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Abstract

Hedging is a strategy for softening the impact
of a statement in conversation. In reducing
the strength of an expression, it may help to
avoid embarrassment (more technically, “face
threat”) to one’s listener. For this reason, it is
often found in contexts of instruction, such as
tutoring. In this work, we develop a model of
hedge generation based on i) fine-tuning state-
of-the-art language models trained on human-
human tutoring data, followed by ii) reranking
to select the candidate that best matches the ex-
pected hedging strategy within a candidate pool
using a hedge classifier. We apply this method
to a natural peer-tutoring corpus containing a
significant number of disfluencies, repetitions,
and repairs. The results show that generation in
this noisy environment is feasible with rerank-
ing. By conducting an error analysis for both
approaches, we reveal the challenges faced by
systems attempting to accomplish both social
and task-oriented goals in conversation.

1 Introduction

When people interact, they attend not just to the
task at hand, but also to their relationship with
their interlocutors (Tracy and Coupland, 1990).
One key aspect of the relationship that people
attend to, while engaging in contexts as diverse
as sales (Gremler and Gwinner, 2008; Planken,
2005), education (Glazier, 2016; Murphy and
Rodríguez-Manzanares, 2012) and healthcare (Di-
Matteo, 1979; Leach, 2005), is what is referred
to as rapport, a sense of harmony and mutual un-
derstanding between participants in a conversation
(Spencer-Oatey, 2005; Tickle-Degnen and Rosen-
thal, 1990). Indeed, higher levels of rapport are cor-
related with better performance in each of these do-
mains. Zhao et al. (2014) describes rapport as built
upon a base of mutual attentiveness, face manage-
ment, and coordination. This base is built primarily
by conversational strategies, or ways of speaking
(including nonverbal and paraverbal behaviors) that

yeah, so it will be ...

I think you could add four to
both sides.

oh no...

Figure 1: Hedging in peer tutoring

manage rapport throughout a conversation. Key
conversational strategies include self-disclosure,
reference to shared experience, praise, and hedging
— giving instructions or conveying information in
an indirect manner when it might otherwise sound
rude or overly demanding.

End-to-end large language models (LLM), of
the kind that are increasingly popular and powerful,
do a good job at carrying out the propositional or
information-carrying aspects of conversation, and a
relatively good job of maintaining the coherence of
a conversation, but they are not as good at changing
how they say something as a function of a relation-
ship with the human user, while humans are, for
the most part, quite good at this. However, since
saying things in a specific manner - for example,
through a hedge - helps task performance, it is an
important topic for dialogue systems.

Linguists define hedges as a way of diminishing
face threat (meaning the “positive social value a
person effectively claims for himself” (Goffman,
1967) by attenuating the extent or impact of an ex-
pression (Brown and Levinson, 1987; Fraser, 2010).
Figure 1 shows a typical example of hedging in
a peer tutoring setting, where the tutor uses two
hedges (“I think” and “could” rather than “should”)
to deliver a hint for the next step of solving an
algebra equation.

Tutoring is one context in which hedges are
found in abundance and where recognizing them
might be important for intelligent tutoring systems,
as attested by the number of computational ap-



proaches that attempt to do so (see section 2). In-
terestingly, even unskilled tutors use them. In fact,
research on peer tutoring has shown that when rap-
port between a peer tutor and tutee is low, but the
tutor is confident in his/her skills, that tutor tends
to use more hedges, and this results in more prob-
lems attempted by the student and more problems
successfully solved (Madaio et al., 2017).

In this paper, then, we work towards the devel-
opment of a generation module for a virtual peer
tutor that, like real peer tutors, is able to choose
the manner of delivering information in such a way.
Specifically, we address two research questions:

RQ1: How good are end-to-end large language
models used alone for generating hedges when fine-
tuned on a peer-tutoring dialogue dataset? Are the
models able to implicitly learn when and how to
generate hedges?

The first question may be answered by compar-
ing the performance of various fine-tuned models.
If the end-to-end models cannot learn to hedge im-
plicitly, we might attempt to drive the models to
generate the utterances by providing the correct
labels. We assume that the correct labels can be
provided by another module of the system, so we
compare the reranking method with the fine-tuning
method, as the former is simple, powerful, and
widely used for text generation. Consequently, the
second question is:

RQ2: Can we improve these models by using a
reranking approach? If so, what are the remaining
errors and why do they occur?

2 Related Work

Considerably more computational methods exist
to determine what a dialogue system should say
than how to say it. However, more recently, with
the increased power of end-to-end models to find
information and convey it accurately, we can now
turn to ensuring that the end-to-end model simul-
taneously also meets social goals, to increase the
impact and acceptability of what is conveyed.

2.1 Theoretical Approaches to hedges

As described above, a hedge can soften the impact
of an utterance that might otherwise seem rude,
such as a demand (“could you pass the salt”) or
an instruction (“you might want to pour the coffee
over the sink”). Madaio et al. (2017) has attested
to the frequent use of hedges in the peer-tutoring
setting, and their positive impact on performance,

perhaps because hedges in this context might re-
duce a tutee’s embarrassment at not knowing the
correct answer (Rowland, 2007).

