]

=
∑

S,S′∈([n]
k )

Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

)
=

∑
S,S′∈([n]

k )

Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

∣∣∣ S = S,S′ = S′
)
Pr (S = S, S′ = S′)

=

(
n

k

)2 k∑
j=0

Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

∣∣∣ |S ∩ S′| = k − j
)
Pr (|S ∩ S′| = k − j) ,

as Pr
(
E(z⃗)
S ∩ E(z⃗)

S′

)
depends only on the size of S ∩ S′.
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Proof of Theorem 5

We use the second moment method (Lemma 15) on the ϵ-subset-sum number Tn,k of X1, . . . , Xn.
Thus, we aim to provide a lower bound on the right-hand side of

Pr (T > 0) ≥ E[Tn,k]
2

E[T 2
n,k]

. (7)

Equivalently, we can provide an upper bound on the inverse
E[T 2

n,k]
E[Tn,k]

2 . By Lemma 9

E
[
T 2
n,k

]
=

(
n

k

)2 k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
(8)

where S,S′, Si and E(z⃗)
S are defined as in the statement of the lemma. Observe also that

E [Tn,k] =
∑

S∈([n]
k )

E
[
1E(z⃗)

S

]
=

∑
S∈([n]

k )

Pr
(
E(z⃗)
S

)
=

(
n

k

)
Pr
(
E(z⃗)
S0

)
. (9)

By Eq.s 8 and 9, we have

E
[
T 2
n,k

]
E [Tn,k]

2 =

(
n
k

)2
E [Tn,k]

2

k∑
j=0

Pr (|S ∩ S′| = k − j) Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)

=

k∑
j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 . (10)

As for the denominator of the second term in Eq. 10, by Lemma 7 we have

Pr
(
E(z⃗)
S0

)2
≥ 1

256

(
4ϵ2

π
(
1 + 2

√
cd + 2cd

)
k

)d

. (11)

As for the numerator of the second term in Eq. 10, Lemma 8 implies that we have

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
≤ 3

(
4ϵ2

π
(
1− 2

√
cd
)
j

)d

. (12)

By plugging Eq. 12 and Eq. 11 in Eq. 10, for j ≥ k
(
1− 1

d

)
and d > 1 we can upper bound the

factor
Pr

(
E(z⃗)
S0

∩E(z⃗)
Sj

)
Pr

(
E(z⃗)
S0

)2 of the summation as follows:

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 ≤
3

(
4ϵ2

π(1−2
√
cd)j

)d

1
256

(
4ϵ2

π(1+2
√
cd+2cd)k

)d

= 768

((
1 + 2

√
cd + 2cd

)
k(

1− 2
√
cd
)
j

)d

.

As j ≥ k
(
1− 1

d

)
with d > 1, then

768

((
1 + 2

√
cd + 2cd

)
k(

1− 2
√
cd
)
j

)d

≤ 768

( (
1 + 2

√
cd + 2cd

)(
1− 2

√
cd
) (

1− 1
d

))d

10



≤ 768

(
2 + 7

√
cd

2− 7
√
cd

)d

≤ 270801, (13)

because
(

(1+2
√
cd+2cd)

(1−2
√
cd)(1− 1

d )

)d

is maximized or d = 4. Let C ′ = 270801. If d > 1, by plugging Eq.

13 in Eq. 10, we have that

E
[
T 2
n,k

]
E [Tn,k]

2 =

⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2
+

k∑
j=⌈k− k

d⌉
Pr (|S ∩ S′| = k − j)

Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2
≤

⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 + C ′.

As Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
≤ Pr

(
E(z⃗)
S0

)
, then

⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j)
Pr
(
E(z⃗)
S0

∩ E(z⃗)
Sj

)
Pr
(
E(z⃗)
S0

)2 + C ′

≤ 1

Pr
(
E(z⃗)
S0

) ⌈k− k
d⌉−1∑

j=0

Pr (|S ∩ S′| = k − j) + C ′

≤
Pr
(
|S ∩ S′| > k

d

)
Pr
(
E(z⃗)
S0

) + C ′. (14)

Notice that, if d = 1, the same bound holds as Pr
(
|S ∩ S′| > k

d

)
= 0. We now observe that, by the

law of total probability

Pr

(
|S ∩ S′| ≥ k

d

)
=

∑
S̃∈([n]

k )

Pr
(
S = S̃

)
Pr

(
|S ∩ S′| ≥ k

d

∣∣∣∣ S = S̃

)
. (15)

Conditional on S = S̃, |S ∩ S′| is a hypergeometric random variable with

E
[
|S ∩ S′|

∣∣∣S = S̃
]
=
∑
i∈S̃

Pr (i ∈ S′) = kPr (1 ∈ S) =
k2

n
.

