Chapter 1 Introduction

Piezo-electric transducers are the most common electro-mechanical converters used in acoustic cavitation experiments. Numerous companies commonly propose readyto-use sets of transducers / generators, used by cavitation physicists, sonochemists and more generally sono-processes engineers and researchers. Two physical acoustic systems interact: the transducer and the load. We found that after almost a century, there was a mutual unfamiliarity with each other's area: transducer designers often know little about cavitation physics and most cavitation users have poor interest in transducers design.

One reason for that is probably the lack of knowledge on cavitation, from the acoustics point of view. A decade ago, we developed a simple, albeit nonlinear model of sound propagation in cavitating liquid, which was found to predict reasonably well the acoustic field and bubble location in a volume of liquid. We found that a cavitating liquid was a very special nonlinear acoustic load, whose characteristics still constitutes an open research area. As we were playing with COMSOL more deeply with the model, the issue of how does a transducer react to such a load emerged? As we were on the cavitation side, we thus needed to invest more thoroughly in transducers physics.

Our efforts resulted in the present document. Many parts may be useless for those readers already having a reasonable background in the field, and many good textbooks are available. For the others, understanding transducers requires some minimal background in electricity and elastic solids mechanics, and moreover, the details of the calculations are often skipped. For those readers frustrated by one of these aspects, and/or starting almost from zero as we did a few years ago, we hope that this document might be helpful. Calculations are detailed as much as possible to allow the reader to retrieve the results without to many efforts. An especially disconcerting aspect in specialized papers or books is the sign conventions for the matrix formalism. We tried to clarify this as far as possible to avoid the reader suffering the same disappointment as ourselves. The numerous appendices have been suggested by personal and students interrogations or misunderstandings.

The two objectives that have guided us when writing these lines were the correct simulation of a transducer in COMSOL and the implementation of the matrix formulation in MATLAB. Both are now common for us, and the MATLAB code will be distributed in some way. However, I still consider myself as a beginner in the field, and there are potentially some misconceptions in this document, even if most results have been carefully checked against literature. If you think this is so, feel free to contact me. Some parts here and there in this document are tagged as "Under construction". This is because I'm not completely satisfied with the content, and hope to enhance it soon, or that this is part of current investigation. Finally, some classical aspects are missing in the text: among others, losses, equivalent circuits (apart from the classical motional branch), and, above all, nonlinearity. Some of these lacks might be corrected/added in the future, if necessary.

Chapter 2

Elastic media 2.1 Strain and stress

When a stress (that is a force applied on the surface) is applied to a solid, it undergoes strain (which basically means "deformation"). You can experiment yourself strain by taking a spaghetti and bending it (not too hard otherwise it will break. . . 1 ). You can also pull on the spaghetti ends along the spaghetti axis: in this case, you won't notice any appreciable extension of the spaghetti, but there is one indeed (you would need some microscopy facility to observe it). Take a rubber band and do the same thing, it will clearly extend.

In all these experiments, you can notice that the material comes back to its initial shape as soon as you release the applied force. This is the elastic behaviour of materials, which, as you can notice with the spaghetti example, is restricted to weak strains / stresses. Also intuitive is the fact that if you increase the force twofold, you get a twofold deformation (experiment that with the rubber band). This might not be universal for all materials, but it is true as far as the applied force remains weak. In this case the elastic behaviour is called linear.

The way a solid deforms can be imagined as follows: a specific point (x, y, z) in the solid experiences a displacement (u, v, w) along the 3-axis, so that its new position is (x + u, y + v, z + w). As (u, v, w) depends on the point considered 2 , it is a vector field (u(x, y, z), v(x, y, z), w(x, y, z)), that is a set of 3 functions of 3 variables (even four if we add time).

Strain is exactly linked to the way the displacement field (u(x, y, z), v(x, y, z), w(x, y, z))

1 by the way an interesting physical problem! Did you notice that it always breaks into more than two pieces?

2 check that while bending your spaghetti, by comparing the displacement close to one of your hand and the one in the middle. . .

(thus a vector field) varies between two neighbouring points in the solid. We can look for example how the displacement vector u, that is its 3 components u, v, and w, changes when we change slightly the observation point, from r = (x, y, z) to r + dr = (x + dx, y + dy, z + dz): The notation gradu is a (2-order) tensor. Note that its matrix representation corresponds to a given frame (x, y, z), but its existence as an object is intrinsic3 .

The above relation derives from purely mathematical analysis and is very general. It is valid even if the solid does not deform but moves only as a solid block, so that it's probably necessary to transform it in order to assess the mathematical formulation of pure deformation. To do so, we can decompose (2.1) to separate block motion from strain. This can be done by writing: (2.2) Imagine first a block translation of a piece of solid (your car gently moving on a straigth road). All points of the solid move identically, so that all spatial derivatives are null, and we have indeed u(r + dr) = u(r).

u(r + dr) = u(r
The above equation also accounts for an undeformable block rotation. Consider the steering wheel of your car, whose axis is oriented along e z , on which two dots very close from each other have been painted, and turn the wheel by an angle θ 0 , so that the rotation vector is Θ = θ 0 e z . You can convince yourself easily by a simple vectorial analysis calculation that the displacement difference between the two dots is indeed represented by the second term in (2.2) term, which corresponds to a solid block pure rotation4 . This means that the only term in (2.2) interesting to describe strain of deformable media is the last one, since it is the only one that will be zero for solid motion.

We define therefore the strain tensor: (2.4)

It's worth spending a few line to the physical interpretations of the strain tensor terms. Figure 2.1 shows (in 2D to simplify) how a small rectangle of material, whose axis are parallel to e x and e y , is transformed under the action of the displacement gradient tensor gradu, which is decomposed as in (2.2) :

Figure 2.1: Illustration in 2D of the meaning of the strain tensor components.

• the rotation tensor (blue) just rotates the rectangle as a solid block.

• the diagonal components of S (green) expand or contract the rectangle along e x and e y , respectively. It can be noted that if Tr S = div u = ∂u ∂x + ∂v ∂y = 0, the volume of the block is conserved.5 

• the anti-diagonal components of S (red) deform the rectangle, rotating the 2 axis of the rectangle by equal but opposite angles.

Finally, the strain tensor S is seen to be symmetric by construction and contains therefore 6 independent components. It is common usage therefore to group the components in a 6-components vector as: 

S =         S xx S yy S zz 2S yz 2S xz 2S xy         =                     
                    
(2.5)

The order in which the last 3 component appear in the vector may vary from field to field, but the above form is universally recognized within piezo-electrocity6 .

Hooke's law

For linear elastic materials, the strain is proportionnal to the stress applied. Stress is also a symmetric tensor T whose column j is the force per unit area exerted on the surface normal to unit vector e j . For example T xz is the x-component of the force por unit area exerted on the plane normal to e z7 .

T Therefore, T also has 6 independent components of and its linear relation with S involves a symmetric 6 × 6 matrix, which, for an isotropic material, can be shown to write:

        T xx T yy T zz T yz T xz T xy         T =         λ + 2µ λ λ . . . λ λ + 2µ λ . . . λ λ λ + 2µ . . . . . . µ . . . . . . µ . . . . . . µ         c         S xx S yy S zz 2S yz 2S xz 2S xy         S (2.6)
where λ and µ are called Lamé constants, and null terms are materialized by dots for readability. Tensor c is the elasticity tensor. The inverse tensor s = c -1 is called compliance and has the same structure. The linear relation (2.20) is Hooke's law.

These relations allows to draw interesting conclusions on the elastic material behaviour. First a pure shearing stress (for example only T xy is nonzero) produces a pure deformation8 . Conversely, if you apply a tensile stress (only T zz non zero for example), you not only produce an elongation along z (because of S zz ), but also a contraction among x and y (corresponding to S yy and S zz ). You can imagine that mentally representing the solid as a cubic assembly of springs and applying some force on these springs. Most solid elastic deformation combine tensile and shearing stress/strains, as for example when bending bars and plates.

The two Lamé parameters λ and µ are enough to define the isotropic elastic material. Hooke's law can be also written in a more compact way, which by the way gives more physical sense to Lamé constants. Equation (2.20) can be written as:

T = λ Tr S I + 2µ S (2.7)
where we recall that Tr denotes the trace operator of a tensor (the sum of diagonal terms). Note that:

Tr S = ∂u ∂x + ∂v ∂y + ∂w ∂z = div u
It represents the local volume variation of the material, which allows, from Hookes law (2.7) to identify the λ-terme as that part of the force caused by a dilatation of or contraction of the material. It is an isotropic force (because it is a scalar multiplied by identity tensor), and λ Tr S can be identified to minus the pressure. On the other hand, the µ-term is due to deformation at constant volume, and is called deviatoric stress.

Beeing linear, Hooke's law can be explicitely inverted as:

S = - ν Y Tr T I + 1 + ν Y T (2.8)
which can be useful in some problems, if one knows the stress tensor from intuition, or symmetry arguments. This is the case for example for problems of laterally unconstrained deformation of thin rods.

This form introduces two new parameters: the Young modulus Y which is the ratio T zz /S zz when a sample is tensile tested and laterally unconstrained9 , and the Poisson ratio, between the lateral contraction S xx and the longitudinal extension -S zz in the same experiment.

In developed form, the inverse Hooke's law writes:

        S xx S yy S zz 2S yz 2S xz 2S xy         S =         1/Y -ν/Y -ν/Y . . . -ν/Y 1/Y -ν/Y . . . -ν/Y -ν/Y 1/Y . . . . . . 1/µ . . . . . . 1/µ . . . . . . 1/µ         s         T xx T yy T zz T yz T xz T xy         T (2.9)
The relations allowing to switch between (λ, µ) and (Y, ν) are:

Y = µ (3λ + 2µ) λ + µ λ = Y ν (1 + ν)(1 -2ν) ν = λ 2 (λ + µ) µ = Y 2 (1 + ν)

Equation of motion

The equation of motion is given by Newtons's law. Let's consider a volume of deformable solid bounded by a surface S, on which elastic forces apply. In absence of body forces10 , the equation of motion writes:

∂ ∂t V ρ ∂u ∂t dV = S T n dS
The left-hand side is the time derivative of the solid momentum, and the righthand side is the elastic force applied on it. We assume that deformation is small enough so that the solid roughly keeps a constant shape, and V and S are nearly time-independent. In this case we can commute the time-derivative with the volume integral, and further using the divergence theorem, we get:

∂ 2 u ∂t 2 = div T (2.10)
where div T must be understood as the vector of components ∂T ij /∂x j (in Einstein notation).

Waves in solids

Longitudinal and transverse waves

We assume that a wave propagates along axis z (Fig. 2.3). This means that all quantities depend only on coordinate z and time t. This implies that all ∂/∂x and ∂/∂y derivatives are null, and the strain tensor reduces to :

S =       0 0 1 2 ∂u ∂z 0 0 1 2 ∂v ∂z 1 2 ∂u ∂z 1 2 ∂v ∂z ∂w ∂z               S xx S yy S zz 2S yz 2S xz 2S xy         =         0 0 ∂w/∂z ∂v/∂z ∂u/∂z 0         Figure 2.3: Wave propagating along direction z.
Applying Hookes law (2.20), we obtain the stress tensor as:

        T xx T yy T zz T yz T xz T xy         =         λ + 2µ λ λ . . . λ λ + 2µ λ . . . λ λ λ + 2µ . . . . . . µ . . . . . . µ . . . . . . µ                 0 0 ∂w/∂z ∂v/∂z ∂u/∂z 0         =         λ ∂w/∂z λ ∂w/∂z (λ + 2µ) ∂w/∂z µ ∂v/∂z µ ∂u/∂z 0        
(2.11) whose divergence writes therefore:

div T =         ∂T xz ∂z ∂T yz ∂z ∂T zz ∂z         =         µ ∂ 2 u ∂z 2 µ ∂ 2 v ∂z 2 (λ + 2µ) ∂ 2 w ∂z 2        
The equation of motion (2.10) writes:

ρ ∂ 2 u ∂t 2 = µ ∂ 2 u ∂z 2 ρ ∂ 2 v ∂t 2 = µ ∂ 2 v ∂z 2 ρ ∂ 2 w ∂t 2 = (λ + 2µ) ∂ 2 w ∂z 2
All these equations describe propagation along z. The first two describe the material motion perpendicular to the propagation direction u ⊥ , whereas the third describe the motion parallel to the propagation direction u // .

∂ 2 u ⊥ ∂t 2 = µ ρ ∂ 2 u ⊥ ∂z 2 ∂ 2 u // ∂t 2 = (λ + 2µ) ρ ∂ 2 u // ∂z 2
There appears therefore two propagation velocities:

C T = µ ρ 1/2 = Y 2ρ(1 + ν) 1/2
(2.12)

C L = λ + 2µ ρ 1/2 = Y (1 -ν) ρ(1 + ν)(1 -2ν) 1/2 (2.13)
The first are called transverse waves (or shear-waves or "S-waves"), the second to longitudinal waves (or compression waves or "P-waves"). The difference lies in the direction of the material displacement relative to the propagation direction : for S-waves, the material moves perpendiculary to the propagation axis, whereas for P-waves, the displacement is parallel ti the latter. This can be better visualized by imagining a wave propagating vertically along a stack of dishes, each one moving relatively to its neighbour (see Fig. 2.4). The dishes can move vertically (longitudinal wave) or horizontally (transverse wave). It can be shown that any wave in a solid is a (generally complex) combination of these two elementary waves. This result can be retrieved in a more general manner, using the Helmhotz decomposition theorem. The latter states that any vector field can be decomposed into the sum of a divergence free field (in this case u ⊥ ) and an irrotationnal field (here u // ). It can be shown furthermore that such fields derive respectively from a vector potential and a scalar potential, so that u ⊥ = rot Ψ and u // = grad ϕ. Manipulating the equation of motion with this decomposition and using vectorial analysis tools allows to conclude.

Rod waves

The longitudinal waves described above assume that there is no lateral motion so that u = v = 0, or more concisely u ⊥ = 0. It may be true for large piece of material (typically earth) or thickness oscillations of thin plates if the latter are constrained between parallel planes. In the case of a thin rod free to radially expand or contract (as it does in a tensile-test machine), this is no longer true. In this case, it is useful to write the reversed expression of Hooke's law (2.8). If the rod is unconstrained on its lateral sides and thin enough, the only nonzero stress component is T zz11 . Using this, we get from (2.8):

S zz = 1 Y T zz , (2.14)
and the equation of motion becomes:

ρ ∂ 2 w ∂t 2 = Y ∂S zz ∂z = Y ∂ 2 w ∂z 2 ,
so that the correct longitudinal velocity in this case is:

C rod = Y ρ 1/2 = C L (1 -2ν)(1 + ν) 1 -ν 1/2
One should finally recall the meaning of the stress tensor component. From the definition of the stress tensor, T zz is always the outward going component through a face normal to e z or -e z . Whenever positive, it means that the material is stretched. The opposite (inward-going force) is pressure.

On the other hand, w is the z displacement component, that is u.e z .

Mechanical energy conservation

(The demonstration can be skipped in a first reading, but take a look at the result which gives an interesting physical insight.)

An energy conservation equation can be obtained by taking the scalar product of the equation of motion (2.10) with velocity v = ∂u/∂t (which in mechanics yields the theorem of kinetic energy):

ρv • ∂v ∂t = div T • v
which can be recast as:

∂ ∂t 1 2 ρv 2 = div T v -T : gradv (2.15)
where the notation A : B must be understood as the scalar A ij B ij in Einstein notations. Note that the time-derivative of the kinetic energy appears in the lefthand side. Noting that T is symmetrical, we have T : gradv = T : gradv T and therefore, from strain tensor definition, T : gradv = T : ∂S/∂t. The conservation equation can therefore be rewritten as:

∂ ∂t 1 2 ρv 2 + T : ∂S ∂t + div -T v = 0 (2.16)
To further interpret the second term in the above equation, let's form the product (Hooke's law : ∂S/∂t): 

T : ∂S ∂t = λ
+ div -T v Acoustic intensity = 0 (2.19)
The term in parenthesis is the mechanical energy density (kinetic + potential, W m -3 ), and the vector in the divergence is an eneergy density flux (W m -2 ). It describes the interchange between kinetic and potential energy involved in a wave and how the sum of both can be transported by the wave. It should be note that the zero right-hand side is directly linked to the hypothesis of non-dissipative motion, which is implicit in Hooke's law. Accounting for losses in the deformation of the solid would yield a non-zero right-hand side.

Mechanical energy dissipation

Materials undergo dissipation as they deform, because of their visco-elastic behavior, which induces volumetric conversion of mechanical energy into heat.

