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Liquid nanofilms are ubiquitous in nature and technology, and their equilibrium and out-of-
equilibrium dynamics are key to a multitude of phenomena and processes. We numerically study
the evolution and rupture of viscous nanometric films, incorporating the effects of surface tension,
van der waals forces, thermal fluctuations and viscous shear. We show that thermal fluctuations
create perturbations that can trigger film rupture, but they do not significantly affect the growth
rate of the perturbations. The film rupture time can be predicted from a linear stability analysis
of the governing thin film equation, by considering the most unstable wavelength and the thermal
roughness. Furthermore, applying a sufficiently large unidirectional shear can stabilise large per-
turbations, creating a finite-amplitude travelling wave instead of film rupture. In three dimensions,
unidirectional shear does not inhibit rupture, as perturbations are not suppressed in the direction
perpendicular to the applied shear. However, if the direction of shear varies in time, the growth of
large perturbations is prevented in all directions, and rupture can be impeded.

I. INTRODUCTION

Thin liquid films are found in many biological systems such as the human tear film [1, 2] as well as in modern
micro- and nanofabrication processes such as multilayer coextrusion of polymers [3, 4]. The stability of such films
is often an important consideration, with hole formation due to film rupture often being undesirable [4, 5]. In other
applications, the rupture and dewetting of thin liquid films is intended, and can be manipulated in order to fabricate
patterned materials [6, 7].

It has been known for over half a century that the rupture of a thin liquid film can be caused by the amplification of
small interfacial perturbations by long-range intermolecular van der Waals forces. In early works by Vrij [8] and She-
ludko [9], the attractive surface interaction due to the van der Waals forces was represented by a thickness-dependent
potential, and thermodynamic approaches were used to derive a critical wavelength above which perturbations to
the flat film profile are unstable. This potential was later incorporated in a hydrodynamic model, which enabled
derivation of the growth rate of a surface perturbation as a function of its wavelength, thus allowing the estimation
of the rupture time [10].

The hydrodynamic model has been simplified by using the lubrication approximation to derive the so-called thin
film equation, which describes the spatiotemporal evolution of the liquid film height with a single, highly nonlinear
partial differential equation [11, 12]. This has led to numerous analytical and numerical works which have shown
that the growth of surface perturbations can be separated into two regimes: an initial linear regime during which
the film height has not yet deviated significantly from its initial value, and a subsequent nonlinear regime during
which the growth of perturbations is greatly accelerated [11, 13]. Zhang and Lister [14] showed that the nonlinear
late-stage dynamics of rupture due to a disjoining pressure are governed by a similarity solution, with the minimum
film thickness rapidly decreasing according to a power law. Deviation from an idealized disjoining pressure derived
from the Lennard-Jones potential has been shown to produce discretely self-similar solutions [15]. Such a process was
also studied for analogous elastic interfaces [16]. Beyond the initiation of film rupture, thin film models have also
been used to describe the droplet patterns formed during dewetting [17].

Van der Waals forces leading to liquid film rupture on solid surfaces only become significant when the film thickness
is on the order of tens of nanometers [18]. At these length scales and for common fluids at ambient temperatures,
thermally driven molecular motion may cause significant fluctuations of the film height. Thus, it is natural to
consider what role these microscopic thermal fluctuations play during the rupture process. In order to take these
into account, a stochastic version of the thin-film equation was derived from the Navier-Stokes equation with an
additional random stress tensor [19, 20]. This formulation has been used to describe other thin film processes such as
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FIG. 1. Schematic of the studied physical system. A thin layer of viscous fluid with thickness h(x, y, t) rests upon a flat solid
substrate. A positive disjoining pressure, Π(x, y, t), attracts the free surface to the solid substrate. The interface dynamics are
also affected by shear and thermal fluctuations.

the spreading of a viscous bump under an elastic plate [19, 21, 22] and the transport of solutes through nanopores [23].
Numerical and theoretical studies using the stochastic thin film equation in two dimensions have shown that random
thermal fluctuations generate perturbations to an initially flat film profile, which eventually coarsen and approach
the wavelength of maximum growth obtained from the linear stability analysis of the fluctuation-free system [24–26].
Simulations have also shown that increasing the fluctuation intensity decreases the rupture time and creates a more
nonuniform pattern of droplet sizes after dewetting [25, 27, 28]. Nevertheless, these thermal effects seem important
only at the early stage of the rupture process, with the late-stage behaviour being unaffected due to the dominance
of the van der Waals force [29].

One way to modify the dynamics of a thin liquid film is by applying a shear flow to it – a situation widely encountered
in industrial applications. Interestingly, shear is expected to dampen the amplitude of thermal interface fluctuations
[30–32], which might in turn influence the rupture time, i.e., the time it takes for the interface to touch down on
the substrate. Numerical studies of deterministic thin film rupture in two dimensions have indeed shown that the
presence of unidirectional shear can delay rupture when the interface has unstable perturbations [33–35]. To the
authors’ knowledge, experiments have not yet demonstrated the theorized rupture-suppressing effect of shear, but
have shown that shear changes the morphology of the holes created when a polymer film dewets [36].