Since n ≥ k2, then k2

n ≤ 1. Hence, since Chernoff bounds holds for the hypergeometric distribution
[Doerr, 2020, Theorem 1.10.25]

Pr

(
|S ∩ S′| ≥ k

d

∣∣∣∣S = S̃

)
≥ Pr

(
|S ∩ S′| ≥ k2

n
+

(
k

d
− 1

) ∣∣∣∣S = S̃

)
≤ exp

(
−2

(
k
d − 1

)2
k

)

≤ exp

(
−2

k

d2

(
1− d

k

)2
)
. (16)
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Substituting Eq. 16 in Eq. 15 we get

Pr

(
|S ∩ S′| ≥ k

d

)
≤ exp

(
−2

k

d2

(
1− d

k

)2
)
. (17)

We can now keep bounding from above
E[T 2

n,k]
E[Tn,k]

2 by plugging Eq. 17 in Eq. 14:

Pr
(
|S ∩ S′| ≥ k

d

)
Pr
(
E(z⃗)
S0

) + C ′ ≤
exp

(
−2 k

d2

(
1− d

k

)2)
Pr
(
E(z⃗)
S0

) + C ′. (18)

By Lemma 7, and since 1 + 2
√
cd + 2cd ≤ 2, we have

exp
(
−2 k

d2

(
1− d

k

)2)
Pr
(
E(z⃗)
S0

) + C ′

≤
16 exp

(
−2 k

d2

(
1− d

k

)2)(
2ϵ√
π2k

)d + C ′

= 16 exp

(
−2

k

d2

(
1− d

k

)2

+ d log

(√
π2k

2ϵ

))
+ C ′. (19)

By the hypothesis, since k ≥ Cd3 log d
ϵ for a large enough C, it holds that

16 exp

(
−2

k

d2

(
1− d

k

)2

+ d log

(√
π2k

2ϵ

))
+ C ′

≤ C ′ + 16 exp

(
−d log

d

ϵ

)
< C ′ +

16

e
, (20)

where the latter inequality holds as ϵ ≤ 1/4.

Plugging the inverse of the expression in Eq. 20 in Eq. 7 we obtain the thesis.

4.2 Proving SLTH for structured pruning

To prove Theorem 3, we first show how to obtain the same approximation result for a single-layer
CNN. Then, we iteratively apply the same argument for all layers of a larger CNN and show that the
approximation error keeps small.

We define the positive and negative parts of a tensor.
Definition 10. Given a tensor X ∈ Rd1×···×dn , the positive and negative parts of X are respectively
defined as X+

i⃗
= Xi⃗ ·1Xi⃗>0 and X−

i⃗
= −Xi⃗ ·1Xi⃗<0, where i⃗ ∈ [d1]×· · ·× [dn] points at a generic

entry of X .

Approximating a single-layer CNN

We first present a preliminary lemma that shows how to prune a single-layer convolution ϕ (V ∗X)
in a way that dispenses us from dealing with the ReLU ϕ.
Lemma 11. Let D, d, c, n ∈ N be positive integers, V ∈ R1×1×c×2nc, and X ∈ RD×D×c. If
S̃ ∈ {0, 1}size(V ) is a 2n-channel blocked mask, then, for each (i, j, k) ∈ [D]× [D]× [2nc],(

ϕ
((

V � S̃
)
∗X

))
i,j,k

=
((

V � S̃
)+

∗X+ +
(
V � S̃

)−
∗X−

)
i,j,k

.
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Proof. S̃ ∈ {0, 1}size(V ) is such that Ṽ = V � S̃ contains only non-negative edges going from each
input channel t to the output channels (t− 1)n+1, . . . , tn, and only non-positive3 edges going from
each input channel t to the output channels tn+ 1, . . . , 2tn, while all remaining edges are set to zero.
Let us define some convenient notations before proceeding with the proofs. By [n,m] we denote the
set {n, n+ 1, . . . ,m} for each pair of integers n ≤ m ∈ N. In formulas, we obtain a tensor Ṽ such
that, for each (t, k) ∈ [c] ,× [2nc]:(

V � S̃
)
1,1,t,k

=


V1,1,t,k · 1V1,1,t,k>0 if k ∈ [(2t− 2)n+ 1, (2t− 1)n] ,

V1,1,t,k · 1V1,1,t,k<0 if k ∈ [(2t− 1)n+ 1, 2tn] ,

0 otherwise.
(21)

To simplify the notation, we define the following indicator functions: for any (t, k) ∈ [c]× [2nc],
1 k

2n∈(t−1,t− 1
2 ]

= 1 iff k ∈ [(2t− 2)n+ 1, (2t− 1)n] , and

1 k
2n∈(t− 1

2 ,t]
= 1 iff k ∈ [(2t− 1)n+ 1, 2tn] . (22)

For each (i, j, k) ∈ [D]× [D]× [2nc], applying Eq. 21 and using Definition 10, it then holds(
ϕ
((

V � S̃
)
∗X

))
i,j,k

= ϕ

(
c0∑
t=1

Ṽ1,1,t,kXi,j,t

)

= ϕ

( c0∑
t=1

(
V1,1,t,kXi,j,t · 1V1,1,t,k>01 k

2n∈(t−1,t− 1
2 ]

+ V1,1,t,kXi,j,t · 1V1,1,t,k<01 k
2n∈(t− 1

2 ,t]
))

= ϕ

(
c0∑
t=1

(
V +
1,1,t,kXi,j,t1 k

2n∈(t−1,t− 1
2 ]

