
HAL Id: hal-04142929
https://hal.science/hal-04142929v1

Submitted on 13 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Predictive Uncertainty Estimation for Camouflaged
Object Detection

Yi Zhang, Jing Zhang, Wassim Hamidouche, Olivier Deforges

To cite this version:
Yi Zhang, Jing Zhang, Wassim Hamidouche, Olivier Deforges. Predictive Uncertainty Estimation
for Camouflaged Object Detection. IEEE Transactions on Image Processing, 2023, 32, pp.3580-3591.
�10.1109/TIP.2023.3287137�. �hal-04142929�

https://hal.science/hal-04142929v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Predictive Uncertainty Estimation for Camouflaged
Object Detection

Yi Zhang, Jing Zhang, Wassim Hamidouche, Olivier Deforges

Abstract—Uncertainty is inherent in machine learning meth-
ods, especially those for camouflaged object detection aiming to
finely segment the objects concealed in background. The strong
“center bias” of the training dataset leads to models of poor
generalization ability as the models learn to find camouflaged
objects around image center, which we define as “model bias”.
Further, due to the similar appearance of camouflaged object
and its surroundings, it is difficult to label the accurate scope
of the camouflaged object, especially along object boundaries,
which we term as “data bias”. To effectively model the two
types of biases, we resort to uncertainty estimation and introduce
predictive uncertainty estimation technique, which is the sum
of model uncertainty and data uncertainty, to estimate the
two types of biases simultaneously. Specifically, we present a
predictive uncertainty estimation network (PUENet) that consists
of a Bayesian conditional variational auto-encoder (BCVAE)
to achieve predictive uncertainty estimation, and a predictive
uncertainty approximation (PUA) module to avoid the expensive
sampling process at test-time. Experimental results show that our
PUENet achieves both highly accurate prediction, and reliable
uncertainty estimation representing the biases within both model
parameters and the datasets.

Index Terms—Uncertainty estimation, segmentation, camou-
flaged objects.

I. INTRODUCTION

DURING the past few years, researches such as [1]–
[13] apply machine learning to address camouflaged

object detention (COD), which aims to finely segment the
objects concealed in realistic natural environment (examples
are shown in Fig. 1). Though significant improvement has been
achieved, current COD methods fail to explore deeply towards
the interpretability of their methodologies and intrinsic bias
existed in training datasets.

The objective of machine learning methods is to minimize
the empirical loss function [15] as:

min
θ

EX,Y [L(f(X; θ), Y )] =

∫
L(f(X; θ), Y )dp(X,Y )

≈ 1

N

N∑
i=1

L(f(xi; θ), yi), (xi, yi) ∼ p(X,Y ),

(1)

where θ is the learned parameter set of model f(·) and (xi, yi)
denotes sampled pair from the joint data distribution p(X,Y ).
X,Y are input and output variables from the training dataset
D. L(·) is the loss function. Given D, the unawareness of
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Fig. 1. An example illustrating COD and uncertainty estimation. “σ2
e” is

the sampling-based uncertainty of “Bayesian conditional variational auto-
encoder” (BCVAE). “σ2

a” is the output of “predictive uncertainty approxi-
mation” (PUA) module. SINet-V2 [14] is a state-of-the-art method.

the task and the data leads to at least two types of biases:
1) model bias representing our ignorance of the model and
2) data bias, indicating the inherent noise within the dataset.
The former can be addressed with enough diverse training
datasets to provide enough knowledge about the task, while
the latter is usually caused by inherent noise, i.e., precision
of the sensors, accuracy of labeling, which is difficult to
be completely avoided. COD suffers greatly from above two
types of biases. Camouflaged objects are objects that hide in
the environment, which usually share similar appearance as
their surroundings. In realistic scenes, there should not exist
any location-related prior for camouflaged objects. However,
as the existing COD training datasets (e.g., [1], [3]) are
collected from the Internet where the photographers focus on
the camouflaged instance, causing serious “center bias” issue
where most of the camouflaged instances locate at or near the
center of the image. The COD model trained with the center-
biased training dataset may fail to generalize well as it greatly
reduces the searching space for COD, thus introducing “model
bias”. Further, unlike other object segmentation tasks where
clear boundaries exist between targets and their surroundings,
camouflaged objects share similar appearance as the environ-
ment, making it hard for annotators to precisely locate and
depict camouflaged objects, leading to inherent noise within
the manual labels.

To model the above two types of biases, we resort to un-
certainty estimation [16], which is a mechanism to understand
model limitations. In this paper, we use uncertainty to explain
the two types of biases for COD. Particularly, [16] define
model bias as epistemic uncertainty, and data bias as aleatoric
uncertainty estimation. We argue that both types of uncertainty
exist in COD, and we define them together as predictive
uncertainty following [17]. Most of the existing techniques
for predictive uncertainty estimation are based on Bayesian
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neural network (BNN), where a pre-defined prior distribution
p(θ) is set as a constraint to regularize the distribution of the
model parameters, leading to stochastic predictions. At test-
time, multiple iterations of samplings are performed, and the
mean prediction and uncertainty (entropy of the mean value
of multiple predictions) are obtained for deterministic model
evaluation and prediction confidence estimation.

We find that the BNN based uncertainty estimation methods
are less efficient when applied in real life as expensive
sampling process is needed to achieve effective uncertainty es-
timation. In this work, we introduce a sampling-free predictive
uncertainty estimation network (PUENet) for COD via a
Bayesian latent variable model. With the extra latent variable
as origin of predictive uncertainty [18], we aim to achieve
both accurate predictions and reliable uncertainty maps (Fig.
1), leading to explainable camouflage modeling. In addition,
considering the ambiguity between camouflaged object and its
background, we propose “selective attention module” (SAM)
which automatically selects and refines the hierarchical fea-
tures by combining the high-level-based prediction and its
reversal with channel-attention mechanism [19].

