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Abstract 
The CaCl2-CaF2-CaO phase diagram was investigated in the CaO low region 
(<40 mol.%). CaCl2-CaF2 and CaCl2-CaO binary diagrams, constituting the 
ternary system, were first studied by Differential Scanning Calorimetry (DSC) 
measurements and X-Ray Diffraction (XRD) characterization; a good agree- 
ment was obtained between the phase diagram models calculated with Fact- 
Sage® software (FTsalt database) and present experimental data. As the CaF2- 
CaO liquidus could not be measured by DSC due to the high melting tem- 
perature, this diagram was calculated using FTsalt database combined with 
FToxid database of FactSage® software. The ternary phase diagram was ob- 
tained by calculations and exhibits an eutectic at the composition CaCl2- 
CaF2-CaO (78.2-15.7-6.1 mol.%) melting at 637˚C, and five peritectic points. 
Measurements of relevant vertical cross-sections for three CaCl2-CaF2 com- 
positions (50-50, 40-60 and 30-70 mol.%) up to 18 mol.% CaO are in 
agreement with the ternary phase diagram model. For each section, the 
liquidus temperature is constant up to around 11 mol.% CaO and then 
sharply increases. Moreover, an increase of CaF2 content in CaCl2-CaF2 melt 
leads to a decrease of the CaO solubility in isothermal condition. 
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1. Introduction 

CaCl2-rich corner of the CaCl2-CaF2-CaO phase diagram, up to 50 mol.% CaF2 
and 20 mol.% CaO, was investigated by Wenz et al. [1]. These authors showed 
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the existence of: 
• a ternary eutectic point at the composition CaCl2-CaF2-CaO (79-17-4 mol.%) 

melting at 625˚C, 
• two peritectic points at the composition CaCl2-CaF2-CaO (67-23-10 mol.%) 

and (64-23-13 mol.%) melting respectively at 660˚C and 670˚C. 
CaF2-rich part (>50 mol.% CaF2) of the phase diagram is still unknown and 

needs to be investigated. To build it, binary phase diagrams constituting the 
ternary system, CaCl2-CaF2, CaCl2-CaO and CaF2-CaO, must be previously con-
sidered. 

The CaCl2-CaF2 system was investigated by several authors [1]-[6]: 
• in the CaCl2-rich region, they all suggested a single eutectics in the composi-

tion range 18.5 - 25 mol.% CaF2 at around 650˚C as well as a peritectic point 
at 735˚C around 41 mol.% CaF2, 

• the system exhibits CaFCl compound at 50 mol.% CaF2 which is known to 
have an incongruent melting point [7]. In the composition range 41-50 
mol.% CaF2, this phase changes to α-CaF2 at around 735˚C, 

• the liquidus data are more scattered in the CaF2-rich part (>50 mol.% CaF2). 
Moreover, some of these results were obtained by visual-polythermal method 

which is not very accurate according to Chartrand et al. [8]. These authors pro-
posed a calculated phase diagram using a modified quasi-chemical model, and 
confirmed it with data from several studies. 

The CaCl2-CaO system was only investigated in the CaCl2-rich part and data 
were compiled by Shaw et al. [1] [9] [10] [11] [12]: 
• the system exhibits an eutectic point in the 5 - 6.5 mol.% CaO composition 

range at around 750˚C. However, a different eutectic composition was found 
by Threadgill [13] (28.7 mol.% CaO and 593˚C), 

• a second eutectic was proposed by Neumann et al. [10] at 21 mol.% and 
800˚C. These authors also reported the CaO(CaCl2)4 compound at 20 mol.% 
CaO, which melts congruently at 839˚C. Similar results were obtained by 
Perry et al. [11] specifying that the 20 - 22 mol.% CaO region may exhibit a 
peritectic point instead of eutectic point. However, Wenz et al. [1] did not 
report it: they proposed a peritectic point at 18.5 mol.% melting at 835˚C and 
suggested the CaO(CaCl2)2 compound at 33 mol.% CaO which was considered 
in Shaw et al. study [12], 

• a sharp increase of the liquidus temperature for higher CaO amount above 22 
mol.% was reported by all the authors [1] [10] [11] [14] [15], 

• Neumann et al. [10] noticed a thermal plateau at 703˚C on the cooling curve, 
attributed to the CaO(CaCl2)4 allotropic phase transformation. 

The liquidus values are very dispersed since finely colloidal suspension of CaO 
can be obtained, resulting that it is not completely solubilized according to Frei-
dina et al. [14]. 