− V −
1,1,t,kXi,j,t1 k

2n∈(t− 1
2 ,t]

))

= ϕ

( c0∑
t=1

(
V +
1,1,t,k(X

+
i,j,t −X−

i,j,t)1 k
2n∈(t−1,t− 1

2 ]

+ V −
1,1,t,k(X

−
i,j,t −X+

i,j,t)1 k
2n∈(t− 1

2 ,t]
))

. (23)

Observe that only one term survives in the summation in Eq. 23, as there exists only one t ∈ [c0]
such that k ∈ [(2t− 2)n+ 1, 2tn], say t⋆. Moreover, out of the four additive terms in the expression

V +
1,1,t⋆,k(X

+
i,j,t⋆ −X−

i,j,t⋆)1 k
2n∈(t⋆−1,t⋆− 1

2 ]
+ V −

1,1,t⋆,k(X
−
i,j,t⋆ −X+

i,j,t⋆)1 k
2n∈(t⋆− 1

2 ,t
⋆],

at most one is non-zero, due to Definition 10. The ReLU cancels out negative ones, implying that Eq.
23 can be rewritten without the ReLU as a sum of only non-negative terms (out of which, at most one
is non-zero) as follows

ϕ

( c0∑
t=1

(
V +
1,1,t,k(X

+
i,j,t −X−

i,j,t)1 k
2n∈(t−1,t− 1

2 ]

+ V −
1,1,t,k(X

−
i,j,t −X+

i,j,t)1 k
2n∈(t− 1

2 ,t]
))

=

c0∑
t=1

(
V +
1,1,t,kX

+
i,j,t1 k

2n∈(t−1,t− 1
2 ]

+ V −
1,1,t,kX

−
i,j,t1 k

2n∈(t− 1
2 ,t]

)
. (24)

Finally, by Eq. 21 and Eq. 22, Ṽ +
1,1,t,k = 0 if k

2n ̸∈
(
t− 1, t− 1

2

]
, and Ṽ −

1,1,t,k = 0 if k
2n ∈

(
t− 1

2 , t
]
,

which means that in Eq. 24 we can ignore the indicator functions and further simplify the expression
as

c0∑
t=1

(
V +
1,1,t,kX

+
i,j,t1 k

2n∈(t−1,t− 1
2 ]

+ V −
1,1,t,kX

−
i,j,t1 k

2n∈(t− 1
2 ,t]

)
3We consider 0 to be both non-negative and non-positive.
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=

c0∑
t=1

(
Ṽ +
1,1,t,kX

+
i,j,t + Ṽ −

1,1,t,kX
−
i,j,t

)
=

(
c0∑
t=1

Ṽ +
1,1,t,kX

+
i,j,t +

c0∑
t=1

Ṽ −
1,1,t,kX

−
i,j,t

)
=
(
Ṽ + ∗X+ + Ṽ − ∗X−

)
i,j,k

.

We approximate a single convolution K ∗X by pruning a polynomially larger neural network of the
form U ∗ ϕ(V ∗X) exploiting only a channel blocked mask and filter removal: this is achieved using
the MRSS result (Theorem 5).

Lemma 12 (Kernel pruning). Let D, d, c0, c1, n ∈ N be positive integers, ϵ ∈
(
0, 1

4

)
,M ∈ R>0,

and C ∈ R>0 be a universal constant with

n ≥ Cd12c61 log
3 d2c1c0

ϵ
.

Let U ∼ N d×d×2nc0×c1 , V ∼ N 1×1×c0×2nc0 and S ∈ {0, 1}size(V ), with S being a 2n-channel-
blocked mask. We define N0 (X) = U ∗ ϕ (V ∗X) where X ∈ RD×D×c0 , and its pruned ver-
sion N

(S)
0 (X) = U ∗ ϕ ((V � S) ∗X). With probability 1 − ϵ, for all K ∈ Rd×d×c0×c1 with

∥K:,:,t0,:∥1 ≤ 1 for each t0 ∈ [c0], it is possible to remove filters from N
(S)
0 to obtain a CNN Ñ

(S)
0

for which

sup
X:∥X∥max≤M

∥∥∥K ∗X − Ñ
(S)
0 (X)

∥∥∥
max

< ϵM.

Proof. Adopting the same definitions as in Lemma 11 (and Eq. 21), for each (r, s, t1) ∈ [d]×[d]×[c1]
we have, by Lemma 11,(

U ∗ ϕ
((

V � S̃
)
∗X

))
r,s,t1

=
(
U ∗

((
Ṽ + ∗X+

)
+
(
Ṽ − ∗X−

)))
r,s,t1

=
∑

i,j∈[d],k∈[2nc0]

Ui,j,k,t1 ·
((

Ṽ + ∗X+
)
+
(
Ṽ − ∗X−

))
r−i+1,s−j+1,k

=
∑

i,j∈[d],k∈[2nc0]

Ui,j,k,t1 ·
∑

t0∈[c0]

(
Ṽ +
1,1,t0,k

·X+
r−i+1,s−j+1,t0

+ Ṽ −
1,1,t0,k

·X−
r−i+1,s−j+1,t0

)
=

∑
t0∈[c0]