Viscous effects can be accounted for by various models, but all of them assume an additional viscous force to the Hooke's law, that is a stress proportional to deformation rate ∂S/∂dt. Let's assume for now that Hoole's law is modified as: Both term are no longer equal, and we have now:

T = λ Tr S I + 2µ S + λ ′ Tr ∂S ∂t I + 2µ
∂T ∂t : S = T : ∂S ∂t -λ ′ Tr ∂S ∂t 2 -2µ ′ ∂S ∂t 2 + λ ′ Tr ∂ 2 S ∂t 2 Tr S + 2µ ′ ∂ 2 S ∂t 2 : S
Adding T : ∂S ∂t on both sides yields:

∂ ∂t T : S = 2T : ∂S ∂t -λ ′ Tr ∂S ∂t 2 -2µ ′ ∂S ∂t 2 + λ ′ Tr ∂ 2 S ∂t 2 Tr S + 2µ ′ ∂ 2 S ∂t 2 : S
Dividing by 2 and recasting the last term, we get:

∂ ∂t 1 2 T : S = T : ∂S ∂t - λ ′ 2 Tr ∂S ∂t 2 -µ ′ ∂S ∂t 2 + λ ′ 2 ∂ ∂t Tr S ∂ Tr S ∂t - λ ′ 2 Tr ∂S ∂t 2 + µ ′ ∂ ∂t S : ∂S ∂t -µ ′ ∂S ∂t 2 = T : ∂S ∂t -λ ′ Tr ∂S ∂t 2 -2µ ′ ∂S ∂t 2 + λ ′ 2 ∂ ∂t Tr S ∂ Tr S ∂t + µ ′ ∂ ∂t S : ∂S ∂t
which can be recast as:

T : ∂S ∂t = ∂ ∂t 1 2 T : S - λ ′ 2 Tr S ∂ Tr S ∂t -µ ′ S : ∂S ∂t +λ ′ Tr ∂S ∂t 2 +2µ ′ ∂S ∂t 2
Injecting this result in (2.16), we finally obtain the generalization of conservation energy equation (2.19) as:

∂ ∂t

1 2 ρv 2 + 1 2 T : S - λ ′ 2 Tr S ∂ Tr S ∂t -µ ′ S : ∂S ∂t + div -T v = -λ ′ Tr ∂S ∂t 2 -2µ ′ ∂S ∂t 2 (2.23)
It can be seen that the RHS term is always negative and will not disappear upon averaging, as far as the viscosity α is non-zero.

Standing waves in solids 2.5.1 Hypothesis and equations

We assume a sinusoidal wave propagating in a piece of solid along z. The following approach remains valid both for a pure longitudinal wave or a rod wave. We set w = W (z)e jωt , and the propagation equation writes as an Helmholtz equation:

∂ 2 W ∂z 2 + k 2 W = 0 k = ω C (2.24)
where C can be either the longitudinal wave velocity or the rod wave velocity.

We can define the pressure at a given z as the opposite of the tensile stress p = -T zz .

In the case of a longitudinal velocity, we have from (2.11):

p(z, t) = -(λ + 2µ) ∂w ∂z = -ρ C 2 L W ′ (z) e jωt
For rod waves, from (2.14):

p(z, t) = -Y ∂w ∂z = -ρ C 2 rod W ′ (z) e jωt
Setting p = P (z)e jωt , the complex pressure amplitude reads therefore, in both cases:

P (z) = -ρ C 2 W ′ (z) (2.25)
The general solution of (2.24) is the sum of one wave travelling to the right and one to the left:

W (z) = W + e -jkz + W -e jkz
(2.26) so that the pressure complex amplitude reads

P (z) = -ρ C 2 W ′ (z) = jρ C 2 k W + e -jkz -W -e jkz
= jρ Cω W + e -jkz -W -e jkz = P + e -jkz + P -e jkz (2.27)

where the second egality results from k = ω/C. We obtain therefore:

P + = jωρ CW + P -= -jωρ CW -
It is also useful to calculate the local velocity V (z) = jωW (z) (which we recall is the z velocity component):

V (z) = jω W + e -jkz + W -e jkz (2.28)
Combination of Eqs (2.27), (2.28) allows to solve for P (z) and V (z) by different manners, on which we now focus on.

Acoustic impedance

For now, the amplitude of the two waves W + and W -are unspecified. This is because no boundary conditions have been associated to the propagation equation (2.24). Typically, our solid piece may be excited on the left by an oscillating system and contacting on the right with another solid or a fluid. Both boundary conditions may impose either displacement (or equivalently, velocity or acceleration) or pressure, or any linear combination of the two.

One interesting concept is the acoustic impedance with, for a 1D-wave, is defined locally as the ratio between pressure's and velocity's complex amplitudes. From expressions (2.27) and (2.28), it writes:

Z(z) = P (z) V (z) = ρ C W + e -jkz -W -e jkz
W + e -jkz + W -e jkz = Z M P + e -jkz + P -e jkz P + e -jkz -P -e jkz (2.29)

It can be seen that in the case of a single wave travelling to the right, P -= 0 so that Z(z) = Z M = ρ C is constant and real. The quantity Z M = ρ C is called specific impedance of the medium because it only depends on the physical properties of the latter. This is a very specific case of a pure travelling wave which is not of concern here for now.

We thus look forward to evaluate P + and P -in the configuration described Fig. 2.5.

As the solid is intended to be put in contact at z = ℓ with another medium of impedance Z ℓ , we can write:

Z ℓ = Z M P + e -jkℓ + P -e jkℓ P + e -jkℓ -P -e jkℓ (2.30)

We can use this equation to express P -in function of P + and inject the result in the expression of Z(z). After some calculations, we get Z(z) and in particular Z 0 = Z(z = 0): 

Z(z) = Z M Z ℓ + jZ M tan k(ℓ -z) Z M + jZ ℓ tan k(ℓ -z) Z 0 = Z M Z ℓ + jZ M tan kℓ Z M + jZ ℓ tan kℓ (2.31) 0 z ℓ V (ℓ) = V 2 .e z n 1 n 2 F (ℓ) = F slab on right .e z = P (ℓ)A V (0) = V 1 .e z F (0) = F left on slab .e z = P (0)A Z M = ρC

Transfer matrix formulation

Matrix formalism may also be useful in the present context. Writing equations (2.27)-(2.28) at z = 0 and z = ℓ, we obtain the 4 equations :

V (0) = jω W + + W - (2.32) V (ℓ) = jω W + e -jkℓ + W -e jkℓ (2.33) P (0) = jωZ M W + -W - (2.34) P (ℓ) = jωZ M W + e -jkℓ -W -e jkℓ (2.35)
Eliminating W + and W -between these equations, they can be reduced to two linear algebraic equations. For example, the pressure and velocity at z = 0 can be related to the ones at z = ℓ by 12 :

  P (0) V (0)   =   cos kℓ jZ M sin kℓ j Z M sin kℓ cos kℓ     P (ℓ) V (ℓ)   (2.36) (Sherman2007transducers
). This formulation is useful whenever one wants to chain several media. In this case the input pressure and velocity of a system (for example a complete transducer) can be expressed from the rightmost conditions.

Impedance transformers

From the matricial formulation (2.37) (or also from the impedance (2.31)) one can draw several interesting conclusions:

• if kℓ ≪ 1, that is if the solid thickness is much lower than the wavelength, the above matrix is unit matrix. All quantities are almost z-independent, which means that the solid translates as a block. There is almost no wave phenomenon in this case.

• if kℓ = (2n + 1)π/2, that is ℓ = (2n + 1)λ/4, the matrix is anti-diagonal. This means that a pressure node is transformed into a velocity node and vice versa. Such a system is called a quarter wavelength adapter. Expression (2.31) yields

Z 0 = Z 2 M /Z ℓ .
• if kℓ = nπ, that is ℓ = nλ/2, the matrix is minus unity (if n odd) or unity (if v even). The impedance is therefore unchanged since (2.31) yields Z 0 = Z ℓ . Nothing happens therefore, except a possible π-phase change whenever n is odd. Such adapters are half-wavelength adapters and may be used to enlarge the system without changing its impedance.

Section changes and mechanical impedance

If two slabs of different sections are put into contact, the continuous quantity at the interface is not pressure but the normal force, which means that multiplying the matrix as defined above would yield incorrect results.

We thus define the pressure force F = pA, we can use the above results by simply replacing the acoustic impedance Z = p/V by the mechanical impedance Z = ZA = F/V , where A is the cross-section of the slab. Equation (2.37) generalizes as: 12 We start in this case with

W -= Z M V (ℓ) -P (ℓ) 2jωZ M e -jkℓ and W + = Z M V (ℓ) + P (ℓ) 2jωZ M e jkℓ   F (0) V (0)   =   cos kℓ jZ M sin kℓ j Z M sin kℓ cos kℓ     F (ℓ) V (ℓ)   (2.37)
A classical application is known as mechanical amplifier, which consists in two quarter-wavelength slabs of different sections (see Fig. 2.6). Matrix formalism yields: If the slabs are made of the same material, we have therefore Z i = ZA i so that:

  F B V B   =   0 -jZ 2 -j Z 2 0     0 -jZ 1 -j Z 1 0     F A V A   =   -Z 2 /Z 1 0 0 -Z 1 /Z 2     F A V A   λ/4 V B F B λ/4 F A V A 1 2
V B = - A 1 A 2 V A F B = - A 2 A 1 F A
The displacement amplitude is amplified by the ratio of the large section to the small one, and the force is reduced by the same ratio. This allows to increase the displacement amplitude at the extremity of tip transducers.

2.5.6 Sign conventions. Reversible form.

We come back here again to sign conventions. A different choice is sometimes used, which consists in choosing all vector quantities entering the solid slab. Let F i the pressure force exerted by the exterior on face i of a slab (or "inward force" on slab).

We have therefore

F i = F i .(-n i ) = P i A
From Fig. 6.4, the reader can convince himself that the definition coincides with the latter so that: We also define the inward velocity on face i of the slab, and it can be checked that compared to above notations, we have :

F 1 = F (0) F 2 = F (ℓ) V 2 = V 2 .(-n 2 ) = -V (ℓ) n 2 V 1 = V 1 .(-n 1 ) = V (0) 0 z ℓ F 1 = F left on slab .(-n 1 ) = P (0)A = F (0) F 2 = F right on slab .(-n 2 ) = P (ℓ)A = F (ℓ) n 1 Z M = ρC
V 1 = V (0) V 2 = -V (ℓ)
Thus the matrix formulation (2.37) becomes:

  F 1 V 1   =   cos kℓ -jZ M sin kℓ j Z M sin kℓ -cos kℓ     F 2 V 2   (2.38)
This formulation has the advantage to be reversible (check that the inverse of the matrix, whose determinant is -1, is itself), which means that it keeps the same form whatever the choice of face 1 or 2. Using only quantities pointing inside the material, we get rid of the choice of z. This is an advantage, but has drawbacks when combining slabs in series.

Note that these various sign conventions are often vaguely commented in the litterature.

Chapter 3

Dielectrics

The next chapter deals with piezoelectric materials, which are dielectric materials able to polarize not only under the action of an electric field, but also under stress or strain. The correct understanding of such materials requires basic knowledge on dielectric materials. The latter can be seen as solid assemblies of microscopic dipoles, which are able to orient along an electric field. This phenomenon, termed as polarization, results in an accumulation of opposed charges on the internal boundaries of the material.

For the reader having no background on the field, we recall in this chapter the basic laws of electrostatics in vacuum and how it can be generalized to dielectrics. We will insist especially on the physical meaning of the electric displacement vector D since the latter appears in the piezoelectrics constitutive laws.

Electrostatics in vacuum

Overview

A set of electric charges in space interact pairwise by Coulomb force, which means, that for two charges q 1 and q 2 , the force exerted by 1 on 2 writes:

F 1/2 = q 1 q 2 4πϵ 0 e 12 ||r 12 || 2 = q 1 q 2 4πϵ 0 r 12 ||r 12 || 3 = q 1 q 2 4πϵ 0 r 2 -r 1 ||r 2 -r 1 || 3
where r 12 = r 2r 1 is the vector going from charge q 1 to q 2 , and e 12 is the same but with unit norm.

A generic question is: for any distribution of charges in space what is the total force exerted on one of these charges (say Q) by the others?

q 2 F 12 r 12 r 1 r 2 O q 1 Figure 3
.1: Coulomb force exerted by a charge 1 on a charge 2 (of same sign in this example).

q 2 E O q i q i+1 R r i Q F q N q 1 Figure 3.2: Coulomb force exerted by a set of discrete charges 1 . . . N located at r i , on a charge Q located at R.
The answer is:

F = i q i Q 4πϵ 0 R -r i ||R -r i || 3 = Q i q i 4πϵ 0 R -r i ||R -r i || 3
The second form shows that the force can be expressed by multiplying the charge of interest Q by a quantity which only depends on the the other charges and their locations relative to Q. This is the electric field E caused by all the other charges, and it is a workaround to answer the above question simply:

F = QE
To summarize:

• A set of charges creates an electric field everywhere in space, which can be used to compute the force exerted on a charge located somewhere.

• The latter charge can possibly move under this force, and modify in turn the electric field in other locations of space.

It is important to understand therefore that, as for the hen and the egg, charges location and electric field are closely linked, and are two aspects of the same problem which cannot be considered separately.

When an "external field" is said to be created, it means in fact that some device (a generator) is able to pump some charges (electrons). In a charged capacitor, charges have been pumped in or out of the electrodes, and their equilibrium distribution "creates" a field between the terminals of a capacitor,

Field created by charges. Potential. Gauss theorem

We can generalize the above arguments to continuous repartitions of charges in space: consider a distribution of charges ρ(r), where r = (x, y, z), so that the charge contained in infinitesimal volume dV = dx dy dz is ρ(r) dV .

The electric field created by the charge distribution ρ(r) at a point R = (X, Y, Z) in vacuum writes:

E(R) = r∈V ρ(r) dV 4πϵ 0 R -r ||R -r|| 3 (3.1)
or alternatively, defining the electric potential V (R) by E(R) =grad R V (R) it can be shown easily that: 1

The electric potential at R is

V (R) = r ρ(r) dV 4πϵ 0 ||R -r|| (3.2)
A similar formulation can be used when charges are distributed on a surface:

E(R) = r∈S σ(r) dS 4πϵ 0 R -r ||R -r|| 3 V (R) = r∈S σ(r) dS 4πϵ 0 ||R -r|| (3.3)
A useful mathematical tool (termed as Green functions) allows to show that equation (3.1) can be written in local form as:

1 the notation grad R means derivating with respect to R coordinates, that is X, Y, Z. You can check that grad R 1 ||R -r|| = - R -r ||R -r|| 3 div(ϵ 0 E) = ρ(r) (Gauss theorem) (3.4)
which is by the way one of the Maxwell equations. The demonstration is given in appendix B. Gauss theorem can also be written in integral form, using divergence theorem. For any closed surface

S S ϵ 0 E.n dS = inside S Q (3.5)
The out flux of E through a surface S is thus related to the total charge enclosed by S, whatever its spatial distribution.

Dipole.

A dipole (Fig. 3.3) is a pair of opposite charges -q and q distant of a vector a (pointing towards the positive charge).

q M R a 0 -q Figure 3.3: Illustration of a dipole. The dipole moment is p = qa.
It is easy to show that, at a point r sufficiently far from the dipole center, assumed located in O, the potential created by the dipole is:

V = qa.R 4πϵ 0 ||R|| 3 = -p 4πϵ 0 • grad R 1 R (3.6)
where the quantity p = qa is called dipole moment, and has a dimension QL, and see footnote 1. It can be noted that the potential varies as 1/R 2 , and vanishes thus more quickly than to the potential created by a single charge which varies in 1/R.

Plane capacitor.

We consider a system of two parallel plane electrodes of area A, separated by vacuum (Fig. 3.4), distant from ℓ. An external device (typically a voltage source acting as an electron-pump) accumulates surface charges σ ext on the left electrode and -σ ext on the right. By symmetry, the electric field is oriented along e z . Moreover, except in the electrodes, no volumic charges exist. Applying Gauss theorem in integral form on any surface S 1 exterior to the electrodes yields a constant electric field, and since the latter is null infinitely far, it is null everywhere outside the capacitor. Applying now Gauss theorem on any surface S 2 between the electrodes, not containing them, yields again a constant electric field. Finally, applying Gauss theorem to the surface S enclosing the positively charged electrode yields:

ϵ 0 E.e z = σ ext .
We can deduce the total charge accumulated Q = σ ext A = ϵ 0 AE.e z . Asssuming the negatively charged electrode is grounded and the other at a positive voltage U , E =grad U gives E.e z = U/ℓ and we get:

Q = ϵ 0 A ℓ U.
The capacitor stores opposite charges on its electrodes when connected to a voltage source V . The higher the voltage, the higher the charge and the ability to store charges under a given voltage V defines the capacity:

C = ϵ 0 A ℓ ,
which increases with the electrode area A and decreases with the distance ℓ. With ϵ 0 = 8.85 × 10 -12 F m -1 , taking a capacitor with A = 1 cm 2 and ℓ = 5 mm (already a large size capacitor. . . ), we get C = 0.177 pF. Vacuum capacitors are thus very inefficient since values of several hundreds µF are commonly encountered for capacitors of this size. Dielectrics will solve the problem, as explained in the next section.

Dielectrics

Definition. Polarization.

A dielectric material is a set of opposite charge pairs q and -q, that cannot travel on a macroscopic scale (they are thus electric insulators). Because they are bound to atomic, molecular or cristalline groups, their displacement is limited to a few Angström and they are sometimes termed as "bound charges", contrarily to conductors where charges are free to travel in the medium (electrons in metals, ions in electrolytes, or both in plasmas).

Figure (3.5) shows an example of distributions of bound charges. It is seen that the respective centers of mass of +q charges and -q charges may coincide or not. If for some (yet unspecified) reason they don't, they form electric dipoles distibuted in space.