The liquidus temperatures of the CaF2-CaO phase diagram are higher than 
1300˚C as the melting points of both pure CaF2 and CaO compounds are 1418˚C 
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and 2572˚C respectively [16]: 
• in the literature, authors [17]-[25] indicated a single eutectic shape diagram, 

determined by calculations and experimental measurements. There is no 
consensus about an accurate eutectic point composition which varies in the 
15 - 28 mol.% CaO range and the solidus temperature is around 1360˚C ac-
cording to Zaitsev et al. [19] and Kim et al. [20], 

• no specific compound was identified in the diagram, but partial CaO solubil-
ity in solid CaF2 phase was reported by Kim et al. [20] with a maximum 
around 5 mol.% CaO at the solidus temperature. This author also identified 
the CaF2 allotropic transition α → β at 1146˚C without any effect on the CaO 
solubility, 

• Baak [26] proposed a two-liquid phase region in the 0.8 - 10 mol.% CaO 
composition range, up to 1485˚C. 

According to the literature, discrepancies exist on the binary phase diagrams 
constituting the CaCl2-CaF2-CaO ternary system. In this study, both CaCl2-CaF2 
and CaCl2-CaO systems were investigated by combining experimental data and 
modeling. From these results, the ternary phase diagram was calculated and ver-
tical cross-sections measurements were then performed to verify the model. 

2. Experimental 

Differential Scanning Calorimetry (DSC) technique was used to measure solidus, 
liquidus and phase transition temperatures of mixtures. Experiments were car-
ried out in a heat-flux DSC MHTC 96 from SETARAM. The calorimeter is a 3D 
quasi-Calvet type sensor and can measures up to 1400˚C. The standard deviation 
was estimated from three runs with each calibration metals (Sn: fusT  = 231.9˚C, 
Pb: fusT  = 327.5˚C, Sb: fusT  = 630.6˚C, Ag: fusT  = 961.8˚C, Au: fusT  = 
1064.2˚C, Cu: T˚fus = 1084.6˚C) and salts (CaCl2: fusT  = 772˚C, LiF: fusT  = 
848˚C) and is lower than 1˚C. From measurements, a correlation among the 
measured heat flow and the corresponding molar enthalpy was found. Boron ni-
tride crucibles were used for chloro-fluoride samples and graphite crucibles for 
CaO-base system. 

Calcium chloride (Alfa Aesar 99.99%), calcium fluoride (Alfa Aesar 99.99 %) 
and calcium oxide (Alfa Aesar 99.95%) were used. The CaO was previously 
heated up to 900˚C under vacuum (≈10−1 mbar) for 12 hours to remove the re-
sidual water. Samples were prepared in a glove box under argon atmosphere by 
mixing the pure chemicals and around 150 mg were analysed. They were heat- 
treated into the apparatus under vacuum (400˚C, ≈10−2 mbar). Then, a pre- 
melting step was carried out under argon to ensure a good mixing of the chemicals. 
DSC analyses were performed under argon flow (30 mL∙min−1) with a heating 
rate of 2˚C min−1. No mass loss was observed during the experiment. 

Crystallographic phases were identified by X-Ray Diffraction analysis (XRD) 
with a Bruker D4-ENDEAVOR diffractometer. Patterns were recorded from 20˚ 
to 70˚ by 0.016˚ step (2θ) in the Bragg-Brentano geometry using the Kα radia-
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tion of the copper anode (40 kV, 40 mA). Samples were prepared in a glove box 
under inert argon atmosphere: the salt was protected by a Kapton film to pre-
vent water absorption. 

Binary and ternary phase diagrams modeling was performed using Phase Di-
agram module from FactSage® 6.3 software [27] [28]. In the Phase Diagram 
module, the Gibbs energy minimization is used for calculations where axis and 
constant parameters can be set, such as the volume, the temperature, the pres-
sure… In this study, FTsalt and FToxid databases were used and the pressure 
was fixed to 1 atmosphere. 

3. Results and Discussion 
3.1. Binary Diagrams 
3.1.1. CaCl2-CaF2 System 
A classical DSC-signal from a binary sample of CaCl2-CaF2 (70-30 mol.%) is 
shown in Figure 1 and exhibits a sharp endothermic peak at around 660˚C, so-
lidus—followed by a second broad endothermic peak at around 710˚C, liqui-
dus—typical of a binary mixture. The solidus temperature was measured as on-
set point whereas liquidus temperature at the peak maximum, as recommended 
by Höhne et al. [29]. The values were reported on the diagram in Figure 2 and 
are consistent with other authors [1]-[6] and FactSage® model (FTsalt database). 

Eutectic composition could not be accurately determined on DSC curves since 
the peaks are not well defined in the 15 - 23 mol.% CaF2 composition range. The 
determination of the eutectic composition was done by using of a Tamman dia-
gram [30] [31] [32], representing the molar enthalpy associated to a first-order 
phase transition versus the molar fraction, based on the lever rule application. 
The resulting diagram has a triangle shape and the baseline endpoints indicate 
specific compositions (eutectics, peritectics, stoichiometric compound, solid so-
lubility…). 