∑
i,j∈[d],k∈[2nc0]

(
Ui,j,k,t1 · Ṽ +

1,1,t0,k

)
·X+

r−i+1,s−j+1,t0

+
∑

t0∈[c0]

∑
i,j∈[d],k∈[2nc0]

(
Ui,j,k,t1 · Ṽ −

1,1,t0,k

)
·X−

r−i+1,s−j+1,t0

=
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[2nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

 ·X+
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[2nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

 ·X−
r−i+1,s−j+1,t0

.
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Define L+
i,j,t0,t1

=
∑

k∈[nc] Ui,j,k,t1 · Ṽ +
1,1,t0,k

and, similarly, L−
i,j,t0,t1

=
∑

k∈[nc] Ui,j,k,t1 · Ṽ −
1,1,t0,k

.
Then,

∑
i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ +
1,1,t0,k

 ·X+
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

 ∑
k∈[nc0]

Ui,j,k,t1 · Ṽ −
1,1,t0,k

 ·X−
r−i+1,s−j+1,t0

=
∑

i,j∈[d],t0∈[c0]

L+
i,j,t0,t1

·X+
r−i+1,s−j+1,t0

+
∑

i,j∈[d],t0∈[c0]

L−
i,j,t0,t1

·X−
r−i+1,s−j+1,t0

.

We now show that, for each t0 ∈ [c0], K:,:,t0,: can be ϵ-approximated by L+
:,:,t0,: by suitably pruning

Ṽ +, i.e. by further zeroing entries of S̃, and that such pruning corresponds to solving an instance of
MRSS according to Theorem 5. The same reasoning applies to K− and L−.

For each t0 ∈ [c0], let

I
(t0)
+ =

{
k ∈ {(2t0 − 2)n+ 1, . . . , (2t0 − 1)n} : S̃1,1,t0,k = 1

}
.

Observe that I(t0)+ consists of the strictly positive entries of Ṽ +
1,1,t0,:

.4 Since the entries of V follow a
standard normal distribution, each entry is positive with probability 1/2. By a standard application of
Chernoff bounds (Lemma 16 in SM A), we then have

Pr
(∣∣∣I(t0)+

∣∣∣ > n

3

)
≥ 1− ϵ

4
, (25)

provided that the constant C in the bound on n is sufficiently large.

For each k ∈ I
(t0)
+ , up to reshaping the tensor as a one dimensional vector, U:,:,k,: · Ṽ +

1,1,t0,k
is an

NSN vector (Definition 4) by Lemma 18 (SM ??). Thus, for each t0 ∈ [c0] and a sufficiently-large
value of C, since the target filter K is such that ∥K:,:,t0,:∥1 ≤ 1 and we have n ≥ Cd12c61 log

3 d2c1c0
ϵ ,

then we can apply an amplified version of Theorem 5 (i.e. Corollary 19 in SM ?? with vectors of
dimension d2c1) to show that, with probability 1− ϵ

4c0
there exists a way to zero the entries indexed

by I
(t0)
+ of S̃ (and thus Ṽ +

1,1,t0,:
), so that the pruned version of L+

:,:,t0,: =
∑

k∈[nc0]
U:,:,k,: · Ṽ +

1,1,t0,k

approximates K:,:,t0,:. In particular, there exists another binary mask Ŝ+ ∈ {0, 1}size S̃ such that
L̂+
:,:,t0,: =

∑
k∈[nc0]

U:,:,k,: · V̂ +
1,1,t0,k

approximates K:,:,t0,:, where V̂ + = Ṽ + � Ŝ+. An analogous

argument carries on for a binary mask Ŝ− and −L̂−
:,:,t0,:.

5 More formally, let

E(kernel)
t0,+ =

{
∃Ŝ+ ∈ {0, 1}size S̃

∣∣∣∣ ∥∥∥L̂+
:,:,t0,: −K:,:,t0,:

∥∥∥
max

≤ ϵ

2d2c1c0

}
,

E(kernel)
t0,− =

{
∃Ŝ− ∈ {0, 1}size S̃

∣∣∣∣ ∥∥∥L̂−
:,:,t0,: +K:,:,t0,:

∥∥∥
max

≤ ϵ

2d2c1c0

}
, and

E(kernel) =

 ⋂
t0∈[c0]

E(kernel)
t0,+

⋂ ⋂
t0∈[c0]

E(kernel)
t0,−

 .

Then, by Corollary 19,

Pr
(
E(kernel)
t0,+

∣∣∣ ∣∣∣I(t0)+

∣∣∣ > n

3

)
≥ 1− ϵ

4c0
, and

Pr
(
E(kernel)
t0,−

∣∣∣ ∣∣∣I(t0)−

∣∣∣ > n

3

)
≥ 1− ϵ

4c0
.

4Notice that excluding zero entries implies conditioning on the event that the entry is not zero. However,
such an event has zero probability and thus doesn’t impact the analysis.