In linguistic terms, hedging is a rhetorical strat-
egy that attenuates the full force of an expression
(Fraser, 2010) and for this reason, it has been cov-
ered in linguistic pragmatics and the study of polite-
ness. Two main categories of hedges are identified
in the literature: Propositional Hedges and Rela-
tional Hedges (Prince et al., 1982). Propositional
Hedges (called Approximators by (Prince et al.,
1982)) refer to uncertain (Vincze, 2014), fuzzy
(Lakoff, 1975) and vague (Williamson, 2002) lan-
guage use, such as “kind of”. Relational Hedges
(called Shields in (Prince et al., 1982)) indicate
that the expression is subjective or an opinion, as
in “I think that is incorrect”. Attribution Shields
are a subtype of relational hedges that attribute
the opinion to others, such as “everyone says you
should stop smoking”. Apologizers (Raphalen
et al., 2022) are apologies that mitigate the strength
of an utterance, as in “I’m sorry but you have to do
your homework”.

While the different types of hedges operate in
different ways, they all serve the same mitigation
functions in conversation. For this reason, in what
follows — a first attempt at generating hedges —
we collapse the different sub-classes and refer only
to hedges and non-hedges.

2.2 Computational Approaches

Some prior work has looked at the detection of
conversational strategies and in particular work by
Zhao and colleagues (Zhao et al., 2014, 2016b,a).
Madaio et al. (2017) built a classifier to detect hedg-
ing and achieved an accuracy of 81%. Recent work
by Raphalen et al. (2022) improved the detection of
different types of hedges and achieved a weighted
F1 score of 0.97.

Hedging is a particular kind of indirectness, and
therefore as we look at prior work in the area,
we include approaches to the generation of indi-
rect speech. The plan-based generation of indirect
speech acts has existed almost as long as dialogue
systems themselves (Clark, 1979; Brown, 1980;
Perrault, 1980). More recently, other relevant as-
pects of politeness have also been addressed. For
example, Porayska-Pomsta and Mellish (2004) op-
erationalized the important notion of face in po-
liteness theory to generate polite sentences with a
template pool. Although contemporary dialogue



systems tend to integrate indirect speech (Miehle
et al., 2022; Briggs et al., 2017), generating hedges
with powerful language models, and particularly
as a function of the social context, has not been
explored. Our desire to look at the social context
leads us to train on spontaneous dialogue that is
substantially noisier, owing to natural conversa-
tional phenomena such as disfluency. This differs
from the majority of prior work, trained on written
or acted corpora (Li et al., 2017; Rashkin et al.,
2019).

2.3 Generation Techniques

Different techniques have been used in the past to
generate responses of a particular kind for dialogue
systems. Madaan et al. (2020) used n-gram TF-
IDF to identify source style words and generate
target politeness style utterances by replacing these
words. Niu and Bansal (2018) generated politeness
formulations by using reinforcement learning with
a trained politeness classifier. Similar to our ap-
proach, the explicit knowledge of politeness is only
given to the classifier. Liu et al. (2021) constructed
an emotional support dataset with eight different
dialogue strategies and fine-tuned the pre-trained
language models by connecting the label tokens to
the beginning of each utterance in order to create
a dialogue generator that can produce the target
responses without focusing on the social context.

The reranking method is also widely used in text
generation tasks. Hossain et al. (2020) used a sim-
ple and effective pipeline where they retrieved the
original texts from the database, then edited with
a Transformer (Vaswani et al., 2017) model, and
then reranked the text by generation scores. Soni
et al. (2021) first applied reranking to conversa-
tional strategy generation by controlling the level of
self-disclosure in the outputs of DialoGPT (Zhang
et al., 2020b). The authors of LaMDA (Thoppilan
et al., 2022) used various classifiers to rerank and
filter out inappropriate responses. Recently, Chat-
GPT (OpenAI, 2022) used reinforcement learning
with human feedback, and has shown impressive
performance.

In the articles above, most algorithms were
trained on written dialogue datasets, which facili-
tated the task. However, our spontaneous dialogue
dataset may lead the way for cutting-edge models
trained on a real-world, face-to-face interactional
dataset.

3 Methodology

3.1 Task Description
Let D = {d1, d2, d3, ...dn} be a set of dialogues,
where each dialogue d = {u1, u2, u3...um} is com-
posed of m turns, where ui is a turn. Each tu-
tor turn (and each tutee turn, although we will
not examine the tutee turns further here) is la-
beled as hedge or non-hedge; we call li the la-
bel of ui. A fixed window size ω of the dia-
logue history is assigned to each utterance: hi =
{umax(1,i−ω), ui−ω+1, ...ui−1}. The goal of this
work is to train a generator (G) that can produce
a tutor’s utterance u′i that matches a given hedge
strategy (i.e., hedge or non-hedge) li, according to
the dialogue history hi.

