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Abstract The finite-size scaling (FSS) theory is a relatively new and impor-
tant attempt to study critical phenomena; this paper aims to contribute to
clarifying the philosophical significance of this theory. We maintain that, con-
trary to initial appearances and to some recent claims in the literature, the
FSS theory cannot arbitrate the debate between the reductionists and anti-
reductionists about phase transitions. Although the theory allows scientists to
provide predictions for finite systems, the analysis we carry on here shows that
it involves the intertwinement of both finite and infinite systems. But, we ar-
gue, the FSS theory has another virtue, as it provides quantitative predictions
and explanations for finite systems close to the critical point; it thus comple-
ments in a distinctive manner the standard Renormalization Group qualitative
approach relying on infinite systems.

Keywords

Finite-size scaling – Phase transitions – Critical phenomena – Renormalization
group – Finite systems – Quantitative predictions – Infinite systems

1 Introduction

For more than two decades now, the investigation of the question as to whether
thermodynamics reduces to statistical mechanics has focused on phase tran-
sitions. It has been argued that the explanations of phenomena such as va-
porization or magnetization support an antireductionist, or emergentist view
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(e.g., Batterman 2005, 2011; Morrison 2012, 2015). Crucially, the statistical
mechanical explanations of these phase changes require infinite limits to obtain
the singularities and divergences appearing in the thermodynamic definitions
of phase transitions. Infinite limits are needed, moreover, to explain universal
behaviour (i.e., second-order phase transitions), by appealing to renormaliza-
tion group (RG) methods. Thus, it seems that the statistical mechanics of
finite systems is incapable to explain these familiar phenomena as described
by thermodynamics.1

The question of the reduction of thermodynamics to statistical mechanics
has been posed mainly in the context of discussions of limiting reduction (Nick-
les 1973). In contrast to the earlier, Nagelian concept of reduction, limiting
reduction – or asymptotic reduction – has been claimed to be more adequate
for the investigation of inter-theoretic relations in physics (Batterman 2005,
2016). Within this approach, an antireductionist position is supported by the
existence of singular limits, viz. limits for which the behaviour of systems ap-
proaching the limit is qualitatively different from the behaviour of the systems
at the limit. This is the case for the thermodynamic limits involved in obtain-
ing second-order phase transitions in statistical mechanics. This problem also
arises when we seem to face ‘ineliminable’ infinite idealizations, viz. manda-
tory idealizations that involve singular limits. While some authors defend this
approach (e.g., Liu 1999 and Bangu 2009), others argue that the appeal to the
thermodynamic limit does not threaten reductionism (e.g., Callender 2001,
Butterfield 2011, Norton 2012, Menon and Callender 2013).2 Moreover, it has
been claimed that limiting reduction would actually not be adequate for dis-
cussing the reduction of phase transitions; so one should amend this approach
(Palacios 2019), or even go back to a notion of reduction close to Nagel’s
approach (Butterfield 2011).

The work in this paper has been prompted by a recent critique of antire-
ductionism relying on a specific theory of phase transitions in finite-N systems,
namely the finite-size scaling theory (FSS henceforth).3 This criticism has been
advanced by Hüttemann, Kühn and Terzidis (2015), who maintain that “finite-
size scaling theory makes available reductive explanations” (2015, 188). In this
paper, we analyze how FSS addresses this issue and claim that, contrary to
initial appearances, it does not allow us to straightforwardly arbitrate the de-
bate between reductionism and anti-reductionism. On the one hand, the FSS
theory allows scientists to make predictions on critical phenomena for finite-N

1 As Kadanoff once said, “the philosopher might wish to note that, strictly speaking, no
phase transition can ever occur in a finite system” (2009, 778).

2 See also Ardourel (2018), who follows Menon and Callender (2013) by investigating
theories that study phase transitions without the thermodynamic limit. Reutlinger (2017)
defends a commonality strategy to explain critical phenomena, which has been recently
discussed by Rodriguez (2021). Saatsi and Reutlinger (2018) acknowledge the explanatory
indispensability of fixed points but without endorsing anti-reductionism. Finally, Franklin
(2019) argues for a lower-level explanation of the scale-invariance of critical systems. For a
review of these debates, see Shech (2013) and Bangu (2021).

3 ‘N ’ refers to the number of degrees of freedom (particles, spins, etc.) constituting the
physical system of interest.
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systems, which is an important and distinctive virtue of this theory. However,
on the other hand, these finite-N predictions still require, in the first place,
RG methods and infinite limits to obtain fixed points needed in the FSS the-
ory. Thus the FSS theory does not dispense with infinite limits. Moreover, as
we argue, in the FSS theory finite and infinite systems are twice intertwined.
Not only are infinite limits required to obtain fixed points from which finite-
N predictions are made, but, afterwards, extrapolations from these finite-N
predictions are made in order to obtain predictions on infinite systems and
thermodynamical bulk. Below we will clarify how this back-and-forth between
finite and infinite systems works by distinguishing two kinds of predictions of
critical phenomena: quantitative and qualitative predictions.