We summarize our main contributions as follows: 1) We
introduce PUENet to explicitly model both model uncertainty
and data uncertainty for effective COD. 2) We demonstrate that
both uncertainties are important for COD, and simultaneously
modeling them results in better performance and reliable un-
certainty maps explaining the limitations of the trained model.
3) We propose SAM to automatically refine the hierarchical
features, leading to more effective feature representation for
camouflaged objects with complex background.

II. RELATED WORK

In this section, we introduce related works from the aspects
of COD, model/data bias, uncertainty estimation and attention
mechanisms. We also highlight the uniqueness of our PUENet,
compared to existing COD methods.
Camouflaged Object Detection (COD): [20] is a pioneer
work that conducted COD in videos by modeling motion
cues with heuristic methods, while recently proposed method
[2] addressed video COD with deep learning methods. As
the establishment of large-scale image COD datasets [1], [3],
utilizing deep neural networks (DNNs) to detect concealed
objects in static images has become the mainstream in the
field. ANet [1] brought (non-)/camouflage classification as an
auxiliary task for the COD. Taking advantage of the multi-
task architecture, LSR [4] learned to simultaneously localize,
rank and segment the concealed objects. SINet [3] designed
a two-stage end-to-end architecture to respectively mimic
the searching and identifying procedures of hunting in the
wild. With the same motivation, D2C-Net [5] obtained better
performance on the same benchmark. From the cognitive
perspective, MirrorNet [6] applied bio-inspired attack stream
to aid the COD. PreyNet [21] added a bi-directional attention
module and a pixel-wise label-based calibration module to
the vanilla U-Net like architecture, to mimic the predator-
prey interaction in a progressive manner. Moreover, TINet [7]
and BASNet [8] took a deeper look of texture and boundary

cues of camouflaged objects. Continuously focusing on the
texture information, TANet [9] designed a texture extractor to
refine the encoded features. Based on similar observation of
objects’ texture, SINet-v2 [14] further improved the original
structure by adding a texture enhanced module. In addition,
C2FNet [10], MCIF-Net [11], PFNet [12] and MGL [13]
paid attention to the global context awareness by proposing
multi-scale attention strategies which automatically select and
fuse the useful multi-level features for effective decoding.
Most recent work such as ZoomNet [22] gained improved
performance via mimicking the “zoom strategy” of human
vision system. SegMaR [23] proposed an iterative refinement
framework to segment camouflaged targets at multi-resolution.
HitNet [24] used high-resolution-based features to iteratively
refine the low-resolution-based ones. DGNet [25] used image-
based gradients to support the refinement of texture-based
features. FSPNet [26] applied non-local attention mechanism
to process high-level features of the vision transformer-based
backbone, to advance COD performance. Besides merely
taking advantage of RGB information, FDCOD [27] and
FEDER [28] explored visual representation of camouflaged
objects in the frequency domain via discrete Cosine transform
and wavelet transform techniques, respectively. CRNet [29]
proposed new consistency loss to enable the training of COD
model with only scribble annotations. Besides binary seg-
mentation, CFL [30] conducted instance-level COD on newly
proposed CAMO++ dataset. More statistics and discussions
towards recent COD datasets and methodologies are detailed
in [31].
Model Bias: One of the most commonly seen bias in current
COD datasets is the center bias (or model bias), due to a
photographers’ tendency of framing the concealed objects
centered on the images. The issue also often occurs in saliency
detection datasets and has been widely discussed in both
fixation prediction and salient object detection [32]. As a
result, such a center-biased human visual attention pattern can
be explicitly or implicitly modeled to aid automatic saliency
judgements. Early work such as [33] introduced a center prior
indicating the distance to the center of each of the pixels. [34]
added a location biased convolutional layer to DNNs to learn
the location-based pattern of specific datasets. Later work [35]
applied VGG architecture [36] with proposed loss function to
predict saliency map formulated as a generalized Bernoulli dis-
tribution. More recently, [37] concatenated a learned Gaussian
map at the bottleneck to inject the center bias prior to the high
level features. “Center bias” for saliency detection is useful
prior as it is consistent with human perception. However,
it greatly reduces the searching space for COD, and model
trained with center-biased data may be less effective to localize
camouflaged objects elsewhere.
Data Bias: In this paper, we refer “data bias” as difficulty
in labeling, leading to noisy labeling. Learning from noisy
labels, which can be introduced by idiosyncrasies and errors of
annotators, has been widely studied in recent years. We discuss
two main directions. Architecture, i.e. dropout noise model
[38], which learned the dataset-specific label transition process
by adding a noise adaption layer at the bottleneck of DNN
architecture. Another type of methods (e.g. [39]) tackle multi-
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source noisy labeling via specifically designed structures. Reg-
ularization [40]–[44] is another research direction for learning
from noisy label. Generally, the model regularization can be
conducted either explicitly (e.g., robust early-learning [45]) or
implicitly (e.g., adversarial training [46]).
Uncertainty Estimation: Uncertainty represents model ig-
norance about its prediction. [16] defined two types of uncer-
tainty, namely epistemic uncertainty and aleatoric uncertainty.
The former is caused by model’s limited knowledge, and the
latter is usually due to inherent noise within the data. BNN is
a straightforward solution for epistemic uncertainty modeling
by putting a distribution over model parameters. However, it is
intractable to perform the posterior inference within BNN due
to the intractable integral operation. Then, variational inference
was proposed as approximation of posterior inference. Among
them, Monte-Carlo dropout (MC-Dropout) [47] was widely
studied, which approximates the intractable integral with MC
integration. Deep ensembles [48] is another commonly applied
model uncertainty estimation method, where multiple models
with the same base model (e.g., backbone) were trained. The
mean of models’ outputs were then used to compute the
uncertainty. To model the aleatoric uncertainty, [16] suggested
training an extra uncertainty estimation branch, which serves
as both the weight and the regularizer of the original task
related loss function.
Attention Models: Squeeze-excitation (SE) attention [19]
emphasized the channel-wise effective features by squeezing
the spatial features with an adaptive average pooling layer
and by computing channel-wise attention using two fully-
connected (FC) layers. [49] further proposed a three-stage (i.e.,
splitting, fusion and selection) attention mechanism, where the
input features are split into multiple branches and convolved
with different kernels. The processed features are then fused
with SE attentions and summed as final output. Also based
on SE mechanism, ECA [50] focused on computing local
adjacent channel attention by replacing the two FC layers
of SE model with an 1D-convolutional layer. Besides above
channel attention-based models, [51] used a large kernel (e.g.,
7×7) to further extract spatial attention based on channel-wise-
refined features. Similarly, [52] also applied both the channel
and spatial attentions to feature refinement. However, it simply
sums the attention matrix, rather than cascading the channel-
/spatial-based ones as in [51]. In addition, self-attention [53]
are widely used in the fields of not only computer vision but
also natural language processing and multi-modal learning.
Self-attention is a type of operation where the input feature
is first mapped to “query”, “key” and “value” features via FC
layers, respectively. The final output feature is computed as
the output of a dot product of “value” and the result of a dot
product of “query” and “key”. [54] further combined the ideas
of channel-spatial-attention and self-attention mechanisms and
thus proposing a duel-attention model for scene segmentation.
Co-attention networks such as [55], [56], also inspired by self-
attention, were proposed to learn complementary information
between different visual cues.
Uniqueness of Our Solution: Being different from existing
COD models (e.g., [12], [14]), we produce uncertainty along
with the predictions, leading to explainable COD. Existing