3.2 Corpus
The dataset we used in the current work is the
same as that used in our prior work (Raphalen
et al., 2022; Goel et al., 2019; Zhao et al., 2014).
24 American teenagers aged 12 to 15, half boys
and half girls, were assigned to same-gender pairs.
They took turns tutoring each other in linear alge-
bra once a week for five weeks, for a total of 60
hours of face-to-face interaction. Each interaction
was composed of two tutoring periods, where the
teens took turns being the tutor, with a social pe-
riod at the beginning and between the two tutoring
periods. For the purposes of the earlier work the
corpus was annotated for hedges, as well as the
subcategories of hedges, at the clause level. For
our purposes, since generation happens at the level
of the turn, we merge the clauses and their labels
into speaker turns and turn-level hedge labels (see
Appendix A for the merge strategy).

Our goal is to create a hedge generation mod-
ule that can produce an appropriate hedge strategy
for a tutor giving an instruction, according to what
has been said before as indicated by the dialogue
history. For this reason we kept all turns in the dia-
logue history, even though our model is trained to
generate only the tutor’s turns (and not those of the
tutee). There are 6562 turns in these interactions,
of which 5626 contain non-hedges and 936 hedges.

Being authentic interaction, there are disfluen-
cies (“so just yeah just um”), repetitions (“that
would be then that would be”), repairs (“oh wait,
actually the x would go here”), and other spoken
phenomena such as one-word clauses. These phe-
nomena make generating hedges challenging since
the language models we use are primarily trained



on written dialogues, which do not contain most of
these features. However, our work allows us to see
how far we can go with authentic spoken data.

3.3 Methods

We combine two techniques for generating the tu-
tor’s turn: Fine-tuning an existing generation model
and Re-ranking the generated outputs to match the
desired hedge strategy.

3.3.1 Fine Tuning Method

First, we want to evaluate how well the model per-
forms when hedge information is implicitly taught
through fine-tuning. We fine-tuned the generation
model with the training set of the peer-tutoring
corpus. Each utterance ui = (w1, ..., wn) is com-
posed of n tokens, the dialogue history hi as input
to the generation model. We apply cross-entropy
loss between ui and u′i, where u′ ∈ R|V |, V is the
vocabulary.

J(ui, u
′
i) = − 1

n

j=|V |∑
j=1

ui,j log(u
′
i,j) (1)

3.3.2 Reranking Method

Since a hedge classifier was developed for prior
work in our lab (Goel et al., 2019; Raphalen et al.,
2022), we can use it to determine whether a gen-
erated text is a hedge or not and then inform the
generator of the decision in order to regulate the
output. This is known as reranking, and is what we
use here as our second generation strategy.

1) We first pretrain our generator as in fine tun-
ing. We then apply this generator to the test set
to generate 501 candidate utterances for each dia-
logue history (Figure 2). 2) These candidates are
first ranked by their sentence scores (i.e., the final
outputted token’s log probability for each sentence).
3) We then use the hedge classifier described above
to filter out the utterances that do not match the
selected strategy (i.e., hedge or non-hedge). 4)
We keep utterances that match the selected hedge
strategy. If more than one candidate matches the
strategy, we pick the first one that matches, which
means the one with the highest sentence score. 5) If
none of the candidates matches the selected hedge
strategy, we output the one that has the highest
sentence score.

1See Appendix C for the details

4 Experimental Setting

4.1 Data Processing
We randomly split the final dataset based on a
60:20:20 ratio. Of these, 60% is the training set,
20% is the validation set, and 20% is the test set.

Since our dataset is highly unbalanced, if we
used it as is the results would be too biased towards
non-hedges. In that approach the gap between the
results of different models would not be clear be-
cause non-hedges are so much more frequent. For
this reason, we manually balance by randomly se-
lecting 235 non-hedge turns to balance the 235
hedges in the test set, and combine the data to form
a new balanced test set. On the other hand, in order
to have a large enough training set, we retain all tu-
tor turns from the complete dataset, which therefore
consists of 701 hedge turns and 4455 non-hedge
turns, resulting in a dataset that is very skewed, but
has more turns.

While the complete dataset contains a relatively
small number of hedge turns, we believe that pre-
serving the natural data distribution is crucial for
addressing our first research question. Underscor-
ing the wisdom of this approach, the results we
obtained on perplexity and the BARTscore (that
are indicative of fluency in the generated responses,
as described below) demonstrate that the models
were able to generate responses with reasonable
fluency and quality despite the small number of
hedge turns.