The aims and the uses of the FSS theory deserve to be investigated since, as
we will see, this theory deals with critical phenomena in a distinctive manner.
More precisely, our analysis of its content and use in scientific practice will
show that the FSS theory has an important virtue – and, moreover, that it
this virtue that justifies physicists’ interest in proposing and developing it: the
theory allows making quantitative predictions (and explanations) for finite-
N systems (i.e., predictions of critical exponents and critical temperatures).
This is, we stress, a paramount gain of operational nature that the FSS theory
affords, to be distinguished from the theory’s potential role in settling the
foundational debate between reductionism and anti-reductionism. So even if
our analysis of the FSS theory will show that it does not allow us to definitely
decide this debate, we would like to distinguish these two perspectives here
– the FSS theory as the arbiter of a foundational debate v. FSS as a tool to
fulfill of a certain scientific need – since these viewpoints have not been clearly
delineated so far, despite the fact that the theory has attracted some attention
in the past.4

We shall also highlight the fact that the FSS theory is based on RG meth-
ods, but as applied to finite systems. Thus, FSS is not a conceptual alternative
to the usual RG infinite approach, but rather a practically useful variant of it.
By yielding numerical values for the quantities of interest in finite-N systems,
the FSS theory embodies a quantitative approach to critical phenomena in
finite systems. As such, it complements the qualitative RG explanations (and
predictions) made for infinite systems. In a nutshell, the FSS theory extends
the standard approach to critical phenomena by employing RG methods for
finite-N systems.

The paper is organized as follows. First, we need to set the stage properly,
and the first three brief sections below will be devoted to this task. Thus, in
the immediately following section, we sketch the RG approach to second-order
phase transitions. Then, we introduce the ideas of the FSS theory; since the
theory is still not very familiar to philosophers, we present its basic concepts in
section 3. Next (in section 4) we shall come back to one of the main philosoph-

4 In addition to the authors mentioned above, it features in Menon and Callender’s (2013)
discussion, and it is examined by Butterfield and Bouatta (2012), Butterfield (2011), and
Mainwood (2005). Even if these authors usually refer to “crossover theory” or “finite size
crossover theory”, the theoretical content turns out to be the same, which is the FSS theory.
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ical motivations of this paper, and introduce the distinction underlying our
arguments here, between a qualitative and a quantitative approach to predict-
ing and explaining phase phenomena. Then, in section 5, the crux of the paper,
we draw on these preparatory points and offer a detailed discussion of the FSS
theory and the RG explanation of the universality of critical phenomena. More
specifically, in this section we argue for three key-claims:

(i) The FSS theory affords the physicists the means to recognize differences
between two large systems with different values of the number N of compo-
nents – since, obviously, some predictions about their critical behaviour will
be different. Hence, this theory puts the physicists in the position to fill the
gap between explanations in the case of infinite and finite systems.

(ii) The FSS approach provides us with the only natural answer to the ques-
tion as to why the peaks of the graphs describing finite systems are rounded.
Without such a theory, all that the physicists have is a qualitative, hand-
waving justification: “this is due to finite effects”. Thus, we maintain, the
standard RG approach to the derivation of the fixed points, albeit necessary,
is not sufficient to explain (and predict) quantitatively what is going on at the
critical point of a finite system.

(iii) The FSS theory involves a two-fold intertwinement of finite and infinite
systems, and this fact constitutes a challenge to the reductionists willing to
invoke FSS in their support.

2 The renormalization group approach to critical phenomena

To begin with, let us recall very briefly the starting point of the philosophical
discussions on phase transitions and infinite systems. This is what Kadanoff
calls the “extended singularity theorem” (Kadanoff 2013, sect. 2.2; see also
Batterman 2017, 562). In a nutshell, the statement implies that an infinite limit
is indispensable to recover the singularities of the thermodynanic functions
within statistical mechanics. This claim is justified by considering the partition
function Z(N) of the two-dimension Ising model with N spins. Its Hamiltonian
H is:

H = −J
∑
<i,j>

SiSj − h
∑
i

Si (1)

where the first sum is over nearest-neighbour sites, J is the spin-spin coupling,
and h is the external magnetic field. The partition function, defined as Z(N) =∑
i,j exp−H/kT , where k is the Boltzmann constant and T the temperature, is

a finite sum of N exponential functions, i.e. a sum of N analytical functions.
The statistical mechanics free energy, defined as f(N) = −kT logZ(N), is
thus also an analytical function. However, the thermodynamic free energy
is singular at the phase transition. Consequently, the sole possibility for the
statistical mechanics free energy to be singular is to take the limit N → ∞.
This indispensability result pertains to any phase transitions. However, as we
will see, in the case of second-order phase transitions, the ones in which we
are interested, another infinite limit is required.
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Second-order phase transitions, or continuous phase transitions, are asso-
ciated with universal behavior: it is an empirically well-documented fact that
different materials, having a widely different internal constitution (e.g., mag-
nets and water), obey the same physical laws in the critical region (i.e., close
to the critical temperature). These laws are power laws; their exponents are
called ‘critical exponents’. Critical phenomena exhibit universality in the sense
that the values of the critical exponents are exactly the same for different phase
transitions, such as the ferromagnetic-paramagnetic transition or the liquid-
vapor transition. As Ken Wilson noted, “the correspondence of exponents does
seem remarkable, however, when the values are not round numbers but frac-
tions such as 0.63. The convergence of many systems on these values cannot
be coincidental.” (Wilson 1979, 174)