uncertainty-aware COD models, e.g., [57], [58], either uses
uncertainty for hard-negative mining [57] at test-time where
an expensive sampling process is performed, or resorts [58]
to Generative Adversarial Net [59] for stochastic predictions.
Our “single-pass” predictive uncertainty estimation method is
efficient to use at both train and test times. Further, although
conditional variational auto-encoder (CVAE) [60] has been
used in [61] and it’s extension [62] for the “subjective nature”
of saliency modeling via multiple iterations of sampling, our
Bayesian latent variable model explore CVAE for predictive
uncertainty estimation. Most recent work such as UDASOD
[63] directly used variance maps of multiple predictions based
on data augmentation such as scale and flip, to facilitate
the pseudo-label generation for the task of unsupervised do-
main adaptive salient object detection (SOD). Our predictive
uncertainty approximation (PUA) solution avoids multiple
samplings and does not rely on any types of data augmentation.
UMNet [64] resorts to the uncertainty maps of multiple hand-
crafted SOD models, to enable the training of its unsupervised
segmentation head. Our network learns to segment objects
without any domain priors brought by external models.
Also, our SAM module is specifically designed for COD to
automatically identify and refine the hard region predictions,
resulting in more accurate predictions.

III. METHODOLOGY

In this section, we first introduce the uncertainty estima-
tion techniques. Then, we discuss the proposed sampling-free
predictive uncertainty estimation method (PUENet) for COD.
The pipeline of our framework is shown in Fig. 2.

A. Uncertainty Estimation Techniques

There mainly exists two types of uncertainty, namely epis-
temic uncertainty explaining the model bias and aleatoric
uncertainty for data bias estimation [16]. The former can be
explained away with large amount and diverse training datasets
[16], while the latter is caused by inherent noise, which usually
cannot be explained away.
Epistemic Uncertainty Estimation: To model epistemic un-
certainty, one can change the deterministic neural network into
stochastic neural network by putting a prior distribution over
network parameters, e.g., p(θ). In this way, a BNN is achieved.
Compared with deterministic neural network that optimizes
model parameters directly, BNN inference is achieved through
marginalisation, where multiple predictions with respect to all
possible model parameters are averaged for model optimiza-
tion. [68] then defines the epistemic uncertainty within the
BNN as the mutual information of model prediction and model
parameters.
Aleatoric Uncertainty Estimation: The aleatoric uncertainty
captures the observation noise δ inherent in the training
dataset D. To perform variational inference over the noise
level δ, non-BNN is used to obtain the deterministic model
parameter set θ. To obtain aleatoric uncertainty, maximum
likelihood estimation is adopted with the additive labeling
noise assumption. Thus, the final aleatoric uncertainty (con-
ditioning on the input image) is usually modeled with an
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Fig. 2. The training pipeline of our PUENet, which consists of a “Bayesian
conditional variational auto-encoder” (BCVAE), and a “predictive uncertainty
approximation” (PUA) module. In BCVAE, the prior/posterior-based decoders
share an identical architecture yet with separate parameter sets, i.e., θ−D./θ

+
D..

Similarly, the prior/posterior distribution estimation modules have the same
model structure however with different parameter sets (π/ϕ). “σ2

e” and
“σ2

a” denote the sampling-based uncertainty and approximated uncertainty,
respectively. Detailed structures of BCVAE and PUA are shown in Fig. 3.

extra uncertainty estimation module, where its output serves
as both the weight and the regularization of the original task-
related loss function [16]. In this way, the aleatoric uncertainty
is constrained with the model’s loss function that pushes
it to a specific range. Specifically, the aleatoric uncertainty
can be defined as the mean entropy of multiple predictions:
1
T

∑T
t=1 H[p(Y |X; θt, ϕ)], where H[·] is the entropy operation.

Predictive Uncertainty Estimation: [17] defines “predictive
uncertainty” as the sum of the aleatoric uncertainty and
epistemic uncertainty. The typical way to achieve predictive
uncertainty is through a BNN with input-level or feature-level
noise injection. During test-time, the predictive uncertainty is
then defined as entropy of the mean prediction.

B. Predictive Uncertainty Estimation Network

One main issue with above two types of uncertainty model-
ing is that they rely on multiple times of sampling during
test-time to achieve uncertainty estimation, which is less
efficient when used in real life. In this paper, we intro-
duce predictive uncertainty estimation to achieve sampling-
free uncertainty estimation. Specifically, we design a BNN
to capture the distribution of model parameters. Further, we
add extra inference model and adapt our network to a con-
ditional variational auto-encoder (CVAE) [60], which is used
to model the distribution of model prediction. In this way,
our framework can estimate both model uncertainty (with the
BNN) and the data uncertainty (with the CVAE). Further, we
present predictive uncertainty approximation (PUA) module to
approximate the sampling-based predictive uncertainty of the
proposed Bayesian conditional variational auto-encoder.
BCVAE Framework: For a BNN, a pre-defined prior distri-
bution p(θ) is set as a constrain to regularize the distribution
of the model parameters θ, thus it can achieve stochastic
predictions. According to Bayes’ rule, the posterior over

model parameters p(θ|X,Y ) can be achieved by p(θ|X,Y ) =
p(Y |X, θ)p(θ)/p(Y |X). As the marginal likelihood p(Y |X)
cannot be evaluated analytically, the posterior of model pa-
rameter p(θ|X,Y ) is then difficult to be evaluated as well.
As an approximation, some inference techniques approximate
the real posterior p(θ|X,Y ) with a simple distribution q(θ|γ),
where γ is used to control the distribution of θ. In this way,
the intractable Bayesian inference is replaced with a simple
optimization that optimizes over the hyper-parameter γ.

In this paper, we adopt the Monte Carlo integration [47] as
an approximation of the intractable p(Y |X):

p(Y |X) ≈ 1

T

T∑
t=1

p(Y |X, θt), (2)

where θt ∼ q(θ|λ), T is the times of sampling. When
we define stochastic of model parameter set θ as randomly
multiplying the output of each neuron by a binary mask drawn
from a Bernoulli distribution, we achieve MC dropout [47],
where λ is the Bernoulli distribution related hyper-parameter.
To achieve this, following [69], we add dropout after each
level features of the backbone network. With the MC dropout
based BNN, we can effectively estimate model uncertainty by
modeling distribution of model parameter set θ, or what we
claim as the “model bias”.

To model the “data bias”, we further introduce CVAE [60]
to estimate the distribution of model prediction p(Y |X; θ).
Specifically, following the conventional practice of CVAE, we
introduce two extra encoders to our BCVAE network to model
both the prior and posterior distribution of the latent variable,
namely the prior distribution estimation model pπ(z|X) and
posterior distribution estimation model pϕ(z|X,Y ), where π
and ϕ are network parameter sets of the two sets of encoders,
z is the latent variable modeling the “data bias”.

Learning a CVAE framework involves approximation of the
true posterior distribution of z with the designed inference
model pϕ(z|X,Y ). The parameter sets of CVAE can be
estimated in stochastic variational Bayes [70] framework by
maximizing the evidence lower bound (ELBO) as:

L(θ, ϕ, π;X) = Ez∼pϕ(z|X,Y )[log(pθ(Y |X, z))]

−DKL(pϕ(z|X,Y )||pπ(z|X)),
(3)

where DKL(pϕ(z|X,Y )||pπ(z|X)) penalizes the divergence
between the posterior and prior distribution of z.

With the BCVAE framework, we achieve both model pa-
rameter set distribution estimation and prediction distribution
estimation, making it possible to estimate predictive uncer-
tainty, which is the total of model uncertainty (the BNN part)
and data uncertainty (the CVAE part). Specifically, we define
the mean model prediction as:

µ(Y |X) =
1

T

T∑
t=1

p(Y |X; θt, ϕ), (4)

and then the predictive uncertainty is defined as entropy of the
mean prediction σ2

p = H[µ(Y |X)].
As shown in Eq. 4, we need to sample multiple times to

achieve the mean model prediction as well as the predictive
uncertainty estimation, which is less efficient when used in
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Fig. 3. Architectures of “predictive uncertainty approximation” (PUA) module (ω), and “Bayesian conditional variational auto-encoder” BCVAE’s encoder
(θE.)/prior-based decoder(θ−D.). Note that we use hybrid-ViT-based backbone [65] as an example, and by replacing it with pure ResNets, we obtain the other
two models as shown in Table I. SAM denotes “selective attention module” (note that θ−S. ⊂ θ−D.). D-ASPP means the “DenseASPP block” [66]. Fusion is
“residual convolutional fusion block” from MiDaS [67]. “zprior” denotes latent variable from prior distribution estimation module (π), as illustrated in Fig.
2).

real life. We further introduce PUA to achieve sampling-free
uncertainty estimation at test-time.
PUA Framework: Inspired by confidence-aware learning
from [71], we intend to approximate the sampling based
predictive uncertainty with a designed uncertainty estima-
tion module. Specifically, we introduce extra PUA module
fω(X, p(Y |X; θ, ϕ)) to estimate the inherent uncertainty given
the input images X and current prediction p(Y |X; θ, ϕ), where
ω is the parameter set of the PUA module. To train PUA, we
define cross entropy loss between fω(X, p(Y |X; θ, ϕ)) and the
sampling based uncertainty σ2

e : L(fω(X, p(Y |X; θ, ϕ)), σ2
e).