5The negative sign in front of L̂−
:,:,t0,:

does not affect the random subset sum result as each entry is indepen-
dently negative or positive with the same probability.
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By the union bound, we have the following:

Pr
(
E(kernel)

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
= 1− Pr

 ⋃
t0∈[c0]

E(kernel)
t0,+

⋃ ⋃
t0∈[c0]

E(kernel)
t0,−

∣∣∣∣∣∣
∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3


≥ 1−

∑
t0∈[c0]

[
Pr
(
E(kernel)
t0,+

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
+ Pr

(
E(kernel)
t0,−

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)]
≥ 1− 2

∑
t0∈[c0]

ϵ

4c0

≥ 1− ϵ

2
.

Since Pr
(∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n
3

)
≥ 1− ϵ

2 , then we can remove the conditional event obtaining

Pr
(
E(kernel)

)
≥ Pr

(
E(kernel)

∣∣∣ ∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
Pr
(∣∣∣I(t0)+

∣∣∣ , ∣∣∣I(t0)−

∣∣∣ > n

3

)
≥
(
1− ϵ

2

)2
≥ 1− ϵ. (26)

To rewrite the latter in terms of the filter K and a mask S, we notice that pruning L+
:,:,t0,: and

L−
:,:,t0,: separately, with two binary masks, is equivalent to say that there exists a single binary mask

Ŝ ∈ {0, 1}size S̃ such that, L̂:,:,t0,: can be written as L̂:,:,t0,: =
∑

k∈[nc0]
U:,:,k,: · V̂1,1,t0,k, where

V̂ = Ṽ � Ŝ. Ineq. 26 implies that, with probability 1− ϵ, such Ŝ exists and hence,∥∥∥K − L̂+
∥∥∥
max

+
∥∥∥K + L̂−

∥∥∥
max

≤ ϵ

d2c1c0
. (27)

Let S = S̃ � Ŝ: S is a 2n-channel blocked basks. Furthermore, for such an S, notice that the
following holds.

sup
X:∥X∥max≤M

∥∥∥K ∗X −N
(S)
0 (X)

∥∥∥
max

= sup
X:∥X∥max≤M

∥K ∗X − U ∗ ϕ ((V � S) ∗X)∥max

= sup
X:∥X∥max≤M

∥∥∥K ∗X − U ∗ ϕ
(
(V � S̃ � Ŝ) ∗X

)∥∥∥
max

= sup
X:∥X∥max≤M

∥∥∥K ∗
(
X+ −X−)− U ∗

(
(V̂ + ∗X+

)
+
(
V̂ − ∗X−

)∥∥∥
max

,

where the latter holds by Lemma 11.6 Then, by the distributive property of the convolution and the
triangle inequality,

sup
X:∥X∥max≤M

∥∥∥K ∗
(
X+ −X−)− U ∗

(
(V̂ + ∗X+

)
+
(
V̂ − � Ŝ ∗X−

)∥∥∥
max

= sup
X:∥X∥max≤M

∥∥∥K ∗X+ − U ∗
(
V̂ + ∗X+

)
−K ∗X− − U ∗

(
V̂ − ∗X−

)∥∥∥
max

≤ sup
X:∥X∥max≤M

∥∥∥K ∗X+ − U ∗
(
V̂ + ∗X+

)∥∥∥
max

+ sup
X:∥X∥max≤M

∥∥∥K ∗X− + U ∗
(
V̂ − ∗X−

)∥∥∥
max

.

6The presence of Ŝ does not influence the proof of Lemma 11.
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One can now apply the Tensor Convolution Inequality (Lemma 20) and obtain

sup
X:∥X∥max≤M

∥∥∥K ∗X+ − U ∗
(
V̂ + ∗X+

)∥∥∥
max

+ sup
X:∥X∥max≤M

∥∥∥K ∗X− + U ∗
(
V̂ − ∗X−

)∥∥∥
max

≤ sup
X:∥X∥max≤M

∥∥X+
∥∥
max

·
∥∥∥K − U ∗ V̂ +

∥∥∥
1

+ sup
X:∥X∥max≤M

∥∥X−∥∥
max

·
∥∥∥K + U ∗ V̂ −

∥∥∥
1

=M ·
∥∥∥K − U ∗ V̂ +

∥∥∥
1
+M ·

∥∥∥K + U ∗ V̂ −
∥∥∥
1
.

Now, observing that the number of entries of the two tensors in the expression above is d2c1c0, and
using Ineq. 27 (which holds with probability 1− ϵ), we get that

M ·
∥∥∥K − U ∗ V̂ +

∥∥∥
1
+M ·

∥∥∥K − U ∗ V̂ −
∥∥∥
1

≤ d2c1c0

(∥∥∥K − U ∗ V̂ +
∥∥∥
max

+
∥∥∥K − U ∗ V̂ −

∥∥∥
max

)
≤ d2c1c0M

ϵ

d2c1c0
= ϵM.

proving the thesis.

Remark 13. From the proof of Lemma 12, we can see that the overall modification yields a pruned

CNN Û ∗ϕ(V̂ ∗X) with V̂ ∈ R1×1×c0×2mc0 and Û ∈ Rd×d×2mc0×c1 , where m =
√
n/(C1 log

1
ϵ )

for a universal constant C1. Moreover, the kernel V̂ is structured as if pruned by a 2m-channel-
blocked mask.