Thus, perhaps the main achievement of the RG methods is to allow physi-
cists to derive such laws – and thus to explain this coincidence away. This
section sketches the main ideas of this derivation, as a precursor to our ac-
count of the FSS theory (in section 3). Let us begin by considering the case
of the paramagnetic-ferromagnetic phase transition. Close to the critical tem-
perature Tc, thermodynamic quantities obey the following power laws:

M ∼|t|β χ ∼|t|−γ C ∼|t|−α (2)

where M is the magnetization, χ magnetic susceptibility, C specific heat, and
t = (T − TC)/TC the reduced temperature; α, β, and γ are the critical expo-
nents. As noted, if one studies the liquid-vapor phase transition, one uncovers
the very same critical exponents. Another important critical exponent is found
in the ferromagnetic-paramagnetic transition, namely the exponent ν, associ-
ated with the correlation length ξ of the system. This quantity corresponds to
the distance over which spins are still correlated. Close to the critical region,
it obeys the power law ξ ∼|t|−ν .

Let us now very briefly introduce the RG methods in the case of the Ising
model, the model typically used to describe the ferromagnetic-paramagnetic
transition.5 For that purpose, consider the Hamiltonian H (see eq. 1). RG
methods consist in applying a series of transformations to this Hamiltonian
that rescale the system by zooming out; they are called block spin transforma-
tions (see fig. 1). For example, after one transformation, the initial Hamiltonian
H becomes :

H′ = −J ′
∑
<i,j>

SiSj − h′
∑
i

Si (3)

where the new spins Si,j are effective spins which replace the former spins
with a majority rule (e.g., if five spins out of the nine in a small square in
the figure 1 are ‘up’, the effective spin is also set to ‘up’). If the distance
between two consecutive spins is a, the new distance between effective spins
is a′ = l × a, with l the scaling factor. Therefore, the effective system is now
composed of Nl−d effective spins, with d the dimension of the system (here
d = 2). The Hamiltonian, the spin-spin coupling J and the external magnetic

5 See also, e.g., Batterman (2017), Butterfield and Bouatta (2012), or Cardy (1996).
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Fig. 1 Illustration of a block spin transformation. Figure extracted from (Kadanoff 2013).

field h are rescaled at each RG transformation with the scaling factor l, such
as: H → H′ → H′′ → ... → H(m)..., where (m) represents the mth iteration
of the block spin transformation. The coupling constants K, which include J
and h, transform similarly:

K → K ′ → K ′′ → ...→ K(m) ... (4)

Therefore, after one transformation, the effective correlation length is: ξ[K ′] =
ξ[K]/l. Consequently, the series of the effective correlation lengths is such as :

ξ[K] = lξ[K ′] = l2ξ[K ′′] = ... = lmξ[K(m)] ... (5)

where the effective correlation lengths are decreasing with respect to the num-
ber of iterations.

The series of RG transformations makes use of a recursion relation R de-
fined as K ′ = R(K). The mathematical analysis of this recursion relation
allows scientists to investigate the critical region. More precisely, the recur-
sion relation exhibits a fixed-point K∗ defined as K∗ = R(K∗). This means
that the effective Hamiltonian and the coupling constants are unchanged by
new scaling transformations R. Importantly, as we have seen above in this sec-
tion, (i) the statistical mechanics phase transitions require the thermodynamic
limit (recall the ?extended singularity theorem? above), and (ii) the correlation
length diverges at the critical temperature (since ξ[K] ∼|t|−ν). Consequently,
the number m of iterations of the RG tends to infinity at the fixed point.6

6 We focus on nontrivial fixed points, i.e., those associated with an infinite correlation
length.



Finite-Size Scaling Theory: 7

This follows from the equation 5 for which ξ[K] → ∞ and ξ[K(m)] is small
and thus finite (see Palacios 2019, sect. 2.3).

In the neighborhood of the fixed point, a linearized transformation of the
recursion relation R is applied, which leads to power laws for the scaling fields
ui that satisfy the following equation:

u′i = lyiui (6)

where yi are the exponents of the power laws. More specifically, in the case of
the Ising model, the scaling fields ui (and their exponents yi) are the reduced
temperature t (with the exponent yt) and the magnetic field h (with yh).
Indeed, the Hamiltonian (and the free energy f) varies with the coupling
constant K = J/kT (with T the temperature) and h the external magnetic
field. The notion of a ‘scaling field’ comes from the fact that these quantities
scale with the free energy f in the critical regime, i.e. satisfy the relation:

f(t′, h′) = ldf(t, h) (7)

after one iteration R, with d the dimension of the system.7

Now, depending on the sign of the exponents yi, the scaling variables can
either increase or vanish under the RG iterations. If yi < 0, then the scaling
variable decreases, and it is called irrelevant ; if yi > 0, the scaling variable
increases, and it is called relevant. After some mathematical manipulation, it
is then possible to derive the equations for critical exponents and the relation-
ships between them. For example, by considering the magnetic susceptibility,
and together with (2) above, we obtain that −γ = (d−2yh)/yt. By using other
thermodynamic quantities, e.g., magnetization and heat capacity, we obtain
other scaling relations, such as: α+ 2β + γ = 2.