During test-time, we use the proposed PUA module to generate
the approximated predictive uncertainty (σ2

a) to avoid the
expensive sampling process.

We further illustrate the structural details of the BCVAE,
which consists of BNN and prior/posterior distribution esti-
mation modules (for CVAE), and PUA.
BNN Architecture: Our BNN for COD is an end-to-end
encoder-decoder network (Fig. 3), with flexible choices of
backbones such as ResNet50 [72], Res2Net50 [73] and hybrid-
ViT [74]. The decoder consists of three main components, i.e.,
hierarchical DenseASPP [66] blocks, residual convolutional
fusion layers [67], and the proposed selective attention mod-
ules (SAM). Specifically, our SAM consists of two channel
attention [19] based modules which select and refine the
guidance ({G+, G-}) weighted features (Fig. 3), where G+ and
G- are high-level features-based prediction and its reversal,
respectively. With {G+, G-} and backbone features after the
kth DenseASPP [66] block (fD

k ), the refined features fS
k can

be computed as:

fS
k = CA(G+ ⊗ fD

k )⊗ (G+ ⊗ fD
k )+

CA(G- ⊗ fD
k )⊗ (G- ⊗ fD

k ) + fD
k ,

(5)

where CA(·) = σ(Conv(ReLU(Conv(P (·))))) is the chan-
nel attention module. σ means Sigmoid function, P (·) is

average pooling layer. ⊗ represents Hadamard product.

Prior/Posterior Distribution Estimation Modules: We borrow
the architecture of latent feature encoder model in [61] to esti-
mate the prior and posterior distribution of the latent variable
z respectively. Specifically, the prior distribution estimation
model takes images X as input, and output {µprior, σprior},
where µprior and σprior are mean and standard deviation
of the prior distribution. The posterior distribution model
takes the concatenation of images X and ground truth Y as
input to model the structured latent space distribution with
mean and standard deviation pair {µpost, σpost}. The latent
variable of both distributions is then obtained with the re-
parameterization trick as: zprior = µprior + σprior ⊙ ϵ, and
zpost = µpost + σpost ⊙ ϵ, where ϵ ∼ N (0, 1), and ⊙ is the
dot-product operation.

Algorithm 1 Training PUENet
Input: (1) Training images {xi}ni with associated ground truth (GT)
{yi}ni ; (2) Maximum of learning iterations M .
Output: Parameters θ for the BNN, π and ϕ for the prior and
posterior distribution estimation modules respectively, ω for the PUA
module (details are shown in Fig. 2).

1: Initialize θ, π, ϕ and ω
2: for t← 1 to M do
3: Sample image-GT pairs {(xi, yi)}bi , b is batch size.
4: For each xi, sample the prior zpriori ∼ pπ(z|xi) for T times.

Compute the prior-based BCVAE mean prediction µprior
i .

5: For each (xi, yi), sample the posterior zposti ∼ pϕ(z|xi, yi)
for T times, and compute the posterior-based BCVAE mean
prediction µpost

i and uncertainty σ2
ei.

6: For each (xi, µ
post
i ), compute the uncertainty σ2

ai via PUA.
7: Update the parameters of BCVAE (θ, π and ϕ) and PUA (ω)

together via loss Eq. 6.
8: end for
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TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART COD MODELS ON BENCHMARK TESTING DATASETS.↑ INDICATES THE HIGHER THE SCORE THE

BETTER, AND VICE VERSA FOR ↓. “TR.SIZE” DENOTES THE INPUT IMAGE SIZE FOR THE MODEL TRAINING. * DENOTES MODELS TRAINED ON
MULTI-SCALE. THE BEST RESULT OF EACH COLUMN IS IN RED. Fβ , Eξ , Sα AND M INDICATE MEAN F-MEASURE, MEAN E-MEASURE, S-MEASURE

(α = 0.5) AND MEAN ABSOLUTE ERROR, RESPECTIVELY. ‡ DENOTES NO INFORMATION PROVIDED.

Method Tr.Size Backbone Year
CAMO CHAMELEON COD10K NC4K

[1] [75] [3] [4]
Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓

SINet [3] 3522 ResNet50 CVPR’20 .745 .702 .804 .092 .872 .827 .936 .034 .776 .679 .864 .043 .810 .772 .873 .057
LSR [4] 3522∗ ResNet50 CVPR’21 .793 .725 .826 .085 .893 .839 .938 .033 .793 .685 .868 .041 .839 .779 .883 .053

UJSC [58] 3522∗ ResNet50 CVPR’21 .803 .759 .853 .076 .894 .848 .943 .030 .817 .726 .892 .035 .842 .806 .898 .047
MGL [13] 3522∗ ResNet50 CVPR’21 .775 .726 .812 .088 .893 .834 .918 .030 .814 .711 .852 .035 .833 .782 .867 .052
PFNet [12] 4162∗ ResNet50 CVPR’21 .782 .744 .840 .085 .882 .826 .922 .033 .800 .700 .875 .040 .829 .782 .886 .053

SINet-V2 [14] 3522∗ Res2Net50 TPAMI’21 .820 .782 .882 .070 .888 .835 .942 .030 .815 .718 .887 .037 .847 .805 .903 .048
UGTR [57] 4732∗ ResNet50 ICCV’21 .785 .686 .859 .086 .888 .796 .918 .031 .818 .667 .850 .035 .839 .786 .873 .052

D2C-Net [5] 3202 Res2Net50 TIE’21 .774 .735 .818 .087 .889 .848 .939 .030 .807 .720 .876 .037 ‡ ‡ ‡ ‡
IEANet [76] 3522 ResNet50 TCDS’22 .760 ‡ .764 .099 .872 ‡ .882 .043 .778 ‡ .795 .050 ‡ ‡ ‡ ‡