Proof of Theorem 3

In order to bound the error propagation across layers, we define the layers’ outputs

X(0) = X,

X(i) = ϕ
(
K(i) ∗X(i−1)

)
for 1 ≤ i ≤ ℓ. (28)

Notice that X(ℓ) is the output of the target function, i.e. f (X) = X(ℓ).

For brevity’s sake, given masks S(1), . . . , S(2ℓ), let us denote

L̃(i) = L(i) � S(i). (29)

Since the ReLU function is 1-Lipschitz, for all X(i−1) it holds∥∥∥ϕ(K(i) ∗X(i−1)
)
− ϕ

(
L̃(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

))∥∥∥
max

≤
∥∥∥K(i) ∗X(i−1) − L̃(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

)∥∥∥
max

. (30)

The key step of the proof is that, for each layer i, since ni ≥ Cd12c6i log
3 d2cici−1ℓ

ϵ for a suitable
constant C, we can apply Lemma 12 to get that, with probability at least 1 − ϵ

2ℓ , for all X(i−1) ∈
RD×D×c0 it holds∥∥∥K(i) ∗X(i−1) − L̃(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

)∥∥∥
max

<
ϵ

2ℓ
·
∥∥∥X(i−1)

∥∥∥
max

. (31)

Hence, combining Eq. 30 and Eq. 31 we get that, with probability at least 1− ϵ
2ℓ , for all X(i−1) ∈

RD×D×c0 , ∥∥∥ϕ(K(i) ∗X(i−1)
)
− ϕ

(
L̃(2i) ∗ ϕ

(
L̃(2i−1) ∗X(i−1)

))∥∥∥
max
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<
ϵ

2ℓ
·
∥∥∥X(i−1)

∥∥∥
max

. (32)

By a union bound, we get that Eq. 32 holds for all layers with probability at least 1− ϵ.

Analogously, we can define the pruned layers’ outputs

X̃(0) = X,

X̃(i) = ϕ
(
L̃(2i) ∗ ϕ

(
L̃(2i−1) ∗ X̃(i−1)

))
for 1 ≤ i ≤ ℓ. (33)

Notice that X̃(ℓ) is the output of the pruned network, i.e. N(S(1),...,S(2ℓ))
0 (X) = X̃(ℓ).

By the same reasoning employed to derive Eq. 31 and Eq. 32 we have that, with probability 1− ϵ,
the output of all pruned layers satisfies∥∥∥ϕ(K(i) ∗ X̃(i−1)

)
− ϕ

(
L̃(2i) ∗ ϕ

(
L̃(2i−1) ∗ X̃(i−1)

))∥∥∥
max

<
ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

. (34)

Moreover, for each 1 ≤ i ≤ ℓ− 1, by the triangle inequality and by Eq. 34,∥∥∥X̃(i)
∥∥∥
max

=
∥∥∥X̃(i) − ϕ

(
K(i) ∗ X̃(i−1)

)
+ ϕ

(
K(i) ∗ X̃(i−1)

)∥∥∥
max

≤
∥∥∥X̃(i) − ϕ

(
K(i) ∗ X̃(i−1)

)∥∥∥
max

+
∥∥∥ϕ(K(i) ∗ X̃(i−1)

)∥∥∥
max

≤ ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥ϕ(K(i) ∗ X̃(i−i)

)∥∥∥
max

.

By the Lipschitz property of ϕ and Lemma 20

ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥ϕ(K(i) ∗ X̃(i−i)

)∥∥∥
max

≤ ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥K(i) ∗ X̃(i−i)

∥∥∥
max

≤ ϵ

2ℓ
·
∥∥∥X̃(i−1)

∥∥∥
max

+
∥∥∥K(i)

∥∥∥
1

∥∥∥X̃(i−i)
∥∥∥
max

=
∥∥∥X̃(i−1)

∥∥∥
max

(
1 +

ϵ

2ℓ

)
.

By unrolling the recurrence, we get that, with probability 1− ϵ,∥∥∥X̃(i)
∥∥∥
max

≤
∥∥∥X̃(0)

∥∥∥
max

(
1 +

ϵ

2ℓ

)i
. (35)

Thus, combining Eq. 34 and Eq. 35, with probability 1− ϵ we get that, for each i ∈ [ℓ],∥∥∥K(i) ∗ X̃(i−1) − L̃(2i) ∗ ϕ
(
L̃(2i−1) ∗ X̃(i−1)

)∥∥∥
max

<
ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)i−1 ∥∥∥X̃(0)
∥∥∥
max

. (36)

We then see that with probability 1− ϵ, for 1 ≤ i ≤ ℓ and all X ∈ [−1, 1]
D×D×c0 , by Eq. 28 and Eq.