3 The finite-size scaling theory

We now turn to the FSS theory, which has been introduced about 50 years
ago by Michael Fisher and Michael Barber, among others.8 Within this the-
ory, the number N of components or the finite size L of systems are explicit
variables. Importantly, while divergences occur for quantities such as magnetic
susceptibility in the usual RG approach, in this theory, in which L and N are
finite, they become rounded peaks.

The basics of the FSS theory were originally developed without the RG
framework. Today, however, it is more straightforward to introduce the theory
within this framework. As Barber said,

7 Moreover, the reason why the linearization leads to a power law comes from the semi-
group property of the recursion relation R, i.e., K′′ = R(K′) = R.R(K). For technical
details, see Goldenfeld 1992, 237 and 244. See also (Wu 2021) for a recent philosophical
analysis of the process of linearization in the vicinity of a fixed point.

8 See Ferdinand and Fisher (1969), Fisher (1971), Fisher and Barber (1972), Barber
(1983), Cardy (1988). This section is based mainly on Barber (1983), Goldenfeld (1992,
section 9.11), Pelissetto and Vicari (2002, section 2.2.3), Cardy (1996, section 4.4). See also
Privman (1990).
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[R]enormalization group techniques are well-known as powerful meth-
ods for investigating bulk critical behaviour. The same ideas can, how-
ever, also be used to study finite-size effects and to compute thermo-
dynamic quantities of finite systems. (Barber 1983, 162)

Let us go back to the Ising model.9 Now, instead of taking the thermodynamic
limit N → ∞, we recall that the number N of spins remains finite, albeit
large. In that case, according to the extended singularity theorem’s Kadanoff
(see Section 2), the system can be close but, strictly speaking, not at the
thermodynamic phase transition.

Nevertheless, the FSS theory will use all the tools of the usual RG approach
to infinite systems in order to get information on finite systems. In particular,
the FSS theory studies what happens close to the fixed point K∗ that has been
found with the usual RG approach (Section 2). Under these conditions, close to
the fixed point K∗, the FSS theory will consider the same RG transformations
for the Hamiltonian H and coupling constants K. In that case, one iteration
of the previous RG transformation for the free energy (eq. 7) becomes for a
N -finite system:

f(t′, h′, N ′−1) = ldf(t, h,N−1) (8)

with N ′ = Nl−d. There is thus an extra term N−1 in the free energy for
a finite system close to the fixed point, which plays the same role as a scaling
field ui (i.e., t and h). More precisely, the term can be viewed as a relevant
scaling variable with an exponent y = d corresponding to the dimension of the
system. With this procedure, one can derive thermodynamic quantities, such
as the magnetic susceptibility χ(N) or the the heat capacity C(N), which no
longer diverge (see Fig. 2). These thermodynamic quantities vary with the size
L of the system (for Ld = N). Specifically, as it can be seen from figure 2,
the peaks heighten as the size L increases. However, since the size L of the
system remains finite, the peaks remain rounded. Moreover, the maxima of
the magnetic susceptibility and the heat capacity are shifted with respect to
the critical temperature TC . This shift scales like the quantity L−1/ν .

This behaviour for the thermodynamic quantities in finite systems obtained
with the FSS theory occurs when the size L of the system is of the same order of
magnitude as the correlation length ξ, i.e., when ξ/L ∼ 1. When the correlation
length ξ is much smaller than the size L of the system, i.e., when ξ/L� 1, the
thermodynamic quantities behave as if the system was infinite. However, in
that case, it is not possible to get significant information on how finite systems
behave close to a fixed point. Indeed, as we have seen, the correlation length ξ
diverges at the critical temperature (Section 2). Therefore, if ξ is much smaller
than the size L of the system, the system is far from the critical regime. In
order to get information on the critical region, one has to study the behaviour
of a system with large correlation length, i.e., when ξ/L ∼ 1 (which is the
maximum size of ξ for a finite system). Finite-size effects appear in this region,

9 We focus on the FSS theory within the real-space approach of RG techniques. However,
the FSS theory can also be studied within a field-theoretic approach (e.g., Suzuki (1977);
Brézin and Zinn-Justin (1985)).



Finite-Size Scaling Theory: 9

Fig. 2 Predictions of thermodynamic quantities with the FSS theory. On the left, the
magnetic susceptibility χ for finite systems. It grows with Lγ/ν and its maximum is shifted
to L−1/ν with respect to the critical temperature TC . On the right, the heat capacity C.
In the region L−1 > 0, i.e., for finite systems, its maximum is also shifted to L−1/ν with
respect to TC . It also grows with Lα/ν . The region L−1 = 0 corresponds to the case of
infinite systems, with a divergence and a maximum at TC . (Figures extracted from Cardy
(1996, 74) and Goldenfeld (1992, 281), with a few modifications.)

and they lead to different behaviours when compared to infinite systems. This
is so since there is a shift of the maxima of the magnetic susceptibility and
of the heat capacity; moreover, the height of the peaks is finite. But note
that these changes in behaviour are noticeable for small systems, since the
shift varies with L−1/ν and the maximum height varies with Lγ/ν or Lα/ν . In
contrast, for large systems, these shifts decrease, and the maximum heights
increase. If one takes the infinite limit L→∞, the shifts tend to zero and the
rounded peaks turn into divergences.