In this article, we solve numerically the stochastic thin film equation to improve our understanding of how shear
affects the rupture dynamics of nanometric liquid films. By studying the film rupture for various combinations of
fluctuation intensity, shear rate, and film thickness, we delineate the mechanisms by which rupture is affected in both
two dimensions (2D) and three dimensions (3D).

II. MATHEMATICAL MODELING AND NUMERICAL METHODS

A. Stochastic thin film equation

We consider the dynamics of a thin viscous liquid film as shown in Fig. (1). The dynamics of the film is represented
by the spatiotemporal evolution of its height h(x, y, t). For an initially flat film with height h0, we define the
perturbation to the film height as δh = h(x, y, t) − h0. At any point in time, the minimum height of the film is
denoted hmin. Since we are interested in films where the height h is much smaller than the horizontal length scale,
the viscous flow profile in the fluid layer can be described by the lubrication approximation [37]. A flux balance for a
slice of fluid in the film then gives us the thin film equation describing how h(x, y, t) varies with the pressure profile
p(x, y, t) [12]. In our system, the pressure p(x, y, t) has contributions arising from the Laplace pressure due to the
curvature of the free surface, the disjoining pressure A∗/[6πh3(x, y, t)] resulting from the van der Waals interactions
[38], where A∗ is the Hamaker constant, and an additional stochastic stress arising from the thermal fluctuations in
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the fluid. The shear force is implemented in the tangential stress boundary condition at the film surface, taking the
form µ∂u/∂z|z=h(x,y,t) = τ , where u(x, y, z, t) is the instantaneous velocity, µ is the dynamic viscosity, and τ = τeτ
is the specified shear stress at the interface, with magnitude τ and oriented along the unit vector eτ . Assuming
incompressible flow of a Newtonian fluid, small Reynolds number and small slope of the film profile, ∇h(x, y) � 1,
the thin-film equation reads:

0 =
∂h(x, y, t)

∂t
+∇ ·

 γ

3µ
h3(x, y, t)∇∇2h(x, y, t)︸ ︷︷ ︸

Laplace pressure

+
A∗

6πµh(x, y, t)
∇h(x, y, t)︸ ︷︷ ︸

Disjoining pressure


+
τ

µ
eτ · h(x, y, t)∇h(x, y, t)︸ ︷︷ ︸

Shear force

+

√
kBT

6µ
∇ ·
[
h3/2(x, y, t)η(x, y, t)

]
︸ ︷︷ ︸

Stochastic force

, (1)

where γ is the surface tension coefficient, kB is Boltzmann’s constant and T is the temperature. The last term in the
thin-film equation accounts for the thermal fluctuations in the fluid, where η(x, y, t) is a random vector in the (x, y)-
plane, the two components, ηi with i = x, y, of which being independent delta-correlated spatiotemporal Gaussian
noises with null averages [19, 26], i.e. 〈ηi(x, y, t)〉 = 0 and 〈ηi(x, y, t)ηj(x′, y′, t′)〉 = δijδ(x−x′)δ(y−y′)δ(t− t′), where
δij is the Kronecker symbol and δ is the Dirac distribution.

We nondimensionalize Eq. (1) by introducing the scaling relations:

h = h̄

√
A∗

2πγ
, x = x̄

√
A∗

2πγ
, y = ȳ

√
A∗

2πγ
, t = t̄

√
9A∗µ2

2πγ3
,

η = η̄

(
8π3

9

γ5

A∗3µ2

)1/4

, τ = τ̄eτ

√
2πγ3

9A∗

where the bars indicate dimensionless quantities. Both vertical and horizontal lengths are nondimensionalized by a
physical length scale,

√
A∗/(2πγ), representing the characteristic film thickness at which the disjoining and capillary

effects balance. We are mainly interested in the behavior of films with dimensionless initial thickness, h̄0 ≈ 1. Films
with h̄0 � 1 will not be significantly affected by the long-range van der Waals forces, while films with h̄0 � 1 will
rupture almost instantaneously. The time is normalized by the aforementioned length scale divided by the capillary
velocity γ/(3µ). The dimensionless stochastic thin film equation thus reads:

0 =
∂h(x, y, t)

∂t
+∇ ·

[
h3(x, y, t)∇∇2h(x, t) +

1

h(x, t)
∇h(x, y, t)

]
+Beτ · h(x, y, t)∇h(x, y, t) +Q∇ ·

[
h3/2(x, y, t)η(x, y, t)

]
, (2)

where we have dropped the bars for simplicity, and introduced two dimensionless numbers:

B = τ̄ = τ

√
9A∗

2πγ3
, (3)

Q =

√
πkBT

A∗
, (4)

representing the dimensionless shear force, and the dimensionless thermal roughness (or the ratio between thermal
and disjoining energies), respectively. Along with the initial film height h0, these parameters define the thin-film
dynamics.