33, and by the triangle inequality,∥∥∥X(ℓ) − X̃(ℓ)
∥∥∥
max

=
∥∥∥ϕ(K(ℓ) ∗X(ℓ−1)

)
− ϕ

(
L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

))∥∥∥
max

≤
∥∥∥ϕ(K(ℓ) ∗X(ℓ−1)

)
− ϕ

(
K(ℓ) ∗ X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥ϕ(K(ℓ) ∗ X̃(ℓ−1)

)
− ϕ

(
L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

))∥∥∥
max

.
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Again by the 1-Lipschitz property of the ReLU activation function, and by the distributive property
of the convolution operation,∥∥∥ϕ(K(ℓ) ∗X(ℓ−1)

)
− ϕ

(
K(ℓ) ∗ X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥ϕ(K(ℓ) ∗ X̃(ℓ−1)

)
− ϕ

(
L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

))∥∥∥
max

≤
∥∥∥K(ℓ) ∗X(ℓ−1) −K(ℓ) ∗ X̃(ℓ−1)

∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

=
∥∥∥K(ℓ) ∗

(
X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

.

Lemma 20 and the hypothesis
∥∥K(ℓ)

∥∥
1
≤ 1 imply that∥∥∥K(ℓ) ∗

(
X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤
∥∥∥K(ℓ)

∥∥∥
1
·
∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤
∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

.

Now, we first apply Eq. 36 and then we unroll the recurrence for all layers (as, with probability 1− ϵ,
Eq. 36 holds for all layers), obtaining∥∥∥(X(ℓ−1) − X̃(ℓ−1)

)∥∥∥
max

+
∥∥∥K(ℓ) ∗ X̃(ℓ−1) − L̃(2ℓ) ∗ ϕ

(
L̃(2ℓ−1) ∗ X̃(ℓ−1)

)∥∥∥
max

≤
∥∥∥X(ℓ−1) − X̃(ℓ−1)

∥∥∥
max

+
ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)ℓ−1

≤
ℓ∑

j=1

ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)j−1

.

By summing the geometric series and observing that ϵ < 1, we conclude that
ℓ∑

j=1

ϵ

2ℓ
·
(
1 +

ϵ

2ℓ

)j−1

=
(
1 +

ϵ

2ℓ

)ℓ
− 1

≤ e
ϵ
2 − 1

≤ ϵ.

Hence, with probability 1− ϵ, for all X ∈ [−1, 1]D×D×c0 , for all ℓ ∈ [c] it holds that∥∥∥X(ℓ) − X̃(ℓ)
∥∥∥
max

≤ ϵ,

yielding the thesis.

5 Limitations and future work

In previous works [da Cunha et al., 2022b, Burkholz, 2022a] the assumption that the kernel of every
second layer has shape 1× 1× . . . is only an artifact of the proof since one can readily prune entries

19



of an arbitrarily shaped tensor to enforce the desired shape. In our case, however, the concept of
structured pruning can be quite broad, and such reshaping via pruning might not fit some sparsity
patterns, depending on the context. The hypothesis on the shape can be a relevant limitation for such
use cases. The constructions proposed by Burkholz [2022a,b] appear as a promising direction to
overcome this limitation, with the added benefit of reducing the depth overhead.

The convolution operation commonly employed in CNNs can be cumbersome at many points of our
analysis. Exploring different concepts of convolution can be an interesting path for future work as it
could lead to tidier proofs and more general results. For instance, employing a 3D convolution would
spare a factor c in Theorem 3.

Another limitation of our results is the restriction to ReLU as the activation function. Many previous
works on the SLTH exploit the fact that ReLU satisfies the identity x = ϕ(x)− ϕ(−x). Burkholz
[2022a] leverages that to obtain an SLTH result for CNNs with activation functions f for which
f(x)− f(−x) ≈ x around the origin. Our analysis, on the other hand, does not rely on such property,
so adapting the approach of Burkholz [2022a] to our setting is not straightforward.

Finally, we remark that the assumption of normally distributed weights might be relaxed. Borst et al.
[2022] provided an MRSSP result for independent random variables whose distribution converges
“fast enough” to a Gaussian one.7 We believe our arguments can serve well as baselines to generalise
our results to support random weights distributed as such.
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Supplementary material

A Technical tools

A.1 Concentration inequalities

Lemma 14 (Most-probable normal interval). Let X follow a zero-mean normal distribution with
variance ϕ2. For any z, ϵ ∈ R

Pr (X ∈ [z − ϵ, z + ϵ]) ≤ Pr (X ∈ [−ϵ, ϵ]) .

Proof. Let φ(x) denote the probability density function of X . Then,

Pr (X ∈ [−ϵ, ϵ])− Pr (X ∈ [z − ϵ, z + ϵ]) =

∫ ϵ

−ϵ

φ(x) dx−
∫ z+ϵ

z−ϵ

φ(x) dx.

If z− ϵ ≥ ϵ or z+ ϵ ≤ −ϵ, the thesis is trivial as φ(|x|) decreases in x. W.l.o.g., suppose z is positive
and z − ϵ < ϵ. Then, −ϵ < z − ϵ < ϵ < z + ϵ. It follows that∫ ϵ

−ϵ

φ(x) dx−
∫ z+ϵ

z−ϵ

φ(x) dx =

∫ z−ϵ

−ϵ

φ(x) dx−
∫ z+ϵ

ϵ

φ(x) dx

=

∫ z−ϵ

−ϵ

φ(x)− φ(x+ 2ϵ) dx

which is non-negative as φ(x) ≥ φ(x+ 2ϵ) for x ≥ −ϵ.

Lemma 15 (Second moment method). If Z is a non-negative random variable then

Pr (Z > 0) ≥ E [Z]
2

E [Z2]
.

Lemma 16 (Chernoff-Hoeffding bounds Dubhashi and Panconesi [2009]). Let X1, X2, . . . , Xn be
independent random variables such that Pr (0 ≤ Xi ≤ 1) = 1 for all i ∈ [n]. Let X =

∑n
i=1 Xi

and E[X] = µ. Then, for any δ ∈ (0, 1) the following holds:

1. if µ ≤ µ+, then Pr (X ≥ (1 + δ)µ+) ≤ exp
(
− δ2µ+

3

)
;

2. if 0 ≤ µ− ≤ µ, then Pr (X ≤ (1− δ)µ−) ≤ exp
(
− δ2µ+

2

)
.

Lemma 17 (Corollary of [Laurent and Massart, 2000, Lemma 1]). Let X ∼ χ2
d be a chi-squared

random variable with d degrees of freedom. For any t > 0, it holds that

1. Pr
(
X ≥ d+ 2

√
dt+ 2t

)
≤ exp (−t);

2. Pr
(
X ≤ d− 2

√
dt
)
≤ exp (−t).

A.2 Supporting results

Lemma 18 (NSN with positive scalar). If a d-dimensional random vector Y is such that, for each
i ∈ [d], Yi = Z̃ · Z̃i, where Z̃1, . . . , Z̃n are identically distributed random variables following a
standard normal distribution, Z̃ is a half-normal distribution,8 and Z̃, Z̃1, . . . , Z̃n are independent,
then Y follows an NSN distribution.

Proof. By Definition 4, Y is NSN if, for each i ∈ [d], Yi = Z · Zi where Z,Z1, . . . , Zn are
i.i.d. random variables following a standard normal distribution. If Z̃ = |Z|, we can rewrite
Z̃i = sign (Z) sign (Zi) |Zi| for each i = 1, . . . , n, where Z,Z1, . . . , Zn are i.i.d. standard normal

8I.e. Z̃ = |Z| where Z is a standard normal distribution.
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random variables, as sign (Z) sign (Zi) is independent of sign (Z) and of sign (Z) sign (Zj) for
i ̸= j. Then,

Yi = Z̃ · Z̃i

= |Z| · sign (Z) sign (Zi) |Zi|
= sign (Z) |Z| · sign (Zi) |Zi|
= Z · Zi,

implying the thesis.

Corollary 19 (of Theorem 5). Let d, k, and n be positive integers with n ≥ C1k
2 log

(
1
ϵ

)
and

k ≥ C2d
3 log d

ϵ for some universal constants C1, C2 ∈ R>0. Let X1, . . . , Xn be d-dimensional i.i.d.
NSN random vectors. For any 0 < ϵ ≤ 1

4 and z⃗ ∈ Rd with ∥z⃗∥1 ≤
√
k it holds

Pr

(
∃S : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ϵ

)
≥ 1− ϵ.

Proof. Let s =
⌈
C1 log

(
1
ϵ

)⌉
and let us partition the n vectors X1, . . . , Xn in s disjoint sets

G1, . . . , Gs of at least k2 vectors each. By Theorem 5, there is a constant c ∈ (0, 1) such that
for each group Gi (i ∈ [s])

Pr

(
∃S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ϵ

)
≥ c. (37)

It follows that

Pr

(
∃S : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ϵ

)

≥ Pr

(
∃i ∈ [s] ,∃S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

≤ ϵ

)

= 1− Pr

(
∀i ∈ [s] ,∀S ⊂ Gi : |S| = k,

∥∥∥∥∥
(∑

i∈S

Xi

)
− z⃗

∥∥∥∥∥
max

> ϵ

)

≥ 1− (1− c)⌈C1 log( 1
ϵ )⌉ ,

where the latter inequality comes from Eq. 37 and the independence of the variables across different
Gi. By choosing C1 large enough,

1− (1− c)⌈C1 log( 1
ϵ )⌉ ≥ 1− ϵ.

Lemma 20 (Tensor Convolution Inequality). Given real tensors K and X of respective sizes
d× d′ × c0 × c1 and D ×D′ × c0, it holds

∥K ∗X∥max ≤ ∥K∥1 · ∥X∥max .

Proof. We have

∥K ∗X∥max

≤ max
i,j∈[D],ℓ∈[c1]

∑
i′,j′∈[d],k∈[c]

|Ki′,j′,k,ℓXi−i′+1,j−j′+1,k|

≤ max
i,j∈[D],ℓ∈[c1]

 ∑
i′,j′∈[d],k∈[c]

|Ki′,j′,k,ℓ|

 ∥X∥max
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≤ max
i,j∈[D],ℓ∈[c1]

∥K∥1 · ∥X∥max

= ∥K∥1 · ∥X∥max .
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