As we have just seen, the FSS theory provides predictions about the physi-
cal quantities (e.g., χ(N) or C(N)) that link the size of the system L with the
critical exponents α, β, γ, ν and the critical temperature Tc. Therefore, by in-
vestigating finite systems, one can find the critical quantities otherwise defined
only in the thermodynamic limit. We shall also note that FSS makes possi-
ble to investigate finite-N systems by running numerical simulations, such as
Monte Carlo simulations. It is common to hear physicists praising the FSS the-
ory for allowing precisely this method of generating critical values. Pelissetto
and Vicari (2002, 581) note:

The FSS techniques are particularly important in numerical work. With
respect to the infinite-volume methods, they do not need to satisfy the
condition ξ � L. One can work with ξ ∼ L and thus is better able to
probe the critical region. FSS Monte Carlo simulations are at present
one of the most effective techniques for the determination of critical
quantities.
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Different results of the FSS theory can be exploited to link the size dependence
of the systems to the critical quantities. In particular, one can use the shift
of the critical temperature between finite systems and infinite systems. Let us
call Tc(L) the temperature associated with the maximum of the finite ther-
modynamic quantities, namely the “effective critical temperature”. It varies
as follows (Ferrenberg al. 2018, 3; see Fig. 2 on the left):

Tc − Tc(L) ∼ L−1/ν (9)

By studying Tc(L) for different L, one can extract Tc and ν. The numerical
values of the other critical exponents α, β, and γ are determined by investi-
gating the amplitudes of the thermodynamic functions (Pelissetto and Vicari
2002, 583).

4 Qualitative and quantitative approaches to phase transitions

As announced at the outset, in this section we shall put the technicalities
about critical phenomena to one side, and explain how our analysis here,
although about a seemingly narrow issue, can be integrated into a more general
discussion about the methodology of physics. To begin, let us quote Kadanoff
one more time:

When we look at a natural system, we tend to see phase transitions that
look very sharp indeed, but are actually slightly rounded. However, a
conceptual understanding of phase transitions requires that we consider
the limiting, infinite-N case. (2013, 156; Our emphasis)

Not only do we agree with these remarks, but we also note that they gesture
at the larger philosophical point we would like to convey in this paper. In par-
ticular, we draw attention to a certain complementarity implied by Kadanoff’s
remarks. He talks about a “conceptual understanding” of phase transitions,
and this refers to a kind of idealized understanding of these phenomena. But,
it is fair to assume, this type of understanding is to be supplemented by a
more realistic understanding of them, since, after all, the systems of interest
are non-idealized (are finite). This is to say that while a conceptual under-
standing of the transitions between phases would amount to comprehending
their existence and dynamics in qualitative terms, one may ask whether physics
has the resources to convey an understanding of them in quantitative terms as
well.

Thus, although it is clear that a conceptual-qualitative approach to crit-
ical phenomena requires the appeal to (infinite) idealizations, the question
that immediately arises is what can be said, if anything, about the real, non-
idealized, finite systems. When it comes to them, one may wonder, more specif-
ically, whether we can also obtain an understanding as to why the shapes of
the graphs coming from the laboratories are rounded (that is, are neither
divergent, nor displaying kinks). Also, whether it is possible to gain an under-
standing of where the actual numerical values characterizing the transitions
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come from (e.g., the critical temperatures). The overarching question then is
whether we can acquire this kind of quantitative understanding – both pre-
dictive and explanatory – of the real, finite-N thermal systems in the critical
regime. And, as we hope to demonstrate here, it is precisely the FSS theory
that provides affirmative answers to these practical questions.

Fig. 3 Phase space portrait for the nonlinear simple pendulum. Figure extracted from
Amore et al. 2007.

Now let us also point out that the kind of qualitative-quantitative comple-
mentarity signaled here has a larger methodological signification. This comple-
mentarity can be discerned in many areas of physics, not only in the domain of
critical phenomena. We can see this if we consider an entirely different system,
the simple pendulum (displaced by an angle θ). For a realistic, ‘large’-angle
pendulum, it is known that its phase space portrait deviates from an ellipsoidal
shape – which is the shape of the phase space for a ‘small’-angle pendulum,
when the approximation sin(θ) = θ holds. See Figure 3; the smaller the angle
θ, the closer the shape is to an ellipse. So, a natural question to ask here is
how to account for these deviations. And, facing this query, we can provide, on
the one hand, a qualitative, hand-waving type of answer: ‘there are non-linear
terms in the differential equation that describes the motion of the bob’. But,
on the other hand, if we would like a quantitative answer, i.e., one enabling
us to understand why the shape looks exactly as we see it, we have to solve
the complicated differential equation d2θ/dt2 = − gl sin(θ).10 In an analogous
fashion, when it comes to statistical mechanical systems, if we ask why there

10 To extract quantitative predictions from this equation for ‘large’ angles, we can use the
Taylor expansion of sin(x) ≈ x− x3/3! + x5/5!.... We can also use the analytical solution of
this equation (Belendez et al. 2007, 647).



12 Vincent Ardourel and Sorin Bangu

are rounded peaks in the isotherms, then, similarly, we can provide either a
qualitative, hand-waving answer – as we recall, that ‘the system is finite’ – or
we can indicate a quantitative reason, case in which we have to use the FSS.

The important point is then that the study of critical phenomena is not
the only domain where this complementarity manifests itself. As we saw, it
can be discerned in the study of the simple pendulum and, we presume, in
many other areas in physics. We face, roughly speaking, the same situation:
an unrealistic, idealized system – an infinite statistical mechanical system,
and a very small angle pendulum (i.e. a harmonic oscillator), respectively –
provides a kind of ‘conceptual’, qualitative understanding. While this type
of qualitative insight is extremely important to have, we may also want to
go beyond mere hand-waving and search for quantitative answers. In these
two cases, these idealized systems give us shapes that do not really occur
in nature (sharp corners and perfect ellipses, respectively). So, if we want to
explain/predict in quantitative terms the shapes that are in fact observed, and
which deviate from these ‘ideal’ shapes (i.e., that the peaks are rounded, and
that the elliptical trajectories are distorted), then we need to appeal to the
FSS, or to solve the equation of motion for a realistic large-angle pendulum,
respectively.

So, to return to our main concern, recall that we aim to tackle the question
about the relevance of the FSS theory: why have physicists been interested in
introducing and developing it? While, as we’ll see, its role in the debate on
reductionism is rather unclear, the main function of the FSS theory is different:
it is primarily operational. We call it thus since FSS allows making quantitive
predictions and explanations for finite systems in the critical region (again, by
applying RG methods to finite systems.)

To be able to do this, the key-move is to regard the variable N−1 as a
new scaling field that scales with the other ones. It is this scaling property
that allows one to derive the quantitative behaviour of physical quantities in
finite systems, such as the magnetic susceptibility or the heat capacity. The
FSS theory thus extends the RG treatment of critical phenomena, and makes
possible a quantitative approach in addition to a qualitative one.

5 RG explanations and the FSS theory: intertwining finite and
infinite systems

To begin, the first key-point we would like to stress is that the FSS theory
is not an alternative, or rival theory, to the usual RG approach to critical
phenomena. Indeed, it shares the same fundamental principles (i.e., it is based
on scaling and invariance properties), but it aims to deal with finite systems.
This section analyses how the FSS theory complements the usual RG approach
to predict and explain critical phenomena in finite systems. We will highlight
the fact that the theory appeals to infinite systems, hence it cannot serve the
reductionists’ philosophical agenda straightforwardly.
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5.1 Quantitative predictions on criticality for finite systems

As we have seen in Section 2, it is generally claimed that the RG approach
provides explanations for infinite systems since they are mandatory to obtain
fixed points.11 Then, the key-question becomes, what about the finite systems?
It is noteworthy that this aspect is not ignored by Batterman (2019). After
claiming that critical phenomena necessarily occur within infinite systems, he
says the following about the finite systems:

[S]ystems that are near criticality (real, large finite systems) will start
off close to the critical systems and their behaviour can be understood
by examining the topology of the RG flow in the neighborhood of the
fixed point. So, the RG explains the behaviour of near critical, real
systems. It explains what is going on in the neighborhood of the critical
point [...]. (2019, 39)12

He stresses this idea (in a footnote): “if RG only explained the behaviour of
idealized systems, it would not be a big deal. Hardly worthy a Nobel prize!”
(2019, 39). The claim is then that the RG approach also explains what happens
in finite and real systems, not only in infinite systems. This comes about from
an investigation of the topology of the RG flow in the neighborhood of a fixed
point.

This is a crucial juncture in the argument here, and it is imperative to
clarify Batterman’s claim: this kind of explanation (and prediction) of the
behaviour of finite systems is qualitative. When it comes to the quantitative
aspects of the critical-point behavior of a real, N -finite system, we stress that
it is precisely the FSS theory that allows us to make such predictions and ex-
planations. Without the resources afforded by this theory, we cannot discern
any difference between two large systems with different values of the number
N of components. Yet, obviously, some predictions regarding the critical be-
haviour of those two finite systems will be different; and, again, it is the FSS
theory that explains such differences. Therefore, this theory allows one to fill
the gap between explanations in the case of infinite and finite systems. This is
achieved even if one requires topology and fixed points. Hence, while we agree
with Batterman that physicists are not helpless when it comes to dealing with
finite systems, we stress that the key-factor responsible for their quantitative
success is the FSS theory, which complements the RG methods.13

11 Incidentally, this is how the “paradox” of infinite idealizations arises (Shech 2013):
although infinite systems are required to explain phase transitions and critical phenomena,
real systems are finite systems.
12 A similar idea appears in an earlier paper: “the RG is not just a theory of the critical

point, but rather it is a theory of the critical region. And, this covers large but finite systems.”
(Batterman 2017, 571).
13 In fairness to Batterman, both his (2019) and his (2017) discuss the case of the finite

systems only in passing. For instance, in footnote 15 in (2017, 571), he writes: “If we want
to explain the universal behavior of finite but large systems using the RG, then we need to
find a fixed point and, to my knowledge, this requires an infinite system”. While this is true
under the condition given (by using the RG, i.e., in the standard approach), the explanation
is possible using the FSS theory.
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So, to emphasize, the FSS theory allows us to provide quantitative de-
tails regarding the behaviour of real, finite (and large) systems approaching
criticality – and this is something that the usual RG approach cannot pro-
vide. This ability to deal with the real systems is a natural consequence of
the finitistic approach to RG methods taken by FSS, in which the variable
N−1 scales with the other scaling fields. This leads to finite-N predictions for
physical quantities in finite systems, such as χ(N) and C(N) (see Section 3).
Therefore, if scientists want to show that, for instance, water and 3-d ferro-
magnets have the same critical exponent, and also explain what is observed
experimentally, then the FSS theory plays a key-role. Nevertheless, we do not
claim that all predictions with the FSS theory for large N finite systems are
empirically distinguishable from the predictions made by using the usual RG
approach, because of experimental resolution. However, for many finite sys-
tems, the FSS theory provides observable predictions that do differ from the
predictions made working with infinite systems (e.g., see Lavis et al. 2021, 51).

Also crucially, without the FSS approach, physicists cannot explain why
finite systems’ peaks are rounded. What they usually give is a qualitative and,
after all, vague – albeit fundamentally correct! – justification, e.g., that this is
“due to finite effects”. Lavis et al. (2021) – to our knowledge the most recent
paper that investigates the FSS theory – supports this view, by making what
is in effect the contrapositive of our point here, in the form of two observations;
namely, that FSS (i) “explains in a quantitative way, how singularities that
might occur in infinite systems are smoothed out by finite-size effects”(2021,
50), and (ii) gives “a quantitative measure of the deviations of critical phe-
nomena, as observed in finite systems, from the behaviour expected for infinite
system size” (2021, 50). In other words, the derivation of fixed points within
the standard RG approach is necessary, but not sufficient, to explain (and
predict) quantitatively what happens in finite systems.

5.2 Universality explanations and finite systems

Recall that we must explain both (i) the universality of critical phenomena and
(ii) why experimental data never exhibit divergences – and that, importantly,
we need a quantitative description of this latter fact. Insofar as the FSS theory
is being based on the usual RG approach, while also extending it by providing
finite-size predictions, the theory allows one to address the two questions.

As we pointed out, the FSS theory builds on RG methods. This means,
first of all, that this theory avoids the objection that one does not need to
resort to RG to explain critical phenomena in finite systems.14 As we saw,
there are indeed RG flows for finite systems within the FSS theory. Besides, if
N is sufficiently large, the recursion relation R involved in the FSS theory is
identical to the one in the infinite case. This is because the RG transformations

14 Regarding Butterfield’s work (2011), Morrison points out that “despite the explanatory
power of fixed points, Butterfield (2011) has recently claimed that one needn’t resort to RG
in explaining phase transitions” (Morrison 2015, 110).
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are local transformations. According to Cardy : “After rescaling, the coarse-
grained system has an effective size L/l (with our notation). Being local, the
renormalization group transformation in the finite system will be identical
with that in the infinite one, if L/a is large” (Cardy 1988, 3. Our emphasis).
Let us consider the block spin transformation once again (Section 2). At each
iteration m of this RG transformation, a Hamiltonian H(m) (defined with Ñ
spins) is replaced by a new one H(m+1) with Ñ l−d spins. This transformation
is local in the sense that it involves the relation H(m) → H(m+1). This local
transformation is the same when N is finite and large, and when it is infinite
(See also Barber (1983, 164)). However, the difference is that when N is finite
the series of the iterations halts when the number of effective spins is zero. By
contrast, with an infinite system, the block spin transformation continues until
the effective Hamiltonian reaches the fixed point, which requires an infinite
number of iterations (See, again, the details in section 2).

Getting back to the issue of explanation, let us further note that, roughly
speaking, we take scale invariance to be the core explanatory ingredient of the
universality of critical phenomena within the FSS theory. This is not very sur-
prising, of course, since it already plays a crucial explanatory role within the
usual RG approach of critical phenomena. More precisely put, the FSS theory
is based on RG iterations with a recursion relation R applied to couplings K
of Hamiltonians. The repeated application of this procedure, especially the
coarse-graining step (e.g., the block spin transformation), eliminates micro-
scopic details. They are integrated into an averaging rule, keeping what is
common at different scales. This recursion relation rescales Hamiltonian mod-
els by keeping some properties invariant, viz. the partition function and the
free energy (Lesne and Laguës 1998, 80; Cardy 1996, 33). This covariance en-
sures that the models at different scales satisfy the same physics. As Lesne and
Laguës stress: “Covariance therefore expresses the essential objective of renor-
malisation: to exploit the inalterability of the physical reality as we change our
manner of observing and describing it” (1998, 80). In that sense, the recursion
relation at work in the FSS theory is an explanatory ingredient for universal-
ity. In other words, this recursion relation allows us to describe a system and
a rescaled system as systems satisfying the same properties, which are scale
invariant.