+Q

-Q -Q +Q Figure 3
.5: Schematization of a dielectric. On left example, the geometric centers of negative and positive charges coincide, in right graph they are separated, in which case each pair behaves as a dipole.

On a macroscopic scale, we can smooth out the discrete character of dipoles distribution and define the number of dipole moment per unit volume polarization P = dp/dV . Its dimension is QL/L 3 = QL -2 , that is a number of charges per unit area. This is not a coincidence, as we'll see below.

We are now interested in the electric field created by such dipoles (note that yet, we know neither how they are distributed in space, nor their orientations). If they are randomly oriented, it is easy to imagine that the resulting field is zero. But if their are all oriented in the same direction, say upwards, intuition tells us that there will be a net excess of positive charges on upper parts and an excess of negative charges in lower parts. Thus the top boundary of the material will be charged positively and the bottom negatively, as evidenced on Fig. 3.6.

+q +q -q -q +q -q +q +q +q -q -q +q -q -q +q -q +q +q -q -q -q +q +q -q -q +q -q +q +q +q -q +q +q -q -q +q -q -q +q +q -q -q +q -q +q +q -q +q +q -q -q +q +q -q +q +q -q -q +q -q -q -q +q -q Figure 3.6: Polarized dielectric.

Electric field in a dielectric.

To compute the electric field at R created by a dipole distribution P (r), we note that in a small volume dV located at r, there is a dipole moment dp = P dV which from (3.6) creates therefore the potential:

dV (R) = -PdV 4πϵ 0 . grad R 1 ||R -r|| Noting that grad R 1 ||R-r|| = -grad r 1
||R-r|| , the potential reads finally :

V (R) = V PdV 4πϵ 0 . grad r 1 ||R -r|| Using the identity div(αv) = α div v + v. grad α, we get V (R) = V div P 4πϵ 0 ||R -r|| - div P 4πϵ 0 ||R -r|| dV = S P.n 4πϵ 0 ||R -r|| dS + V -div P 4πϵ 0 ||R -r|| dV
where the second equality has been obtained from divergence theorem, and S is the dielectric boundary. We recognize :

• in the first term, the potential created by a surface distribution σ P = P.n (see (3.3)),

• in the second term, the potential created by a volume distribution ρ P =div P (see (B.1)).

Note that we had anticipated the first item qualititatively (Fig. 3.6), and had remarked that the dimension of P was QL -2 , which is also the dimension of a surface charge density! The existence of this surface charge density is clearly visible on Fig. 3.6.

The second one is more subtle and originates from the case where dipoles are nonuniformly distributed in space, otherwise it is null (to realize that intuitively change the lengths of some lines of arrows in Fig. 3.6 ).

In summary, the above calculation shows that:

The field created by a dipole moment distribution P in a a dielectric material is the same as the one created in vacuum by the distributions:

σ P = P.n ρ P = -div P (3.7)
It can be checked that from divergence theorem, over any volume V of dielectric material bounded by a surface S, we have:

V ρ P dV + S σ P dS = 0
which states the total electroneutrality of the volume (remember that a dielectric is a continuous set of dipoles).

Electric displacement field D

The way a dielectric becomes polarized has not been specified yet. The simplest way is to bring some external charges at its boundaries. We consider for simplicity a plane geometry sketched on Fig. 3.7: some external positive charges are accumulated on the left boundary with a surface density σ ext and -σ ext on the right boundary. These external charges polarize the material with a dipole moment distribution P which creates a surface density of charges -σ P and σ P on the internal faces, with σ P = P.n.

From the geometry, all fields are horizontal.

The natural question arises: which value of the electric field is necessary to accumulate these external charges on electrodes, able to polarize the dielectric this way? To answer that, we can apply Gauss theorem on the shaded region S of Fig. 3.7, which encloses surface charges σ ext and -σ P :

ϵ 0 E • e z = σ ext -σ P = σ ext -P • e z
where we have used -σ P = P • n with n = -e z on the left boundary. The two terms appearing in the RHS show that the electric field results from two contributions:

• The field E ext • e z = σ ext /ϵ 0 is the one that would be needed to accumulate the same external charges as here, but if there were vacuum between the electrodes.

• the field E P • e z = -σ P /ϵ 0 is the one created by the charge displacement in the dielectric. It is clearly opposed to both E and E ext and for this reason is called "depolarization field"2 . It has the effect to reduce the total external field.

We can answer the above question partially at this stage: we must accumulate the external charge density σ ext = (ϵ 0 E + P) • e z to create the field E. Let's set:

D = ϵ 0 E + P,
the electric displacement field, we can see that the external charge to accumulate is just

σ ext = D • e z = -D • n.
The corresponding field if the dielectric were replaced by vacuum is E ext = D/ϵ 0 This is the most important physical senses of D that must be retained.

However we have not answered completely the question because we don't know the value of P: how far does the dielectric polarizes or in other words how far do the internal charges move under the action of the electric field? As we use external charges, one would be tempted to relate P and E ext but remember that because of polarization, the actual field is E. We can reasonably assume that the higher the field, the higher the polarization, so that in a first approximation, we can assume a linear relation:

P = χ e ϵ 0 E (3.8)
where the non-dimensional quantity χ e is called electric susceptibility of the dielectric. It measures the ability of the charge pairs to separate under an electric field.

We can now compute the electric displacement field:

D = ϵ 0 E + χ e ϵ 0 E = ϵ 0 (1 + χ e ) E = ϵE = ϵ 0 ϵ r E, (3.9) 
where ϵ is called dielectric permittivity of the dielectric, and ϵ r is the relative dielectric permittivity. The material may be anisotropic (which is the case of piezoelectrics), in which case the linear relations (3.8) or (3.9) should be replaced by tensorial ones (the tensors are generally diagonal in piezoelectrics). Departure from linearity can also exist, but will not be considered here.

The initial question is now fully answered: the external charge necessary to create an electric field E (and therefore a polarization

P = χ e ϵ 0 E) is σ ext = D • e z = ϵ 0 ϵ r E • e z .

Application to dielectric capacitors

To show the practical interest of dielectric, let's retake some of the above results.

We obtained:

ϵ 0 E = (σ ext -σ P )e z (3.10) D = σ ext e z (3.11)
This already allows to know how much polarization charge σ P is created by the dielectric. Indeed combining the above result with D = ϵ 0 ϵ r E, we obtain:

σ P = σ ext 1 - 1 ϵ r
which shows that σ P < σ ext always hold. But for very large ϵ r , that is a strongly polarizable dielectric,3 we have σ p ≃ σ ext which means that the dielectric counteracts almost completely the intent of the generator to create a field between the electrodes. This can be seen by writing D in two ways:

D = ϵ 0 E ext = ϵ 0 ϵ r E
so that E = E ext /ϵ r : the actual electric field is much lower in presence of a dielectric than in the case of a vacuum capacitor! (compare the length of arrows E ext and E on Fig. 3.7). This is because of the strong depolarization field induced by charge displacements in the dielectric.

This constitutes the interests of using dielectrics in capacitors: to accumulate a given charge σ ext , a field E ext /ϵ r is required here whereas E ext was needed for the vacuum capacitor (see p. 30). For a given distance between electrodes, since E = U/ℓ, the same holds for the potential and therefore the capacity is multiplied by ϵ r .

Gauss theorem in dielectrics.

We have introduced the electric displacement field on the example of the plane capacitor. To do so, we recycled Gauss theorem in vacuum, which could be done because from result 33, we know that polarization of the dielectric can be represented by an equivalent charge in vacuum. This can be generalized for any configuration and we want to rewrite Gauss theorem for dielectrics.

Assume a polarized dielectric and some other free charges distributed as ρ ext . From what precedes, to apply Gauss theorem (3.4), we must account not only for ρ ext but also for the charge distribution ρ P =div P equivalent to the dipole distribution of the dielectric: div ϵ 0 E = ρ ext + ρ P = ρ extdiv P Therefore, using D = ϵ 0 E + P:

The Gauss theorem writes:

div D = ρ ext (3.12)
or, in integral form:

S D.n dS = inside S Q ext (3.13)
We see therefore that vector D can be considered as an artifact to write Gauss theorem as we did in vacuum, just replacing ϵ 0 E by D. The above quick demonstration hides however the fact that surface distributed charges are also involved and the physical sense of D. A more physical demonstration of (3.13) can be found in appendix C.

We end by a pedagogic note: some standard academic texts suggest more or less implicitely that D is the "adequate tool replacing E " when dielectrics are involved, and that E can be in some way forgotten. If it is formally true in the expression of Gauss theorem, the example of the capacitor shows that it is definitely not the case because E is indeed what you impose with the generator. Thus, instead of memorizing the classical equation :

D = ϵ 0 E + P
one should rather think of:

ϵ 0 E
The actual field to apply on a dielectric capacitor. . .

= D

. . . the field one should apply to a vacuum capacitor. . .

-P

. . . the one created thanks to polarizability of the dielectric

Boundary conditions.

Gauss theorem in local form along with D = ϵE and E =grad U can be used to solve a dielectric problem for the potential U4 , and ρ ext is generally 0. Boundary conditions must be associated.

When a dielectric surface is at known potential (zero if grounded), U is trivially imposed.

Let's examine other cases. Since curl E = 05 , it's easy to show that the tangential component of E is always continuous across an interface. The behaviour of the normal component can be obtained from (3.5) applied on a infinitely flat cylinder crossing an surface element dS of the interface between medium 1 and medium 2 (say, a coin, see Fig. 3.8).

Gauss theorem applied to this cylinder yields :

D 2 .n 12 dS -D 1 .n 12 dS + S lat D.n dS = inside cylinder Q ext = σ ext dS
The third term vanishes in the limit of small h and we obtain: Several particular cases may be of interest:

(D 2 -D 1 ).n 12 = σ ext (3.14) dS n 12 h S lat 1 2 σ ext (a)
• If domain 2 is vacuum or air and does not contain free charges (typically external air, Fig. 3.8b), D 2 = ϵ 0 E 2 = 0 and the boundary condition for the dielectric domain 1 is D 1 .n 1 = 0. This is the default boundary condition in the Electrostatics Comsol module and is the boundary conditions.

• Domain 2 may be a metallic electrode in contact with the dielectric to bring external charges σ ext (Fig. 3.8c), the boundary condition for the dielectric domain 1 is D 1 .n 1 = -σ ext . This will be further discussed in the next section.

As a final remark, it can be noted that (3.14) can also be rewritten as:

ϵ 0 (E 2 -E 1 ).n 12 + (P 2 -P 1 ).n 12 = σ ext ⇒ (E 2 -E 1 ).n 12 = σ ext ϵ 0 - σ P 2 -σ P 1 ϵ 0 using (3.7)
which shows that, at the interface between dielectrics, even in absence of free surface charges (σ ext = 0), the normal electric field is discontinuous. One could have obtained this result directly by applying the Gauss theorem for field E.

Displacement current

In the capacitor problem, the free charges stored in the electrodes may be a function of time, and they are indeed, even if V is constant, as long as the capacitor is not completely charged. Let's consider the situation sketched Fig. 3.9 where a wire is connected to a metallic electrode in contact with a dielectric, which can store external charges σ ext = -D • n. As charge must be conserved, the input current is given by:

I in = d dt S σ ext dS = - d dt S D • n dS = - S ∂D ∂t • n dS (3.15)
The quantity in the integrand suggests to set:

J D = dD dt (3.16)
representing an outward current density emerging from the dielectric. The quantity J D is called displacement current density. Contrarily to a current in metals where a current is an electron flux, it does not correspond to a net motion of charges in the dielectric (since the latter are bound), but originates from the polarization. Knowledge of D allows computation of J D . With modelling and simulation in view, it is generally useful:

• to know how to compute the or input current into a dielectric (or piezoelectrics),

• and/or to be able to impose the input current. It is important to understand than when "imposing a current" in a dielectric (or a piezoelectrics), with a controlled source-current for example, consists in fact to apply the adequate voltage across the dielectric, that will polarize the dielectric in such a way that the displacement current takes the imposed value. An case often encountered in the study of transducers is the one where two piezoelectrics are put in contact, separated by a thin sheet of copper to which the external electrical circuit is connected (Fig. 3.9b). A similar reasoning as above gives, using (3.14):

I in σ ext n D (a) One dielectric medium 2 1 σ ext I in n 12 D 2 D 1 (b) Two dielectric media
I in = d dt S σ ext dS = - S ∂ (D 1 -D 2 ) ∂t • n 12 dS = - S (J D 1 -J D 2 ) • n 12 dS (3.17) Note that D 1 .n ̸ = D 2
.n, so that the normal component of D is discontinuous and the integral is non-zero. This is important to compute correctly the input current (in Comsol for example, see appendix I).

Chapter 4

Piezo-electric effect

Introduction. Properties.

The study of piezoelectric materials dates back to Pierre Curie, who studied this effect in quartz. They have the property to deform when a voltage is applied on them, and conversely, they develop surface charges upon deformation by a mechanical external mean (Fig. 4.1). They share therefore the properties of elastic materials described above, and of electric capacitors, with crossed reversible effects. The physics of piezoelectricity can be explained very quickly:

• If you pump some electrons with an external generator on metallic electrodes touching the piezoelectric material, you tear apart the internal positive and negative charges inside the piezoelectrics. As these charges are bounded to atoms, you deform the material.

• Conversely if you deform piezoelectric materials (for example stretching or compressing them), you move their internal bounded charges, but positive and negative charges do not move the same distance. This results in a surface accumulation of charges, negative on one side, positive on the other. This surface charges pushes or pulls the free electrons of the metallic electrodes connected to the piezoelectrics, and thus produces a current (if circuit is connected to an amperemeter for example).

All the material presented in this section formalize these effects mathematically. The complexity comes first from the fact that electric and elastic properties are coupled, and second from the anisotropy of such materials1 . But tensor formalism solves that elegantly and no additional concept is required compared to the last chapter, except basic knowledge on electrostatics.

The most commonly used piezoelectric materials are PZT consisting in a mixture of lead Zirconate and lead titanate. Their formula is Pb 2+ B 4+ O 2- 3 , where B is either zirconium Zr or titanium Ti, both appearing in a given ratio in the crystal structure (CeramtecBrochure). In their basic state, these materials are constituted of cells having randomly oriented dipoles, so that they do not present macroscopic piezoelectric behaviour. Their are therefore first submitted to a "poling process": they are exposed at high temperature to a strong electric field that orient their dipoles in the same direction. After cooling, this preferential orientation remains, the material is polarized and the surface with excess positive charges is considered as the "plus" of the ceramics (it is generally indicated by a + symbol or a red dot marked on the silver electrode), and becomes anisotropic. The z-axis used in the next section corresponds to the direction of this polarization.

Constitutive equations

A dielectric and elastic material

A piezoelectric is both a dielectric and an elastic material. If there were no piezoelectric effect, the material would follow the respective laws for these two physics:

D = ϵE Dielectric equation T = cS Hooke's law
Since for a piezo, strain produces charge displacement, and conversely electric field also produces stress, the above relation are generalized to account for this cross effects as:

D = eS + ϵ S E (4.1a) T = c E S -e t E (4.1b)
where the superscripts "S" and "E" mean "at constant S" and "at constant E", respectively. Since S is a 6-dimensional vector and D a 3-dimensional one. The coupling between the two physics is made by e, which is a 3 × 6 matrix and its transposes e t a 6 × 3 matrix. This set of equation is known as stress-charge form, since the dependent variables (on the left of symbol =) are stress T and "charge" (electrical displacement vector) D. The fact that the coupling matrix e is the same in the direct and inverse effects is linked to general physical principles relying on symmetry arguments, that where formulated by Curie.

We recall the various dimensions occurring in this relation:

D QL -2 E VL -1 ϵ QL -1 V -1 S 1 T FL -2 c FL -2 e QL -2
For clarity, we rewrite the relations evidencing the matrix content. We assume the piezoelectrics to be polarized along the z axis. The null terms in the matrix are represented by dots, and because of symmetry between x and y, some matrix elements are equal: 

     D x D y D z      =      . . . .
                   S xx S yy S zz 2S yz 2S xz 2S xy               +      ϵ S 11 . . . ϵ S 11 . . . ϵ S 33           E x E y E z                    T xx T yy T zz T yz T xz T xy               =               c E 11 c E 12 c E 13 . . . c E 12 c E 11 c E 13 . . . c E 13 c E 13 c E 33 . . . . . . c E 44 . . . . . . c E 44 . . . . . . c E 66                             S xx S yy S zz 2S yz 2S xz 2S xy               -               . .
                   E x E y E z     
Some relations also exists for given cristallographic structures, for example:

s E (6, 6) = s E (1, 1) -s E (1, 2)
The above formulation is suitable when we know the strain tensor to have some null component. This is the case of a piezoceramic disk or ring excited in its thickness mode vibrations, in which case S xx = S yy = 0.

Different forms of the equations

Other formulations are possible, in fact any pair of tensorial relation between tensors S, T and vectors E, D.