In this case, the Tamman plot was established using enthalpy in the 5 - 40 
mol.% CaF2 composition range. Both left and right endpoints from the baseline  

 

 
Figure 1. Classical DSC curve of a CaCl2-CaF2 (70-30 mol.%) sample at 2˚C∙min−1. 
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Figure 2. Phase diagram (upper part) and Tamman diagram (lower part) of the CaCl2-CaF2 system. 

 
are close to 0 and 50 mol.% CaF2 respectively, indicating a negligible solid solu-
bility into CaCl2 and the presence of CaFCl stoichiometric compound. The 
highest point indicates the eutectic composition, 20.0 mol.% CaF2 at 647˚C, close 
to the calculated one (18.3 mol.% CaF2 and 652˚C) in agreement with the model. 

To confirm the presence of the CaFCl stoichiometric compound, a melted 
mixture of CaCl2-CaF2 (40-60 mol.%) annealed for 72 hours at 650˚C was pre-
pared for phases identification by XRD analysis. The resulting pattern is shown 
in Figure 3 where CaFCl was identified, which is consistent with the model and 
the literature data [7]. As it was expected for this composition, α-CaF2 was also 
detected without any segregation. 

Unexpected signal occurred in the CaF2-rich part at around 647˚C and was 
not observed in the data available in the literature: it could be attributed to a se-
gregation effect. One way to avoid it is to introduce an annealing step after the 
salt pre-melting: this procedure was successful as no more unexpected signal was 
observed. 

3.1.2. CaCl2-CaO System 
The CaCl2-CaO diagram was investigated in the 0 - 27 mol.% CaO composition 
range. Measured data are reported in the diagram of Figure 4 and are coherent 
with the FactSage® model (FTsalt database). 

The eutectic composition was determined by a Tamman diagram using soli-
dus enthalpy in the 1 - 17 mol.% CaO composition range at 750˚C. Due to the  
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Figure 3. XRD pattern of CaCl2-CaF2 (40-60 mol.%) sample. 
 

 
Figure 4. Phase diagram (upper part) and Tamman diagram (lower part) of the CaCl2-CaO system. 

 
triangle sides trend, hypothesis was made that solid solubility is negligible in 
pure CaCl2, and that stoichiometric compound exists at 20 mol.% CaO. It per-
mitted to set the Tamman baseline endpoints at 0 and 20 mol.% CaO; the de-
termined eutectic composition is then 6.3 mol.% CaO and is in agreement with 
the calculated value within the model and consistent with the literature [1] [10] 
[11] [14]. 

The presence of a second eutectic point at around 21 mol.% CaO mentioned 
by Neumann et al. [10] could not be clearly identified since the interval composition 
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is extremely narrow. However, the abrupt increase of the liquidus temperature is 
observed at higher CaO contents: the temperature rises from 900˚C at 22 mol.% 
CaO up to 1200˚C at 27 mol.% CaO, which is consistent with other studies [10] 
[11] but a 2 mol.% difference can be noted with Wenz et al. work [1] and even 
more with Wang et al. data [15] (4 mol.%). 

Furthermore, the extrapolated curve reaches around 32 mol.% of CaO at 
1400˚C and is in agreement with the CaO solubility value determined by Sano et 
al. [33]. 

To prove the existence of a stoichiometric compound in the binary system, a 
mixture of CaCl2 containing 13 mol.% of CaO was melted and annealed for 48 
hours at 650˚C. It was then characterized by XRD for phase identification. The 
pattern is shown in Figure 5 and reveals the presence of CaCl2 and CaO(CaCl2)4 
compound, confirming the endpoint composition of the Tamman triangle basis 
(20 mol.% CaO), as well as the presence of three peaks that could not be attri-
buted. 

A slight endothermic peak is observed at around 715˚C for every samples si-
milarly to the thermal plateau observed by Neumann et al. [10] at 703˚C on the 
cooling curves; this signal can be attributed to the allotropic phase transition of 
CaO(CaCl2)4 compound. 

3.1.3. CaF2-CaO System 
Due to the high liquidus temperature (>1300˚C), the CaF2-CaO system was not 
investigated by DSC. However, the phase diagram was calculated using FTsalt 
database which offers satisfying models for both CaCl2-CaF2 and CaCl2-CaO 
systems. The model was improved by including additional CaF2/CaO data from 
FToxid database and was plotted in Figure 6; it exhibits an eutectic point at 19.8 
mol.% CaO melting at 1305˚C, and the CaO solubility domain into α- and 
β-CaF2 solids mentioned in Kim et al. study [20]. 

3.2. The Ternary Diagram 

To build the CaCl2-CaF2-CaO diagram, the three binary diagrams constituting  
 

 

Figure 5. XRD pattern of CaCl2-CaO (87-13 mol.%) sample. 
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Figure 6. Calculated phase diagram of the CaF2-CaO system. 

