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Abstract. The chronostratigraphic subdivision into an Early and Late Cretaceous is preceded by a global 16 

turnover in marine faunas, called the middle–late Albian Boundary Bio-Event. Thus, the late Albian is 17 

a critical time interval, especially with respect to the evolution and radiation of ammonites, which are 18 

by far the most abundant nektic organisms at that time. In this context, achieving the best possible 19 

biochronological resolution has direct implications on the various geological, geochemical, 20 

palaeoclimatic and biotic hypotheses related to this period. Over the past decades, several quantitative 21 

biochronological methods have been developed to achieve more accurate biozonations and correlations. 22 

Using strict and well-defined algorithms allow for the processing of large datasets and ensure a rigorous, 23 

exhaustive, and consistent treatment of the biostratigraphic data. Here, by means of the Unitary 24 

Association Method (UAM), we perform a quantitative biochronological analysis on a substantial 25 

dataset of late Albian ammonite occurrences from western Europe (comprising 175 species among 13 26 
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sections). This led to the construction of a sequence of 23 UAs for the whole late Albian, which 27 

represents a higher resolution than the standard empirical interval-based zonations for northwestern and 28 

southwestern Europe (7 zones and 9 subzones, respectively). These UAs can also be merged into 9 more 29 

geographically reproducible association zones, which correlate very well with the two standard 30 

zonations. Based on our results, the UAM enables accounting for and highlighting the range of actually 31 

all taxa, and not just a few selected index taxa whose ranges very often extend before and/or after their 32 

eponymous interval zone. Finally, the UA quantitative biochronology enables us to measure western 33 

European ammonite diversity throughout the whole Albian in detail. Consequently, we identified a 34 

major and sharp diversity decrease during the uppermost Albian (UAZ 8/9 boundary; = M. 35 

perinflatum/A. briacensis zones boundary), concomitant with the well-known Oceanic Anoxic Event 36 

OAE1d. 37 

 38 

Keywords. Albian, Ammonoidea, Europe, quantitative biochronology, correlation, palaeobiodiversity. 39 

 40 

1. Introduction 41 

 42 

The Early Cretaceous is a highly-disturbed time interval witnessing global fluctuations in climate, sea-43 

level and carbon cycle (e.g., Schlanger and Jenkyns 1976, Haq et al. 1987, Weissert et al. 1998, Leckie 44 

et al. 2002, Pucéat et al. 2003, Reboulet et al. 2005, Bornemann et al. 2005, Watkins et al. 2005, Bjerrum 45 

et al. 2006, Amédro 2008, Gale et al. 2011, 2020, Littler et al. 2011, Föllmi 2012, Bodin et al. 2015, Xu 46 

et al. 2020). More specifically, the late Albian records the widening of the North Atlantic (Fenner 2001) 47 

and two Oceanic Anoxic Events: the OAE1c and the OAE1d (Reboulet et al. 2005, Watkins et al. 2005, 48 

Gale et al. 2011). The late Albian also includes a major double eustatic event with a third-order cycle as 49 

well as a transgression peak within a second-order cycle (Amédro 2008). Simultaneously to these 50 

palaeoenvironmental changes, this period is also marked by major palaeoecological changes (e.g., 51 

Leckie et al. 2002). Regarding ammonites, this time interval is characterized by a remarkable increase 52 

in ammonite taxonomic diversity, a sudden rise of heteromorphic ammonites, as well as a protracted 53 
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trend toward more cosmopolitan faunas (Amédro 1992, Owen 1996, Reboulet et al. 2005, Amédro 2008, 54 

Lehmann 2015). In this context, resolution of correlations necessarily impacts the understanding and 55 

interpretation of the various geological, geochemical, palaeoclimatic and biotic evolutionary hypotheses 56 

related to this period. Therefore, achieving robust and high-resolution biochronological correlations 57 

remains critical. Regarding the Early Cretaceous, calpionellids, calcareous nannofossils, planktic 58 

foraminifers and ammonoids are the major groups providing exceptionally high-resolution marine 59 

biostratigraphic scales, as illustrated by the selected GSSP boundary markers (see Gale et al. 2020). 60 

Albian ammonite faunas from the European province and associated biostratigraphy has been the 61 

focus of considerable work, beginning in the late 19th century (e.g., Hébert and Munier-Chalmas 1875, 62 

Jacob 1905, 1907, Spath 1923–1943, Breistroffer 1936, 1940a, b, 1946, 1947, Renz and Luterbacher 63 

1965, Renz 1968, Kennedy 1970, Scholz 1973, 1979, Owen 1975, 1984a, 1984b, 1996, 1999, Cooper 64 

and Kennedy 1977, 1987, Wright and Kennedy 1979, 1994, Delanoy and Latil 1988, Latil 1989, 1994, 65 

Amédro 1992, 2002, 2008, Kennedy and Delamette 1994a, b, Gale et al. 1996, 2011, Amédro and 66 

Robaszynski 2000, Kennedy et al. 2000, 2008, 2014, 2017, Szives 2007, Kennedy and Latil 2007, Joly 67 

and Delamette 2008, Lehmann et al. 2007, 2008, Lehmann 2011, Robaszynski et al. 2008, Bujtor 2010, 68 

Cooper and Owen 2011a, b, Petrizzo et al. 2012, Amédro and Matrion 2014, Kennedy and Machalski 69 

2015, Tajika et al. 2017, 2018a, b, Reboulet et al. 2018, Jattiot et al. 2021, 2022). However, despite this 70 

considerable effort, correlation and subdivision of the Albian by ammonites remain debated, especially 71 

regarding the late Albian in Europe (e.g., Amédro 2002, 2008, Robaszynski et al. 2007, Amédro and 72 

Robaszynski 2008, Scott 2009). The late Albian is particularly highly debated since Renevier (1868), 73 

who proposed the establishment of a Vraconnian stage within this time interval. Noteworthy, based on 74 

a number of criteria and very detailed and reliable stratigraphic data, Amédro (2002, 2008) argued for 75 

the revival of the Vraconnian stage between the Albian sensu stricto and the Cenomanian. Conversely, 76 

Scott (2009), based on his biostratigraphic work, came to the conclusion that the reinstatement of a 77 

Vraconnian stage was not recommended. These contrasted opinions demonstrate that the current 78 

biostratigraphic schemes and their correlation for the late Albian in Europe are questionable. 79 
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Consequently, the timing of all palaeoenvironmental and palaeoecological events occurring during the 80 

late Albian in the European province is yet not well constrained. 81 

Most previous ammonite zonations for the Albian were established by classical, empirical and 82 

non-quantitative approaches. However, an increasing number of available biostratigraphic data and 83 

increasing need of higher resolved correlation prompt to use modern quantitative biochronological 84 

analyses based on robust algorithms in order to overcome the correlative increasing amount of 85 

biostratigraphic contradictions. This is especially the case for the late Albian in Europe with ammonites 86 

highly endemic and most species found in very few sections only (Amédro 2008), therefore hampering 87 

straightforward correlation. Scott (2009) already underlined the need of quantitative biostratigraphic 88 

approaches to achieve better biozonation and correlation for the late Albian in Europe. Although he 89 

applied Graphic Correlation (GC) to tackle this problem, his study focuses on a few key sections only, 90 

and GC remains a semi-quantitative technique requiring the empirical, subjective fit of a non-global 91 

correlation line for pairs of sections. Hence, the goal of this study is to revise the ammonite zonation of 92 

the entire late Albian in Europe (encompassing the Vraconnian) by means of an appropriate quantitative 93 

biochronological approach, namely the Unitary Association Method (UAM; Guex 1991, Guex et al. 94 

2016). This approach has been already successfully applied to ammonites (e.g., Dommergues and 95 

Meister 1987, Pálfy et al. 1997, 2003, Pálfy and Vörös 1998, Monnet and Bucher 1999, 2002, 2007, 96 

Monnet et al. 2011, Galfetti et al. 2007a, b, Brühwiler et al. 2010, Guex et al. 2012, Jattiot et al. 2017) 97 

and other organisms (e.g., Abdelhady et al. 2018, 2021, Xiao et al. 2018, Chen et al. 2019, Wu et al. 98 

2020, Leu et al. 2022, 2023), and it has proven appropriate to cope with conflicting data such as the 99 

necessarily incomplete fossil record (Baumgartner 1984, Boulard 1993, Galster et al. 2010, Monnet et 100 

al. 2011). Furthermore, the here reconstructed quantitative UA-zonation will be compared with the 101 

standard western European empirical ammonite zonations and will help gaining insights into the 102 

palaeobiodiversity changes recorded during the entire late Albian and their potential link with the 103 

Vraconnian substage. 104 

 105 

2. Materials and Methods 106 
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 107 

2.1. Biostratigraphic data 108 

 109 

This study focuses on Albian sedimentary successions, and more precisely the late Albian of western 110 

Europe. Biostratigraphic data are compiled from the literature by including all contributions providing 111 

adequate information on the (possibly bed-by-bed) occurrences of species, as well as possibly 112 

illustrations of these ammonites. This compilation leads to a dataset including 13 sections: from France, 113 

Col de Palluel (Gale et al. 2011), Mont Risou (Gale et al. 1996), Montlaux (Kennedy and Latil 2007), 114 

Salazac (Jattiot et al. 2021), Clansayes (Jattiot et al. 2022), as well as two cores near Marcoule (Amédro 115 

and Robaszynski 2000); from Germany, Kirchrode (Wiedmann and Owen 2001) and Lahe (Lehmann 116 

2011); from Belgium, Harchies (Amédro 2008) and Strépy-Thieu (Kennedy et al. 2008); from England, 117 

the Upper Gault and Upper Greensand formations (unpublished data by one of us, HGO); and from 118 

northern Spain (Lopez-Horgue et al. 2009). The dataset is composed of 175 species belonging to 55 119 

genera and 14 families. 120 

Because the dataset is constructed from multiple sources with taxonomic definitions slightly 121 

different, the taxonomy has been revised if necessary before performing the biochronological analysis. 122 

Additionally, since the occurrences with some taxonomic uncertainties tend to create additional 123 

biostratigraphic contradictions and disjunctive taxon ranges (Guex 1991, Monnet et al. 2011), they have 124 

been discarded in our dataset. Importantly, the following changes were made at that stage: 1) the species 125 

Mortoniceras (Subschloenbachia) perinflatum was merged with Mortoniceras (Subschloenbachia) 126 

rostratum, following the suggestion of Jattiot et al. (2022) that firm evidence for the separation of M. 127 

(S.) rostratum and M. (S.) perinflatum as two distinct species is still lacking in the literature; 2) the taxon 128 

Hysteroceras serpentinum was removed from the Col de Palluel section since, in our opinion, it does 129 

not match the holotype; and 3) the occurrence of Mariella bergeri and M. miliaris from the level U8 in 130 

England are discarded because they were already questionable in the original dataset (unpublished data). 131 

The ‘initial’ dataset including these previous changes compared to the original publications is provided 132 

as supplementary material (Appendices A, B). 133 
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 134 

2.2. Biozonation based on unitary associations (UAs) 135 

 136 

Over the past decades, several quantitative biochronological methods have been developed to achieve 137 

more accurate biozonations and correlations by using strict and well-defined algorithms that allow for 138 

the processing of large datasets and ensure a rigorous, exhaustive, and consistent treatment of the 139 

biostratigraphic data (see Hay and Southam 1978, Guex 1991, Agterberg and Gradstein 1999, Sadler 140 

2004, Cody et al. 2008, Sheets et al. 2012, Monnet et al. 2015, Fan et al. 2020). Here, the biostratigraphic 141 

data of Albian ammonites are processed by means of the deterministic unitary associations (UAs; Guex 142 

1977, 1991). For an in-depth description and review of the method, the reader is referred to Savary and 143 

Guex (1991, 1999), Monnet al. (2011, 2015) and Guex et al. (2016). The fundamentals of the method 144 

are that 1) it focuses on the observed co-existences among taxa (and not their 145 

appearance/disappearance), 2) it infers virtual associations (i.e., coexistences in time but not in space) 146 

of taxa to resolve the biostratigraphic contradictions (i.e., conflicting stratigraphic relationships among 147 

taxa), and 3) it outputs discrete biozonations composed of unique maximal sets of coexisting (actually 148 

or virtually) taxa (= UAs). The data are analysed with the widely distributed palaeontological analysis 149 

freeware PAST (Hammer et al. 2001) version 4.07b. With the software, a pre-processing procedure is 150 

applied to the data before the actual biochronological analysis: taxa found only in one section 151 

(‘singletons’) are removed as they are known to significantly increase the amount of biostratigraphic 152 

contradictions while being of no help for correlation purposes (Boulard 1993, Monnet and Bucher 1999, 153 

2002, Savary and Guex 1999, Monnet et al. 2011). 154 

Here, the biochronological analysis follows the stepwise protocol of Monnet et al. (2011): 1) first, 155 

the ‘initial’ biostratigraphic dataset (Appendix A) is directly analyzed by means of the unitary 156 

associations; 2) then, the preliminary results are post-processed to identify and remove the occurrences 157 

at the origin of the most critical biostratigraphic contradictions; 3) next, a second UA analysis is 158 

performed on this second ‘optimized’ biostratigraphic dataset; and 4) last, the reconstructed UAs are 159 

possibly merged to construct the biozonation. Because there is an unavoidable trade-off between the 160 
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intrinsic quality (completeness) of the data and the resolution of the constructed biozones, the ammonite 161 

biozonation is here reconstructed in two steps with an ‘optimization’ of the data in between. Importantly, 162 

the goal of this optimization is not to reduce the number of biostratigraphic contradictions to minimum 163 

(there will always be a large amount of them and UAs are designed to cope with them). Instead, the 164 

optimization consists in 1) identifying the most problematic occurrences, which could result from 165 

multiple sources (e.g. sparse data, taxonomic misidentification, reworking, diachronism, preservation, 166 

ecological exclusion, or endemism), and 2) removing inappropriate results such as cycles of cliques and 167 

residual virtual edges (the former can lead to partly uncertain results, while the latter can lead to UAs 168 

identified in a single section because based only on inferred coexistences). Noteworthy, this 169 

optimization step enables to get feedback on the data and to produce a more robust biozonation (Monnet 170 

et al. 2011). Importantly, the implementation of UAs in the PAST software contains several tools (lists 171 

of maximal cliques, their content and their graph of relationships, as well as lists of contradictions and 172 

their content; for details, see Monnet et al. 2011 and Guex et al. 2016) for tracing back the possible 173 

origin (in terms of occurrences) of the conflicting stratigraphic relationships among taxa. The 174 

optimization process iteratively and parsimoniously removes the few occurrences at the origin of the 175 

cliques’ cycles and of the residual virtual edges. The removal of such conflicting occurrences is 176 

recommended by the fact that UAs are sensitive to false coexistences and resolve the contradictions by 177 

extending some taxon ranges (i.e., the virtual coexistences). Finally, as suggested and discussed by Guex 178 

(1991; see herein for more details), some UAs may be merged into UA-Zones (UAZs) to increase their 179 

lateral reproducibility (for higher correlation power) and on the basis of the similarity of their faunal 180 

content (for other examples with such methodology, see Chen et al. 2019 and Leu et al. 2023, among 181 

others). Note that these UAZs are just secondary practical groupings of some UAs to ease correlation; 182 

the primary basic biostratigraphic units remain the UAs, which synthetize at best (after resolving the 183 

inter-taxon stratigraphic contradictions) the co-existences in time (not necessarily in space) and the 184 

relative bioevents (apparition/ extinction) of all taxa considered. 185 

 186 
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2.3. Ammonite palaeobiodiversity 187 

 188 

As demonstrated by Escarguel and Bucher (2004), biochronozones based on the principle of maximal 189 

association (such as the unitary associations) provide a very robust and reliable basis for counts of 190 

taxonomic richness. Therefore, using the resulting species ranges of the 23 UAs covering the entire late 191 

Albian in western Europe (this study), we counted the values of species richness (total diversity) for all 192 

multiple-section taxa, as well as for Ancyloceratina (= heteromorphs) and other ammonites (= 193 

monomorphs), separately. Furthermore, the species richness of each family was quantified and reported 194 

in a spindle diagram. These biodiversity curves will enable to document the regional (western Europe) 195 

diversity patterns of ammonites at a high temporal resolution.  196 

 197 

3. Results 198 

 199 

3.1. European late Albian ammonite biozonation 200 

 201 

The UA analysis of the ‘initial’ dataset of European late Albian ammonite occurrences (Appendix A) 202 

leads to 27 UAs after resolving 145 conflicting inter-taxa stratigraphic relationships (= biostratigraphic 203 

contradictions) distributed among 40 maximal cliques and based on 118 multiple-section taxa. Note that 204 

without removing the 57 single-section taxa, the dataset leads to 199 biostratigraphic contradictions. 205 

Importantly, this dataset leads to no cycle among maximal cliques and to 13 residual virtual edges. 206 

The post-processing/optimization of these preliminary results highlights that the origin of the 207 

residual virtual edges results from four occurrences only, each of them creating virtual UAs. First, the 208 

occurrence of Idiohamites tuberculatus at the depth of 61.60 m in Kirchrode borehole (see Wiedmann 209 

and Owen 2001, pl. 1, fig. J) is at the origin of five residual virtual edges. In our opinion, the illustrated 210 

specimen is part of a very unusually large spiral, larger than any other Idiohamites species described 211 

from the Boreal realm, and therefore should better be considered as an indeterminate species. Second, 212 
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the occurrence of Lepthoplites pseudoplanus at the depth of 136.82 m in Kirchrode borehole (see 213 

Wiedmann and Owen 2001, pl. 2, fig. C) is also at the origin of five residual virtual edges. In our opinion, 214 

the illustrated specimen does not belong to this species, and should instead be considered as an 215 

indeterminate species given its fragmentary state. Third, the occurrence of Euhoplites vulgaris at the 216 

depth of 204.08 m in Kirchrode borehole (see Wiedmann and Owen 2001, pl. 4, fig. C) is at the origin 217 

of one residual virtual edge; similarly, the illustrated specimen is, in our opinion, too fragmentary to 218 

reach a firm identification at the species level. And fourth, the occurrence of Lepthoplites ornatus at the 219 

depth of 1168.53 m in MAR 402 borehole (Amédro and Robaszynski 2000) is at the origin of two 220 

residual virtual edges; unfortunately, this occurrence is not supported by any figuration. Because these 221 

four occurrences are unusual, questionable, and contribute to the majority of identified biostratigraphic 222 

contradictions, they are removed from the dataset. Finally, the level at about 459 m in a section in 223 

northern Spain described by Lopez-Horgue et al. (2009) was also removed as it produces around 10% 224 

of all biostratigraphic contradictions; the lack of figuration prevents re-evaluating its taxonomy. 225 

The second UA analysis on the post-processed, ‘optimized’ dataset leads to 24 unitary 226 

associations after resolving 130 conflicting stratigraphic relationships distributed among 39 maximal 227 

cliques and based on 115 multiple-section taxa; as expected, there are no more residual virtual edges. 228 

The final results of the biochronological analysis are based on this second analysis and are: 1) a range 229 

chart of the 115 multiple-section taxa through the succession of the 24 UAs (discrete maximal sets of 230 

mutually coexisting species; Fig. 1) complemented by 2) its reproducibility matrix (Fig. 2), which 231 

indicates the UAs identified in the studied sections. The range chart is a sequence synthesizing the 232 

association, superposition and exclusion relationships of the ammonite taxa included in the analysis; it 233 

defines the characteristic content of each biostratigraphic unit (UA). The single-section taxa 234 

automatically removed during the biochronological analysis are dated back with these UAs and their 235 

range chart is reported in Appendix C. Among all studied sections, only Clansayes, Salazac and 236 

Strépy-Thieu are ‘single-bed sections’ (Appendix A). We tested the influence of these ‘single-bed 237 

sections’ by doing the very same quantitative biostratigraphic analysis without these localities. The 238 

results remain overall the same, thus demonstrating the absence of faunal mixing in these beds. 239 
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 240 

3.2. Description of the biozones 241 

 242 

The reconstructed UAs enable to revise and construct a quantitative ammonite biozonation for 243 

the entire late Albian of Europe. Because the UA24 marks the earliest Cenomanian, which is not fully 244 

covered by the studied dataset, this UA is not considered in this study. Noteworthy, since unitary 245 

associations focus on the coexistence of species, this method constructs discrete assemblage biozones 246 

and not interval-based (first/last appearances) zones; a UA is therefore characterized by the restricted 247 

occurrence of taxa and/or by the coexistence of specific pairs of taxa having their last occurrence (LO) 248 

and their first occurrence (FO), respectively, within this UA. The 23 unitary associations of the late 249 

Albian are merged into 9 UA-zones (UAZ; Fig. 2), which are briefly described below. Among all studied 250 

sections, the distribution of the UAs reveals Col de Palluel as by far the most complete section (16 out 251 

of the 23 late Albian UAs are documented there; Fig. 2). This supports Gale et al. (2011) who claims 252 

that this section provides the most detailed record known of the upper Albian substage with a thickness 253 

of nearly 330 m and with an excellent ammonite, inoceramid, planktic foraminiferal, nannofossil, 254 

geochemical, and cyclostratigraphic record (Kennedy et al. 2004). 255 

 256 

UAZ 1: This zone composed by the UAs 1–2 contains 16 genera and 28 species, distributed 257 

mostly among the genera Euhoplites, Dipoloceras, Hamites, and Hysteroceras (Fig. 1). It is mainly 258 

characterized by Euhoplites truncatus in its lower part, and in its upper part by the pairs of Dipoloceras 259 

cristatum (LO) with Mortoniceras cunningtoni (FO), Eoscaphites circularis (FO) or Hysteroceras 260 

orbignyi (FO). Euhoplites truncatus is already known to occur both in the uppermost middle Albian and 261 

lowermost upper Albian (Gale et al. 2011); it is here the Euhoplites truncatus late form that characterizes 262 

this UAZ. The species Dipoloceras cristatum occurs throughout this zone, whereas the appearance of 263 

the genus Mortoniceras marks the upper part of this zone. The zone is documented (Fig. 2) in France 264 

(Col de Palluel) and in England. It correlates with the standard Dipoloceras cristatum Zone (lowermost 265 
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upper Albian; Fig. 3). 266 

 267 

UAZ 2: This zone composed by the UAs 3–4 contains 18 genera and 36 species, distributed 268 

mostly among the genera Mortoniceras, Dipoloceras, Euhoplites, Idiohamites, Hamites, and 269 

Hysteroceras (Fig. 1). Noteworthy, this zone marks the first occurrence of Mortoniceras pricei and of 270 

Hysteroceras varicosum, as well as the last occurrence of the genus Dipoloceras. It is also characterized 271 

by the last occurrence of many Euhoplites species and by the first occurrence of Idiohamites spp. The 272 

zone is documented (Fig. 2) in France (Col de Palluel), Germany (Kirchrode and Lahe) and England. It 273 

correlates with the lower part of the Mortoniceras pricei and the Hysteroceras varicosum zones (lower 274 

upper Albian; Fig. 3). 275 

UAZ 3: This zone composed by the UAs 5–7 contains 22 genera and 39 species, distributed 276 

mostly among the genera Mortoniceras, Euhoplites, Epihoplites, Idiohamites, Hamites, and 277 

Hysteroceras (Fig. 1). The species Mortoniceras bipunctatum is restricted and ranges throughout the 278 

entire zone, and is among the most widespread and diagnostic species of this zone by being present in 279 

France, England and Germany (Fig. 2). The middle part of the zone is characterized by the first 280 

representatives of the renowned genera Anisoceras and Scaphites with A. subarcuatum and S. 281 

hugardianus. The upper part of the zone is characterized by several species of Epihoplites and also 282 

marks the last occurrence of Hysteroceras orbignyi and H. varicosum. The zone correlates with the 283 

upper part of the Mortoniceras pricei and Hysteroceras varicosum zones (lower upper Albian; Fig. 3). 284 

UAZ 4: This zone composed only by the UA8 contains 19 genera and 31 species, distributed 285 

mostly among the genera Callihoplites, Euhoplites, Mortoniceras and Idiohamites (Fig. 1). It is mainly 286 

characterized by Callihoplites auritus and Mortoniceras commune, which are restricted to this zone, and 287 

by the coexistence of Mortoniceras pricei (LO) and/or Anisoceras subarcuatum (LO) with Mortoniceras 288 

inflatum (FO), as well as by the coexistence of the genus Callihoplites (FO) with the last occurrence of 289 

Anahoplites and Euhoplites. This zone is peculiar because it shows the coexistence of two Mortoniceras 290 

species (last occurrence of M. pricei and first occurrence of M. inflatum) usually considered as index of 291 
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their eponym zone. The zone is documented in Germany and England, but not in France (Fig. 2). It 292 

correlates with the lowermost part of the Mortoniceras inflatum Zone and to the C. auritus Subzone 293 

(lower upper Albian; Fig. 3). 294 

UAZ 5: This zone composed by the UAs 9–11 contains 23 genera and 39 species, distributed 295 

mostly among the genera Mortoniceras, Callihoplites, Anisoceras and Idiohamites (Fig. 1). It is mainly 296 

characterized by the coexistence of Mortoniceras inflatum (LO) or Callihoplites variabilis (LO) with 297 

Anisoceras armatum/perarmatum (FO), Cantabrigites minor (FO) or Callihoplites tetragonus (FO). 298 

Noteworthy, the classical index M. inflatum occurs throughout this zone, which also marks its last 299 

occurrence. The zone is documented in France, Germany and England (Fig. 2). It correlates with the 300 

Mortoniceras inflatum Zone and the lower part of the Callihoplites robustus Subzone (middle upper 301 

Albian; Fig. 3). 302 

UAZ 6: This zone composed by the UAs 12–14 contains 26 genera and 46 species, distributed 303 

mostly among the genera Mortoniceras, Stoliczkaia, Callihoplites, Cantabrigites, Mariella, and 304 

Hamites (Fig. 1). It is mainly characterized by the coexistence of Hysteroceras binum (LO) or H. 305 

carinatum (LO) with Mortoniceras fallax (FO), Neophlycticeras blancheti (FO), Stoliczkaia dispar (FO) 306 

or Mariella nobilis (FO). Therefore, this zone records the first occurrence of many classical index 307 

species. It also contains the first occurrence of Anisoceras pseudoelegans and of the major 308 

heteromorphic genus Mariella (M. nobilis, M. gresslyi). The zone is firmly documented (Fig. 2) only in 309 

France (Col de Palluel and Salazac). It correlates with the Mortoniceras fallax Zone and the upper part 310 

of the C. robustus Subzone (middle upper Albian; Fig. 3). 311 

UAZ 7: This zone composed by the UAs 15–17 contains 23 genera and 49 species, distributed 312 

mostly among the genera Mortoniceras, Stoliczkaia, Pleurohoplites, Lepthoplites, Callihoplites, 313 

Cantabrigites, Hamites, Anisoceras, and Scaphites (Fig. 1). It is mainly characterized by the coexistence 314 

of Neophlycticeras blancheti (LO) or Anisoceras campichei (LO) with Mortoniceras rostratum (FO), 315 

Callihoplites campichei (FO) or Ostlingoceras puzosianum (FO). Noteworthy, Mortoniceras fallax still 316 

occurs throughout this zone, which also records the first representatives of Pleurohoplites and 317 

Ostlingoceras, as well as the first occurrence of Stoliczkaia clavigera in the upper part of the zone. The 318 
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zone is documented (Fig. 2) in France (Col de Palluel, Mont Risou), Germany (Kirchrode), England, 319 

and possibly Belgium (Harchies, Strépy). It roughly correlates with the Mortoniceras rostratum Zone 320 

(upper upper Albian; Fig. 3). 321 

UAZ 8: This zone composed by the UAs 18–20 contains 24 genera and 48 species, distributed 322 

mostly among the genera Mortoniceras, Stoliczkaia, Callihoplites, Pleurohoplites, Hyphoplites, 323 

Anisoceras, Mariella, Ostlingoceras, and Scaphites (Fig. 1). It is mainly characterized by the 324 

coexistence of Mortoniceras rostratum (LO), Anisoceras perarmatum (LO), Callihoplites vraconensis 325 

(LO) or Ostlingoceras puzosianum (LO) with Mariella bergeri (FO), Hyphoplites campichei (FO) or 326 

Idiohamites elegantulus (FO). Noteworthy, the zone records the occurrence of the first representatives 327 

of Hyphoplites and Arrhaphoceras, as well as the last occurrence of M. fallax and M. rostratum. 328 

Additionally, Hyphoplites falcatus and Pleurohoplites renauxianus have their first occurrence in the 329 

upper part of this zone. The zone is documented (Fig. 2) in France (Col de Palluel, Mont Risou, 330 

Montlaux, Marcoule, Clansayes), England, possibly Belgium (Harchies), but not in Germany; 331 

nevertheless, this zone is the most widely documented. It roughly correlates with the Mortoniceras 332 

perinflatum Zone (upper upper Albian; Fig. 3). 333 

UAZ 9: This zone composed by the UAs 21–23 contains 19 genera and 22 species, distributed 334 

mostly among the genera Stoliczkaia, Hyphoplites, Arrhaphoceras, Scaphites, Mariella, and 335 

Idiohamites (Fig. 1). It is mainly characterized by the coexistence of Stoliczkaia dispar (LO), S. 336 

clavigera (LO), Callihoplites tetragonus (LO) or Scaphites meriani (LO) with Arrhaphoceras 337 

briacensis (FO). Noteworthy, the genus Mortoniceras is not documented in this zone, as well as many 338 

species from the previous zone, therefore reflecting an important diversity dropdown during this zone. 339 

The zone is documented (Fig. 2) in France (Col de Palluel, Mont Risou) and England. It correlates with 340 

the Arrhaphoceras briacensis Zone (uppermost Albian; Fig. 3). 341 

 342 

3.3. Late Albian ammonite palaeobiodiversity 343 

 344 
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The ammonite palaeobiodiversity in terms of total richness and based on the reconstructed quantitative 345 

UAs is reported on Figure 4 for all ammonites and on Figure 5 at the family level. Late Albian 346 

ammonites show a slight protracted increase of total diversity throughout the entire late Albian that is 347 

sharply interrupted in the latest Albian (Fig. 4) by a major diversity dropdown at the boundary between 348 

the UAZ 8 (i.e., the M. perinflatum Zone) and the UAZ 9 (i.e., the A. briacensis Zone; see Fig. 3). 349 

Additionally, a short decrease of diversity is recorded in the UA 9 (= lower part of the M. inflatum Zone). 350 

Interestingly, these two diversity decreases impact almost equally all families (Fig. 5) and the relative 351 

proportion of heteromorphs/monomorphs remains rather stable (Fig. 4). There are yet slight differences: 352 

Brancoceratidae and Turrilitidae are more diverse before the diversity decrease at the UA 9, whereas 353 

Hoplitidae are more diverse and Lyelliceratidae appear and diversify thereafter (Fig. 5). Furthermore, 354 

this turnover is well marked at the species level with clearly two different sets of species before and 355 

after the UA 9 (Fig. 1). Therefore, the late Albian in Europe is marked by two different events: 1) an 356 

ammonite turnover not really associated with a diversity drop in the middle upper Albian (UA 9; = M. 357 

inflatum Zone), and 2) a major and sharp diversity decrease during the uppermost Albian (UAZ 8/9 358 

boundary; = M. perinflatum/A. briacensis zones boundary).  359 

 360 

4. Discussion 361 

 362 

The correlation of the UA-based biozonation built here with traditionally developed late Albian 363 

ammonite zonations of western Europe is reported on Figure 3. The two most classical ammonite 364 

zonations are those of southwestern Europe (Kennedy and Latil 2007 for SE France) and of northwestern 365 

Europe (Gallois and Owen 2020 for England). Noteworthy, the resolution between the quantitative 366 

association-based zonation (this work) and these two empirical interval-based zonations is almost 367 

similar at the zone/subzone level (9 UAZs versus 7 and 9 subdivisions, respectively; Fig. 3). 368 

Nevertheless, despite a roughly equal number of zones, the quantitative UA method produces a more 369 

than two-fold higher resolution with up to 23 UAs. Given its completeness (see Fig. 2), the Col de 370 
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Palluel section in SE France can be considered as the reference section for recognition of this empirical 371 

late Albian ammonite zonation in southwestern Europe. Besides, the zonation of this work underlines 372 

that many index taxa have their range extending outside their eponymous zone and often coexist. For 373 

instance, the ranges of M. pricei and M. inflatum overlap, as well as those of M. fallax and M. rostratum 374 

(Figs 1, 2; coexistences actually documented in England). Because the empirical zonations of western 375 

Europe rely on fewer data and on the bioevents (mostly first occurrence) of specific index taxa, there 376 

are inevitable discrepancies with the association-based zonation of this work and their correlation is thus 377 

discussed below. 378 

 379 

4.1. Correlation with the interval-based zonation for southwestern Europe 380 

 381 

The ‘standard’ biostratigraphic scheme for late Albian ammonites in southwestern Europe has 382 

been established by Kennedy and Latil (2007). Historically, the late Albian is broadly subdivided by the 383 

Mortoniceras inflatum Zone and the overlying Stoliczkaia dispar Zone (Latil 1994, Owen 1999); the 384 

latter zone roughly correlates with the Vraconnian substage, and both taxa are known to be more 385 

restricted than their historical eponymous zone. Subsequently, the S. dispar Zone has been further 386 

subdivided into three zones (Owen 1999, Amédro 2002), which are, in stratigraphic order: Mortoniceras 387 

fallax Zone, Mortoniceras perinflatum Zone, and Arrhaphoceras briacensis Zone. Finally, Kennedy and 388 

Latil (2007) further introduced a fourth zone before the M. perinflatum Zone, namely the Mortoniceras 389 

rostratum Zone. Then, this four-fold subdivision of the latest Albian (ca. the ‘old’ S. dispar Zone), has 390 

been widely used as the reference in western Europe (e.g., Kennedy et al. 2008, Amédro and Matrion 391 

2014, Reboulet et al. 2018) and also worldwide (e.g., Kennedy et al. 1998, Kennedy, 2004).  392 

Overall, the two zonations correlate relatively well with a slightly higher resolution for the UA-393 

zones (M. pricei and M. inflatum zones are both subdivided into two UAZs; Fig. 3), notwithstanding the 394 

fact that the 23 UAs still reach a two-fold resolution. Since these two ammonite zonations are 395 

constructed on different principles (association among all data vs. first appearance of a few ‘index’ taxa) 396 
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their correlation is not straightforward. When comparing both zonations by focusing on the index taxa 397 

defining the interval zones, four major discrepancies between the two zonations can be highlighted. 398 

First, the C. auritus Zone (i.e., UAZ 4), which is documented in Germany and England, but not 399 

in France (Fig. 2), already contains M. inflatum, which supposedly defines the overlying eponymous 400 

zone (Fig. 3). This C. auritus Zone is defined (here) mainly either by the restricted occurrence of its 401 

eponymous taxon or by the coexistence of M. pricei and M. inflatum. However, these two evidences are 402 

absent in SE France (Col de Palluel), therefore preventing the recognition of this intermediate zone 403 

between the M. pricei and M. inflatum zones. Referring to the Col de Palluel section (Gale et al. 2011), 404 

this interval possibly corresponds to the strata at about the level of the “Petite Vérole”, which is known 405 

to reflect a hiatus in the Col de Palluel section (that may represent as much as 2 Ma) as highlighted by 406 

cyclostratigraphic analysis (see Gale et al. 2011, p. 124) and previously identified as marking a 407 

significant firmground discontinuity (Bréhéret 1997). Therefore, in contrast to Gale et al. (2011), who 408 

claimed that there is no biostratigraphic gap at this level, we believe that there is indeed one preventing 409 

the recognition of this C. auritus Zone. Last but not least, considering only the FO of M. inflatum for 410 

correlation will de facto prevents the recognition of this C. auritus zone. 411 

Another discrepancy is related to the ranges of the index species M. fallax and M. rostratum. On 412 

the basis of various sections from SE France, Kennedy and Latil (2007) proposed that M. rostratum 413 

succeeds M. fallax, with no temporal overlap. However, Owen (2012) stressed that in England M. fallax 414 

is fully associated with M. rostratum (Rockshaw section; see Owen 1976). According to this author, M. 415 

fallax is merely a slightly more coarsely tuberculate M. rostratum. Although we do not concur with 416 

synonymizing the two species, our study corroborates that M. fallax and M. rostratum coexist for a 417 

significant amount of time (Figs 1, 3). Consequently, on the one hand the FO of M. fallax is not sufficient 418 

by itself to identify its eponymous zone and differentiate it from the overlying M. rostratum Zone. On 419 

the other hand, our study supports the distinction of these two zones based on the associated taxa (Fig. 420 

1): 1) the M. fallax Zone is clearly defined by the co-occurrence of M. fallax with Hysteroceras binum; 421 

and 2) the M. rostratum Zone is clearly characterized by the co-occurrence of M. rostratum with either 422 

O. puzosianum or Callihoplites vraconensis. 423 
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Third, a discrepancy is related to the M. perinflatum Zone. Kennedy et al. (1998) argued for the 424 

discrimination of M. perinflatum from M. rostratum. Then, Kennedy and Latil (2007) firmly established 425 

it as a zone by assuming that M. perinflatum succeeds M. rostratum without stratigraphic overlap. 426 

However, as recently discussed by Jattiot et al. (2022), evidence for the separation of M. rostratum and 427 

M. perinflatum as two distinct species is still lacking. Briefly, M. rostratum could supposedly be 428 

separated from M. perinflatum on the basis of its less depressed whorl section (Kennedy et al. 1998, 429 

Kenned and Latil 2007). However, as underlined by Jattiot et al. (2022), there are published specimens 430 

not complying with this criterion (e.g., Latil et al. 2021), notwithstanding the fact that discriminating an 431 

ammonite species only on a ‘less depressed whorl section’ is somehow complicated when most 432 

described specimens are distorted (see, e.g., Kennedy and Latil 2007) and when this criterion is largely 433 

recognized as being typical of intraspecific variation (see, e.g., Monnet et al. 2015). Therefore, the 434 

identification of M. perinflatum is still puzzling and controversial and, thus, a M. perinflatum Zone 435 

following the M. rostratum Zone remains highly speculative and precarious. Consequently, in our study 436 

M. perinflatum was merged with M. rostratum, thus preventing the recognition of the so-called M. 437 

perinflatum Zone based solely on this species. However, despite the absence of it in our dataset, our 438 

association-based biochronological analysis still support the existence of a zone corresponding to the 439 

time interval usually attributed to the M. perinflatum Zone (i.e., the UAZ 8, see Fig. 3). As described in 440 

the results (Fig. 1), the UAZ 8 is clearly distinguishable, even in the absence of M. perinflatum, by the 441 

restricted occurrence of Arrhaphoceras substuderi, as well as by the co-occurrence of M. rostratum 442 

(LO), M. fallax (LO) or Ostlingoceras puzosianum (LO) with Mariella bergeri (FO) or Hyphoplites 443 

campichei (FO). 444 

Fourth, regarding the latest Albian A. briacensis Zone, the correlation of its base is equivocal 445 

(Fig. 3). The A. briacensis Zone was introduced by Scholz (1973) for an uppermost Albian interval in 446 

which Mortoniceras and Ostlingoceras puzosianum are absent, and Hyphoplites have already appeared. 447 

The studies on the Mont Risou (Gale et al. 1996) and Col de Palluel (Gale et al. 2011) corroborated this 448 

pattern, but led their authors to the statement that the A. briacensis Zone remains an ambiguous unit, 449 

mostly characterized by what taxa are absent rather than by what taxa are present. This is especially 450 
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evident in the current analysis, which highlights a sharp diversity dropdown at the UAZ 8/9 boundary 451 

leading to a depauperate terminal Albian zone (see results). In this context, the index species A. 452 

briacensis is absent at the base of the UAZ 9 (i.e., the UA 21), while Mortoniceras and O. puzosianum 453 

have already disappeared. Therefore, this zone cannot be recognized by the FO of its eponymous species. 454 

 455 

4.2. Correlation of the UA zonation with the standard interval-based zonation for west northern Europe 456 

 457 

Another major interval-based zonation has been proposed for northwestern Europe (i.e., England; 458 

Wiedmann and Owen 2001, Owen and Mutterlose 2006, Cooper and Owen 2011a, b, Gallois and Owen 459 

2020), which is well-known to contain ammonite faunas with Boreal affinities during the Cretaceous 460 

(‘Hoplitinid Arctic–European province’; Fenner 2001, Amédro and Robaszynski 2005, Lehmann et al. 461 

2015). Overall, the two zonations correlate relatively well with both 9 zones/subzones, while the 462 

association-based zonation reach a two-fold resolution with 23 UAs (Fig. 3). However, there is a partial 463 

mismatch among some zones (e.g., UAZs 2–3 vs. the H. orbignyi, H. binum, and H. choffati subzones, 464 

and UAZs 5–6 vs. the C. robustus Subzone). Furthermore, similarly to southwestern Europe (see 465 

discussion above), our association-based analysis highlights that many index taxa have their range 466 

extending outside their eponym zone and often coexist such as Hysteroceras orbignyi and H. binum 467 

(Fig. 3). When comparing both zonations by focusing on the index taxa defining the interval zones, two 468 

major discrepancies between the two zonations can be highlighted. 469 

First, although the Hysteroceras varicosum Zone fully correlates with the UAZs 2–3 (its index 470 

species ranging throughout these two UAZs), the three subzones of the H. varicosum Zone (H. orbignyi, 471 

H. binum and H. choffati subzones) cannot be directly correlated with UAZ 2 and UAZ 3. Indeed, H. 472 

choffati is a ‘single-section’ taxon, only occurring in the Upper Gault and Upper Greensand formations 473 

(England), and was not taken into account in our UA analysis. Nevertheless, the level containing H. 474 

choffati can be dated back to UA 7 (England level U4; see Appendix C); therefore, despite absence of 475 

its eponymous species in our analyzed data, the H. choffati subzone can be tentatively correlated with 476 

the upper part of the UAZ 3. Noteworthy, the UA 7 is characterized by a peculiar assemblage with the 477 
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restricted occurrence of several Epihoplites species (Fig. 1, Appendix C). Regarding the H. binum 478 

Subzone, the species has its FO in the UA 4, therefore within the UAZ 2. Thus, the base of this subzone 479 

does not correlate with the base of a UAZ. Then, regarding the H. orbignyi Subzone, the species has its 480 

FO in the UA 2, thus within the UAZ 1 (i.e., within the preceding Dipoloceras cristatum Zone). 481 

Altogether, although the index species of the three subzones have their FO in the expected order 482 

(orbignyi → binum → choffati), they do not match with the bases of the reconstructed UA-zones. 483 

Additionally, the fact that the biostratigraphic ranges of H. binum and H. orbignyi largely extend outside 484 

their eponymous interval zone (Fig. 3) could actually impede their use as interval index taxa. 485 

Second, the Mortoniceras inflatum Zone correlates with three UA-zones (UAZs 4–6). However, 486 

the name of this zone in northwestern Europe is inopportune because the index species is largely 487 

restricted to the lower part of the zone and this zone only partially matches the southwestern zone based 488 

on the same index species (Fig. 3). Noteworthy, the Callihoplites auritus Subzone correlates particularly 489 

well with the UAZ 4, whereas this zone is poorly recognized in southwestern Europe (see above). The 490 

overlying Callihoplites robustus Subzone fully correlates with both UAZs 5–6. Again, C. robustus is 491 

only documented in England and therefore cannot be used as a reliable taxon for correlation. 492 

Nevertheless, this species is documented in association with M. inflatum, C. tetragonus, and 493 

Cantabrigites minor indicative of the upper part of the UAZ 5. It must be stressed that the interval of 494 

UAZs 5–6 is poorly documented in England. At that time, this area contains just a few assemblages 495 

predominated by endemic species of Callihoplites. For example, there is currently no evidence for the 496 

UAZ 6 (= M. fallax Zone; Fig. 2); M. fallax is actually documented in England but already with M. 497 

rostratum, thus indicating the overlying UAZ 7 and highlighting a late FO for M. fallax compared to 498 

southwestern Europe. This case clearly illustrates that association-based zones are more reliable for 499 

correlation than interval zones based on a single FO. 500 

Finally, above the C. robustus Subzone, the interval-based zonation for northwestern Europe does 501 

not differ from that of southwestern Europe with the succession of M. rostratum, M. perinflatum, and 502 

A. briacensis, corresponding to the three UAZs 7–9 (Fig. 3). However, fewer UAs are recognized in 503 

England compared to SE France. This difference in resolution is probably induced by the state of data 504 
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available: in England only synthetic ranges among already defined biostratigraphic units are available, 505 

whereas in SE France bed-by-bed occurrence data are available. Only the latter case is able to produce 506 

high resolution biozonations and, therefore, are nowadays the recommended data type, not only for 507 

quantitative biostratigraphy and correlation, but also for palaeobiodiversity analyses (see Fan et al. 508 

2020). 509 

   510 

4.3. About the Vraconnian substage 511 

 512 

The position of the Vraconnian chronostratigraphic unit (uppermost Early Cretaceous) as an 513 

independent stage or a late Albian substage is still debated (see, e.g., Amédro 2002, 2008 contra Scott 514 

2009) with arguments mostly related to faunal changes and shortening of the very long Albian stage. 515 

Although the present work does not aim to close the debate, the application of the quantitative UA 516 

method allows to bring a few more elements to this discussion. According to Amédro (2008), the base 517 

of the Vraconnian (ca. the historical S. dispar Zone) is marked by the FO of Mortoniceras fallax, which 518 

in this work correlates with the base of the UAZ 6 (i.e., the UA 12; Fig. 3). Noteworthy, the reconstructed 519 

late Albian ammonite diversity in western Europe based on the UA-zonation (Fig. 4) does not show any 520 

diversity drop and/or high turnover rates at UAZ 6; instead, the ammonite turnover and slight diversity 521 

decrease documented here occurred one UA-zone earlier (UA 9; Figs 1, 4, 5). Importantly, it is 522 

commonly recognized that a change of stage should be linked with a marked change of faunas. Yet, this 523 

is not the case for the proposed Vraconnian and, therefore, this constitutes an argument against its 524 

reinstatement as a stage. Furthermore, this UAZ6/M. fallax Zone is poorly documented through space 525 

and, thus, is not an excellent correlation marker (based on ammonite evidence). 526 

 527 

4.4. Late Albian ammonite palaeobiodiversity 528 

 529 



Newsletters on Stratigraphy 21 

The newly reconstructed quantitative biochronology of late Albian ammonites in western Europe 530 

enables investigating their palaeobiodiversity changes at a high-resolution. It highlights two different 531 

biotic events among ammonites: 1) a turnover not really associated with a diversity drop in the middle 532 

late Albian (UA 9; = M. inflatum Zone; Figs 1, 4, 5), and 2) a major and sharp diversity decrease during 533 

the latest Albian (UAZ 8/9 boundary; = M. perinflatum/A. briacensis zones boundary; Fig. 4). Although 534 

these two diversity events correspond to time intervals with a lower sampling in terms of available 535 

outcrops and collected ammonites, at least the second one is probably not an artefact. Interestingly, the 536 

depauperate state of the A. briacensis zone is already known (see Owen 1989, Gale et al. 1996, 537 

Wiedmann and Owen 2001), and this uppermost Albian ammonite diversity dropdown is concomitant 538 

with a well-known Oceanic Anoxic Event, namely the OAE1d. In Western Tethys, the latest Albian 539 

OAE1d is mainly characterized by the deposition of organic-rich sediments and carbon isotope 540 

fluctuations (Gale et al. 1996, Wilson and Norris 2001, Bornemann et al. 2005, Jenkyns 2010, Richey 541 

et al. 2018). Although the mechanisms responsible for OAEs have been strongly debated and are not yet 542 

definitely understood, there is no doubt that they significantly contributed to changes and evolution of 543 

the biological marine community, especially particularly in the planktic assemblages (Erbacher and 544 

Thurow 1997, Erbacher et al. 1998, Leckie et al. 2002, Giraud et al. 2003, Reboulet et al. 2005, Watkins 545 

et al. 2005). Therefore, this OAE1d also impacted nektic communities as illustrated here with 546 

ammonites. 547 

 548 

4. Conclusions 549 

 550 

The use of the unitary association method on a large dataset led to the construction of a quantitative 551 

biochronology constituted of 23 UAs (merged into 9 UA-zones to increase their geographical 552 

reproducibility) for the whole late Albian. We showed that the UA method enables accounting for and 553 

highlighting the range of actually all taxa, and not just a few selected index taxa whose ranges very often 554 

extend before and/or after their eponymous interval zone. The UA approach also enables tracing back 555 
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the possible origin of the conflicting stratigraphic occurrences. Besides, although the resolution between 556 

the quantitative association-based zonation and these two empirical interval-based zonations is almost 557 

similar at the zone/subzone, the quantitative UA method produces a more than two-fold higher 558 

resolution. Therefore, in our opinion, this work demonstrates that the UA method proved itself very 559 

appropriate and efficient for improving the ammonite biostratigraphy and biozonation of the late Albian 560 

in western Europe. 561 

Furthermore, we correlated the UA-based biozonation with the two most classical ammonite 562 

zonations of southwestern and northwestern Europe. Overall, these correlate relatively well with the 563 

UA-based biozonation, although we could highlight major discrepancies often due to ranges of index 564 

species that extend outside their eponymous zones. All these discrepancies underline that it is better, if 565 

not mandatory, to establish a biozonation by accounting for as much data as possible (as done in this 566 

work) and not focusing on a single section to avoid missing zones due to local sedimentary/preservation 567 

hiatuses. Additionally, it may be risky to correlate using only the first occurrence (or the LO) of a single 568 

taxon for the very same reasons. Last but not least, in our opinion, trying to make the various species of 569 

Mortoniceras follow an anagenetic pattern (chronospecies) as done in previous analyses (e.g., Kennedy 570 

and Latil 2007, p. 457) to obtain a perfect succession of FOs is completely elusive, as underlined by the 571 

fact that many Mortoniceras species coexisted in time (if not in space; see Figs. 1, 3 and discussion 572 

above). 573 

Finally, since biochronozones based on the principle of maximal association (such as the unitary 574 

associations) provide a very robust and reliable basis for counts of taxonomic richness, we were able to 575 

measure ammonite species richness through the late Albian in western Europe based on the 576 

reconstructed UA-biozonation (Fig. 4). We showed that the late Albian in Europe is marked by a major 577 

and sharp ammonite diversity decrease during the latest Albian (UAZ 8/9 boundary; = M. perinflatum/A. 578 

briacensis zones boundary), which is concomitant with the well-known Oceanic Anoxic Event OAE1d. 579 

 580 
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 585 

Figure captions. 586 

Fig. 1. Range chart of the 115 studied ammonites among the reconstructed 24 unitary associations for 587 

the entire late Albian of Europe (see text for explanations). 588 

Fig. 2. UA-based ammonite zonation of the late Albian and identification of the UAs in the studied 589 

European sections. Abbreviations: FO, first occurrence; LO, last occurrence. 590 

Fig. 3. Correlation of the UA-based ammonite zonation (this study) of the European late Albian with 591 

the standard zonation of west southern Europe (Kennedy and Latil 2007) and of west northern Europe 592 

(Gallois and Owen 2020). 593 

Fig. 4. Species richness of heteromorphic and monomorphic ammonites through the late Albian in 594 

western Europe based on the reconstructed UA-biozonation. Notably, the sharp diversity dropdown at 595 

the UAZ 8/9 boundary correlates with the spreading of the Oceanic Anoxic Event OAE1d (Breistroffer 596 

level). 597 

Fig. 5. Species richness of each ammonite family through the late Albian in western Europe based on 598 

the reconstructed UA-biozonation. The sharp diversity dropdown in the UAZ 9 correlates with the 599 

Oceanic Anoxic Event OAE1d. 600 

 601 
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 Arrhaphoceras briacensis Zone 

interval-based zonation of northwestern Europe
(Wiedmann and Owen 2001, Gallois and Owen 2020)

 Arrhaphoceras briacensis

Zone Subzone

Stoliczkaia
(Stoliczkaia)

spp.

Mortoniceras
inflatum

Mortoniceras rostratum

Mortoniceras perinflata

Callihoplites auritus

Callihoplites robustus

Hysteroceras
varicosum Hysteroceras binum

Hysteroceras choffati

Hysteroceras orbignyi



ta
xo

no
m

ic
 ri

ch
ne

ss
 (n

um
be

r o
f s

pe
ci

es
)

0

10

20

30

40

50

UA−
1

UA−
2

UA−
3

UA−
4

UA−
5

UA−
6

UA−
7

UA−
8

UA−
9

UA−
10

UA−
11

UA−
12

UA−
13

UA−
14

UA−
15

UA−
16

UA−
17

UA−
18

UA−
19

UA−
20

UA−
21

UA−
22

UA−
23

UAZ 1 UAZ 2 UAZ 3

U
A

Z 
4

UAZ 5 UAZ 6 UAZ 7 UAZ 8 UAZ 9

OAE1d
heteromorphs
monomorphs



fa
m

ily
’s

 m
ax

im
um

 ta
xo

no
m

ic
 ri

ch
ne

ss

Brancoceratidae

Lyelliceratidae

Labeceratidae

Desmoceratidae

Hoplitidae

Phylloceratidae

Hamitidae

Turrilitidae

Anisoceratidae

Baculitidae

Scaphitidae

Tetragonitidae

Gaudryceratidae
Lytoceratidae

10

4

1

3

14

1

8

8

3

3

3

3

2
1

UAZ 1 UAZ 2 UAZ 3 UAZ4 UAZ 5 UAZ 6 UAZ 7 UAZ 8 UAZ 9

OAE1d

l a t e  A l b i a n

A
ca

nt
ho

ce
ra

to
id

ea
Tu

rr
ili

to
id

ea
Te

tra
go

ni
to

id
ea

U
A 

1

U
A 

2

U
A 

3

U
A 

4

U
A 

5

U
A 

7

U
A 

9

U
A 

8

U
A 

11

U
A 

14

U
A 

10

U
A 

13

U
A 

20

U
A 

23

U
A 

19

U
A 

18

U
A 

17

U
A 

16

U
A 

12

U
A 

15

U
A 

22

U
A 

21

U
A 

6



Table of ammonite ranges in the English Upper Gault and Upper Greensand Formations
(Gault Group)o Late Albian

Key to Subzones Ul = early Dipoloceros cristatum
U2 = latB Dipolacetas cristatum
U3 : Hysteroceras orbignyi
U4= Hysterocerss binum
a5= Hysteroceras choffati .

A6 = early Procallihoplites suritas
A7 =late Prccallihoplites ailritus
IJ8 : Mortoniceras rostrntam
U9 : Duntovarites perinflatum
U10 : early Praeschlaenbaehia briacensis

varrcosum infatum

Subzones

Hamites mmimus mmimus J. Sowerby

Hamites mmimus recttn Brovtn

H am i t es t enui c o s t atu s Spath

Hamites gardneri Spath

Hamites gibbosus J. Sowerby

Hamites tenuis J. Sowerby

Hqmites intermedius intermedius J. Sowerby

H amites intermedius opalinus Spath

H amites intermedias disfinaus Spath

Ham it ell a annul qtum(d' Orbigny)

P lanohamites compressus J. Sowerby

P I an o hamit e s in cam atu s Brown

Stomohamites virgulatus (Brongniart ?) P & C.

S t om oh amit e s v enetz i anus P ictet

Stomohamites duplicatus Pictet & Campiche

St o m o h am i t e s char p ent i er i P ictet

St om oh am i t e s s ubv i r gul atus Spath

U1

X

k

X

X

?

?

X

x

x

x

X

x

X

X

x
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U7U6U4U3U2
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X
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X'
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X
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X

X

X

X

x

X

X

X
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varrcosum inflatum dispar

Subzones

St o mo hsmit es i b ae Spath

S t o m o hsm it e s fun atus Brongniart

S t om oh am it e s pty c h o c er at oides Spath

Stomohamites parkins oni (Fleming)

Lytohamites similis Casey

Ps ilohamites boachardianrzs d'Orbigny

Lechites gaudiniPictet & Campiche

L e c hit es m or et i Breist offer

L e c hi t es c o mmunis Spath

Scip onocer as s kipp er ae Monks

Ptychoceras (Mastigoceras\ adpressum (J. Sowerby)

H am i t o i d e s? ru s t i cas Spath

Hamitoides sp.

I diohamites tubercul atus (J. Sowerby)

Idiohamites spiniger (1. Sowerby)

I di oham it es sub sp iniger Spath

I diohamites intermedias opal inus Spath

Idiohamites intermedius distinctus Spath

Idiohqmites turgidus turgidus (J. Sowerby)

I dioham ites turgidus robustus Spalh

Idiohamites tur gidus subonnulatus SpaIh

I d iohsm ites sp inulosus (J. Sowerby)

I d io h amit e s fovr inus (P ictet)

I di o ham it es el I ipt i c o i de s Spath
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X

U8
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Subzones

I diohamites? incertus incertus Spath

Idiohamites? incertus costatus SpaIh

I diohsm ites des or i anus (PicteQ

I dioham it es dors et ens is SPath

I di o h am i t e s el e g antulus SPath

Ani s o c er as s ub ar cu atum SPath

Anis ocer as s aus sur eanum (Picte|

Anisoceras srmatum (J. SowerbY)

Anisoceras perarmqtum (Pictet & Campiche)

Anis o cer as pict et i SPath

Anis a c er as ex o t i cum SPath

Anisoceras pseudoelegans Pictet & Qampiche

A n is o c e r as c a mp i ch e i SPath

P s eu dh e li c o c er as p s eu d o e I e gans Spath

P seudhelicoceras robertianum (d'Orbigny)

Pseudhelicoceras robertianum ornatum Spath

P s eu dhe I i c o c er a s gault inum Spath

Eoscaphites circulark (J. de C. Sowerby)

Eoscaphit es circalaris depressus Spath

Eoscaphites circularis rugosus Spath

E o s c ap hit e s s ub c i r ca I ar is SPath

S c aphi t es s impl ex Jukes-Browne

Scaphites hugar diarrus hugar dianus d'Orbigrry

S c ap hit es hugar d i a mts n o dat a Spath

X
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varrcosum inflatum dispat
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Subzones

Scaphiles hugardianus sublaevis Spath

M ar iell q b er ger i @rongniart)

Mariella miliaris (Pictet & Campiche)

Mariella gresslyi (Pictet & Campiche)

Mariella cantabrigiensls (Jukes Browne)

Mariella nobilis (Jukes Browne)

Mariella cf. escheriana (Pictet)

Ostlingocer as puzos ianum (d'Orbigty)

Turrilitoides hugardiamrs hugar dianus (d'Orbigny)

Turrilitoides hugardianus crassicostata Spath

htrrilitoides toucosi (Hdbert & Munier-Chalmas)

Hypoplryll ocer as subalp inum (d'Orbigny)

Hypophyll oc er as s er es itens e Pervinquidre

G audryceras aff . madr aspqtanum @landford)
Stoliczka

Tetr agonites timotheanus (Picte|

Desmocer as latidorsatum (Michelin)

Uhligell a derancei Casey

Beudanticeras beudanti beudanti @ronpiart)

Beudanticeras beudanti ibecforme Spath

B eudanticer as sabparandieri Spath

B eudanticer as sphaer otum (Seeley)

varrcosum inflatum dispar

X

?

?

x

x

X

x

x

X

X

X



Subzones

P uz o s i a (P uz o s i a) s p at hi Breistr offer

Puzosia (Puzosia) sharpei Spath

Pazosia (Puzosia) communis Spath

G as tr op I it es c ant i anus Spath

An ah op I i t e s pl anus (Mamrtell)

Anahoplites planus discoidea Spath

Anahaplites splendens (J. Sowerby)

An ahop I i t e s p i ct et i Spath

L ep t h op I i t e s fa I c oides Spath

Lepthoplites cantabrigiensis Spath

L ep t hop I it e s pr ox imu s Spath

L ep th op I it es p s ea dop I anus Spath

L ep t hop I it e s orn atu s Spath

Neanohoplites sp.

Semenoviceras sp.

H en ges t it es app I anatus Casey

Euhopl ito ides inornatus (Spath)

Dimorphoplites glaber Spath

D im orphopl ite s chl oris Spath

Dimorphoplites tetfudis Spath non Bayle

D imorphopl ites t ethy dis (Bayle)

Dim orphoplit es biplicatus (Mantell)

D im orphop I it e s p ar kins on Spath

X

X

x

X

X

X

X

X

X

varrcosum inflatum dispar
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X
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cristatam vqrrcosum inflatum

Subzones

D imorphopl ites? silenus Spath

Met a c I av it es m et am orp hicas (Spath)

Metacl attites compressus (Parona & Bonarelli)

M etacl qv ites trifi dus (Spath)

Metacl qvites trifidus pl ana Spath

Ep ihoptit es iphitus Spath

Ep ihop lit e s gr ac i I i s Spath

Epihoplites denarius (J. de C. Sowerby)

Ep ih opl it e s d elu ci @rongnixt)

Ep ihopl it es cost o s us Spath

Ep ihop I i t e s glp tus Spath

Ep ihop I it e s gi b b o s us Spath

Ep ihop I i t es - P r o c all ih op I i t es tarrsitions

Pracallihoplites aur itus (J. Sowerby)
(syn. Procallihoplites srigosus cristata Spath)

P r o c al I ihopl it e s for m o s us Spath

P r oc all ihop I ites str igosus Spath

P r o c al I ihopl ites p atell a Spath

P r o c all i hopl it es horr i dus Spath

C al I i h op I ites v or i ab i li s Spath

C al I ihop I it es p ott ernens is Spath

Callihoplites catillus (J. de C. Sowerby)
(syn. C al I i hop I it e s fiis cus Spath)

Call ihoplites advena Spalh

Callihoplites glossonotus (Seeley)

C al I i hopl it e s I eptus Spath

X

X

.X

x X

x

X

X

X

x

x

X

x

X

X

x
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criststum varicosum Wqtum dispor

Subzones

C al I ihopl it es s eel eyi Spath

C allihoplites tetragonus (Seeley)

C all ihopl it e s t etr a gonus v a I g or i s Spath

Callihoplites tetragonus compressa Spath

Callihoplites tetragonas dors etensis Spatb

C al I ihopl ites tetr agonoides Spath

C al I i hop I it e s pul c h er Spath

Callihoplrtes vraconensis (Pictet & Campiche)

C allihoplites vraconensis Watc Spath

Callihoplites gmnus Spath

C al I ihopl ites angli cus Breistroffer

C allihoplites at avus Spath

C all ihopl ites p ar a doxus Spath

C all ihopl ites multifi dus @reistroffer)

C al I ihop I i t es r o b us tus Spath

C all ihoplit es cratus (Seeley)

Callihoplites glossonotus (Seeley) C. F. Breist

C al I i h op I it e s I ept us (Seeley)

Callihoplites leptus laevis Spath

C aI I i hop I it es p ul c her Spath

Call i hopl it es senills Spath

Callihoplites senilis laevigata Spath

Callihoplites senilis serrigera Spath

C al I i hop I it e s p s eudo gI ab er Spath

C allihoplites aconthonotus (Seeley)
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X

X

X

X

x

x
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Subzones

Arrhaphoceras studeri (Pictet & Campiche)

Arrh aph o c er as s ub s tu der i Spath

Ar r h ap ho c er as pr e c oup ei Spath

Ar r h ap ho c e r as tr an s i t or ium Spath

Arrhaphoceras woodtu ardi (Seeley)

P I e ur oh op I it e s s u bv ar i ans Spath

P I eur ohoplit e s r enaux ianus (d'Orbigny)

P leurohoplites r enauxianus gracilis Spath

P I eur ohopl it e s epi gonus Spath

P I eur o h op I i t e s s er p ent inus Spath

Pleurohoplites serpentinus subglabra Spath

Euhoplites truncatas Spath late form

Euhoplites opalinus Spath late form

Euhoplites proboscideus proboscideus Spath

Euhoplites proboscideus intermedhu Spath

Euhoplites pr obos cideus ultimus Spath

Euh op I it e s ar m atu s Sp ath

Euhoplites trapezoidalis trapezoidalis Spath

Eu hopl it e s tr ap ez o i dal i s for m o s us Spath

Euh op I it e s s er ot inus Spath

Euhopl ites s oI enotus (Seeley)

Euhopl it es o chetonotus (Seeley)

Euhaplites ochetonotus nodosa Spath

Euhopl iles sublautus sublautus Spath

Euhoplites subl uutus monocantha Spath

Euhop I it es s ub cr en atus Spath

varrcosum

X

X

X

X

x

x

X

X

x
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X

x
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Subzones

Euhop I it e s v u I gar i s Spath

Euh oplit es b ol oni ens is Spath

Euh op I i t es alph aI autu s Spath

Discohoplites coelonotus (Seeley)

Dis cohoplites subfalcatus (Semenov)

Dkcohoplites simplex Wright & Wright

S av el iev el I a v ar i cosus (Spath)

Sottelievella vqlbonnensis valbonnensis (Hdbert &
Munier-Chalmas

Savelievella valbonnensis dorsetewis (Wrigbt &
w

Spothoplites trans itorius (Spath)

Sp athop lites anomulus (Spath)

Spathoplites arkelli (WriCht & Wright)

Wrighthaplites pylorus (Wright & Wrigh|

Wrighthoplites daedalius (Wright & Wright)

Hyp hop I it es c amp i chei Spath

Hyphoplites falc atas aurara W.ight & Wright

Hyphoplites falcato-coel onotus (Semenov)

N eophlyctic eras br otti anurn (d'Orbigny)

N e op hly c t i c er as g ib b o s um SPath

N eophlycti ceras s exangul alaz (Seeley)

E ot r op i t oi d es j ay et Breistr. offer

varrcosum inflatum dispar
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cristatum varrcosum inflatum dispar

Subzones

Protiss otia itieriqnum (d'Orbipy)

P r otiss otiq or ion Casey

St ol i cz kqi a disp ar (d' Orbigny)

Stolic czkaia rhatnnonotw (Seeley)

St ol i cz kai a not ha (Seeley)

St o I iczksi q dor s et ens is Spath

Stoliczkaia dorsetensis compressa Spath

E n gono c er as gr i m s dal e i Spxth

Dipolocer oides cornutum multispinos a Spath

Oxytropidocer as cantianum cantianum Spath

Oxytropidoceras cantianwn accentricurn Spath

D ipol ocer as b ouch ar di amtm (d' Orbigny)

Dipoloceras bouchordiamtm rectangularis Spath

Dipolocer as bouchar diaftum alticarinqtum Spath

Dipoloceras pseudaon pseudaon Spath

D ip ol o c er as p s eu d a on m oni I iform e Spath

Dipoloceras cristatum @rongniart)

Dipoloceras cristatum alatum Spath

Dipolocer as britannicum Breistroffer

Mortonicerutoides rigidum (Spath)

Hysteroceras (2 D ipoloceras) symmetr icam
(J. de C. Sowerby)

Hysteraceras (? Brancoceras) capricontu Spath

Hy s t er o c er as ps eu do c ornutum Spath
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X

X

X

x

x
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Subzones

Hyster oceras simplicicostata Spath

Hy s t er o c er as s erp entinum Spath

Hysteroceras vsricosum (J. de C. Sowerby)

Hyst erocer as bino dosum (Stieler)

Hy s t er oc er as orb i gny (Spath)

Hysteroceras binum (J- Sowerby)

Hy s t er o c er as subb inum Spath

Hy st er oc er as c ar inatum Spath

Hysteroceras carinatum as cendens Spath

Hy s t er a c er as ch offat i Spath

Hyster o cer as bucH andi (Spath)

Rhytodoceras cf. undatum van Hoepen

Aidoceras sp

Cechenoceras sp.

Mortonicer as (D eiradocer as) canningtoni
cunningtoni Spath

Mortonic er os (D eir ado cer as) cunningt oni
flawosumSpath

M or t oni c er as (D e ir a do c er as) b ipun et atum Spath

Mortoniceras (Deiradoceras) dwonense dwonense

Mortaniceras(Deiradoceras)devonense 
spath

compressaSpath

Mortoniceras (Deiradoceras) albense albense Spath

Mortoniceras (Deiradoceras) alberae transitoriq
SPath

Mortonicerqs (Mortoniceras) pricei Spath

Martonicer as (Mort oni cer as) pr icei interm e dius

vgrrcosum inJlqtum dispar

X

X

X
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Subzones

Mor t oni c er as (M art on i c er as) ge om etri cam Spath

Mortonicer as (Mortonicer as\ infl atum mJlaturn
(J. Sowerby)

Mort oni c er as (M or t o n i c er as) infl atum cr as s is s im a
(Kilian)

Mortoniceras (Mortoniceras) inJlanm sperta (Spath)

Mortoniceras (Martoniceras\ infl atum orbigryi Spath

Mortoniceras (Mortoniceras) inflatum pictet, (Spath)

Mortoniceras (Mortoniceras) infl anm gibbosum
Spath

Mortoniceras (Mortoniceras) infl atum rugosum
(SPath)

Mort onie er as (Mortani c er as) arietifotme (Spath)

Mortonic er as (Mort onic er as) fi s s ic os t atum

fissicostatum Spath

Mol t oni c er os (Mor t oni c er as) fts s i c o s t atum
ascendens Spath

Mortoniceras (Mortoniceras) commune commune
SPath

Mortoniceras (trtfortoniceras) pachys (Seeley)

Mort oni c er as (Mor t o n i c er as) p ott er nens e Spath

Mortoniceras (Mortoniceras) evolutum Spath

Mortonic er as (Mortoni cer as) qu adr inodosan (Spafh)

Mortoniceras (Mortoniceros) rostratum (J. Sowerby)

Mortoniceras (Mortanicer as')/a/lc Breistroffer

Mortonic er as (Mort onic er as) als tonens e Breistroffer

Mortoniceras (Mortoniceras) nanum nanurn (Spath)

Mortoniceras (Mortonicer as\ nanum actrema Spath

Mortoniceras (Durnov arites) perinfi atum (Spath)

Mortoniceras (Durnovarites) qua*atum (Spath)

varrcasum inflatum dispar
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cristatum varrcosum inflatum dispar

Subzones

Mortonicer as (Durnovarites) p ostinfl otum Spath

Mortonicer as (Durnw arites) subquadr atum Spath

Mort oni c er ss (Durnov arit es) subquadr atum
crassicostata Spath

Mortonicer as (Durnov arit es) subqu odr frum
tumidaSpath

Goodhallites goodhalli goodhalli (J. Sowerby)

Goodhallites goodhalli apl anatus Spath

Goodhallites goodhalli shenleyensls Spath

Goodhsllites goodhalli tuberculata

G o o dh al I it es t u b er cul atum Spath

Go o dhall ites del ab e ehei Spath

Goodhallites delabechei robustus SpaIh

Goodhallites candollianum Spath non Pictet

G o o dh aII it es fal cifer Spath

N eoharp o c er as c opt ens e Spath

Neoharpocer as hugardianum (d'Orbigny)

N e ohar p o cer as irr e gul ar e Spath

Elobiceras ps eudelobiensis (Spath)

C antabr i git es cantabrigenszs (Spath)

Cantabrigites cantabrigensus gracile Spath

C ant abr i git es s ub s imp I ac Spath

C ant ab r igites m i nor Spath

Cantabrigites minor serpentinns Spath

X

x

x

x

X

X

x

X

X

X

x

x

X

X

X

X

X

X
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Notes

1. The above list is compiled from my own collecting or other material examined by me
or sent to me for identifrcation from known stratigraphical horizons. In some cases,

specimens in Museum collections (including BGS) without specific stratigraphical
horizons, have had these determined by lithological matching where possible.

2. The list does not include undescribed taxa or transitions between genera (fo,r sxample
between Euhoplites alphalautus and D. iscohoplites occurring in the Procallihoplites
auritus Subzone).

3. Mortoniceras (Mortoniceras) is capable of further taxonomic revision and in my view
some of van Hoepen's genera are applicable to the English species. However,
Pervinquieria, Inflaticerss (inflatum group) and Subschloenbschia (rostratum group)
are synonyms of Mortoniceras as understood currently. However, if the type of
Mortoniceras (M. vespertinum (Morton) is proved to be generically separate from the
English forms, Pervinquieria Bohm 1910 becomes valid for the inflatum-rostratum
lineage,
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