The most common one is the strain-charge relation which is obtained by exchanging S and T in the above relations. Setting s E = (c E ) -1 , Eq. (4.1) becomes:

S = s E T + d t s E e t E D = es E d T + es E e t + ϵ S ϵ T E that is: D = d T + ϵ T E (4.2a) S = s E T + d t E (4.2b)
with:

d = es E ϵ T = ϵ S + es E e t
Matrix d has the same structure as e. This relation is known as strain-charge form. 

     D x D y D z      =      . . . . d 15 . . . . d 15 . . d 31 d 31 d 33 . . .                    T xx T yy T zz T yz T xz T xy               +      ϵ T 11 . . . ϵ T 11 . . . ϵ T 33           E x E y E z                    S xx S yy S zz 2S yz 2S xz 2S xy               =               s E
                            T xx T yy T zz T yz T xz T xy               +               . . d 31 . . d 31 . . d 33 d 15 . . . d 15 . . . .                    E x E y E z     
This form is suitable if the stress tensor has some null components, which is for example the case for a long thin unconstrained rod vibrating in its longitudinal mode, where T xx = T yy = 0

Just for information, we express in matrix form the relation d = es E : 

     . . . .
             
so that we have for example:

d 33 = 2e 31 s E 13 + e 33 s E

33

which shows that naively writing d 33 = e 33 s E 33 would be wrong (this has been checked against Comsol data for PZT8 . . . ). Similarly, we have seen that:

ϵ T = ϵ S + es E e t , (4.3) 
Deducing from there that ϵ T 33 = ϵ S 33 + e 2 33 s E 33 would be wrong, because s E is not diagonal.

The last two possible formulations are :

• strain-field :

E = -gT + (ϵ T ) -1 D (4.4a) S = s D T + g t D (4.4b)
• stress-field :

E = -hS + (ϵ S ) -1 D (4.5a) T = c D S -h t D (4.5b)
The latter is the most often used for transducers. It can be derived from the original formulation (4.1a)-(4.1b) by transforming the latter into:

E = -(ϵ S ) -1 eS + (ϵ S ) -1 D T = c E S -e t E = c E S -e t -(ϵ S ) -1 eS + (ϵ S ) -1 D = c E + e t (ϵ S ) -1 e S -e t (ϵ S ) -1 D
By identification, we have therefore the relations:

h = (ϵ S ) -1 e c D = c E + e t (ϵ S ) -1 e (4.6)
Since ϵ S is diagonal, we can safely write (this has been checked with the Comsol data for PZT):

h 33 = e 33 /ϵ S 33 c D 33 = c E 33 + e 2 33 ϵ S 33 (4.7)
We can also show that:

h = gc D (ϵ S ) -1 = (ϵ T ) -1 + gc D g t
We finally recall the different dimensions of the piezoelectric coefficients : Singular parameters can deviate from catalogue values, because they were measured at samples which were taken from one block of ceramics according to the sequence of IEC483 to get maximum consistency. Catalogue values reflect the statistical distribution of each individual specification in production and therefore also take into account spreading from material batch to material batch.

Quantity Dimension Unit ϵ QL -1 V -1 C/(m.V) or F/m ϵ T 33 /ϵ 0 = 1000 c FL -2 N/m 2 or Pa s L 2 F -1 m 2 /N or Pa -1 e QL -2 C/m 2 or N/(V.m) 13.9 d QF -1 or LV -1 C/N or m/V 225×10 -12 g L 2 Q -1 m 2 /C or V.m/N h FQ -1 or VL -1 N/C or V/m

Complete material data set PIC155

4.2 Illustration

Direct piezo-electric effect

Assume a piezo-electric slice of thickness e polarized along z, and unconstrained on its lateral sides. We assume that the piezo is unconnected. Let's impose a normal constant positive stress T zz , so that the piezoelectric disk is under longitudinal tension expands until it reaches mechanical equilibrium.

• Since the disk is thin and has large lateral dimensions, all components of the strain tensor except S zz can be neglected.

• As the piezo is in equilibrium and electrically open, no charges can flow across its boundaries and we have D = 0. Note that contrarily to a pure dielectric, it does not imply that there are no surface charges, and indeed the latter appear because of the piezoelectric effect on the stretched material. We now compute these charges.

As S and D have simple form, the adequate constitutive equations are stress-field Eqs (4.5). Since S is reduced to S zz , we get simply: As the external stress is applied uniformly on the piezo surface, the strain S zz is uniform through the material and independent of x, y, so that the parenthesis cancels. Strain S zz is therefore z-independent and equal to ∆e/e. Equation (4.8) therefore states that the field is also z-independent. Calling V the voltage across the piezo, we have E z = -V /e so that (4.8) yields:

E z = -h 33 S zz ( 
V e = h 33 ∆e e
Expansion generates therefore a voltage of polarity opposite to poling voltage.

Clearly contraction would produce the opposite. The voltage produces can be expressed in function of the stress applied:

V = e h 33 c D

33

T zz

Coupling factors

It can be checked from the above table that the groups h 2 ϵ/c and e 2 /ϵc are both dimensionless. Limiting the present analysis to longitudinal motion, this can be evidenced for example in relation (4.7) linking c D 33 and c E 33 :

c D 33 = c E 33 + e 2 33 ϵ S 33 = c E 33 1 + e 2 33 ϵ S 33 c E 33 = c E 33 1 + K 2
which introduces a first dimensionless group K.This relation means basically that the material is more rigid if circuit-open (D = 0) than short-circuited (E = 0). Besides we have seen that h 33 = e 33 /ϵ S 33 so that we can write:

h 2 33 ϵ S 33 c D 33 = e 2 33 ϵ S 33 c D 33 = e 2 33 ϵ S 33 c E 33 (1 + K 2 ) = K 2 1 + K 2 = k 2 t (4.9)
We have also, from Eq. ( 4.3):

ϵ T 33 = ϵ S 33 + e 2 33 s E 33 = ϵ S 33 1 + e 2 33 s E 33 ϵ S 33
It can be shown (cf. Morgan) that k 2 is the fraction of electrical energy density convertible into mechanical energy. Conversely, it is also the fraction of mechanical energy density convertible into electrical energy. This parameter is therefore linked to the electromechanical conversion. The above-defined coupling factor k t is the one interesting for thin plates or disks oscillating in the polarization direction, which is our interest here. It is about 0.5 for PZT8.

Other coupling factors can be defined, one can cite for example:

k 2 t = d 2 33 s E 33 ϵ T 33
which is the relevant coupling parameter for thikness vibration of disks and is about 0.65 for PZT8.

Energy conservation

As for elastic solids, an energy conservation equation can be obtained from the equation of motion (2.10). We proceed as in Sec. 2.4.4 by taking the scalar product of (2.10) with v to obtain (2.15):

∂ ∂t 1 2 ρv 2 = div T v -T : gradv (4.10)
The last term can be evaluated, and as we did for the solid in Sec. 2.4.4, tensor multiplication by grad v reverts to tensor multiplication by ∂S/∂t, so that using further constitutive equation (4.1b):

T : gradv = T : S = c E S : ∂S ∂t -e t E : ∂S ∂t = ∂ ∂t 1 2 c E S : S -e t E :
∂S ∂t

Now we form the scalar product of piezo equation (4.1a) with ∂D/∂t:

E • ∂D ∂t = E • e ∂S ∂t + ϵ S E • ∂E ∂t = E • e ∂S ∂t + ∂ ∂t 1 2 ϵ S E • E
The two cross-terms in the above equation are the same apart from sign (in Einstein notation they are e ijk E k ∂S ij /∂t, so that summing the two equations we get:

T : gradv = ∂ ∂t 1 2 c E S : S + 1 2 ϵ S E • E -E • ∂D ∂t
Injecting this result into (4.10), we obtain:

∂ ∂t 1 2 ρv 2 + 1 2 c E S : S + 1 2 ϵ S E • E -div T v -E • ∂D ∂t = 0
The last term can be rewritten using E =grad U :

-E • ∂D ∂t = grad U • ∂D ∂t = div U ∂D ∂t -U div ∂D ∂t 0 because div D = 0
and we finally obtain the conservation equation:

∂ ∂t 1 2 ρv 2 + 1 2 c E S : S + 1 2 ϵ S E • E + div -T v + U ∂D ∂t = 0 (4.11)
The parenthesis sums the kinetic energy and the mechanical and electrical potential energies, where as the term in the divergence is the sum of a mechanical energy density flux and an electrical energy flux (remember that ∂D/∂t = J D is a current density). This equation generalizes (2.19) to account for piezoelectric effect.

Chapter 5

Standing waves in piezo.

We assume an laterally unconstrained slab of piezo-electric material of thickness ℓ.

The left terminal is connected to a positive potential, and the right one to the ground. The piezo is polarized along the z direction so that its + face is at z = ℓ. Applied voltage U is counted positive between theface and the other, so that U = U(0) -U(ℓ). Current I is counted positively if entering through theface. Charge conservation states therefore that I = Adσ ext /dt, where σ ext is the external charge on theelectrode. Since D.n = -σ ext = -D z , we have I = AdD z /dt We are interested in the displacement component w along the polarization axis z. The equation of motion is still (2.10), which we recall here for readability:

+ + D E grad U ℓ F (ℓ) = F slab on right .e z = P (ℓ)A V (ℓ) = V 2 .e z V (0) = V 1 .e z
∂T zx ∂x + ∂T zy ∂y + ∂T zz ∂z = ρ ∂ 2 w ∂t 2 (5.1)
Since this equation is the same as for a non piezo-electric material, we may try to recycle most of the work done precedently. The problem here is that the mechanics equation is coupled to electrical field, by any of the equations pairs described above. However, in a dielectric, there are no free charge so that we can make use of Gauss law div D = 0, which if one assume all quantities depending only on the coordinate z, writes :

∂D z ∂z = 0.
We need therefore piezoelectric equations relating T , S and D. Since D is constant, the correct choice may be therefore either (4.5b):

T = c D S -h t D, (5.2) 
or (4.4b):

S = s D T + g t D, (5.3) 
depending on which tensor of S or T has the largest number of null components (Berlincourt64inMason):

• For a plate (a slab whose lateral dimensions are large compared to its thickness) oscillating in thickness, S xx = S yy = 0 and (5.2) will be the good choice.

• For a rod (a slab whose longitudinal dimensions are large compared to the lateral one) oscillating longitudinally, one can assume that T xx = T yy = 0, and (5.3) will yield simpler calculations.

We will examine first the thickness mode in details and its matrix formulation. It will be seen at the end of the chapter that the equations for the rod mode can be obtained quickly by recycling the ones of the former case.

Thickness mode

We use the stress-field formulation:

E = -hS + (ϵ S ) -1 D (5.4) T = c D S -h t D (5.5)
and assume that S xx = S yy = 0. Equation (5.5) yields, in matrix form:

                    T xx T yy T zz T yz T xz T xy                     =                     c D 11 c D 12 c D 13 . . . c D 12 c D 11 c D 13 . . . c D 13 c D 13 c D 33 . . . . . . c D 44 . . . . . . c D 44 . . . . . . c D 66                                         0 0 ∂w ∂z 0 0 0                     -                     . . h 31 . . h 31 . . h 33 h 15 . . . h 15 . . . .                             0 0 D z        
The stress T zz reads therefore:

T zz = c D 33 ∂w ∂z -h 33 D z (5.6)
and the equation of motion (5.1) writes therefore:

ρ ∂ 2 w ∂t 2 = ∂ ∂z c D 33 ∂w ∂z -h 33 D z = c D 33 ∂ 2 w ∂z 2 (5.7)
where the second equality comes from ∂D z /∂z = 0. Displacement w follows therefore a wave equation with the sound velocity:

C t = c D 33 ρ 1/2 (5.8)
which is the analog of (2.13).

As before, we can therefore write w = W (z)e jωt as a complex solution (2.26):

W (z) = W + e -jkz + W -e jkz k = ω C t (5.9)
The differences with a non-piezo-electric material comes now. We now try to express the longitudinal force F (z) = -T zz A, where A is the section of the piezo, at z = 0 and z = ℓ, in order to get impedance or matrix relations, as we did in Sec. 2.5.3. We first write the electric equation (5.4) :

        E x E y E z         = -         . . . . h 15 . . . . h 15 . . h 31 h 31 h 33 . . .                             0 0 ∂w ∂z 0 0 0                     +         1/ϵ S 11 . . . 1/ϵ S 11 . . . 1/ϵ S 33                 0 0 D z        
so that:

E z = -h 33 ∂w ∂z + D z ϵ S

33

(5.10)

We have

        E x E y E z         = -grad U,
where U is the electric potential and A ∂D z /∂t = I (see caption of Fig. 5.1). Equation (5.10) can therefore be rewritten as:

- ∂ U ∂z = -h 33 W ′ (z) + I jωAϵ S 33
Integrating this equation between z = 0 and z = ℓ yields:

U(0) -U(ℓ) = h 33 [W (0) -W (ℓ)] + I jωAϵ S
33 /ℓ or finally, setting U = U(0) -U(ℓ) (see Fig. 5.1):

U = h 33 [W (0) -W (ℓ)] + I jωC 0 (5.11) = h 33 δℓ + I jωC 0
(5.12)

where we have set δℓ = W (0) -W (ℓ), thickness variation of the piezo, and:

C 0 = ϵ S 33 A/ℓ (5.13)
is the static capacity of the undeformed piezo.

The second form of the result (??) has been written only because of its physical significance: when thickening the piezo, induces an additional current at constant voltage, and vice-versa. In absence of deformation (δℓ = 0), the piezo behaves electrically as a simple capacitor C 0 .

We now multiplicate (5.6) by -A to obtain the force, using (5.9) and D z = I/jωA:

F (z) = -c D 33 AW ′ (z) + h 33 I jω (5.14)
We set Z t = ρC t A, we have c D 33 A = ρC 2 t A = C t Z t , so that (5.14) also reads :

F (z) = -C t Z t W ′ (z) + h 33 I jω
(5.15)

Equations for matrix formulation

We now inject the solution (5.9) of the propagation equation (5.7) in (5.15) :

W (z) = W + e -jkz + W -e jkz W ′ (z) = jk -W + e -jkz + W -e jkz
and write the forces at z = 0 and z = ℓ:

F (l) = -C t Z t jk -W + e -jx + W -e jx + h 33 I jω = jωZ t W + e -jx -W -e jx + h 33 I jω (5.16
)

F (0) = jωZ t W + -W -+ h 33 I jω (5.17)
where we have used:

k = ω/C t and x = kℓ.
The velocities at z = 0 and z = ℓ read:

V (ℓ) = jω W + e -jx + W -e jx (5.18) V (0) = jω W + + W - (5.19)
We can now solve for W + and W -in function of any two variables elected between F (0), F (ℓ), V (0), V (ℓ).

It can be noticed that the latter equations are formally similar to (2.32)-(2.35), which describe a non-piezo-electric slab, at the price of replacing force F by Fh 33 I/(jω). All the matrix formulation developed above for solid slabs can therefore be recycled for piezoelectic slabs. Note that the above results rely on the following conventions:

• current I is the current entering the electrode at z = 0, which is at positive voltage,

• the polarization axis of piezo is z.

Transmittance matrix at null I

For example, if we plan to relate the quantities at z = 0 to those at z = ℓ, we can obtain for example:

   F (0) -h 33 I jω V (0)    =   cos x jZ M sin x j Z M sin x cos x      F (ℓ) -h 33 I jω V (ℓ)   
(5.20)

This has the interesting interpretation that a current entering theface of the piezo has the same effect as applying a pressure force -h 33 I/jω on both sides.

Using symmetrical notations as in (2.5.6), we obtain :

   F 1 -h 33 I jω V 1    =   cos x -jZ t sin x j Z t sin x -cos x      F 2 -h 33 I jω V 2   
Here again, it can be seen that since the matrix is equal to its inverse, the formulation remains the same when exchanging piezo sides 1 and 2. However this remains valid only if, as assumed initially, I denotes current entering into theface and U is the voltage between theand the + face (see Fig. 5.1). We will come back to this point later (p. 58).

The above relation can be recast into another matrix form:

  F (0) V (0)   = [A]   F (ℓ) V (ℓ)   + [Id -A]    h 33 I jω 0    (5.21)
where [Id] is the identity matrix and

[A] =   cos x jZ P sin x j Z P sin x cos x   (5.22)
Finally, since we know now W + and W -in function of V (ℓ) and F (ℓ), we can also express the potential using (5.11). Calculations yield:

U = h 33 ω sin x Z t F (ℓ) + j(1 -cos x)V (ℓ) + 1 jωC 0 + j h 2 33 ω 2 sin x Z t I (5.23)
This equation can be recast as:

U = h 33 ω j (1 -cos x)V (ℓ) + sin x Z t F (ℓ) + [1 -G sin x] I jωC 0 (5.24)
where the dimensionless parameter G reads:

G = h 2 33 C 0 ωZ t = h 2 33 ϵ S 33 A ℓωρC t A = h 2 33 ϵ S 33 C t ℓωρC 2 t = h 2 33 ϵ S 33 C t ℓωc D 33 = k 2 t C t ℓω = k 2 t kℓ = k 2 t x = k 2 t λ 2πℓ
where we have introduced the (dimensionless) coupling parameter k t = (ϵ S 33 h 2 33 /c D 33 ) 1/2 . This quantity represents the part of the mechanical energy that is converted into electrical or conversely.