We note that, when we model thin films in 2D (i.e. when there is invariance in the y-direction), the fluctuation
vector η needs to be adapted due to the inherently three-dimensional nature of thermal fluctuations. Eq. (2) remains
valid, but η(x, t) is now a random vector in the x-direction only, the single component η of which being spatiotemporal
Gaussian noise with 〈η(x, t)〉 = 0 and 〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′). As a consequence, Q is modified in 2D, as:

Q2D =

√
πkBT

w̄A∗
, (5)

where w̄ = w
√

2πγ
A∗ , with w a new length scale representing the width in the y-direction.
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B. Finite element solver

We solve the dimensionless stochastic thin film equation (Eq. (2)) using the finite element method. In all simulations,
the initial condition is a flat film with dimensionless thickness h0. Both in 2D and 3D, periodic boundary conditions
are imposed in the horizontal directions. The domain size in the horizontal directions is always much greater than
the thickness of the film to ensure the validity of the lubrication approximation.

To solve Eq. (2), the order of the partial differential equation is first reduced by introducing the film curvature
∇2h(x, y, t) as a separate variable. Eq. (2) then simplifies to a system of two coupled second order partial differential
equations. These are then expressed in a weak form where boundary terms disappear due to the periodic boundary
conditions. The scalar fields ∇2h(x, y, t) and h(x, y, t) are discretized with linear elements and solved using a Newton
solver from the FEniCS library [39]. For the 2D case, the simulations are realized on the domain x = [0, 65] with
an equidistant grid spacing ∆x = 0.01. In the 3D case, the domain is x × y = [0, 64] × [0, 64], and the grid spacings
are ∆x = ∆y = 0.16 for simulations used to generate the contour plots. For the data shown in other figures where
many iterations are averaged, the grid spacing is increased to ∆x,∆y = 0.64 in order to shorten the simulation time,
and we have checked that the results are insensitive to the change in spatial resolution. Due to the fact that Eq.(2)
involves a travelling wave, a second-order Crank-Nicholson scheme is required for numerical integration in order to
prevent numerical dispersion for large values of B. The size of the time step for all simulations shown is ∆t = 0.003,
with the exception of certain simulations involving B > 30 as well as the adaptive time step simulations described
later in this section and in appendix A.

The stochastic term η(x, y, t) is implemented in python by assigning random numbers using the “normal” function
in the “random” class of NUMPY [40]. The values are drawn from a Gaussian distribution with zero mean and a
variance of 1/(∆x∆t) in 2D and 1/(∆x2∆t) in 3D. At every time step, each component of η(x, y, t) is assigned a
new value at every point in the mesh. Due to the stochastic nature of η(x, y, t), the film dynamics and rupture time
vary somewhat between individual numerical simulations, despite all the input parameters being identical. In order
to obtain statistically robust results for the wavelength and rupture time, we repeat the simulations and average the
results N = 10 times. Nevertheless, the variance of the rupture time and wavelength is generally so small that the
trends we describe can be observed even for a single run.

For the non-stochastic simulations of the deterministic version of Eq. 2, an initial sinusoidal perturbation of
amplitude δh0 = 0.001 is imposed. In order to maintain the perdiodic boundary condition, the extent of the domain
is set to 8 times the wavelength of the perturbation.

Previous works on shear-free films as well as the initial simulations of our system indicate that the highly nonlinear
van der Waals force is completely dominant during the final stage of rupture when the minimum film height hmin(t) =
min(h(x, y, t)) approaches zero [14, 29]. Due to the accelerated dynamics in this regime, a much smaller time step
is required in order to capture the final moments before film rupture. To address this, we perform simulations with
an adaptive time step, the results of which are shown in appendix A. In those simulations, the time step starts
at ∆t = 0.1 but is gradually reduced as rupture accelerates, reaching a minimum value of ∆t ≈ 10−8. The grid
spacing is also decreased to ∆x = 0.001 in order to resolve more of the details near the rupture point. As shown
in appendix A, we recover the expected hmin ∼ (tR − t)1/5 power law of Zhang and Lister [14], and also observe
that although this stage of rupture accounts for only a tiny fraction of the total duration of the film dynamics until
rupture, it makes up most of the computational time due to the reduction in the time step. Our simulations with the
adaptive timestep also show that the late stage before rupture seems to be independent of the thermal fluctuations
and shear. We also note that close to rupture, lubrication theory cannot be used to describe the local flow [41]. Since
we are mainly interested in understanding the instability growth rather than the details in the already characterized
final instants before rupture, we decide to fix the time step and stop the simulation when hmin reaches an arbitrary
threshold h∗ = 0.33, which ensures that we capture the entirety of the early-stage dynamics without using unnecessary
computational resources. We denote the time at which this occurs as the rupture time tR.