As we recall, the N−1 variable is a genuinely new scaling variable within
the FSS theory. This means that N−1 scales with the relevant couplings, such
as the thermal t and the magnetic h scaling variables. The N−1 variable is thus
involved in describing universal behaviour since the N -dependence in the free
energy f satisfies a scale-invariant law, which can be rewritten in a generic
way as:

f(λx) = λf(x) (10)

where x = N−1, λ = lmd in the case of the free energy, with l the scaling factor,
m the number of applications of the recursion relation, and d the dimension.
This property comes from the partition function which has an N -dependence
that satisfies this scale invariance. It makes N−1 a relevant scaling variable,
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with a positive exponent yi = d. Unlike irrelevant scaling variables that vanish
the more the recursion relation is applied, the N−1 scaling variable remains a
relevant variable.

However, as is perhaps clear at this point, these ingredients are not suffi-
cient to explain the universality of behaviour displayed by critical phenomena.
We stress that, without the usual RG approach, i.e., without employing the
infinite limits, the FSS theory cannot explain why two different systems belong
to the same universality class. Indeed, in order to exemplify a university class,
we need to get a fixed point, which is only obtained with infinite limits for the
number of spins and the number of iterations of RG transformations (Section
2). But note that the FSS theory is not concerned with showing that two fi-
nite systems have the same fixed points. As we have seen, the fixed points are
already taken to be known within this theory. Instead, the theory is concerned
with the predictions of thermodynamic quantities for finite systems close to
the fixed point.

5.3 Back-and-forth between finite and infinite systems

This analysis of the FSS theory allows us to shed light not only on a distinctive
practical aspect regarding the predictions and explanations in finite systems,
but also on a conceptual-philosophical consequence overlooked in the litera-
ture. The FSS theory is involved in a kind of back-and-forth between infinite
systems and finite systems, and this is especially evident when physicists use
this theory to make quantitative predictions on critical phenomena and phase
transitions. On the one hand, the FSS theory requires the RG methods – and
thus the infinite limits in order to determine the fixed points and the topology
of RG flows (for both the number N of degrees of freedom and the number m
of RG transformations). On the other hand, from this qualitative knowledge
of fixed points, the FSS theory predicts thermodynamical quantities for finite
systems (with an explicitly finite variable such as the number N of particles
or the size L of systems).

However, the FSS theory is also used to extrapolate, from finite systems,
the values of thermodynamical quantities for infinite systems. In practice, the
numerical values of critical exponents (for infinite systems) are often calculated
with the FSS theory, as an extrapolation of the thermodynamic quantities in
finite systems. As the physicists Ferrenberg et al. point out:

At a second-order phase transition the critical behaviour of a system in
the thermodynamic limit can be extracted from the size dependence of
the free energy density. (2018, 3)

As we have seen in section 3, a common method for that purpose is to use the
relation (9) between the critical temperature Tc, defined for infinite systems,
and the effective critical temperature Tc(L), defined for finite systems (see Fig.
4). In this figure, we can see how predictions for finite systems, with different
values of the size L, converge when the size L tends to infinity.
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Fig. 4 We can see how the critical temperature for infinite systems is extracted from data
on finite systems. Here, the effective critical temperature Tc(L) is expressed here with the
quantity Kc(L). When L−1/ν tends to 0 (L→∞), KC(L) tends to KC , which corresponds
to the critical temperature for an infinite system. (Figure extracted from Ferrenberg and
Landau 1991, 5088).

Therefore, the FSS theory does not only provide quantitative predictions
for finite systems, but also (and perhaps foremost), it provides quantitative
predictions for infinite systems too. So, in a nutshell, infinite systems are used
to obtain topological information on the RG flows; then, finite systems are
used to obtain quantitative relations on thermodynamical quantities on finite
systems. Finally, these quantitative relations are re-used to obtain numerical
values for infinite systems. This reveals how finite and infinite systems are
strongly intertwined within the FSS theory.15 For these reasons, it should
be clear that the challenge to the reductionists relying on the FSS theory
is reframed: they will now need to provide a reductionist-friendly account of
the topological information on the RG flows. Although initially it may have
seemed that the FSS’s achievements served the reductionists’ philosophical
agenda, our analysis shows that this is actually far from clear.

15 We do not have in mind other simple examples in physics with such back-and-forth be-
tween infinite and finite systems – and we do not claim that there are any. Nevertheless, this
feature seems to be quite distinctive to some physical phenomena, and maybe phenomena
described by asymptotic theories.
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6 Conclusion

The FSS theory has mostly been discussed in the literature as a means to
break the tie between reductionism and anti-reductionism in favour of the for-
mer; here, however, we have suggested that this direction of research should
be reviewed. Insofar as infinite limits are required, the theory features a so-
phisticated intertwinement between infinite and finite systems, and thus its
successes do not speak in favor of reductionism. Thus, while this philosophi-
cal role assigned to the theory cannot be said to be definitely established, we
highlighted another distinctive aspect of it which, we believe, should not be
overlooked; specifically, we argued that it has an operational role. This role is
by no means unimportant; it is actually vital in practice, insofar as it enables
the physicists to use (operate within) the RG framework, by obtaining con-
crete predictions (and explanations) for finite systems. The FSS theory allows
scientists to complement the RG approach to critical phenomena, by providing
quantitative predictions and explanations for finite and infinite systems.
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