It will be useful in what follows to keep in mind that :

h 2 33 ω 2 Z t = k 2 t ωC 0 x (5.25)
Note that the propagation velocity C t , needed to calculate k and therefore x, can be either calculated by (5.8), or checked against piezo properties tables, which provide the so-called "Frequency factors" N in kHz.mm (which are Hz.m. . . ) for each mode of vibration. For the thickness oscillations of a thin plate for example, the resonance frequency is given by f r = N t /e, where e is the thickness of the plate or disc. This must be interpreted as e = λ/2 = C t /(2f r ) so that C t = 2N t . Its order of magnitude is 4000 m/s. Equations (5.21) and (5.24) can be recast within a hexapole 3×3 matrix formulation as :

        F (0) V (0) U         =          cos x jZ t sin x h 33 jω (1 -cos x) j Z t sin x cos x - h 33 ωZ t sin x h 33 ωZ t sin x - h 33 jω (1 -cos x) 1 jωC 0 1 -k 2 t sin x x                  F (ℓ) V (ℓ) I         (5.26)
or, in symmetrical form :

        F 1 V 1 U         =          cos x -jZ t sin x h 33 jω (1 -cos x) j Z t sin x -cos x - h 33 ωZ t sin x h 33 ωZ t sin x h 33 jω (1 -cos x) 1 jωC 0 1 -k 2 t sin x x                  F 2 V 2 I        
(5.27)

The latter result is useful to understand how all these formulations changes when the piezo is oriented in the reversed direction. First, it can be checked that the above formulation is conserved if indices 1 and 2 are reversed, so that whatever the label 1 or 2 assigned to each piezo faces, the same equation holds. But note however that to obtain this formulation, the orientation of I and U were defined by the convention depicted on Fig. 5.1. The invariance of (5.27) is therefore conditioned to keeping this convention when exchanging the numbers. As the symmetrical formulation must not be conditionned by the orientation of the z-axis, (5.27) remains invariant by 1 ←→ 2 only if U and I are also defined independently of the z-orientation. From Fig. 5.1, this can be done by defining U as U = U --U + and I as the current flowing from theface towards the + face in Eq. (5.27).

Under these conditions, since label 1 or 2 can be assign to either face + orand to either face 0 or ℓ, the non-symmetrical form (5.26) remains also valid whatever the orientation of the piezo (Fig. 5.2). The same holds for Eqs (5.21)-(5.24), and for all upcoming equations deduced from the latters. This will be useful when coming to sandwich transducers in which both orientations are found.

Finally, one can also express these results in terms of a mixed mechanical / electrical impedance matrix :

        F (0) F (ℓ) U         = -j         Z t tan x - Z t sin x h 33 ω Z t sin x - Z t tan x h 33 ω h 33 ω - h 33 ω 1 ωC 0                 V (0) V (ℓ) I        
Note that in symmetrical formulation, V 2 = -V (ℓ), which transforms thesign into + in the second column : (DieulesaintRoyerTechIng))

        F 1 F 2 U         = -j         Z t tan x Z t sin x h 33 ω Z t sin x Z t tan x h 33 ω h 33 ω h 33 ω 1 ωC 0                 V 1 V 2 I         58 + + ℓ F (0) = P (0)A V (0) = V 1 .e z F (ℓ) = P (ℓ)A V (ℓ) = V 2 .e z 0 z U I (a) Piezo with + face at ℓ + + ℓ F (0) = P (0)A F (ℓ) = P (ℓ)A V (0) = V 1 .e z V (ℓ) = V 2 .

Transmittance matrix at null U

It can be interesting to express the hexapole formulation in terms of the potential U instead of I. Noting H the matrix of formulation (5.26) and H ij its components, we get: 

        F (0) V (0) I         =       
H 23 H 33 - H 31 H 33 - H 32 H 33 1 H 33                 F (ℓ) V (ℓ) U        
which yields, after painful but straightforward calculations [and using (5.25)] :

     F (0) V (0) I      = 1 1 -k 2 t sin x x ×       cos x -k 2 t sin x x jZ t sin x -2k 2 t (1 -cos x) h 33 C 0 (1 -cos x) j Z t sin x cos x -k 2 t sin x x -j h 33 C 0 Z t sin x -j h 33 C 0 Z t sin x h 33 C 0 (1 -cos x) jωC 0            F (ℓ) V (ℓ) U     
(5.28)

From there, it can be shown that a formulation similar to (5.21), but with potential can be obtained as:

  F (0) -h 33 C 0 U V (0)   = 1 1 -k 2 t sin x x    cos x -k 2 t sin x x jZ t sin x -2k 2 t 1 -cos x x j sin x Z t cos x -k 2 t sin x x      F (ℓ) -h 33 C 0 U V (ℓ)  
It can be checked that setting k t = 0, the formulation for a non-piezoelectric solid slab is we recovered.

The above relation can be recast into another matrix form:

  F (0) V (0)   = [B]   F (ℓ) V (ℓ)   + [Id -B]   h 33 C 0 U 0   (5.29)
where [I] is the identity matrix and We can also express the velocity at z = ℓ in function of the impedances Z 1 and Z 2 of the media loading the piezoelectric at z = 0 and z = ℓ.

[B] = 1 1 -k 2 t sin x x    cos x -k 2 t sin x x jZ t sin x -2k 2 t 1 -cos x x j sin x Z t cos x -k 2 t sin x x    ( 
Taking the symmetric convention, the side conditions can be written as: 

Z 1 = F slab/ext left .e x V 1 .e x = -F ext left/slab .(n 1 ) V 1 .(n 1 ) = -F 1 V 1 = - F 1 V 1 Z 2 = F slab/ext right .e x V 2 .e x = -F ext right/slab .(-n 2 ) V 2 .(-n 2 ) = F 2 -V 2 = - F 2 V 2
Using the hexapole matrix above this yields the system :

        -Z 1 V 1 -Z 2 V 2 U         = -j         Z t tan x Z t sin x h 33 ω Z t sin x Z t tan x h 33 ω h 33 ω h 33 ω 1 ωC 0                 V 1 V 2 I         or         Z t tan x + jZ 1 Z t sin x h 33 ω Z t sin x Z t tan x + jZ 2 h 33 ω h 33 ω h 33 ω 1 ωC 0                 V 1 V 2 I         =         0 0 jU        
The system giving V 1 and V 2 is (of course) symmetrical and writes :

Z t tan x + jZ 1 V 1 + Z t sin x V 2 = - h 33 ω I Z t sin x V 1 + Z t tan x + jZ 2 V 2 = - h 33 ω I
which yields :

Z t tan x + jZ 1 Z t tan x + jZ 2 - Z t sin x 2 V i = - h 33 ω I Z t tan x + jZ j - Z t sin x
where j = 2 if i = 1 and vice-versa. The prefactor can be simplified as :

-Z 2 t + j(Z 1 + Z 2 )Z t cot x -Z 1 Z 2
and using the identity (1cos x)/ sin x = tan(x/2), we obtain :

V i = -Z t tan x 2 + jZ j Z 2 t -j(Z 1 + Z 2 )Z t cot x + Z 1 Z 2 h 33 ω I (5.31)
The voltage can now be expressed as :

U = -j h 33 ω (V 1 + V 2 ) + I ωC 0 = -j h 33 ω 2 -2Z t tan x 2 + j(Z 1 + Z 2 ) Z 2 t -j(Z 1 + Z 2 )Z t cot x + Z 1 Z 2 I + I jωC 0
The electrical impedance reads therefore :

Z E = 1 jωC 0 -j h 33 ω 2 j(Z 1 + Z 2 ) -2Z t tan x 2 Z 2 t -j(Z 1 + Z 2 )Z t cot x + Z 1 Z 2 Using (5.25), h 2 33 ω 2 = Z t k 2 t ωC 0 x
, and the latter result can also be expressed as :

Z E = 1 jωC 0 1 + Z t k 2 t x j(Z 1 + Z 2 ) -2Z t tan x 2 Z 2 t -j(Z 1 + Z 2 )Z t cot x + Z 1 Z 2
(5.32) (Checked against Royer & Dieulesaint, vol. II, Eq. 1.94)

The impedance is constituted by two term. The first one is linked to the static capacity C 0 of the piezo. The second one is linked to the electromechanical conversion (note the presence of k t ). One can combine (5.31) and (5.32) to obtain the velocity in function of voltage. One obtain (check. . . )

V (ℓ) = h 33 C 0 U jZ 1 -Z t tan x 2 (Z 1 + Z 2 )Z t cot x - k 2 t x + j Z 1 Z 2 + Z 2 t -2Z 2 t k 2 t x tan x 2 (5.33)
which is confirmed by Decharat et al. (2015).

Whenever the piezo is unloaded on the 1-side (Z 1 = 0) the latter results becomes :

V (ℓ) = h 33 C 0 U -tan x 2 Z 2 cot x - k 2 t x + jZ t 1 -2 k 2 t x tan x 2 = - h 33 C 0 U √ Z t Z 2 1 Z 2 Z t cot x 2 cot x - k 2 t x + j Z t Z 2 cot x 2 - k 2 t x/2
which is Eq. ( 28) in DieulesaintRoyerTechIng), Sec. 4.2.2, up to a negative sign which comes froms the choice of symmetrical formulation in the latter reference. This form allows to discuss the form of the resonance curves in the cases Z 2 ≪ Z t and Z 2 ≫ Z t , respectively (see the latter reference).

Unloaded piezo

In the case of a completely unloaded piezo, we have Z 1 = Z 2 = 0, and the above expression becomes:

Z E = 1 jωC 0 1 -k 2 t tan x/2
x/2 (conform to DieulesaintRoyerTechIng)

(5.34) For very small x, that is at frequency far lower than the first longitudinal mode, we get :

Z E = 1 -k 2 t
jωC 0 whereas at high frequency :

Z E = 1 jωC 0
The motional impedance becomes zero when :

tan x 2 - 1 k 2 t x 2 = 0
This can be solved in the classical graphical manner by seeking the intersection points between tan X and X/k 2 t .

The roots α n lies between nπ and π 2 + nπ and asymptote to the latter value. We therefore set :

α n = (2n + 1)β n π 2 with lim n→∞ β n = 1 -
and obtain a null impedance when :

x n 2 = (2n + 1)β n π 2 ⇒ kℓ n = (2n + 1)β n π ⇒ ℓ n = (2n + 1)β n λ 2
that is piezo lengths corresponding to almost odd numbers of half-wavelengths in the material. The corresponding frequencies are :

f R,n = (2n + 1)β n C t 2ℓ
These are resonance frequencies. They are not harmonic, but become almost so for highest modes.

At resonance, from (5.33) and using tan

x 2 = 1 k 2 t x 2
, the velocities of the unloaded faces become :

V 1 = V 2 = - x 2k 2 t Z t h 33 ω I
which, using (5.25) can be further simplified into :

V 1 = V 2 = -I 2h 33 C 0
We will therefore remember that :

The resonance frequencies of an unloaded piezo of thickness ℓ (corresponding to a null electrical impedance) are:

f R,n = (2n + 1)β n C t 2ℓ
The free faces of the piezo oscillate at velocities proportional to the input current:

V 1 = V 2 = -I 2h 33 C 0
The voltage is null.

Coming back to (5.34), we see that it becomes infinite when :

x n 2 → π 2 + nπ ⇒ kℓ n = (2n + 1)π ⇒ ℓ n = (2n + 1) λ 2
with the corresponding frequency :

f A,n = (2n + 1) C t 2ℓ
This is anti-resonance. Since β n → 1 for large n, the range of frequencies between resonance and anti-resonance becomes asymptotically null. It can be seen that the impedance (which is purely imaginary), is inductive between f R,n and f A,n , and capacitive elsewhere.

The free faces velocities can be obtained by dividing (5.33) by Z E I, using (5.34) :

V i U = -h 33 ωZt tan x 2 I I jωC 0 1 -k 2 t tan x/2 x/2 = jC 0 h 33 Z t x 2k 2 t since tan x/2 → +∞ = jω h 33 using (5.25)
The antiresonance frequencies of an unloaded piezo of thickness ℓ (corresponding to an infinite electrical impedance) are:

f A,n = (2n + 1) C t 2ℓ
The free faces of the piezo oscillate at velocities proportional to the input voltage:

V 1 = V 2 = jω 2h 33 U
The current is null.

Longitudinal mode of rods

(LiMaLow2011horn). We consider the case where the piezo has the form of a cylinder of length much larger than its lateral dimensions, which we will denote as "rod". In this case, if the cylinder is unloaded laterally, the smallness of the rod imply that the only nonzero stress component is T zz , and the most convenient formulation is in this case the strain-field one: (5.36) or, in matrix form, accounting for the fact that D is directed along z only:

S = s D T + g t D (5.35) E = -gT + (ϵ T ) -1 D
                    S xx S yy S zz 2S yz 2S xz 2S xy                     =                     s D 11 s D 12 s D 13 . . . s D 12 s D 11 s D 13 . . . s D 13 s D 13 s D 33 . . . . . . s D 44 . . . . . . s D 44 . . . . . . s D 66                                         0 0 T zz 0 0 0                     +                     . . g 31 . . g 31 . . g 33 g 15 . . . g 15 . . . .                             0 0 D z        
The third equation yields:

∂w ∂z = s D 33 T zz + g 33 D z so that: T zz = 1 s D 33 ∂w ∂z - g 33 s D 33 D z (5.37)
Newton's law therefore writes:

ρ ∂ 2 w ∂t 2 = ∂T zz ∂z = 1 s D 33 ∂ ∂z ∂w ∂z -g 33 D z from (5.37) = 1 s D 33 ∂ 2 w ∂z 2 -g 33 D z
since, as for the thickness mode, we have div D = ∂D z /∂z = 0. We obtain therefore a propagation equation with a velocity equal to :

C rod = 1 ρs D 33 1/2
The electric field equation writes:

        E x E y E z         = -         . . . . g 15 . . . . g 15 . . g 31 g 31 g 33 . . .                             0 0 T zz 0 0 0                     +         1/ϵ T 11 . . . 1/ϵ T 11 . . . 1/ϵ T 33                 0 0 D z        
so that:

E z = -g 33 T zz + D z ϵ T 33 = - g 33 s D 33 ∂w ∂z -g 33 D z + D z ϵ T 33 from (5.37) = - g 33 s D 33 ∂w ∂z + 1 ϵ T 33 1 + g 2 33 ϵ T 33 s D 33 D z (5.38)
Comparing this equation with (5.10), we see that the equations obtained for the thickness mode can be recycled here with the following changes:

h 33 ←→ g 33 s D 33 1 ϵ S 33 ←→ 1 ϵ T 33 1 + g 2 33 ϵ T 33 s D 33 
Multiplying (5.37) by -A, we can obtain the force F (z), as we did for thickness mode. The analog of Eq. (5.15) writes

F (z) = -C rod Z rod W ′ (z) + g 33 s D 33 I jω (5.39)
where we have now set the mechanical impedance in function of C rod :

Z rod = ρC rod A
The following coupling factor is usually defined in docs :

k 33 = d 33 s E 33 ϵ T 33 = g 33 ϵ T 33 s E 33 (5.40)
where the second equality result from the matrix relation d = ϵ T g. Besides it can be easily shown by manipulating the different forms of piezoelectric relations that:

s D = s E -d t (ϵ T ) -1 d = s E -g t ϵ T g (5.41)
so that, ϵ T being diagonal, we get:

s D 33 s E 33 = 1 -g 2 33 ϵ T 33 s E 33 = 1 - d 2 33 s E 33 ϵ T 33 = 1 -k 2 33
and therefore the dimensionless group appearing above becomes:

g 2 33 ϵ T 33 s D 33 = g 2 33 ϵ T 33 s E 33 × s E 33 s D 33 = k 2 33 1 -k 2 33
Equation (5.38) can therefore be rewritten as:

E z = - g 33 s D 33 ∂w ∂z + 1 ϵ T 33 1 1 -k 2 33 D z
which as before, can be integrated between 0 and ℓ into :

U = g 33 s D 33 [W (0) -W (ℓ)] + I jωAϵ T 33 (1 -k 2 33 )/ℓ = g 33 s D 33 [W (0) -W (ℓ)] + I jωC 0 (5.42)
where the capacity C 0 is now defined by :

C 0 = (1 -k 2 33 )
Aϵ T 33 ℓ Formally, (5.42) is identical to (5.11) but with a different value of C 0 . Equations giving the velocities are the same as for thickness mode (5.18)-(5.19) and the analog of (5.16)-(5.17) become here, from (5.39):

F (l) = jωZ rod W + e -jx -W -e jx + g 33 s D 33 I jω (5.43) F (0) = jωZ rod W + -W -+ g 33 s D 33 I jω (5.44)
The analogy with the thickness mode allows to write directly the hexapole formulation for the rod mode:

        F 1 F 2 U         = -j          Z rod tan x Z rod sin x g 33 s D 33 ω Z rod sin x Z rod tan x g 33 s D 33 ω g 33 s D 33 ω g 33 s D 33 ω 1 ωC 0                  V 1 V 2 I        
Finally the useful relation (5.25) relating h 33 /ω to the coupling factor has its counterpart here:

(g 33 /s D 33 ) 2 ω 2 Z rod = g 2 33 ϵ T 33 s D 33 1 ϵ T 33 s D 33 ω 2 Z rod = k 2 33 1 -k 2 33 ρC 2 rod ϵ T 33 ω 2 ρC rod A = k 2 33 ℓ (1 -k 2 33 )ϵ T 33 A C L ωℓ 1 ω = k 2 33 ωC 0 x (5.45)
which is seen to have exactly the same form as (5.25), replacing k t by k 33 .