ZoomNet [22] 3842∗ ResNet50 CVPR’22 .820 .794 .877 .066 .902 .864 .943 .023 .838 .766 .888 .029 .853 .818 .896 .043
SegMaR [23] 3522 ResNet50 CVPR’22 .815 .795 .874 .071 .906 .872 .951 .025 .833 .757 .899 .033 .841 .821 .896 .046
FDCOD [27] 4162 Res2Net50 CVPR’22 .844 ‡ .898 .062 .898 ‡ .949 .027 .837 ‡ .918 .030 ‡ ‡ ‡ ‡
BGNet [77] 4162 Res2Net50 IJCAI’22 .812 .789 .870 .073 .901 .860 .943 .027 .831 .753 .901 .033 .851 .820 .907 .044

BSANet [78] 3842 Res2Net50 AAAI’22 .796 .763 .851 .079 .895 .858 .946 .027 .818 .738 .891 .034 .841 .808 .897 .048
HitNet [24] 7042 PVTv2 AAAI’23 .849 .831 .906 .055 .921 .900 .967 .019 .871 .823 .935 .023 .875 .853 .926 .037
DGNet [25] 3522 EfficientNet MIR’23 .839 .806 .901 .057 .890 .834 .938 .029 .822 .728 .896 .033 .857 .814 .911 .042

PUENet 5122
ResNet50 2023 .794 .762 .857 .080 .888 .844 .943 .030 .813 .727 .887 .035 .836 .798 .892 .050
Res2Net50 2023 .834 .806 .889 .067 .897 .858 .940 .027 .844 .774 .910 .029 .862 .830 .913 .042

(Ours) Hybrid-ViT 2023 .877 .860 .930 .045 .910 .869 .957 .022 .873 .812 .938 .022 .898 .874 .945 .028

Algorithm 2 Testing PUENet
Input: Testing images {xi}ni .
Output: Prediction pi and predictive uncertainty σ2

ai of xi.
1: for i← 1 to n do
2: For each xi, compute pi via BCVAE.
3: For each (xi, pi), compute uncertainty σ2

ai via PUA.
4: end for

PUA Architecture: As shown in Fig. 3, our PUA module con-
sists of four convolutional blocks, aiming to approximate the
real sampling based predictive uncertainty with our designed
uncertainty estimation model. In this way, we can achieve
sampling-free uncertainty estimation during test-time. Note
that our PUA module takes the concatenation of image and
BCVAE’s output as the new input, to generate directly the
uncertainty map.

C. Objective Function

We use the structure-aware loss function (LS) [79], Kull-
back–Leibler divergence loss (DKL in Eq. 3) and cross en-
tropy loss (LCE) for model prediction measure, latent variable
distribution measure and uncertainty approximation measure,
respectively (Fig. 2). LS pays attention to both local and global
structural similarities between ground truth (Y ) and prediction.
As a result, the loss function for our PUENet is:

L =LS
M (µprior

m , Y ) + LS
A(µ

prior
a , Y )

+LS
M (µpost

m , Y ) + LS
A(µ

post
a , Y )

+DKL(z
post||zprior)

+LCE(σ2
a, σ

2
e),

(6)

where LS
M (·) and LS

A(·) denote the structure-aware loss for
main and auxiliary mean predictions µm and µa, respectively
(see Fig. 3). σ2

e and σ2
a are sampling based uncertainty and

approximated uncertainty.

D. Implementation Details

We train PUENet using PyTorch with a maximum of 50
epochs. For fair comparison, both the training and testing
images are re-scaled to 512 × 512 without using multi-scale
or any augmentation strategy (except for SINet [3], all the
competing methods in Table I are trained on multi-scale).
Empirically, we set the dimension of the latent space (z) as
8. The learning rates of the BCVAE and PUA are initialized
to 2.5e-5 and 1e-5 respectively. We use Adam optimizer
and decrease the learning rate 10% after 40 epochs. Taking
ResNet50 as an example, it took 8 hours of training with batch
size 7 using a single NVIDIA GeForce RTX 2080Ti GPU.
The training and testing details of our PUENet are presented
in Algorithm 1 and 2 respectively.

IV. EXPERIMENTS

In this section, we present both qualitative and quantitative
results and ablation studies of our PUENet.

A. Settings

Dataset: The benchmark training dataset is a combination of
3,040 images from COD10K training dataset [3] and 1,000
images from CAMO training dataset [1]. We then test our
model on four benchmark testing datasets, namely CAMO
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testing dataset [1] (250), COD10K testing dataset [3] (2,026),
CHAMELEMON [75] (76) and NC4K (4,121) [4]. Please note
that the number after each dataset indicates its size.
Evaluation Metrics: The widely used evaluation metrics
include Mean Absolute Error, Mean F-measure [80], Mean
E-measure [81] and S-measure [82] denoted as M, Fβ , Eξ,
Sα, respectively. Specifically, the Fβ and M focus on the local
(per-pixel) match between ground truth and prediction, while
Sα pays attention to the object structure similarities. Besides,
Eξ considers both the local and global information.
M computes the mean absolute error between the ground truth
G ∈ {0, 1} and a normalized prediction map P ∈ [0, 1], i.e.,

MAE =
1

WH

W∑
i=1

H∑
j=1

| G(i, j)− P (i, j) |, (7)

where H and W denote the height and width of the given
image, respectively.
Fβ is defined as:

Fβ =
(1 + β2)Precision Recall

β2Precision+Recall
, (8)

where β2 is set to 0.3, and the precision (Precision) and
recall (Recall) are computed as follows:

Precision =
|P ∩G|
|P |

;Recall =
|P ∩G|
|G|

, (9)

where P denotes a binary prediction, and G is the ground
truth. Multiple P are computed by assigning different thresh-
olds τ, τ ∈ [0, 255] on the gray prediction map.
Eξ is a cognitive vision-inspired metric to evaluate both
the local and global similarities between two binary maps.
Specifically, it is defined as:

Eξ =
1

WH

W∑
i=1

H∑
j=1

ξ (G(i, j), P (i, j)) , (10)

where ξ represents the enhanced alignment matrix.
Sα evaluates the structural similarities between the prediction
and the ground truth, which is defined as:

S = αSo + (1− α)Sr, (11)

where So and Sr denote the object and region based structure
similarities, respectively. α ∈ [0, 1] is set as 0.5 to assign equal
weights to object-/region-based evaluation.

B. Performance Comparison

Quantitative Comparison: We compare our method with
state-of-the-art (SOTA) COD models and show the quantitative
performance in Table I. As most existing COD models are built
upon ResNet50 backbone [72], we design ours with the same
backbone, and the better performance validates our framework.
Note that both LSR [4] and UJSC [58] are fully supervised
multi-task learning frameworks with extra annotations. UJSC
[58] uses extra saliency detection training dataset [83], and
LSR [4] relies on extra camouflage localization and ranking
dataset [4]. Differently, we only have access to the COD
training dataset. Further, for fair comparison with SINet-V2

[14], we design a Res2Net50 [73] based framework. As a
result, the better performance of ours with Res2Net50 and
hybrid-ViT backbones shows the effectiveness of our PUENet.
Qualitative Comparison As shown in Fig. 4, when compared
with the SOTA methods, our PUENet provides not only
predictions that closest to ground truth, but also sampling-
free predictive uncertainty maps which are able to approximate
the sampling based uncertainties, thus inspiring future works
towards explainable COD.

C. Ablation Study
We analyse learning strategy and network structure of

our framework. For the former, we analyse the contribution
of the MC-Dropout [47] based BNN, the CVAE [60] and
Deep Ensembles [48] based alternative predictive uncertainty
estimation solution. Note that all ablation studies of learning
strategies are based on ResNet50 backbone. For the latter, we
ablate the encoder and the proposed “SAM” module.
Uncertainty estimation strategy ablation: Following the
conventional BNN for uncertainty estimation, we adopt MC-
dropout [47] directly, which includes the pure BNN part of
our network, and the performance is shown as “MC-Dropout”
in Table II. Alternatively, we can achieve stochastic prediction
with the CVAE [60] based framework, leading to “CVAE”
in Table II. To achieve it, we remove the dropout module
from our framework. Further, as another effective uncertainty
estimation technique, we implement deep ensembles [48] by
using multiple decoder heads within our framework. The
performance is shown as “Deep Ensembles” in Table II. The
consistent better performance of our framework compared with
the alternative uncertainty estimation methods illustrates the
effectiveness of our solution.

Further, as uncertainty estimation technique, [68] decom-
poses total uncertainty of ensemble-based framework to
aleatoric uncertainty and epistemic uncertainty defining the
former as mean entropy of each stochastic prediction, and
the latter as mutual information of model prediction and the
model parameters. Following this decomposition strategy, we
compute the uncertainty maps of “MC-dropout”, “CVAE” and
ours (Fig. 5). It clearly shows that “MC-dropout” focuses
on epistemic uncertainty (e.g., challenging pixels outside the
objects’ boundaries and far from image center), while “CVAE”
focuses on aleatoric uncertainty (e.g., consistent high uncertain
regions along objects’ boundaries). Our method combines
advantages of above two methods, leading to better uncertainty
representations.
Encoder ablation: There can be flexible choices of backbone
architectures for our BCVAE network, such as ResNet50
[72], Res2Net50 [73] and hybrid-ViT [74]. The results of
our method based on multiple backbones are shown in Ta-
ble I. Due to the effective long-range dependency modeling
ability, the hybrid-ViT version of our PUENet achieves the
best performance. Among the traditional convolutional neural
network (CNN) backbones, we observe better performance
of our model with Res2Net50. Besides segmentation per-
formance, Table IV shows a detailed statistics towards the
computational complexity of our BCVAE based on multiple
encoding strategies.
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Fig. 4. Visual results of the state-of-the-art methods and our PUENet. “predictive uncertainty approximation” (PUA) module provides “σ2
a”, which approximates

the sampling based predictive uncertainty, i.e., “σ2
e”.

TABLE II
ABLATION STUDIES REGARDING DIFFERENT LEARNING STRATEGIES. ↑ INDICATES THE HIGHER THE SCORE THE BETTER, AND VICE VERSA FOR ↓.

Method
CAMO [1] CHAMELEON [75] COD10K [3] NC4K [4]

Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓
MC-Dropout .793 .750 .855 .082 .877 .818 .927 .035 .806 .703 .876 .039 .836 .785 .890 .051
CVAE .785 .744 .838 .086 .881 .832 .935 .034 .807 .718 .881 .037 .833 .791 .888 .051
Deep Ensembles .793 .743 .842 .081 .885 .832 .936 .033 .811 .717 .876 .037 .839 .791 .887 .051
PUENet(Ours) .794 .762 .857 .080 .888 .844 .943 .030 .813 .727 .887 .035 .836 .798 .892 .050

Decoder ablation: We introduce “Selective attention module”
(SAM) to benefit the decoder of our BCVAE network. To test
contribution of SAM, we further design an ablated version,
i.e., “w/o-SAM”, which does not include the four hierarchical
SAM modules (Fig. 3) with the backbones of ResNet50,
Res2Net50 and hybrid-ViT respectively. The results (Table III)
show that our SAM is able to bring consistent improvement

to model performance.

V. DISCUSSION

We further analyse the COD task and its relationship to
uncertainty estimation.
Task analysis: As pointed out in the Sec. I, due to the bias of
preparing the COD dataset, COD has inherent data uncertainty.
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Image GT CVAE MC-Dropout Deep Ensembles Ours

Fig. 5. Predictions and corresponding uncertainty maps of different uncertainty-aware models including “CVAE”, “MC-Dropout”, “Deep Ensembles” and our
predictive uncertainty-based strategy (“Ours”).

TABLE III
ABLATION STUDIES REGARDING “SELECTIVE ATTENTION MODULE” (SAM). ↑ INDICATES THE HIGHER THE SCORE THE BETTER, AND VICE VERSA FOR

↓. W-SAM, W/O-SAM DENOTE PROPOSED METHOD WITH AND WITHOUT SAM, RESPECTIVELY.

Method Backbone
CAMO [1] CHAMELEON [75] COD10K [3] NC4K [4]

Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓ Sα ↑ Fβ ↑ Eξ ↑ M ↓
w/o-SAM ResNet50 .790 .747 .853 .083 .879 .820 .926 .034 .808 .707 .876 .038 .836 .787 .891 .052
w-SAM ResNet50 .794 .762 .857 .080 .888 .844 .943 .030 .813 .727 .887 .035 .836 .798 .892 .050
w/o-SAM Res2Net50 .829 .786 .877 .073 .887 .834 .929 .032 .836 .753 .899 .033 .857 .815 .903 .045
w-SAM Res2Net50 .834 .806 .889 .067 .897 .858 .940 .027 .844 .774 .910 .029 .862 .830 .913 .042
w/o-SAM Hybrid-ViT .871 .849 .925 .046 .905 .858 .951 .024 .868 .804 .934 .023 .895 .869 .943 .030
w-SAM Hybrid-ViT .877 .860 .930 .045 .910 .869 .957 .022 .873 .812 .938 .022 .898 .874 .945 .028

TABLE IV
MODEL COMPLEXITY EVALUATION BASED ON DIFFERENT ENCODING
STRATEGIES. THE ABBREVIATIONS IN THE TABLE ARE DETAILED AS

FOLLOWS: #PARAMS = MODEL PARAMETERS. FPS =
FRAME-PER-SECOND.

Model Encoder #Params FPS

BCVAE
Hybrid-ViT 125.9M 19
Res2Net50 50.9M 39
ResNet50 48.7M 43

PUA ‡ 114K 1,889

Image SINet Ours 𝝈𝒂𝟐

Fig. 6. Visual examples of an unseen sample from the Internet.

The bias may come from the photographers’ habit of placing
the targets around the center of the image, or the unavoidable
stochastic noise brought by personal preference of the annota-
tors during manual labeling process. The biased dataset based
model tends to learn limited and sometimes trivial knowledge,
thus generalizing poorly to samples from real-world. Another

important attribute of “camouflage” is “class-agnostic”, which
is neglected by the existing models. Almost all the animals
or humans in the wild have different levels of camouflage.
However, there only exist limited categories of camouflaged
instances in the current datasets. In this way, the model trained
based on limited camouflage categories may learn to capture
the limited category information, leading to biased model (e.g.,
COD methods fail for detecting the snipers in Fig. 6).
Uncertainty analysis and COD: Due to the center biased
dataset, the “class-agnostic” attribute and the difficulty in
labeling camouflaged objects, we claim that it is necessary to
perform uncertainty estimation for COD, thus avoiding over-
confident predictions. Our solution of combining a BNN with
a latent variable model aims to estimate both aleatoric uncer-
tainty (indicating the labeling noise) and epistemic uncertainty
(representing the biased dataset/task). As a result, our com-
bined solution outperforms the two decomposed strategies, i.e.,
“MC-dropout” and “CVAE” (Table II), indicating a positive
effect of predictive uncertainty modeling towards improving
model performance. Besides, our sampling-free uncertainty
estimation technique (PUA) is effectively (σ2

a as shown in Fig.
4) and efficiently (1,889 FPS as presented in Table IV) used for
test. In Fig. 6, we show COD model predictions with unseen
image randomly collected from the Internet. Fig. 6 shows
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that even when we fail to produce accurate predictions, the
uncertainty-awareness (sampling-free predictive uncertainty:
σ2
a) of our solution can serve as an indicator to explain our

prediction, leading to explainable COD.
Future works: [84] explains that the ImageNet pre-training
may not be necessary if we train the model completely.
From this view, the gap of model performance based on
different backbones (e.g., Table I) may not only due to the
backbone structures, but also related to the convergence degree
of each model. We would like to investigate it further in the
future works. Besides, our method can perfectly localize the
“data uncertainty” caused by labeling noise near the objects’
boundaries (Fig. 4). However, “model uncertainty” that shows
model ignorance of the out-of-distribution samples is still not
well explored. In the future, we will explore more effective
“model uncertainty” based methods, aiming for effective out-
of-distribution detection.

VI. CONCLUSION

Considering the inherent “model bias” and “data bias” of
camouflaged object detection (COD), we propose PUENet to
achieve both accurate COD model and reliable uncertainty
estimation. To reduce the sampling effort, we introduce
PUA module to approximate the sampling based predictive
uncertainty and achieve sampling-free uncertainty estimation
during test-time. Further, we present SAM, which is exclu-
sively designed to automatically identify and refine the chal-
lenging region predictions. Experimental results validate our
solution. Importantly, the produced uncertainty map can rep-
resent our limited knowledge about this task, i.e., center bias,
data bias, and category bias. Although reliable uncertainty can
be achieved with the proposed strategy, further investigation
on uncertainty quantification and out-of-distribution sample
estimation can lead to more advanced explainable COD model.
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