C. Linear stability analysis

From the numerical solution of Eq. (2), as will be described below, it is clear that the thermal fluctuations only
play a major role in the evolution of hmin during the first few time steps. As shown in appendix A, it is also clear
that the late stage of pre-rupture film dynamics, when h0 − hmin � 0.1, is very short and as such does not make a
significant contribution to the measured rupture time. Thus we presume that the rupture time of the film is primarily
determined by how quickly perturbations grow while they are still too small for nonlinearities to dominate. Here, we
perform a linear stability analysis on the deterministic version of Eq. (2) (i.e. with Q = 0) [34, 35]. We introduce a
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small sinusoidal perturbation to an initially flat film, of the form

h(x, t) = h0 + h′eikx+ωt, (6)

where k is the dimensionless angular wave number, ω is the dimensionless complex growth rate, and h′ is the amplitude
of the perturbation with h0 � h′. Inserting Eq. (6) into the deterministic version of Eq. (2) and linearising the
equation gives us the following dispersion relation

ω =

(
k2

h0
− k4h30

)
− ikBh0, (7)

with growth rate k2

h0
− k4h30 and wave speed Bh0. From Eq. (7), we expect that the effect of the shear within the

linear regime is simply to cause a horizontal translation in the direction of shear with speed Bh0. Moreover, only
perturbations with a wavelength above a critical wavelength λc = 2πh20 will grow in time, and the fastest growing
mode has dimensionless wavelength

λd = 2π
√

2h20. (8)

The growth rate associated with this dominant wavelength is

ωd =
1

4h50
. (9)

Presuming that the fluctuations trigger perturbations across the wavelength spectrum, we expect that λd will be the
dominant mode observed in our numerical results, and thus govern the change in minimum height of the film. If we
only consider the minimum height in Eq. (6), presume that the growth rate of this corresponds to Eq. (9), and divide
by h0, we then get the following expression for how the minumum height of the film varies with time:

hmin(t)

h0
= 1− h′

h0
eωdt. (10)

We consider rupture to occur at the time tR when hmin reaches an arbitrary threshold value, h∗ = 0.33, at which the
van der Waals forces become dominant:

h∗

h0
= 1− h′

h0
eωdtR . (11)

Solving this equation for tR and inserting our expression for the dominant growth rate in Eq. (9), we then obtain the
following estimate for the film rupture time

tR = 4h50 ln

(
h0 − h∗

h′

)
. (12)

III. RESULTS AND DISCUSSION

A. Two-dimensional case

An example of the numerical solution of Eq. (2) without shear (B = 0) in 2D is shown in Fig. 2(a) in the form
of height profiles along x at different times. Thermal fluctuations eventually give rise to sinusoidal-like perturbations
with a certain wavelength, which then grow until the film ruptures. For each film height h0, the wavelength of the
unstable film profile that develops closely matches the dominant wavelength λd predicted in Eq. (8) and the rate of
change of hmin(t) closely matches the value predicted by Eq.(9).

In Fig. 2(b-c), we can see how hmin changes in time during individual simulation runs for different values of Q. As
discussed above, Q is proportional to the dimensionless thermal roughness, and we here present results as Q varies
from relatively small values until the limit where thermal fluctuations are so large that they rapidly cause rupture
even without a disjoining pressure. Our results show that the primary effect of thermal fluctuations is to instigate a
perturbation of a characteristic size Q during the first time steps. Fluctuations with approximately this size naturally
continue to occur at all times, but after t ≈ 10, the minimum height begins to decrease exponentially as one would
expect in the deterministic case, and the fluctuations become insignificant in comparison to the growing sinusoidal
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FIG. 2. (a) Profiles of an unstable 2D thin film with Q = 10−3, B = 0, and h0 = 1 at various times. We stop the simulations
when the minimum film height hmin reaches an arbitrary threshold value h∗ = 0.33 (represented by the dotted black line),
as described in section III A. (b) Time evolution of the minimum film height, hmin, plotted for simulations with initial height
h0 = 1.0 and different fluctuation intensities, Q. (c) Amplitude of the height perturbation as a function of time for the same
simulations. The dotted black line has a slope corresponding to the prediction of Eq. (10) with arbitrary amplitude. The
coloured dotted lines on the left indicate the value of Q corresponding to each simulation. The three regimes mentioned in the
text have been identified by eye as follows: the fluctuation-dominated regime at the begin of the simulations has been shaded
red, while the area shaded in blue represents the nonlinear regime at the end of the simulation. (d) Mean rupture time tR of a
film with B = 0 as a function of Q for different values of h0. The dashed lines represent Eq. (13) with no free parameter for
each value of h0. Error bars represent the standard deviation for a set of N = 20 simulations for each data point.

perturbation. As shown in Fig. 2(b), the time evolution of hmin as the film approaches rupture is almost identical for
different values of Q; the strength of the fluctuations seems to only determine how far back in time from the moment
of rupture the curve starts at. In Fig. 2(c) one can also see quite clearly that there are three distinct regimes during
rupture: first a fluctuation-dominated phase that initiates a perturbation (shaded red in Fig. 2(c)), then a period
of exponential growth of the roughly sinusoidal perturbation (unshaded in Fig. 2(c)), followed by a phase where the
growth toward rupture is greatly accelerated due to the nonlinear effects of the disjoining pressure term in Eq. (2)
(shaded blue in Fig. 2(c)). The predominance of the exponential growth period during the rupture process seen in
Fig. 2(c) suggests that the rupture time of a film can be predicted by Eq. (12). We also see from Fig. 2(c) that the
initial perturbation size, h′, is approximately equal to Q. Setting h∗ = 0.33, which appears to be a reasonable bound
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FIG. 3. (a− c) Profiles of sheared 2D thin films with Q = 10−3 and h0 = 1 at different times. The shear is from left to right in
each case, with a non-dimensional size B specified at the top of each figure. The dotted black line at the bottom indicates the
threshold value h∗ = 0.33 at which the simulations are interrupted. (a) B = 9.0. (b) B = 12.6 (c) B = 24.0 (d) Time evolution
of the height perturbation h0 − hmin(t) for different values of dimensionless shear stress B. The dotted black line indicates an
exponential behaviour as predicted by Eq. (10).

of the linear domain (i.e with exponential growth of the instability), we can rewrite Eq. (12) as

tR = 4h50 ln

(
h0 − 0.33

Q

)
. (13)

In 2(d) we present the numerically measured rupture time from repeated simulations of our system as a function of Q
for various values of h0. The predicted rupture time from Eq. (13), represented by the straight dashed lines, provides
an excellent fit to the data with no adjustable parameters.

We now turn our attention to the effects of shear on the previous phenomenology. Eq. (2) is simulated with B 6= 0
and simulations are stopped either at rupture when h ≤ 0.33, or when the simulation has reached a maximum time of
t = 100. In Fig. 3(a− c), we see snapshots of the film profile under shear with 3 different values of B. As predicted
by the linear stability analysis (section II C), the constant shear term leads to a simple horizontal translation of the
perturbation in the shear direction, with speed Bh0. We observe that the perturbations remain roughly sinusoidal-like
during the exponential growth stage, and maintain a wavelength close to λd as well as a growth rate of approximately
ωd. In the nonlinear regime, however, they start to deform as the van der Waals forces become stronger, which gives
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FIG. 4. (a) Rupture time tR as a function of B for two different values of Q. Rupture times are normalized by the rupture
time for B = 0. Error bars represent the standard deviation for a set of 20 simulations for each data point. (b) Final value of
the minimum film height as a function of B for values above Bcrit. Error bars represent the standard deviation for a set of 20
simulations for each data point.(c) Rupture time as a function of B for deterministic thin films with initial perturbations of
varying wavelength λ. (d) Plot of the critical shear required to suppress rupture within the simulated time period as a function
of λ. The top and bottom of the error bars show the lowest shear that did not rupture and the largest shear that did rupture,
respectively.

rise to characteristic asymmetric shapes in the nonlinear stage. For B & 5, the change in shape is noticeable, and is
associated with a short period of decreased perturbation growth, which leads to a slight increase in rupture time, as
shown in Figs. 3(a) and 3(d). As shear is increased to around B & 11, however, the perturbations begin to stabilize
when they reach a certain size, and a seemingly stable wave seems to form for a period of time, before it eventually
ruptures, as can be seen in Figs. 3(b) and 3(d). For shear stronger than a critical value of B ≈ 12.5, this stable
translating perturbation does not rupture within the simulation time. We denote this critical value as Bcrit. For
B > Bcrit, the perturbation waveform seemingly propagates indefinitely as shown in Figs. 3(c) and 3(d).

In Fig. 3(d) it is apparent that imposing a shear below Bcrit can delay rupture to some extent. This effect is
quantified in Fig. 4(a), where it can be seen that imposing B > 5 leads to a modest increase in rupture time, and that
this effect is dramatically increased as B approaches Bcrit. Fig. 3(d) also suggests that beyond Bcrit, the amplitude
of the stable travelling wave generated under shear is dependent on the size of B. This is indeed the case, as is shown
in Fig. 4(b). Just above Bcrit, the minimum height of the final film profile is around hmin = 0.65, but this increases
as B is increased, eventually converging towards a complete suppression of the perturbation as B approaches infinity.
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Interestingly, we note that the observed value of Bcrit ≈ 12.5 is larger than the value of 9.7 observed for the
deterministic case with an initial perturbation of wavelength λd by Davis et al. [34]. In Fig. 4(c) we plot the increase
in rupture time with B for deterministic simulations (i.e. Eq. (2) with Q = 0 and a sinusoidal initial perturbation)
for a few different perturbation wavelengths. In this plot we note that the critical shear for the dominant mode λd
is indeed around 9.7, but that larger and smaller wavelengths require more shear in order to suppress rupture. We
propose that fluctuations enable rupture even beyond the critical shear of the dominant mode by triggering secondary
modes once the dominant mode begins to stabilize. This is supported by the fact that the critical shear observed in
the stochastic case approximately matches the largest values of Bcrit for large and small wavelengths, as is shown in
Fig. 4(d)

In Fig. 3, we observe that the size of the initial decrease h0 − hmin(0) in film height due to the stochastic term
seems to be of size Q regardless of the strength of the shear. This is rather unexpected [31] if the size of the initial
perturbation is interpreted as the equilibrium thermal roughness. We note however, that the sinusoidal perturbations
that lead to rupture form within the first few time steps of the simulation, long before the interface settles to an
equilibrium roughness. This is discussed in more detail in appendix B, where we also show that the equilibrium
thermal roughness is decreased by B when there is no disjoining pressure.

B. Three-dimensional case

Although our results in two dimensions shed light on 2D film rupture, it is not clear how these effects translate to
physically realistic 3D films. To quantify the effect of spatial dimensions, we solve Eq. (2) to obtain 3D film profiles,
obtaining the results shown in Fig. 5. In Fig. 5(a−c), we note that the shear-free rupture process is both qualitatively
and quantitatively similar to the observations in two dimensions (see Fig. 2(a)): the stochastic fluctuations give rise
to small perturbations that coarsen until a characteristic size given by λd and subsequently grow over time. The
surface depressions that lead to rupture have a circular-like cross-section, but grow with the same growth rate as in
the 2D case (Eq. (9)). The rupture time is still fairly well described by Eq. (12).

In panels (d − f) of Fig. 5, we can see how a strong unidirectional shear in the x-direction affects the three-
dimensional film rupture process. In this case, the shear force has a suppressing effect on perturbations along the
shear direction, but perturbations grow freely in the transverse direction. As the perturbations grow to a significant
size, they begin to align with the direction of shear, and eventually form a clear pattern of ridges. These ridges then
deepen as the film rupture process proceeds. In Fig. 6(a), we show how the minimum film height evolves in time
for 3D simulations of rupture with unidirectional shear of varying strength. As in the 2D case, the growth rate in
the exponential regime is close to ωd predicted by the linear stability analysis. In contrast to the 2D case of Fig. 3,
however, unidirectional shear does not prevent rupture from occurring in a 3D film. Nevertheless, for B > Bcrit there
is a small increase in rupture time, as shown in Fig. 6(b), caused by the fact that the perturbations need to rearrange
themselves when they are suppressed in the shear direction.

Since the film rupture time is weakly affected by unidirectional shear at the interface, we then attempted to impose
a rotating shear stress, as was done previously by Davis et al. [34]. To do so, Eq. (2) is again solved numerically, but
the direction of the shear force, −→e τ , is now varied sinusoidally in time with an angular frequency Ω. The resulting
rupture process can be seen in Fig. 7, and is further analyzed in Fig. 8. During the linear regime, the perturbations
rotate as the direction of −→e τ changes, but grow much as they do without shear. Once the perturbations become big
enough for nonlinear effects to emerge, the perturbations begin to be suppressed in the direction of shear, leading
to a reorientation as in the unidirectional case. For very small frequencies, Ω � 2π/tR,B=0, the change in direction
is too slow to affect the rupture process significantly. When Ω is increased, however, the shear has time to switch
directions and suppress the perturbations that have grown in the initially cross-shear direction. This leads to periodic
reorientation of the perturbation profile with an angular frequency equal to Ω, and an overall delay of rupture. For
rapidly rotating shear, the perturbations remain essentially circular in cross-section and resemble the perturbations
seen in the shear-free case shown in Fig. 5(a − c). If B is sufficiently large, and Ω has an appropriate value, the
perturbation can be completely suppressed until the maximum simulation time of 50, as is the case in Fig. 7.

For a given angular frequency, Ω, the change in rupture time as B is increased, as depicted in Fig. 8, is actually
quite similar to the 2D case of section III A. For B < 10, shear does not significantly delay rupture, but does so once
B ' 15 due to slower growth in the nonlinear regime. The critical value of B required is significantly higher than
that observed in 2D, and varies with Ω. As seen in Fig. 8(b), it seems that the rupture-delaying effect of shear is
strongest when Ω ≈ 3π/4. For lower frequencies, the shear suppresses rupture in one direction, but does not change
fast enough to suppress it in the other, whereas for high frequencies, the shear does not remain in one direction for
long enough to suppress rupture in that direction.
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FIG. 5. Contour plots illustrating the height h(x, y, t) of 3D thin films for different times, with Q = 10−3. The color represents
the deviation δh(x, y) = h(x, y)−h0 from the initial film thickness h0. (a− c) No-shear (B = 0) case, where (c) shows the final
time step at which the film ruptures. (d − f) Shear (B = 30, along y-axis) case, where (f) shows the final time step at which
the film ruptures. Note that the direction of shear (as indicated by the black arrows in panel (d)) is not the same as in Fig. 1.
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FIG. 6. (a) Time evolution of the height perturbation h0−hmin(t) for different values of B in 3D simulations, with unidirectional
shear and for Q = 10−3,h0 = 1. The dotted black line line indicates exponential behaviour with a growth rate given by Eq.
(9). (b) The rupture time as a function of shear magnitude, where the error bars represent the standard deviation for a set of
5 simulations for each value of B.

C. Implications for polymer processing

Let us now discuss the implications of the numerical results obtained above in a practical context. We specifically
consider a polymer processing method: nanolayer coextrusion. This innovative process is based on a series of layer
multiplying elements (LME) which apply the baker’s transformation (successive slicing and recombining) to a stratified
polymer melt flow to achieve multilayer systems, made of up to thousands of alternating layers of two or more polymers,
each having nanometric thicknesses [42]. Many polymer pairs have been processed this way, whether glassy or semi-
crystalline, miscible or immiscible and in most cases stable, continuous and regular layers with thicknesses below 50
nm have been obtained [43–45]. Let us focus on the widely studied case of polystyrene (PS) / polymethylmetacrylate
(PMMA) multilayers, for which it has been shown that optimized extrusion conditions can lead to continuous layers
as thin as 20 nm [4]. Typical values for extrusion temperature, surface tension, dynamic viscosity and Hamaker
constant can be set to 220°C, 1 mN/m [46], 10000 Pa.s [4] and 2.10−18 J [35, 47], respectively. In this case, the

thermal roughness at the interface has an amplitude
√
kBT/γ ≈ 2.5 · 10−9 m, and Q ≈ 10−1 which is above the

values presented in this study. Nonetheless, from Figs. 2 and 3, it can be hypothesized that though faster, rupture
will occur similarly as with lower Q values. Using Eq. (13) and putting back dimensions, the rupture time without
shear for a layer having an initial thickness of 20 nm (h0 ≈ 1.1) would be in the 5 - 10 s range, hence much less than
the typical processing time, between 1 to 2 minutes [48]. The stabilizing effect of shear could explain the stability
of nanometric layers (around 20 nm), as already discussed in [35]. Looking at the 2D case (Fig. 4(c)), a significant
increase of the rupture time occurs when B is higher than the critical value around 12.5, corresponding to a shear
rate in the order of 20 - 25 s−1, that is easily reached in classical extrusion conditions [48]. However, the novel 3D
simulations of the present study in uniaxial shear suggest that the shear force, B, has in fact a limited influence on
the rupture time, which appears to contradict the previous conclusions drawn in 2D. The following hypotheses can
be made concerning processing, especially nanolayer coextrusion: the minimal thickness achieved after the LMEs is
actually higher than the one discussed previously, nanometric thicknesses being only reached after the LMEs when
the flow goes through the flat die. As the rupture time scales with the thickness to the power of 5, rupture may only
occur when the polymer flow passes through this flat die, where the layer thickness reaches values below 100 nm.
Interestingly, in the flat die, there is not only unidirectional shear but also a diverging radial flow, which may result
in a more stabilizing situation as suggested by results presented in Figs. 7 and 8. Besides, we stress that the effect of
elongation has not been elucidated yet, and we shall also mention that the boundary conditions used here in a single
layer differ quite substantially with those occurring in a multilayer flow [49].

Finally, we comment on the 3D surface profiles showing the appearance of ridge-like and valley-like features aligned
along the shear direction prior to rupture. This pattern formation is reminiscent of the experimental observations by
Dmochowska et al. [36], where a PS thin film sandwiched between two PMMA thicker layers was dewetted under
shear. Though this study focused on the dewetting kinetics, i.e. the hole growth after hole formation, it was observed
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FIG. 7. Contour plots illustrating the height h(x, y, t) of a 3D thin film, subjected to a rotating shear force with strength
B = 30 and angular frequency Ω = 3π/32 in the direction of the arrow in panel (a), as a function of time, with Q = 10−2 and
h0 = 1. The color represents the deviation δh(x, y) = h(x, y)− h0 from the initial film thickness h0.

that the dewetting holes take ellipsoidal shapes aligned with the local shear directions, contrary to the no-shear case
[50, 51]. The hole growth was accelerated in the shear direction while it remained similar to the no-shear case (with
a slight increase caused by shear-thinning of the PMMA matrix) in the perpendicular direction.

IV. CONCLUSION

In this work, we have described how thermal fluctuations and shear affect the stability of thin nanometric films
described by the stochastic thin film equation. Finite element numerical solutions of the latter show that the role
of the fluctuations is essentially to initiate perturbations of a characteristic size that is proportional to the thermal
roughness of the interface. At later times, thermal fluctuations do not play a significant role in the dynamics of thin
film rupture. By using a linear stability analysis, we give a rather simple prediction for the rupture time of a thin
film as a function of initial height and temperature, in the absence of shear. When a shear force is introduced to a
2D system, rupture can be suppressed, resulting in the formation of a permanent travelling wave, while the initial
size of the perturbations seems unaffected in the parameter range explored by the simulations. In the more physically
realistic case of unidirectional shear in 3D films, however, rupture is not suppressed, as cross-shear perturbations
grow unimpeded. Our results may explain why the reported rupture-inhibiting effect of shear has not been reported
experimentally. This may be relevant in physical processes such as the thin air film formed below a droplet as it
impacts on a surface, for which rupture is observed despite a high shear rate [52]. Our simulations do indicate,
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FIG. 8. (a) Time evolution of the height perturbation h0 − hmin(t) for different values of the shear parameter B and angular
frequency Ω = π/8, in 3D simulations with rotating shear for Q = 10−2. The dotted black line line indicates exponential
behaviour with a growth rate given by Eq. (9) and an arbitrary amplitude. (b) Rupture time tR as a function of dimensionless
shear stress B, for various angular frequencies Ω.

however, that rupture can be delayed if the direction of shear varies sufficiently rapidly with time – a situation of
potential practical relevance for dewetting experiments and nanocoextrusion processes.

ACKNOWLEDGMENTS

The authors acknowledge financial support from the Research Council of Norway through the program NANO2021
(project number 301138), the European Union through the European Research Council under EMetBrown (ERCCoG-
101039103) grant, and from the Agence Nationale de la Recherche under EMetBrown (ANR-21-ERCC-0010-01), Softer
(ANR-21-CE06-0029) and Fricolas (ANR-21-CE06-0039) grants.

Appendix A: Adaptive time step simulations

As described in section II B, we stop our simulations when the minimum height of the film reaches a threshold value
of h∗ = 0.33, and define the time at which this occurs as the rupture time of the film, tR. Our justification for this
is that the late stage of rupture is an almost instantaneous event that follows the power law described by Zhang and
Lister [14]. In order to confirm that this is indeed a good assumption, we have performed simulations as described
in section II B, but with an adaptive time step that decreases as the film height decreases, as well as a reduced grid
spacing of ∆x = 0.001 in order to resolve the flow details in this regime. Fig. 9 shows the results of such simulations.
It is clear here that the late stage of rupture is accurately described by the aforementioned power law. The time
elapsed between hmin = 0.33 and hmin = 0.015 is less than 0.1, which is a negligible fraction of the rupture time tR,
for all the cases simulated in this article. The results when shear is included are similar.

Appendix B: Thermal roughness of a flat interface with shear

In section III A, we find that shear does not significantly change the initial size of the perturbations that lead to thin
film rupture when thermal fluctuations are imposed. This is rather surprising in light of previous works which show
that imposing a shear force significantly decreases the equilibrium thermal roughness of interfaces in other geometries
[30, 31]. We thus simulate a 2D thin film subjected to thermal fluctuations and shear but no disjoining pressure, for
which the interface fluctuates around its initial height h0 indefinitely. We then compute the thermal roughness of the

interface at each time step as σ = (
∑N
n=1(h − h0)2/N)1/2, where n represents each of N total gridpoints. In Fig.
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FIG. 9. Results of the simulations with an adaptive time step near rupture, for Q = 0.0001, B = 0, and h0 = 1. (a) Film

profiles at various times. (b) Minimum film height hmin as a function of the reverse time tR− t, in log-log scale. The (tR− t)1/5
power law [14] with arbitrary prefactor is indicated by the dotted black line. (c) Amplitude of the height perturbation as
a function of time. The dotted black line line indicates exponential behaviour with a growth rate given by Eq. (9) and an
arbitrary amplitude. The dotted red line indicates the Q value.

.

10(a) we show how σ varies in time when there is no shear. In both cases, σ fluctuates around a mean value of around
Q as expected due to the definition of Q in section II A.

When we impose a shear B 6= 0 to the interface, we do indeed observe a decrease in the thermal roughness, as
is shown in Fig. 10(b) . In fact, for B > 3, σ is reduced by more than half. Although consistent with what we
expect from the literature, this result seems to conflict with the results in Fig. 3(d) where the initial perturbation
size is independent of B. Upon deeper reflection, however, it is not obvious that the equilibrium thermal roughness
observed over time is the same as the size of instantaneous fluctuations. In our simulations of film rupture with
both fluctuations and shear, it seems that perturbations to a flat film of size approximately Q are created during the
first few timesteps before the disjoining pressure or shear have any effect. The sinusoidal perturbations that lead to
rupture then form before the shear effect on thermal roughness has had any effect. It is thus important to distinguish
between the time-averaged equilibrium effect of fluctuations and their instantaneous impact on the film.
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