With all these analogies at hand and the results obtained for thickness mode, we can switch directly to the electrical impedance of an unloaded piezoelectric rod (analog to (5.34)):

Z E = 1 jωC 0 1 -k 2 33 tan x/2 x/2 (5.46)
with all the consecutive results being deduced from the thickness mode, using k 33 instead of k t .

+ Mass Piezo + ℓ P F P F N F M I V P ℓ M V N U P V M N M Figure 6
.1: Langevin pair: the light-gray rectangle is a piezoceramic disk and the dark-gray one is a slab of elastic material (typically a metal: steel, titanium, . . . ).

Matrix formulation

We express the force and velocity at M in function of the ones at P . Setting x P,M = k P,M ℓ P,M , we obtain:

    F M V M     = [A M ]     F N V N     , using (2.37) = [A M ]     [A P ]     F P V P     + [Id -A P ]     h 33 I jω 0         , using (5.20) 
Finally, in matrix form:

    F M V M     = [A M ][A P ]     F P V P     + [A M ][Id -A P ]     h 33 I jω 0     (6.1)
We set:

q = Z P Z M ⇒ Z P = qZ M (6.2)
Exhibiting the matrices yields:

    F M V M     =     cos x M jZ M sin x M j Z M sin x M cos x M         cos x P jqZ M sin x P j qZ M sin x P cos x P         F P V P     +     cos x M jZ M sin x M j Z M sin x M cos x M         1 -cos x P -jqZ M sin x P - j qZ M sin x P 1 -cos x P         h 33 I jω 0     =     cos x P cos x M - 1 q sin x P sin x M jZ M (q sin x P cos x M + sin x M cos x P ) j Z M sin x M cos x P + 1 q sin x P cos x M cos x P cos x M -q sin x P sin x M         F P V P     +     cos x M (1 -cos x P ) + 1 q sin x P sin x M × j Z M sin x M (1 -cos x P ) - 1 q sin x P cos x M ×         h 33 I jω 0    
and the ×-terms in the latter equation are useless.

We set for simplicity:

T M = tan x M , T P = tan x P , C M = cos x M , C P = cos x P .
Note that all these quantities depend on ω.

Dividing by cos x P cos x M , the above matricial equation can be rewritten as:

1 C P C M     F M V M     =     1 - T P T M q jZ M (qT P + T M ) j Z M T M + T P q 1 -qT P T M         F P V P     +     1 C P + T P T M q -1 j Z M T M C P -T M - T P q     h 33

I jω

Important remark : note that we could have used the matrix formulation involving potential U instead of current I. We will do so a bit later, but note that as far as we dont nullify any term in the above formulation, it remains valid whatever the quantity imposed on the transducer, either current or voltage.

Langevin condition at null I

We want to ensure that the open-circuit set behaves as a λ/4 resonator, so that for I = 0, a zero velocity at point P must yield a zero force at M and vice-versa. This implies that the 11 term in [A P ][A M ] should be zero, which yields the condition:

T P T M = tan x P tan x M = q or tan ωℓ P C P tan ωℓ M C M = Z t Z M = ρ P C P A P ρ M C M A M (6.3)
This is the Langevin condition. Note that it is fulfilled for a given frequency ω L .

Tha Langevin condition is in fact a resonance condition for a set of two materials. It generalizes the thickness resonance of a single piezoelectric material. Indeed remember Sec. 5.1.5: we saw that the unloaded piezo was resonant when its length was λ/2, which is equivalent to a λ/4 half-piezo blocked on one end and free on the other. We will see a bit later that conversely, the Langevin transducer is a set of two Langevin pairs and generalizes the λ/2 unloaded piezo.

The Langevin condition two dual meanings, if the properties and thickness of the piezo disk and mass are known:

• Suppose you want the Langevin pair to be resonant at a given frequency ω L (say 2π × 20 kHz). Inject that frequency in the above relation, it will yield ℓ M the length of the mass to use.

• Conversely you know the mass length ℓ M , solving the Langevin equation will yield the resonance frequency ω L of the Langevin pair.

Since we have derived the condition at I = 0, (6.3) defines in fact the antiresonance frequency. We will come back later to this remark.

Langevin pair blocked on one side, loaded by impedance on the other

We now assume that :

• the end side of the piezo is blocked (infinite impedance) so that V P = 0.

• the end side of the mass M emits in a medium of impedance Z L = -F M /V M .

The above system simplifies to:

- 1 C P C M Z L V M = 1 - T P T M q F P -h 33 I jω + 1 C P h 33 I jω (6.4) 1 C P C M V M = j Z M T M + T P q F P -h 33 I jω + j Z M T M C P h 33 I jω (6.5)
Dividing term by term :

-j Z L Z M = 1 - T P T M q (F * P -1) + 1 C P T M + T P q (F * P -1) + T M C P
where

F * P = F P h 33 I jω (6.6)
Solving the latter equation for F * P , we obtain:

F P h 33 I jω = 1 - α L C P (6.7)
where

α L = 1 + j Z L Z M T M 1 - T P T M q + j Z L Z M T M + T P q (6.8)
The velocity of the mass radiating face can now be deduced from (6.5):

1

h 33 I jω V M = j Z M T M + T P q (-α L C M ) + j Z M C M T M = jC M Z M T M -α L T M + T P q
After a few algebra, we obtain:

V M h 33 I ω = -1 qZ M T P C M 1 1 - T P T M q + j Z L Z M T M + T P q (6.9)
The ratio F P /V M can also be expressed from (6.7) and (6.9):

F P V M = 1 -α L /C P jC M Z M T M -α L T M + T P q
We can now use the third hexapole equation (5.26) with V P = 0 to compute the voltage: 

U =
ω 2 Z t = k 2 t ωC 0 x = I jωC 0 1 -k 2 t tan x P x P α L Expressing α L from (6.8),
The electrical impedance of the Langevin pair is: (6.11) This result can be retrieved more easily by impedance formulation, as shown in appendix G.

Z E = 1 jωC 0 1 -k 2 t tan x P x P α L (6.10) = 1 jωC 0     1 -k 2 t tan x P x P 1 + j Z L Z M T M 1 - T P T M q + j Z L Z M T M + T P q    
We now seek the motionnal impedance from this expression. Using identity:

1 1 -x = 1 + 1 1 x -1
the admittance reads:

Y E = jωC 0 1 + x P k 2 t tan x P 1 α -1 -1 so that
The impedance of the motional branch of the Langevin pair is:

Z M = 1 jωC 0 x P k 2 t tan x P 1 α L -1
6.1.4 Langevin condition at null V

We retake the matrix formulation of Sec. 6.1.1 but in terms of voltage U instead of current I. Note that the flollowing equations describe exactly the same physical configurations so that all the above results remain valid. The difference resides in the Langevin condition that will be obtained.

Retaking the piezo matrix formulation in potential (5.29), we get :

    F M V M     = [A M ]     F N V N     , = [A M ]     [B P ]     F P V P     + [Id -B P ]     h 33 C 0 U 0        
Finally, in matrix form:

    F M V M     = [A M ][B P ]     F P V P     + [A M ][Id -B P ]     h 33 C 0 U 0    
The matrix product [A M ][B P ] is, from (5.30) :

1 1 -k 2 t sin x P x P     cos x M jZ M sin x M j Z M sin x M cos x M         cos x P -k 2 t sin x P x P jqZ M sin x P -2k 2 t 1 -cos x P x P j sin x P qZ M cos x P -k 2 t sin x P x P    
In a similar fashion as in Sec. 6.1.1, we want to express the fact that now, at null potential U = 0 (that is for open electrical circuit), a null velocity V P yields a null force F M . There is no need to compute all terms in the matrix, we only need to nullify the 11 term, which yields a new "Langevin" condition:

cos x M cos x P - sin x M sin x P q -k 2 t cos x M sin x P x P = 0 1 - tan x M tan x P q = k 2 t tan x P x P (6.12)
This is a λ/4 resonance condition of the Langevin pair, but now expressed at null U .

Unloaded Langevin pair

Let's examine the unloaded case (Z L = 0). The α L factor is just:

α L = 1 1 - T P T M q
and is therefore k 2 t tan x P x P at the Langevin frequency. The electrical impedance reads:

Z E = 1 jωC 0     1 -k 2 t T P x P 1 1 - T P T M q    
which is seen to become infinite at the null I-Langevin frequency ω I , and 0 at the null-V Langevin frequency ω V . We can write more concisely the admittance Y E :

Y E = jωC 0 F I (ω) F V (ω) (6.13)
where

F I (ω) = 1 - T P (ω)T M (ω) q F V (ω) = F I (ω) -k 2 t T P (ω) x P (ω) with F I (ω I ) = 0 F V (ω V ) = 0
The situation of an admittance jumping from an infinite value at some resonance frequency, to a zero value at antiresonance frequency is ubiquitous and can be modelled by the equivalent circuit displayed on Fig. 6.2

U I I BM L a R a C b C a Figure 6.2: Langevin pair equivalent circuit
Indeed, the admittance of such a circuit is:

Y = jωC b + 1 jL a ω + 1 jC a ω = jωC b ω 2 -ω 2 A ω 2 -ω 2 R (6.14) where ω R = 1 L a C a ω A = 1 L a 1 C a + 1 C b (6.15)
where ω R is the resonance and ω A the anti-resonance frequency.

To cast approximately the admittance (6.13) into the latter expression, we note that first, for sufficiently small piezo thickness ℓ P , x P is close to 0, and therefore tan x P ≃ x P . The admittance (6.13) becomes approximately:

Y E = jωC 0 F I (ω) F I (ω) -k 2 t
Now, by a Taylor expansion near ω I , remembering that from Langevin condition, we have F I (ω I ) = 0:

Y E ≃ jωC 0 (ω -ω I )F ′ I (ω I ) (ω -ω I )F ′ I (ω I ) -k 2 t = jωC 0 ω -ω I (ω -ω I ) -k 2 t /F ′ I (ω I )
The denominator must be zero at ω V so that we obtain:

Y E ≃ jωC 0 ω -ω I ω -ω V ω V ≃ ω I + k 2 t
F ′ I (ω I ) which by the way gives an approximation of ω V . If ω V and ω I are sufficiently close to each other, we have:

ω + ω I ω + ω V ≃ 1
so that there remains to multiplicate above expression of Y E by the latter expression to obtain:

Y E ≃ jωC 0 ω 2 -ω 2 I ω 2 -ω 2 V
which is indeed the admittance (6.14) of the circuit displayed in Fig. 6.2 with C b = C 0 . The values of the other components can then be found from (6.15), once ω V and ω I are known.

Langevin sandwich transducer

The sandwich transducer is constituted in two opposed Langevin pairs (Fig. 6.3). Since for each pair, the free piezo end is blocked, nothing changes if they are put into contact, and if each pair is resonant at the Langevin frequency (either at null I or null V ), the set is also resonant, provided that both pairs fulfill the Langevin condition.

Generally one end of such a set is loaded, the other emits in a medium (possibly through a mechanical amplifier). The latter is called "mass" and the former "countermass". We will keep this terminology here. Let's show that quickly by retaking the matrix formulation. For simplicity we take the analysis at null I, knowing that its transposition to null V is immediate. We try to use transfer matrix from point CM to point M. As the matrix of each pair has already been computed above, we have just to multiply the CM-pair matrix by the M-pair matrix. For the CM-pair the above calculation yields:

+ + Piezo Mass Piezo Countermass + + V CM ℓ P ℓ P CM P M V M F M ℓ M F CM I CM I M ℓ CM U CM U M F P V P
    F CM V CM     = [A CM ]     F P V P     + [I CM ] (6.16)
which is a short notation for Eq. (6.1).

But the M pair is orientated head-to-tail. This reverts to reverse the z-axis orientation, so that in its matrix we must replace ℓ M by -ℓ M (and thus x by -x). On the other hand, the forces F keep the same sign (inward forces), and the velocities must be reversed (since they are the projections on the z axis). In the end, the reader can check that the transfer matrix from input to output remains the same and we have therefore:

    F M V M     = [A M ]     F P V P     + [I M ]
Inverting this relation, we get:

    F P V P     = [A M ] -1     F M V M     -[A CM ] -1 [I M ]
(6.17)

Combining (6.16) and (6.17), we obtain1 :

    F CM V CM     = [A CM ] [A M ] -1 [A]     F M V M     -[A CM ] [A M ] -1 [I M ] + [I CM ] (6.18)
Now, remember that at Langevin frequency, the 11 term of matrices

[A M ] and [A CM ] is 0. Thus [A] = [A CM ] [A M ] -1 has the form:     0 × × ×         × × × 0     =     × 0 × ×    
This means from (6.18), that at null currents (open circuits), F CM and F M can be zero (unbloaded tranducer) even for finite values of V M and V P . Note that the latter velocities are therefore proportionnal. This means that provided that the two Langevin conditions are fulfilled at a given frequency, the free transducer can oscillate for a null current. This is anti-resonance. The same reasoning starting from transfer matrices at null U would yield resonance, similarly. This is generalized in the next section for any arbitrary set of piezoelectric materials and rods.

-

[A CM ] [A M ] -1 [I M ] = -[A CM ] [A P ] [A P ] -1 [A M ] -1 [A M ][Id-A P ]     h M I M jω 0     = [A CM ][A P -Id]     h M I M jω 0     79 
6.3 Real transducers

Matrix formalism

We consider solid slabs of material, either piezoelectric or not, connected mechanically in series.

+ + . . . . . . Vn Ui+1 Vn+1 Fn+1 Vn-1 Fn-1 Fn F1 V1 Fi Vi Ui Ii Ii+1 Vi+1 Fi+1 Z i+1 Z n-1 Z n Z 2 Z i-1 Z i Z 1 Figure 6
.4: Chain of solid slabs. Some are piezoelectric, others not. Note that the conventions used for voltages and currents allow the same formulation whatever the orientation of the piezo (see Fig. 5.2).

For the i est slab, we can use either (5.21) or (5.29), depending on whether current or voltage is imposed. If the slab is a pure solid, both formulations merge 2 . We write therefore one of the following relations: (6.20) where I i and V i respectively are null whenever slab n is non-piezoelectric.

F i V i = [A i ]     F i+1 V i+1     + [Id -A i ]     h i I i jω 0     (6.19)     F i V i     = [B i ]     F i+1 V i+1     + [Id -B i ]     h i C 0 i U i 0    
2 Check this by noting that k t = 0 in this case. . .
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Chaining these relations from the leftmost part, we obtain:

    F 1 V 1     = [B 1 ]     F 2 V 2     + [Id -B 1 ]     h 1 C 01 U 1 0     = [B 1 ]     [B 2 ]     F 3 V 3     + [Id -B 2 ]     h 2 C 02 U 2 0         + [Id -B 1 ]     h 1 C 01 U 1 0     = [B 1 ] [B 2 ]     [B 3 ]     F 4 V 4     + [Id -B 3 ]     h 3 C 03 U 3 0         + [B 1 ] [Id -B 2 ]     h 2 C 02 U 2 0     + [Id -B 1 ]     h 1 C 01 U 1 0     = . . . = [B 1 ] [B 2 ] . . . [B n ]     F n+1 V n+1     + [B 1 ] [B 2 ] . . . [B n-1 ] [Id -B n ]     h n C 0n U n 0     + [B 1 ] [B 2 ] . . . [B n-2 ] [Id -B n-1 ]     h n-1 C 0n-1 U n-1 0     + . . . + [B 1 ] [Id -B 2 ]     h 2 C 02 U 2 0     + [Id -B 1 ]     h 1 C 01 U 1 0    
The result can be expressed more concisely by:

    F 1 V 1     = n i=1 [B i ] [B]     F n+1 V n+1     + n i=1 [B 1 ] [B 2 ] . . . [B i-1 ] [Id -B i ] [P B i ]     h i C 0 i U i 0     [U ]
with the convention [B 0 ] = [Id] (Sherman2007transducers).

Resonance and anti-resonance conditions

Now we assume that the end faces of the transducer are free (in contact with air) so that F 1 = F n+1 = 0. Noting B ij the main term of [B] and U i the i est component of [U], the above relation yields the two equations: (6.21) which already allows to compute the terminal velocities when all voltages are known. More importantly, the above 2-equations algebraic system allows to compute the resonance frequencies. For the latter, the end velocities can have finite values for null voltages applied on all piezoelectric elements, i.e.

0 = B 12 V n+1 + U 1 V 1 = B 22 V n+1 + U 2 or in matrix form:     0 B 12 -1 B 22         V 1 V n+1     =     -U 1 -U 2    
[U] = 0. This is possible only if the matrix has a null determinant, which yields:

B 12 = 0
Solving this equation for ω yields the resonant frequencies.