4.2 SOTA Pretrained Language Models
We compare the performance of different state-of-
the-art (SOTA) free open-source pretrained mod-
els as our generators: BART, DialoGPT, and
BlenderBot. BART (Lewis et al., 2020) uses an
encoder-decoder architecture, trained on books and
Wikipedia data, and performs well on tasks as var-
ied as Q&A (SQuAD (Rajpurkar et al., 2016)), text
generation, text classification (MNLI (Williams
et al., 2018) ), and text summarization tasks (ELI5
(Fan et al., 2019)). It is pretrained by distorting
the format of the input text in various ways, and
this training helps us to visualize its possible ap-
plication to noisy spontaneous spoken dialogues.
DialoGPT (Zhang et al., 2020b) is a dialogue ver-
sion of GPT-2 (Radford et al., 2019), an autore-
gressive language model with a multi-layer Trans-
former (Vaswani et al., 2017) decoder as its model
architecture. It is trained on 140 million conversa-
tional exchanges extracted from Reddit comment
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threads. BlenderBot (Roller et al., 2021) uses the
standard Seq2Seq Transformer architecture, but
incorporates a number of dialogue training sets:
Empathetic Dialogue (Rashkin et al., 2019), Per-
sonaChat (Zhang et al., 2018), ConvAI2 (Dinan
et al., 2020), and other datasets that, while largely
handcrafted, focus on personality and emotions,
enabling it to potentially develop some version of
social skills.

4.3 Evaluation Metrics
To evaluate performance, we used the most widely
used set of reference-based metrics for natural lan-
guage generation tasks (Liu et al., 2021; Ziems
et al., 2022). Since these metrics have not been
used for conversational strategies, we add an un-
supervised reference-free metric, the BART score
(Yuan et al., 2021). The BART score formulates the
evaluation process as a text generation task using a
pre-trained model. The score represents the proba-
bility of generating a hypothesis given a source text.
The higher BART score represents better text from
different perspectives (e.g., informativeness, factu-
ality). In this paper, we denote the dialogue history
as the source text and the generated utterance as
the hypothesis. For comparison, we calculate the
BART score between the dialogue history and the
real response in the test dataset, giving a result
of −6.44. We also evaluated the relevance of the
generated hedge strategy using an F1 score. The
results using these metrics are presented in Table
2. The detailed description of the metrics used is
in Appendix B.

4.4 Human Evaluation
While the metrics described above are important
for comparison with the performance of other work
in the field, they do not obviate the need for human

annotation. We therefore asked two annotators to
ignore sub-categories and annotate only hedge or
non-hedge on each tutor turn of the model’s output,
with access to 4 prior turns of the dialogue history.
During a training phase the annotators reached an
inter-rater reliability of over .7 Kripendoff’s alpha
(Krippendorff, 2004) which indicates substantial
agreement. One of the annotators then finished the
remainder of the annotation. We computed the F1
scores for the label of the generated utterances with
respect to the real tutor turn’s label. A higher F1
score indicates that the approach is better suited
to generate the correct hedge strategy (see Table
2). We also asked the annotators to pay attention
to whether the output was unnatural and to note it
if so. The annotators reported no concerns with the
naturalness of the generated utterances.

The concept of fluency has recently gained pop-
ularity in the dialogue community (Li et al., 2019;
See et al., 2019), but the current definition of flu-
ency varies. More fundamentally, evaluations of
this kind are more applicable to written text or
scripted dialogues (Pang et al., 2020; D’Haro et al.,
2019). as they cannot handle disfluencies (e.g., hes-
itations, repetitions, false starts) of the kind that
are common in spontaneous spoken dialogues, and
that may serve to give the speaker time to plan the
next utterance (Biber et al., 1999; Thornbury and
Slade, 2006). We therefore did not assess fluency
in this work.

5 Results

5.1 RQ1: How well do end-to-end models
perform alone for generating hedges?

Table 2 compares the performance of the genera-
tion models. BlenderBot outperforms the other 2
models on most metrics,although with similar per-



formance to DialoGPT, on BLEU and ROUGE-L.
The discrepancy between BlenderBot and BART
in each score is relatively wide. This discrepancy
is most apparent on measures that compute scores
based on n-gram-level overlaps (BLEU, ROUGE).
To find the reason for this discrepancy, we calculate
the average length of the outputs of the 3 models
and observe 5.2 words for BART, 11.8 words for
BlenderBot, and 14.5 words for DialoGPT, while
the average length of the tutor’s utterances in test
data is 15.2 words. The average length of the out-
put of DialoGPT is therefore close to that of the
test set. This further explains DialoGPT’s strong
performance on the BLEU and ROUGE scores. On
the other hand, BART tends to generate shorter
turns, consequently demonstrating lower scores on
metrics that require the calculation of repetition
grams to yield scores. Note that in similar tasks,
the best model was Blenderbot with a BLEU 2
score of 6.21, in the case of emotional support con-
versational strategy generation (Liu et al., 2021),
while DialoGPT reached 5.52. The best score in
the positive text reframing task, meanwhile, was
11.0 for BLEU 1 (Ziems et al., 2022), while BART
reached 10.1 and GPT-2 reached 4.2.