 

 

Figure 7. CaCl2-CaF2-CaO phase diagram calculated with FactSage®. 
 

the system were used. The calculated ternary phase diagram is plotted in Figure 
7 and exhibits an eutectic point at the composition CaCl2-CaF2-CaO (78.2- 
15.7-6.1 mol.%) melting at 637˚C, similar as in Wenz et al. diagram [1]. Howev-
er, four peritectic points are identified in the CaCl2-rich region and another one in 
the CaF2-rich region contrary to Wenz et al. work [1] who identified only two 
peritectic points in the CaCl2-rich region; characteristics of specific intersection 
points are summarized in Table 1. 

Three vertical liquidus cross-sections were investigated by DSC; a CaCl2-CaF2 
composition (50-50, 40-60 and 30-70 mol.%) was set and the CaO amount was 
increased up to 18 mol.%. Measurements for richer CaF2 and CaO concentra-
tions were not possible due to the temperature limitation of the apparatus. 

The results are shown in Figure 8 and the following observations can be noticed: 
• the general shape of the liquidus temperature is in agreement with the model 

for each cross-section: a plateau from 0 to a threshold composition around 11 
mol.% CaO and then a sharp increase, 
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Table 1. Liquidus temperature and composition of invariant points. 

Invariant point Liquidus T˚/˚C 
Mole fraction/% 

CaCl2 CaF2 CaO 

Eutectics 637 78.2 15.7 6.1 

Peritectics 650 68.8 17.3 13.9 

Peritectics 702 86.7 6.4 6.9 

Peritectics 702 73.0 10.9 16.1 

Peritectics 709 54.6 33.7 11.7 

Peritectics 1151 12.5 71.4 16.1 

 

 

Figure 8. Liquidus cross-sections of the CaCl2-CaF2-CaO phase diagram (solid lines cor-
respond to the model). 

 

 

Figure 9. Evolution of the CaO solubility logarithm vs. the inverse of the absolute tem-
perature. 

 
• a slight difference of the threshold composition between measurements and 

the model, which could be attributed to the data selected to calculate the 
CaF2-CaO phase diagram and was not experimentally verified. 

At constant temperature, the CaO solubility decreases when the CaF2 portion 
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in the melt increases, as observed at 1400˚C by Sano et al. [33] in the investi-
gated area. To compare his data with the present work, the logarithm of CaO 
solubility (xCaO) above 11 mol.% was plotted as a function of the inverse of the 
absolute temperature in Figure 9. A linear relationship was obtained for all 
compositions and equations were extrapolated toward 1400˚C to determine the 
CaO solubility; data are reported in Table 2. 

 
Table 2. Linear regression equation of the CaO solubility logarithm vs. inverse of the ab-
solute temperature and CaO solubility values at 1400˚C 

Molar fraction of 
CaCl2-CaF2/% 

Equation 
CaO solubility extrapolated 

at 1400˚C/mol.% 
CaO solubility 

[33]/mol.% 

50-50 ( ) ( )CaO

2166.2ln 0.2273x
T K
−

= −  21.8 26.0 

40-60 ( ) ( )CaO

2861.9ln 0.1671x
T K
−

= +  21.4 24.0 

30-70 ( ) ( )CaO

3378.8ln 0.4709x
T K
−

= +  21.3 23.0 

 
The CaO solubility calculated at 1400˚C is slightly different than the ones de-

termined by Sano et al. [33] with a maximum discrepancy reaching 4.2 mol.% in 
the equimolar CaCl2-CaF2 medium. However, the CaO solubility evolution is 
similar with a decrease of the solubilized CaO amount while the CaCl2 is re-
placed by CaF2 at constant temperature (1400˚C). 

4. Conclusions 

In this work, binaries CaF2-CaO, CaCl2-CaF2, CaCl2-CaO and ternary CaCl2- 
CaF2-CaO phase diagrams system were investigated in the CaO low region (<40 
mol.% CaO) by thermal analysis (DSC) and thermodynamic calculations (Fact-
Sage®-FTsalt/FToxid databases). 

The ternary diagram exhibits an eutectic point in the CaCl2-rich region at 
637˚C, CaCl2-CaF2-CaO (78.2-15.7-6.1 mol.%), and five peritectic points. Ver-
tical cross-sections analysis was performed in three CaCl2-CaF2 compositions 
(50-50, 40-60 and 30-70 mol.%) up to 18 mol.% CaO. Each section exhibits the 
same shape: a plateau up to around 11 mol.% CaO and then a rapid increase of 
the liquidus temperature. The measurements show that CaO solubility decreases 
while CaCl2 is replaced by CaF2 in this diagram region. 
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