Note that the latter are only valid for an unloaded transducer since we have set F 1 = F n+1 = 0. If the left and right loads on the transducer ends have known impedances Z L and Z R , the latter relations can be replaced by

F 1 = -Z L V 1 and F n+1 = +Z R V n+1 .
The 2-equations system becomes in this case:

    Z L Z R B 11 + B 12 -1 Z R B 21 + B 22         V 1 V n+1     =     -U 1 -U 2 ,     (6.22)
and the resonance frequencies are obtained by setting the determinant of the 2 × 2 matrix to zero.

Note that if we had used the formulation involving currents rather than voltages, one would have obtained:

    F 1 V 1     = n i=1 [A i ] [A]     F n+1 V n+1     + n i=1 [A 1 ] [A 2 ] . . . [A i-1 ] [Id -A i ]     h i I i jω 0     [I]
By the same reasoning, the antiresonance frequencies of the free transducer can be obtained by solving A 12 = 0 for ω.

Solving transducer

Two methods are available. The first one solves all unknowns at the same time, the second iteratively.

Global matrix method

Slab number i can be represented either by a set of 2 (for non-piezoelectric material) or of 3 equations (for piezoelectrics). We assume that the voltages U i applied to the ceramics are known. We have either, for a non-piezoelectric slab (Eq. (2.37)) :

F i V i =   cos x i jZ i sin x i j Z i sin x i cos x i   F i+1 V i+1
or, for a piezoelectric slab (Eq. (5.26))

        F i V i U i         =          cos x i jZ i sin x i h i jω (1 -cos x i ) j Z i sin x i cos x i - h i ωZ i sin x i h i ωZ i sin x i - h i jω (1 -cos x i ) 1 jωC 0,i 1 -k 2 i sin x i x i                  F i+1 V i+1 I i        
which we can rewrite formally as:

F i V i = [B i ] F i+1 V i+1 ,    F i V i U i    =    H EE i [B i ] [H EM i ] [H ME i ]       F i+1 V i+1 I i   
for a non-piezoelectric and a piezoelectric slab, respectively. These equations hold for each slabs from 1 to n, numbered from left to right.

Only n p slabs (over n) are piezoelectric, and to remove 0 = 0 electric equations for the non-piezoelectric slabs, we denote i(p) the number of the slab corresponding to the p est piezo.

Note that in the above equations, I i represents the current flowing from facetowards face + and U = U --U + . The commonly encountered case is that all piezo ceramics are connected in parallel with all the + faces connected alltogether (Fig. ??), so that we have for all i, either U i = U 0 (if the positive voltage is on all faces, Fig. 6.5a) or U i = -U 0 (if the positive voltage is on all + faces, Fig. 6.5b).

The above equations must be complemented with the known load impedances on the left and on the right, which yield the 2 additional equations:

Z L = - F 1 V 1 Z R = F n+1 V n+1
In this way the above equations can be combined into a single algebraic equation system of 2n + 2 + n p equations, whose second member involves the imposed potentials, and whose unknowns are the n + 1 forces, the n + 1 velocities, and the n p currents. The structure of the system is presented on the next page (for illustration, we have guessed that the first piezoelectric material is slab 2 so that i(1) = 2, and that the last slab is non-piezoelectric, as it is a configuration commonly encountered).

Once solved, all currents are available. The total current entering the transducer depends on the way the piezo are interconnected. In the common case where all ceramics are in parallel, the current entering the transducer is either I i or -I i depending on whether the positive side of the generator is connected to theor + faces of the ceramics (Fig. 6.5). From there, the transducer electrical impedance can be deduced. 

+ +

+ + + + I in U 0 I i ( 
U i = -U 0 and I in = -I i .                             1 2 3 4 2i-1 2i 2i+1 2i+2 2n+1 2n+2 1 p np 1 2 -[Id] [B 1 ] 0 0 0 0 3 4 0 -[Id] [B 2 ] H EM 2 2i-1 2i -[Id] [B i ] H EM i(p) 0 H EM i(np) 2n-1 2n 0 -[Id] [B n ] 0 0 0 2n+1 2n+2 1 Z L 0 0 0 0 0 0 0 0 1 -Z R 0 0 1 0 H ME 2 0 0 H EE 2 p 0 H ME i(p) 0 
H EE i(p) np 0 H ME i(np) 0 H EE i(np) 1 2 3 4 2i-1 2i 2i+1 2i+2 2n+1 2n+2 1 p n p                                                           F 1 V 1 1 2 F 2 V 2 3 4 . . . F i V i 2i-1 2i F i+1 V i+1 2i+1 2i+2 . . . Fn Vn 2n-1 2n F n+1 V n+1 2n+1 2n+2 I 2 1 I i(p) p I i(np) np                               =                               0 1 0 2 0 2n+2 U 2 1 U p p U np np                              
To clarify the above approach, we illustrate the case of a classical Langevin sandwich transducer:

I = Ie jωt U = Ue jωt D L O A Figure A.1: Electrical impedance
• Whenever the impedance real part ℜ(Z) is zero, you know that your unknown circuit behaves as an inductance if ℑ(Z) > 0, and as a capacitor if ℑ(Z) < 0.

• conversely, whenever its imaginary part ℑ(Z) is zero, you know that your electrical circuit behaves as a pure resistance. It dissipates some energy by Joule effect.

A.2 Mechanical impedance

The concept of mechanical impedance is very similar. You have an unknown mechanical system at hand (imagine a set of springs, masses and dampers, for example the shock-absorbers of your car, or the system of appendix H), let's call it "a mechanical load", whose behavior is to be characterized. You impose a sinusoidal force F = F e jωt to your system and you measure the velocity V = Ve jωt for different frequencies. Now, you are willing to define Z = F /V but there is an additional problem here: force and velocities are vectors, and you cannot divide vectors ! This may suggest that there are several impedances here.

The solution is that you impose a force on one direction, say along some unit vector e x , and you measure the resulting velocity in the same direction x.

We can now define the mechanical impedance as: We get an impedance purely imaginary, analog to the electrical impedance of an inductance, m playing the role of L.

Z = F .e x V.
• In the second case, we have a spring and the exerted force is related to the displacement by F = kX so that the impedance reads:

Z = F .e x V.e x = kX .e x jωX .e x = k jω 
Again, we get an impedance purely imaginary, but with negative imaginary part, analog to the electrical impedance of an capacitor, k playing the role of 1/C.

• Finally, in the third case, we have a damper (a body immersed in oil) and the exerted force is related to the velocity by F = CV so that the impedance reads:

Z = F .e x V.e x = CV.e x V.e x = C
Now, we get a real impedance, analog to the electrical impedance of a pure ohmic resistor, C playing the role of R. Note that this is the only case where the mechanical system dissipates some energy.

The latter results can be used to compute composite mechanical impedances. To get the corresponding rules, note the following:

• the voltage is shared between electric component when they are in parallel. In mechanics, its analog, the force, is shared between components when they are in series.

• current is shared when electric components are in series whereas in mechanics, its analog, the velocity, is shared when components are in parallel.

Thus, the rule to compute composite mechanical impedances are the opposite of the ones in electricity. As an exercise, you can compute the composite impedance of the system described in appendix H, and retrieve the frequency response curve displayed on Fig. H.2.

A.3 Electrical / mechanical power transmitted

In electricity, the concept of impedance allows you to compute the eledctrical power dissipated in your unknown circuit, indeed you can write:

P (t) = U (t)I(t) = 1 2 Ue jωt + U * e -jωt × 1 2 Ie jωt + I * e -jωt = 1 4 [UI * + U * I] + osc. = 1 2 ℜ (UI * ) + osc.
where osc. denote terms in e ±2jωt . Taking the average over one period yields:

⟨P ⟩ = 1 2 ℜ (UI * )
Since we have defined the impedance Z as U/I * , we have therefore:

⟨P ⟩ = 1 2 ℜ (ZI I * ) = 1 2 ℜ (Z) |I| 2 LOAD n T e jωt S
Ve jωt We can define an impedance similar to the mechanical impedance but replacing the force by the stress (note that the units are therefore different):

Z = T .n V.
n We introduce pressure P, which is by definition -T .n, so that finally:

Z = P V.(-n) = Inward stress Inward velocity
This is the acoustic impedance2 . It can be shown easily that for a plane traveling wave, Z is just ρc and is therefore a physical property of the propagation medium.

Let's compute the mechanical power transmitted to the load. By definition:

P (t) = S T.v dS = S -pn.v dS
Playing again with complex amplitudes we get:

⟨P ⟩ = 1 2 S ℜ [-P (n.V * )] dS = 1 2 S ℜ [(ZV.n)(n.V * )) dS = 1 2 S ℜ(Z)|V.n| 2 dS
We retrieve the save type of expression as above. The difference here is that both the impedance Z and the normal velocity V.n may vary from one point of the load boundary to the other. If however the latter has a constant value V 0 along the boundary we get:

⟨P ⟩ = 1 2 ℜ   S Z dS   V 2 0 (A.1)
This is typically the case when the boundary is flat and moves uniformly as a piston.

If moreover the impedance Z is uniform along the boundary (this is the case for a plane wave), we just get:

⟨P ⟩ = 1 2 ℜ(Z)V 2 0
Here again, a purely imaginary impedance occurs whenever the wave phenomena in the load are non dissipative. For acoustics in fluids, this implies that the medium itself does not dissipate energy, but also that its other boundaries (typically walls) are non-dissipative too. This is approximately the case for metals or glass, but it is not anymore true for porous media or plastic walls, who suck some mechanical energy.

One can finally wonder how acoustic impedance is related to the mechanical impedance.

To see that, we can compute the resultant force exerted on the whole load boundary: The latter result is not especially useful per se, but in the case of a plane boundary, the three unit vectors e v , n and e x coincide, and we get simply:

Z = S Z dS
Appendix E

Young modulus and Poisson ratio for piezoceramics

It can be shown, by inverting the elasticity matrix, that for an isotropic material, the compliance tensor reads: Let's recall the electrical impedance of a loaded piezo-electric slab (5.32), using the notations relevant for the Langevin pair description (subscript "P" for all piezorelated quantities):

s =         1/Y -ν
Z E = 1 jωC 0 1 + Z t k 2 t x P j(Z 1 + Z 2 ) -2Z t tan x P 2 Z 2 t -j(Z 1 + Z 2 )Z t cot x P + Z 1 Z 2
In the case where Z 1 = ∞, expression simplifies to:

Z E = 1 jωC 0 1 + Z t k 2 t x P j -jZ t cot x P + Z 2 = 1 jωC 0 1 - Z t k 2 t x P 1 Z t cot x P + jZ 2
If furthermore, Z 2 is a solid slab of length ℓ M and mechanical impedance Z M in contact with an external impedance Z L , the results chapter 1 yields:

Z 2 = Z M Z L + jZ M T M Z M + jZ L T M
so that the electrical impedance of the piezo writes :

Z E = 1 jωC 0     1 - Z t k 2 t x P 1 Z t T P + jZ M Z L + jZ M T M Z M + jZ L T M     = 1 jωC 0     1 -k 2 t T P x P 1 1 + j T P q Z L /Z M + jT M 1 + jZ L /Z M T M    
where we have used cot x P = 1/T P and q = Z t /Z M . It can be checked that result (6.11) is recovered.

The Langevin condition can be retrived and interpreted easily from the above expression. Whenever Z L = 0, that is when the Langevin pair is unloaded on the mass side, electrical impedance becomes:

Z E = 1 jωC 0     1 -k 2 t T P x P 1 1 - T P T M q    
This shows that at the frequency at which the Langevin condition is fulfilled, the impedance becomes infinite and the transducer is at antiresonance.

Figure H.1: A mechanical oscillator

We can also define the mechanical admittance of the system seen by the actuator:

Y 2 = U 2 F
the impedance being Z 2 = 1/Y 2 .

H.2 Eigenmodes

Tho eigenmodes families can be obtained depending on the way by which the actuators puts the system in motion:

• If force is the quantity imposed, we set F = 0 (mass m 2 is absolutely free). This corresponds to an infinite admittance (or zero impedance). This is resonance.

• If displacement is the quantity imposed, we set U 2 = 0 (mass m 2 is blocked). This corresponds to an zero admittance (or infinite impedance). This is antiresonance.

H.3 Resonance modes

In the first case, the eigenmodes correspond therefore to the homogeneous version of the algebraic system (H.1):

[K] -ω 2 [M ] [U] = [0] (H.2)
which is an eigenvalue problem. An algebraic homogeneous system has solutions id and only if det ([K]ω 2 [M ]) = 0, which determines the eigenfrequencies ω.

The general calculation is complicated but for illustration, we can examine the case where all springs and masses are equal. In this case we have:

[K] -ω 2 [M ] =   2k -ω 2 m -k -k 2k -ω 2 m  
whose determinant is:

det [K] -ω 2 [M ] = (2k -ω 2 m) 2 -k 2 = (mω 2 -k)(mω 2 -3k)
from which we deduce the two eigenfrequencies ω 1 = ω 0 and ω 1 = ω 0 √ 3, where ω 0 = k/m is the eigenfrequency of a simple mass-spring couple

H.4 Anti-resonance modes

Setting U 2 = 0, the system reduces to its first equation: (2kω 2 )U 1 = 0 which yields the single eigenfrequency ω 3 = ω 0 √ 2.

H.5 Frequency response

We can now compute the response of the system to an excitation at different frequencies ω for a given F. This can be easily computed by solving the algebraic system (H.1) for each frequency, and computing each time the admittance Y 2 = U 2 /F. Note that since the system is linear, the latter quantity does not depend on the choice of F.

The result is displayed on It can be seen that the admittance becomes indeed null for ω 1 and ω 2 , and infinite for ω 3 . Note how the admittance phase switches between 0 and π at each resonance/antiresonance. The eigenmodes can therefore be understood as follows:

• At resonance, any attempt to apply an infinitely small force will yield a huge displacement of mass m 2 .

• At anti-resonance, any attempt to apply an infinitely small displacement to mass m 2 will result in a huge resisting force.

It is possible to define new materials with your own piezo matrices. You may also check or pick some values in one of the matrices of a given material. Comsol uses only matrices s E , c E , d, e, ϵ S , and ϵ T . Please note the following points :

• Elastic matrices s E and c E are 6 × 6 symmetric. Thus only the triangular inferior part is defined (7 × 6 = 21 terms), as a line vector where the terms are ordered as follows: • Relative permittivity matrices ϵ E r = and ϵ E r are 3 × 3, assumed diagonal, so that they appear as 3 component line vectors.

              1 
Since entering these matrices is somewhat painful, note that materials can be defined once for ever and added to User Material Library.

Finally, an easy method to check or pick some data in matrices is to write them in a Report (last node in your model). Choose Personal report, then add section and then Model content -> material, choose the piezo material to include in the report, and save into file, which will open in Web Browser.

I.2 Piezoelectric orientation

Remember that piezo material has an orientation (they are polled under a strong electric field before being sold). Comsol always assumed that polarization is directed along the z axis. Thus if you want to change that, for example in a sandwich transducer where piezo are oriented head to head, you must define a local axis system for those piezo that are not oriented along z. This is why the piezoelectric material dialog-box has an item Coordinate system.

It is possible to define a new coordinate system in Model-> Definitions. Use Defined by vector base, give it a name (for example "Z REVERSED"). In 2D axisymmetric, x2 is always the out-of-plane axis and is the vectorial product ±x 1 ∧x 3 . Just reverse the x and z by putting -1 instead of 1 in ther table defining x1, x3. This will define the new z awis downwards, reverse in plane x axis. Checking the box Assumed orthonormal will ensure that the out-of-plane axis is well-defined as

x 3 ∧ x 1 .
The above method works, but some details should be checked. . . For example, normally there is no need to reverse also x.

Finally for those piezo that have reversed orientation, in the physics node Solid Mechanics, define a new node Piezoelectric Material, and set its Coordinate System to the one you have just defined.

I.3 Computation of current

To compute impedance, you will need to compute the current pulled by the transducer 1 . This is the sum of currents entering each "+" terminal of the ceramics pile. The displacement current in each piezo is: where n 1 is the normal unit vector outgoing from piezo 1, n 2 the one outgoing from piezo 2, and n 12 = n 1 = -n 2 , the normal unit vector oriented from 1 towards 2.

J D = ∂D ∂t = iωD
As already mentioned in Sec. 3.2.7, it must be emphasized that the value of D on this boundary is not uniquely defined since D.n undergoes a discontinuity there. . . . Thus, D 1 (D 2 , respectively) must be intepreted as the value of D just at the inferface inside piezo 1 (piezo 2, repectively). In order to obtain such integrals on the interface between two subdomains sharing the same physics, Comsol calls one side "up" and the other "down". Then it provides the following expressions and operators:

UP

• n up is the normal unit vecteur outgoing from subdomain " up". Its components along r and z are respectively unr et unz 2 .

• n down is the normal unit vecteur outgoing from subdomain "down". Its components along r and z are respectively dnr et dnz.

• the operators up et down, applied to any Comsol field, evaluate this field on the "up" ou "down" side of the interface, respectively.

2 Or unx, uny et unz in 2D or 3D-models
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Assigning medium 2 to "up" et medium 1 to "down", formula (I.1) becomes: where int ELECTRODE is a boundary integration operator that should be defined on the electrode considered. One should of course repeat the calculation for each piezo pair whose interface is connected to the + of the generator, and sum afterwards all the currents obtained for each pair.