Table 1 shows that BART has the lowest perplex-
ity score, indicating that BART is more adaptive
to our dataset compared to the other two models.
This may be due to its pre-training approaches (see
Section 4.2) that corrupt input texts with an arbi-
trary noising function. These approaches enable
more accurate predictions in our noisy real-world
dataset.

BART BlenderBot DialoGPT
34.9 69.3 72.4

Table 1: Language Model (LM) Perplexity (the lower is the
better

In response to our first research question, then,
the performance of all three models was compara-
ble but very limited. This suggests that the fine-
tuning approach does not allow language models
to learn hedge knowledge implicitly.

We therefore next turn to an approach that may
improve performance by screening utterances with
a given label.

5.2 RQ2: Does reranking improve hedge
generation?

Table 2 shows the performance of each model for
the reranking method. BlenderBot once again per-

Metrics

Models
BlenderBot DialoGPT BART R_BlenderBot R_DialoGPT R_BART

BLEU_1 11.2 11.4 2.7 12.3 10.9∗ 6.0∗
BLEU_2 5.8 4.7 1.5 6.2 3.9∗ 3.1∗
ROUGE-
L

8.6 9.1 8.1 11.0 8.4 9.7

CHRF 17.6 17.0 9.3 17.6∗ 17.5∗ 12.2∗
BARTScore -3.92 -5.62 -4.33 -3.98∗ -4.79 -4.24
BERTScore 39.9 38.3 38.5 40.5 37.5 39.4
F1Score
(human
evaluation)

0.54 0.41 0.44 0.84 0.64 0.85

Table 2: Results of the fine-tuned models and reranking
method applied to the fine-tuned models. ∗means this result is
significantly different from the fine-tuning method (p < .05)

forms well on all metrics and has a virtually identi-
cal F1 score to BART. Additionally, we find some
interesting similarities among models: 1) Blender-
Bot and DialoGPT outperform BART in both the
fine-tuning and the reranking methods (Table 2)
with respect to reference-based metrics such as
BLEU, ROUGE-L, etc., and 2) DialoGPT still
underperforms the other two models in terms of
F1 score, and in the reranking condition the gap
widens.

This result could suggest that 1) the pretrain-
ing of the models (i.e., DialoGPT, BlenderBot) on
dialogue datasets may help to generate longer ut-
terances, and therefore to improve the reference-
based metrics performance, and 2) the autoregres-
sive model (e.g., DialoGPT) may not be suitable for
the generation of social dialogue such as hedges.

5.3 Comparing Fine-tuning and Reranking

To summarize results on the fine-tuning versus re-
ranking approaches we observe that: 1) With the
help of a hedge classifier, the reranking approach
can do a good job at generating hedges, 2) Blender-
Bot is better suited to the task of generating long
utterances, as described in Section 5.1. This could
be because BlenderBot is pretrained with various
social dialogue datasets, giving it a certain ability
to generate the social aspects of dialogue.

Table 2 shows that models deployed with the
reranking method have relatively higher or com-
parable Bart scores, but greatly improved perfor-
mance on the F1 score (from .54 to .85). This result,
too, underscores the advantages of the reranking
method.

5.4 Error Analysis

While BlenderBot showed strong performance
when using reranking, a certain number of gen-
erated utterances still did not match the real tutor



labels. When a matching utterance type cannot be
found in a limited pool of candidates, we could
have chosen to increase the candidate pool to pro-
mote the probability of selecting a match. However,
in this early effort to generate hedges, we want to
ensure sufficient quality in the generated output
but also explore the limitations of current language
models for generating socially relevant phenomena
on the basis of a spontaneous spoken interaction
dataset.

We can learn about the limitations of these mod-
els by examining places where the system did not
generate the desired strategy (that is, generated a
hedge when the real tutor did not or vice versa).
We first divide these strategy mismatches into over-
generation errors, where the generator generates
a hedge where it should not and under-generation
errors when it does not generate a hedge but should.
Among the 1395 annotated turns outputted by the
3 generators, there are 13.3% of over-generation
errors and 86.7% under-generation errors. These
errors are particularly interesting in the context of
reranking, as it relied strongly on the hedge classi-
fier. The hedge classifier selected the most suitable
utterances, and yet the model still produced the
wrong strategy - or at the very least mismatches
with the strategy of the real tutor.

Therefore, we analyze the generated utterances
corresponding to these two types of errors and iden-
tify two potential causes.

First, there are still some places where the model
generates a hedge where it should generate a non-
hedge. As we mentioned in Section 4.4, we invited
humans to annotate the models’ outputs in terms of
hedge labels. We compare the human-annotations
of the model output (where they labeled the out-
put as hedge or non-hedge) with the output of the
BERT-based classifier on the same generated utter-
ances to calculate the F1 score. We find that there
is a difference of about 9 points between the F1
score for human annotation (85%) shown in Table
2, and the F1 score for the same BERT-based hedge
classifier (94%) reported in Raphalen et al. (2022).
We assume that the classifier we used may have
misclassified some generated utterances and we
therefore label them as Classification Errors. This
category accounts for 92.5% of over-generation er-
rors, and 15.3% of under-generation errors.

Second, the basic functionality of an end-to-
end language model of this kind is to produce
the most coherent next utterance based on the di-

alogue history. This may result in the language
model privileging coherence of content over style
of delivery. That is, the model may not be able
to find an appropriate strategy match among the
coherent candidates, even when the candidate pool
size is 50. We label this a Goal Mismatch as the
propositional or content coherence goals of the sys-
tem may be trumping the social goals, We found
84.7% in under-generation errors and 7.5% in over-
generation errors. 18% of the cases where the pool
did not include the right strategy.

An example of each type of error is given in Fig-
ure 3. The first example belongs to the Classifica-
tion Error type, where the classifier misclassified
the system response (i.e. “We just found that the
answer is two x equals three”) as a hedge. In the
second example, the tutor is trying to help the tu-
tee to approach the answer step by step, but the
tutee cannot come up with a worked idea. Here it
is clear that the tutee is flailing and it is therefore
probably not advisable to increase the student’s
stress with a volley of questions that the tutee can
clearly not answer. The tutor thus uses a hedge as
a response. Conversely, the generator produces a
question. The generated utterance is “What do you
think we should do, what’s the next step”. This ex-
ample corresponds to our Goal Mismatch Error.
It shows that the generator may not understand
the social context, but is looking for a coherent
response.

The Goal Mismatch Error is perhaps the most
interesting of the errors, and thus to verify our hy-
pothesis — that the coherence goals of the models
may impede the social goals — we looked into the
nature of the relationship between rapport (between
tutor and tutee) and the generation of hedges. As
described above, Madaio et al. (2017) found that
hedges are generated when rapport is low. Since
our corpus contained rapport annotations for every
30 seconds of the interaction, we looked at the rap-
port level in play when the model over-generated
and under-generated hedges. Since rapport is anno-
tated from 1 to 7 in the dataset, for convenience, we
divided it into 3 levels: high (5-7), medium (3-5),
and low rapport (1-3), as shown in Table 3.

Type
Rapport High Medium Low

Over-generation 0 3 0
Under-generation 13 130 75

Table 3: Goal Mismatch Errors Distribution



Tutor: mhm, so what are the two things that you can 
do, there are only two.
Tutee: I could move x over to three x.
Tutor: Yeah what do you think we should, should we 
do it now.
Tutee: mmm I dont know, do you have the, um, 
minus

Tutor: Well the other one would be to divide three 
by thirty six ...
(hedge) 
System: What do you think we should do, what's the 
next step (non-hedge)

Tutor: Wait, you're on question three, <laughter> just
checking
Tutee: I told you, the answer is two 
Tutor: We just found out
Tutee: oh really?

Tutor: <laughter> okay problem four is four (non-
hedge)

System: We just found out the answer is two x equals
three
(hedge)  

Goal Mismatch ErrorClassification Error

Figure 3: Strategy Mismatch Errors for Reranking Method

As only 3 errors appear in the category of over-
generation error, we cannot obtain a meaningful
conclusion due to size. However, the generators
generate fewer hedges when rapport is low, an
under-generation error, in contradiction to stud-
ies showing that speakers are more careful about
threatening the face of (or embarrassing) their in-
terlocutors when the social bond between them is
weak (Madaio et al., 2017). We believe that this
is because more hedges are found in low rapport
interaction. Therefore, we count the hedge distribu-
tion of the low and high rapport interaction in the
test dataset. 264 hedges are found in low rapport
interaction, and 42 in high rapport interaction. This
distribution corresponds to the fact that a hedge is
most likely to happen in low rapport interactions.
The under-generation errors are the cases where
there should be hedges but non-hedges were gener-
ated. In the test dataset, more hedges occur in low
rapport, and the generator under-generates more
in low rapport, because there are more hedges that
should be generated in low rapport. So, the gener-
ators make more errors in low rapport interaction
due to an imbalance in hedge distribution between
low and high rapport interaction.

Goal Mismatch error directly addresses our pri-
mary question 1: How effectively do end-to-end
models perform when generating hedges on their
own? Due to this fundamental discrepancy between
competing goals, end-to-end language models are
unable to inherently learn and discern when to ap-
ply hedges appropriately.

5.4.1 Lexical Diversity of the Generated
Output

As we have seen, LLMs can generate a hedge or
non-hedge with the help of the reranking method.
However, do language models spontaneously use
different types of hedges in a human-like way? To
investigate this question, we applied the rule-based
hedge classifier from (Raphalen et al., 2022) to au-

tomatically annotate the utterances generated by
models in subcategories of hedges (as defined in
Section 2.1), and we compare the models’ and hu-
mans’ distributions of different hedge strategies.
The rule-based classifier used linguistic patterns
to identify each hedge subcategory. We have pre-
ferred here to use the rule-based classifier rather
than the machine learning classifiers to avoid the
dependence on and bias of probabilistic learning-
based classifiers. Indeed, learning-based classifiers
may be biased towards predicting the categories
that are the most frequent in the dataset. Further-
more, the rule-based classifier reaches a 94.7 F1
score (Raphalen et al., 2022), which is compara-
ble to the best performance (96.7 F1 score) using
the Light Gradient-Boosting Machine (LGBM) (Ke
et al., 2017) classifier.

The above results show that the model can spon-
taneously learn to use different types of hedges.
Indeed, the models are capable of carrying out lin-
guistic diversity on hedges based on learning from
real human dialogues.

6 Conclusion and Future Work

In this paper, we have shown that the reranking
method helps LLMs to generate hedges — an im-
portant social conversational strategy that can avoid
face threats towards an interlocutor by attenuating
an impact of an expression. We find that an implicit
fine-tuning approach (i.e., without any supervision
by a hedge label) is not sufficient for generating
hedges, but a reranking method significantly im-
proves performance in generating hedges, with a
final F1 score of .85 for the BART model and .84
for the BlenderBot model. We also performed an er-
ror analysis on the generated results and found that
two types of errors occur in the reranking method:
Classification, and Goal Mismatch. The vast ma-
jority of errors fall into the category of Goal Mis-
match, indicating an important conflict between



contemporary language models’ primary goal of
ensuring coherence and the social goal of managing
face, which is indispensable for human conversa-
tion. While we were able to generate hedges, we
were not able to necessarily generate them where
they were needed most. That is, conversational
strategies are adaptive in the sense that they re-
spond to conversational strategies uttered by the
previous speaker (Zhao et al., 2014). We conclude
that, going forward, we will need a way of adding
an underlying representation of the social state of
the dialogue to improve dialogue generation.

In this paper we addressed the question of how
to generate hedges, but when to generate hedges
remains an important and unexplored question. In
future work, we may first explore the temporal re-
lationships between the hedge and other conversa-
tional information (e.g., other conversational strate-
gies, level of rapport) by sequential rule mining
techniques, then apply RL-based methods to inves-
tigate in a more detailed manner the optimal way to
predict where hedges should occur. In this context,
we note that ChatGPT can generate a hedge when
requested explicitly to do so, but does not generate
hedges of its own volition (so to speak), for exam-
ple, when face-threatening acts such as instruction
are engaged in.

We began this paper by describing the need for
hedges in instructional dialogues such as those
engaged in by intelligent tutoring systems. The
current dataset consists of authentic real-world tu-
toring sessions, but as carried out by untrained
teenagers. We note that peer tutoring is a power-
ful method of teaching, used in classrooms around
the world, and previous work shows that when un-
trained peer tutors use hedges, their tutees attempt
more problems and solve more problems correctly
(Madaio et al., 2017). However, they are inexperi-
enced and so in future work it will be important to
investigate the interaction between trained tutors
and tutee as well, for instance, by using the Teacher-
Student Chatroom Corpus (Caines et al., 2020). We
believe that the methods and results from the cur-
rent work will facilitate the investigation of expert
tutors in future research.

Broader Impact

Since the 1990s, research has shown the the im-
portance of intelligent tutoring systems as effective
learning environment,s and supports for classroom
learning (Anderson et al., 1995). Peer tutoring

plays a powerful role as well, as peer tutors can
motivate learners to try harder, as well as helping
them to succeed, and it is particularly effective for
low-achieving learners (Cassell, 2022). But virtual
peer tutors have not yet achieved their potential,
in part because of the difficulty of generating the
social infrastructure of peer learning as well as the
content of the matter being tutored. This paper,
whose data comes from a corpus of peer tutoring
dialogues, should therefore be seen as a step in the
right direction.
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Limitations

Several limitations apply to the current study.
While research shows that multimodal signals play
an important role in conversational strategies (Zhao
et al., 2016b), we did not take them into account.
It is an open question as to how to render large
language models capable of generating multimodal
behaviors. A second limitation concerns the recent
arrival on the scence of ChatGPT, that has shown
impressive performance. However the models are
not free, and therefore were not included. As noted
above, another important limitation is the untrained
status of the tutors in our corpus, who are teenagers,
and not trained tutors. Their use of hedges, there-
fore, comes from their knowledge of everyday so-
cial interaction, and not from expertise in teaching.
In looking at the data, we find a few places where,
as instructors ourselves, we believe that a hedge is
important, even though the real (teenage) tutor did
not use one.

The last limitation is that, while we focused only
on generating hedge or non-hedge, there are ac-
tually 3 different kinds of hedges, that function
differently. We hope to extend this work and take



advantage of a text style transfer technique to gen-
erate more kinds of hedges in future work.

Ethical Statement

The corpus used here comes from earlier work by
the last author and her colleagues, and was used in
accordance with the original experimenters’ Insti-
tutional Review Board (IRB). Those experimenters
also anonymised the data, removing any identify-
ing information. A pixelated example of the video
data is available at github.com/neuromaancer/
hedge_generation. To counteract potential gen-
der bias concerning the use of hedges in peer tu-
toring, the data was collected from equal number
of boys and girls. In text generation tasks, it is
important to be aware of the potential risk of gen-
erating inappropriate content. We believe that, in
fact, hedges used by tutors are perhaps the least
likely conversational strategy to be inappropriate,
as they are the most polite and “delicate” conver-
sational moves. But, more generally, considerable
additional work would be needed to filter out all
inappropriate language for safe tutoring systems
that engage in social and task interaction.
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A Clauses to Turns

In our task formulation, a dialogue is composed of
tutor-tutee turns. However, in the corpus consid-
ered for this study, the available annotations are at
the clause2 level. The choice of annotation unit was
made because the annotation in hedges was part of
a larger annotation campaign dedicated to the an-
notation of various conversational strategies (e.g.,
praise) at the clause level. This corpus contains 23
156 clauses, of which 21 192 contain non-hedges
and 1 964 hedges. In order to obtain annotations
at a turn level, we apply the simplest way to merge
the hedge labels. If one or multiple clauses of one
turn are annotated as hedges, this turn is labeled as
a hedge.

B Metrics

BLEU (Papineni et al., 2002) calculates the word
overlaps between reference and candidate utter-
ances in n-grams (n=1, 2, 3). We do not assume
that higher BLEU scores are equivalent to better
task completion. Instead, BLEU is used to indicate
that the generated utterances retain certain desired
keywords.

ROUGE-L (Lin, 2004) supplements BLEU by
computing the longest common subsequence of
generated utterances and references, allowing it to

2A clause consists of a subject and a verb and expresses a
complete thought (Berry and Brizee, 2010).

compute overlap measures in longer utterances. To
avoid generated utterances that are too long for the
BLEU score, we use Rouge-L as a complementary
metric.

CHRF (Popović, 2015) is comparable to BLEU;
however, while BLEU is word-level, CHRF is
character-level, based on character n-gram com-
putation. Our transcribed dataset also shows some
disfluencies and repetitions represented by individ-
ual characters. Therefore, we expect this metric to
result in character-level overlap scores.

BERTScore (Zhang et al., 2020a) embeds the
generated utterances and the reference with word
vectors using the BERT model and computes pair-
wise cosine similarity for each generated word vec-
tor and each word in the reference, then the recall of
the generated sequences is calculated. BERTScore
is distinct from the previous two metrics in that
it computes similarity across semantic space and
has been shown to have a strong correlation with
human judgment at the segment level.

BARTScore (Yuan et al., 2021) formulates the
text generation evaluation as a text generation task
from pretrained language models in an unsuper-
vised fashion. When the generated text is better, the
training model will get a higher score by convert-
ing the generated text to reference or source text.
BART score can be applied to different evaluations
(e.g., informativeness, coherence, and factuality).

Perplexity (Chen et al., 1998) calculates lan-
guage model perplexity. Perplexity quantifies the
level of uncertainty when an LM generates a new
token.

C Implementation Details

The implementation of all models was based on
the Transformer library3, in addition, the Pytorch-
Lightning4 library was used for training control.
We apply AdamW (Loshchilov and Hutter, 2018)
as our optimizer with a learning rate 10e−5. All
the models are trained with 10 epochs but with
an Early-stopping mechanism on validation loss,
which means when the validation loss remains for
2 epochs, the training will stop to prevent overfit-
ting. We use the base version of the BART model,
the small version of BlenderBot, and also the small
version of DialoGPT. For the reranking method,
we use beam search as our decoding strategy. To
prevent repetition, we allow the 2 grams to oc-

3github.com/huggingface/transformers
4github.com/Lightning-AI/lightning
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Figure 4: Hedge subcategories distribution in mod-
els’ outputs compared with human. IDA: Apologizer;
IDE: Extender; IDQ: Propositional hedges; IDS: Sub-
jectivizer (as defined in Section 2.1)

cur only once, and the repetition penalty = 1.2 is
also applied. All models were fine-tuned on an
Nvidia Quadro RTX 8000 GPU. A complete con-
figuration of the hyperparameters used for each
model is reported in the GitHub repository with the
code of the paper: github.com/neuromaancer/
hedge_generation.

Moreover, we apply beam search for the decod-
ing strategy, as it reduces the risk of missing hidden
high-probability word sequences by retaining the
n most likely words in each generation output and
ultimately selecting the utterances with the highest
overall probability. To avoid repeating the same
subsequences, we apply a penalty to the repeated
2-gram unit. In terms of the size of the candidate
pool, logically, the more candidates generated, the
more chances that one of them is the right hedge
strategy (i.e., hedge or non-hedge), so we fix our
candidate pool size to 50, as a compromise between
the likelihood of obtaining a hedge and the speed
of generation.

D Figures

Figure 4: Hedge subcategories distribution in mod-
els’ outputs compared with human.
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