I in = iω
Note that recent version simply implement the above integrand under the name es.nD.
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 2 Figure 2.2: Illustration of the stress tensor components.

Figure 2 . 4 :

 24 Figure 2.4: Illustration of transverse wave (left) and longitudinal wave (right) in a stack of dishes.

Figure 2 . 5 :

 25 Figure 2.5: Solid slab. Note the meaning of pressure with the forces indicated on the figure.

Figure 2 . 6 :

 26 Figure 2.6: Two slabs of different sections, each of quarter wavelength. Remember that F A is the z-component of the force applied by the left on 1, and F B is the z-component of the force applied by 2 on the right

Figure 2 . 7 :

 27 Figure 2.7: Conventions for reversible matrix formalism. All quantities are defined as entering the slab, so that no z orientation is necessary. It is only recalled here for comparison with Fig. 2.5

Figure 3 . 4 :

 34 Figure 3.4: Plane capacitor. The two electrodes are distant of ℓ and separated by vacuum.

Figure 3 . 7 :

 37 Figure 3.7: Plane dielectric capacitor

  Figure 3.8: Interface conditions

Figure 3

 3 Figure3.9: Computation of current when one or two dielectrics are in contact with a metallic electrode.

Figure 4

 4 Figure 4.1: Polarization of a piezo-electric material by deformation (here quartz) (GoobermanBook68)

Figure 4

 4 Figure 4.2: Poling process of a piezoelectric material slab. The remnant polarization defines the z-axis of the material.

  4.8) and T xx = c D 13 S 33 T yy = c D 13 S 33 T zz = c D 33 S 33 Equation of equilibrium tells us that div T = 0, which reads

F 0 z

 0 Figure 5.1: Slab of piezo-electric material connected to a sinsusoïdal voltage source. The piezo is polarized along the z direction so that its + face is at z = ℓ. Applied voltage U is counted positive between theface and the other, so that U = U(0) -U(ℓ). Current I is counted positively if entering through theface. Charge conservation states therefore that I = Adσ ext /dt, where σ ext is the external charge on theelectrode. Since D.n = -σ ext = -D z , we have I = AdD z /dt

  Figure 5.2: (a) same as Fig. 5.1. (b) same as (a) but with piezo polarity reversed:face + is at 0 and faceis at ℓ. Note that U = U --U + and I flowing fromto + are unambiguously defined in both cases. Formulation (5.26) is valid for both configurations.

  loaded by impedance Z 1 and Z 2

Figure 5 . 3 :

 53 Figure 5.3: Insert figure here

Figure 6 . 3 :

 63 Figure 6.3: Langevin transducer constituted by two opposed Langevin pairs.

  Figure 6.5: Ceramics of transducer mounted in parallel. (a) Terminal + of generator connected tofaces of ceramics. In this case U i = U 0 and I in = I i . (b) Terminal + of generator connected to + faces of ceramics. In this case U i = -U 0 and I in = -I i .

•

  Figure A.2: Mechanical impedances of several systems

Figure A. 3 :

 3 Figure A.3: Harmonic stress exerted on a load. Both F and V may vary from point to point on the surface S

Z

  n) n dS Let e x the direction of the latter force. Projecting the above equation on this direction yieldsF .e x = S Z (V.n) (e x .n) dSDefining a mechanical impedance requires that the velocity of the boundary is uniform. Let's note in this case V = V 0 e v , we obtain: (e v .n) (e x .n) dS e v .e x

Figure H. 2 :

 2 Figure H.2: Input admittance of the mechanical oscillator (blue solid line). Top: amplitude ; Bottom: phase. The admittance U 1 /F is displayed in green dashed line.

•

  Coupling matrices d and e are 6×3, have no symmetry and are defined linewise.

  Figure I.1: Schématisation du courant circulant dans deux piezos en contact électrique

S(D

  up -D down ).(-n up ) dS It can be noted that it is independant of the arbitrary choice of where are the sides " down" and "up". Finally, the natural translation in Comsol of the current entering a ceramic pile by an active electrode shoud be: i * es.omega * int_ELECTRODE( es.unr * (down(es.Dr)-up(es.Dr)) + es.unz * (down(es.Dz)-up(es.Dz)) )

  

  

  

  S xx S xy S xz S xy S yy S yz S xz S yz S zz

			S =	1 2	gradu + gradu	T	(2.3)
	that is	 	  =	      	∂v ∂x ∂w ∂x	∂u ∂x + +	∂u ∂y ∂u ∂z	∂v ∂x ∂v ∂z	+ ∂v ∂y +	∂u ∂y ∂y ∂w	∂w ∂x ∂v ∂z ∂w + + ∂w ∂u ∂z ∂y ∂z	      

  e 15 .

	.	.	.	e 15 .	.
	e 31 e 31 e 33 .	.	.

  

	H 11 -	H 13 H 31 H 33	H 12 -	H 13 H 32 H 33	H 13 H 33
	H 21 -	H 23 H 31 H 33	H 22 -	H 23 H 32 H 33	

  . Thus, it can be seen that the mechanical data of an orthotropic materal can be defined by two Young moduli, one Poisson number, and two additional parameters. This is why technical data for piezoceramics generally give Y E 11 , Y E 33 , and a Poisson number ν which by convention is -s E 12 /s E 11 . For example, for the PZT8 model of Comsol, we obtain: ν = 0.287 Y E 11 = 8.62 × 10 10 Pa Y E 33 = 6.76 × 10 10 Pa
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	Electrical impedance of Langevin
	pair by impedance formalism
			/Y -ν/Y -ν/Y 1/Y -ν/Y -ν/Y -ν/Y 1/Y . . . . . .	. . . 1/µ . . . . . 1/µ . . . . .	       
				.	.	.	.	. 1/µ
	For an material with hexagonal symmetry, as are piezoelectrics, the compliance
	tensor reads	s =	        	1 Y 11 -ν Y 11 s 13 . . .	-ν Y 11 1 Y 11 s 13 . . .	s 13 . s 13 . 1 Y 33 . . s 44 . . . . . . s 44 . . . 2(ν+1) . . . . . Y 11	        

Like several pictures of you, from above, from the left, from the right and so on, gives information on who you are, but your existence in space is more general than your representations on these photos. . .

 4 Assume the wheel axis is directed along e z and start by noting that the displacement vector is orthoradial, that is u(r, θ, z) = rθ 0 e θ , and that ∂/∂z = 0. Then check the curl expression in cylindrical coordinates https://en.wikipedia.org/wiki/Curl_(mathematics) . . .

Tr denotes the trace of the tensor, (i.e. the sum of the diagonal terms), which can be shown to be an invariant of the tensor, that is, independent of the choice of the axis.

it can be memorized easily: for component 4, 5, 6, the "x" line (that is 4) is the one where x does not appear, and so on. . .

and, since the tensor is symmetric is also the z-component of the force exerted on the plane normal to e x .

Very vaguely, you "deform the material the way you expected. . . "

We use notation Y instead of E for the Young modulus, since notation E will be reserved for the electric field when dealing with piezo-electricity.

Note that if the latter are constant, such as gravity, they yield a static equilibrium of the solid, which serves as a rest state for the system. This is what is classically done in a simple study of the oscillations of a spring-mass system submitted to gravity.

You can first convince yourself, and possibly check it with Comsol, that T zz is the only nonzero component of the stress tensor.

Actually a rather confusing name, because it is just a consequence of polarization!

this is the case of piezoelectrics. . .

in particular in Comsol

Remember that curl(grad) is always null. Moreover, E =grad V is only true if there is no magnetic field or if the latter has sufficiently slow temporal variations. . .

They are generally orthotropic, which means that the behaviour in a specific direction, say z, is different from the other directions

Note that (it is not useful for the present demonstration) the second term also writes in terms of the original matrices :

Note that this is the most common electromechanical analogy, termed as "direct". The opposite choice, known as "indirect", also exists.

Note that we have reasoned in terms of normal force, because only the latter are of interest here. The same reasoning can be done however for tangential force/velocity, which are some interest in some actuators driven by shear stress. . .

Note that ϵ is defined in dimensionless form as ϵ/ϵ 0 in technical charts. We propose here a complete documentation from a provider. All equation described above have been checked against these data. Some slight error appear, especially for ϵ S and c D , but remain under 10 %.

Chapter 6

Transducers Following Radmanovic2004 :

Basic sandwich transducer is designed as a symmetric half-wave (λ/2) resonant structure. It means that every λ/4 section may be observed separately. Langevin's equation links the resonant frequency with characteristic impedances, sound speeds, and dimensions of transducer elements.

The λ/4 section mentionned in this citation is called Langevin pair. Its motivation is the following: assume you want to have a piezo slab with one end fixed and the other with a maximum displacement. Its length would be λ/4 (possibly plus multiples of λ/2. With a sound velocity of about 5000 m s -1 , its length at 20 kHz would be 6.25 cm. Such a piezo rod would not only be very expensive, but would heat noticeably, possibly above the Curie point. The solution is therefore to use the assembly of a thin piezo disk and a metallic slab, so that the whole set behaves as required.

As also spotted by the authors, sandwich transducers are basically associations of two opposed Langevin pairs, and in first approximation, no additional calculation will be required to generalize the following analysis to a simple sandwich transducer.

Langevin pair

We first associate a piezoelectric disk of thickness ℓ P to a slab M of thickness ℓ M (Fig. 6.1). All properties relative to the piezo and the material are indiced by "P" and "M", respectively.

• Slab 1 is the countermass,

• Slab 2 is a reversed oriented piezoceramic ring, with negative voltage,

• Slab 3 is a direct oriented piezoceramic ring, with positive voltage,

• Slab 4 is the mass.

Additional slabs could be added, for example a small section λ/2 mechanical amplifier.

In this case n = 4, n p = 2, and the system has therefore 12 equations.

Iterative method

For a given frequency :

• First, we use (6.22) to compute the leftmost and rightmost velocities. We know threfore V n+1 and

• Then starting from [F n+1 , V n+1 ], we use the matrix formulation (6.20) to deduce the conditions

• Knowing both F and V around slab i, we use formulation (6.19), to get current at slab i (if piezoelectric), which writes:

• When we're done, there remains to sum all currents with the appropriate sign.

Electromechanical transfer matrix

We assume a sandwich transducer whose backing is free and front side can be loaded by a non-zero impedance. We assume n p piezoelectric rings, connected in parallel, with voltage U 0 . The leftmost piezo (countermass side) is slab number k and the rightmost is k + n p -1. We set ϵ i = 1 if piezo slab i is oriented directly (and positive voltage on left electrode) and ϵ = -1 otherwise. We retake the calculation page 81, but only across piezoelectric slices. Interface k is the outer face of the piezoelectric pile on the countermass side, and k + n p is the outer face of the piezoelectric pile on the mass side.

Appendix A

Mechanical and acoustic impedances

Mechanical impedance is inspired by its analogue in electricity and can be formalized by the so-called electro-mechanical analogy. Its initial motivation was to represent electromechanical systems by equivalent electric circuits, which are easier to deal with for electronicians. Even if this objective is less evident nowadays, especially for people having a minimal background in electricity, it remains very useful, as seen throughout this document.

Acoustic impedance is a generalization of mechanical impedance, which occur for deformable media, where elastic forces are exerted locally on the load boundary.

A.1 Reminder: electrical impedance

Imagine you have an unknown electrical circuit at hand (a dipole generally termed as "load") and you want to see how it behaves in sinusoidal mode (Fig.

A.1). You plug a sinusoidal voltage generator U = Ue jωt at its terminals, and you measure the amplitude and phase of the current I = Ie jωt entering into the circuit through the positive electric potential terminal, for different frequencies.

The electrical impedance is the ratio:

Voltage applied on load Current entering the load and it's a complex number.

Its argument is the phase shift between I and U . This allows to generalize Ohm's law for harmonic excitation of the system. This shows that whenever Z is purely imaginary (for an inductance, a capacitor, or any combination of the latter), the average power dissipated in the circuit over a cycle is zero. Such an electric load is called reactive.

All this reasoning can be transposed to mechanical loads. Starting with the expression of the mechanical power transmitted to the load P (t) = F.V, we get:

and since from the definition of mechanical impedance, we have F = Fe x = Z(V.e x )e x , we obtain:

• Just to clarify: the result is formally the same as for electrical impedance, but less readable because of vectors. Remember that e x denotes the direction of the force exerted on the load. If the motion is only in that direction, we have V = Ve x , and |V.e x | is just |V|. If however the motion is perpendicular to the force exerted (think of reaction force of the floor on the wheels of your car), V.e x is null, and therefore the power is null is because the force does not work.

• As for electrical impedance, the period-averaged mechanical power transmitted to the system is zero whenever the load has imaginary impedance. This is the case for the spring and the mass on Fig. A.2. In this case force and velocity are in phase quadrature. Conversely, for the damper, mechanical energy is dissipated by viscous friction between the mobile part and oil, and the average power transmitted corresponds to the power dissipated (into heat).

A.4 Acoustic impedance

Now, imagine that you have a force distributed on some surface S (this a "contact force", as are traction, pressure, or shearing forces in solid mechanics, or pressure in fluid acoustics). Since in this case, the force is proportional to the surface, you can write the force exerted on some infinitesimal surface dS by using the concept of stress T: T = dF dS T = dF dS Let's assume that the exerted stress is normal to the load and we choose its orientation pointing outward the latter, that is along e x = n (see Fig. A.3). This corresponds to traction exerted on the load. which was already visible in equation (A.1). If furthermore the impedance has a constante value on the plane boundary (which is the case for plane waves), we simply get:

Z = ZS This is the result used repeatedly in Sec. 2.5.3.

Appendix B

Gauss theorem and Green function

We first recall a simple explanation on Dirac distribution δ. Distributions are generalizations of "gentle" functions to extend the notion of derivability to "non-classically derivable" function 1 .

For functions of one variable, the δ function can be defined as the one that ensures, for any function f having the good properties :

Distribution δ is thus a tool that "spots" the value of f at 0. It is easy to see that shifting δ from 0 to x 0 allows to spot the value of f at any point x 0 :

Extending that for functions of 3 variables 2 , which are here of interest, we get :

Now, the Green function G of some linear operator D is the one satisfying equation DG = δ. Here the linear operator of interest is the Laplacian ∇ 2 , applied to functions of space variable r, so that G(r) is the solution of:

Fourier transforms allow to show that, in 3-dimensional space:

1 remember that a derivable function is more or less a function which graph can be drawn without suddenly changing the pen direction 2 generally, this can be any number n variables
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Now the useful part. Remember that the potential created at R by a volumic distribution of charge ρ(r) is :

where the Green function can be recognized in the integrand so that:

Now, let's take the Laplacien ∇ 2 R with respect to the variable R (the place where we compute the field). Since the integral is over r (the place where the charges are located), we can commute ∇ R and so that:

where we have now dropped the variable R, since there is no ambiguity. This is the local form of Gauss theorem. If the latter equation is integrated over a volume V enclosed by a surface S, we obtain:

and using Ostrogradski's theorem, we get:

Gauss theorem for dielectrics

We assume a piece of dielectric material in vacuum containing external charges, distributed in volume, surface or punctual (Fig. C.1. The dielectric may not be polarized uniformly so that polarization may induce an equivalent volume charge density ρ P . We consider a surface S cutting the dielectric in the middle. The intersected surface is called S D,ext (blue line) and the inner dielectric surface is called S D,int (pink line). 

From expressions of ρ P and σ P given p. 33, the last two terms write: where the first equality results from divergence theorem and the second from the cancellation of integrals over S D,int . Gauss theorem (C.1) rewrites therefore:

P.n dS

Setting D = ϵ 0 E + P with the convention P = 0 in vacuum, thus on S -S D,ext (which reverts to set the permittivity to ϵ = ϵ 0 and D = ϵ 0 E there), we obtain simply:

which is Gauss theorem, "replacing ϵ 0 E by D". It can be seen that this simple trick somewhat hides the physical sense of vector D. The reader can convince himself that the same result would have be obtained by taking any surface S either fully enclosing the dielectric or enclosed inside.

Appendix D Other relations between piezo constants

We start from:

and from the first equation: D = ϵ T E + ϵ T gT so that the second becomes:

to be compared with

so that we get:

From there we can also write:

so that we get (useful to get s D from Comsol material properties):

Matrix formulation

We seek a representation like:

We start from:

2) P (ℓ) = P + e -jkℓ + P -e jkℓ (F.3)

From the first two equations, we can isolate P + and P -:

2 Injecting this in V (ℓ) and P (ℓ) we get:

which is the form required:

which can be easily inverted as (note that the matrix determinant is 1):

It can be checked that Eq. (2.31) can be readily recovered from this formulation.

Appendix H Eigenmodes, resonance, antiresonance

This appendix illustrates the concept of eigenfrequencies of a mechanical system, corresponding to either resonances or anti-resonances. The system considered is constituted of discrete masses and springs, which makes the analysis easier. The concepts described here can however be transposed "as is" to continuous elastic systems.

We recommend the reader to read this section to understand correctly what hides behind the eigenfrequencies analysis in FEM softwares, such as Comsol. In some way, the mechanical system described here can be seen as a 3-nodes FEM model.

H.1 Equations

We consider the mechanical system described on It's easy to show that the equations of the system read:

We now seek oscillatory solutions at frequency ω and we set: