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Phase Unwrapping of Color Doppler
Echocardiography using Deep Learning

Hang Jung Ling, Olivier Bernard, Nicolas Ducros, and Damien Garcia

Abstract— Color Doppler echocardiography is a widely
used non-invasive imaging modality that provides real-
time information about the intracardiac blood flow. In an
apical long-axis view of the left ventricle, color Doppler is
subject to phase wrapping, or aliasing, especially during
cardiac filling and ejection. When setting up quantitative
methods based on color Doppler, it is necessary to correct
this wrapping artifact. We developed an unfolded primal-
dual network to unwrap (dealias) color Doppler echocar-
diographic images and compared its effectiveness against
two state-of-the-art segmentation approaches based on
nnU-Net and transformer models. We trained and eval-
uated the performance of each method on an in-house
dataset and found that the nnU-Net-based method pro-
vided the best dealiased results, followed by the primal-
dual approach and the transformer-based technique. Note-
worthy, the primal-dual network, which had significantly
fewer trainable parameters, performed competitively with
respect to the other two methods, demonstrating the high
potential of deep unfolding methods. Our results suggest
that deep learning-based methods can effectively remove aliasing artifacts in color Doppler echocardiographic
images, outperforming DeAN, a state-of-the-art semi-automatic technique. Overall, our results show that deep
learning-based methods have the potential to effectively preprocess color Doppler images for downstream
quantitative analysis.

Index Terms— Color Doppler, Flow imaging, Echocardiography, Phase unwrapping, Dealiasing, Deep learning,
Deep unfolding, U-Net, Transformer, Primal-dual.

I. INTRODUCTION

COLOR Doppler ultrasound is a widely accepted clinical
imaging modality for non-invasive, real-time analysis

of cardiovascular blood flow. While two-dimensional color
Doppler is commonly used for qualitative mapping of flow
characteristics, its applications for quantitative analysis are
limited. Common cardiovascular applications of color Doppler
include detection of valvular diseases [1] and septal defects
[2], or guiding the positioning of the pulsed-wave sample
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volume for spectral Doppler [3]. Among methods to make
color Doppler quantitative, Vector Flow Mapping has been
introduced for intracardiac flow dynamics. This method allows
the computation of 2D or 3D intraventricular velocity vector
maps from color Doppler fields, using a physically constrained
optimization approach [4], [5]. Intracardiac vector flow map-
ping from color Doppler requires two prerequisite steps: 1)
delineation of the endocardial inner wall, and 2) correction of
wrapped (aliased) Doppler regions.

With respect to the first step, Painchaud et al. [6] recently
introduced a 2D+time deep learning architecture to enforce
temporal consistency and smoothness from one frame to the
next. The second step of correction is necessary due to the
occurrence of aliasing, which is an artifact resulting from
insufficient slow-time sampling. This issue arises when the
pulse repetition frequency (PRF) is unable to capture high
axial velocities effectively. This causes the Doppler velocity to
be wrapped to the opposite side of the Doppler spectrum when
its absolute value exceeds the Nyquist velocity. Experienced
clinicians can easily identify zones of aliasing in most color
Doppler images, where the color-coded velocities shift from
red to blue or vice versa. Aliasing can be removed in Doppler
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echocardiography by designing multi-PRF sequences, as de-
scribed by Posada et al. [7]. However, this approach requires
control of the ultrasound machine and is primarily suitable for
high-frame-rate echocardiography. When clinical scanners are
used, aliasing must be corrected by post-processing the color
Doppler fields. While a number of unwrapping algorithms
have been proposed for dealiasing data maps in atmospheric
science, geodesy, and optical interferometry [8]–[10], this
problem has received less attention in color Doppler imaging.

Inspired by traditional radar approaches, Muth et al. [11]
developed a segmentation-based method for color Doppler
dealiasing using statistical region merging, called DeAN.
This unsupervised method uses a scalar hyperparameter to
control the segmentation process. An optimal parameter was
determined from a supervised analysis of 50 color Doppler
data. However, it turns out that the DeAN method fails in
difficult cases as shown in Fig. 11 in [11] and that supervised
corrections are still necessary in some situations. With the goal
of developing imaging tools that quantify blood flow from
color Doppler, we propose a deep learning (DL) approach to
correct the aliased areas of echocardiographic color Doppler
maps. DL has been proposed for color Doppler dealiasing in
vascular flow imaging by Nahas et al. [12]. Their approach
aimed to solve the double aliasing problem using two U-Nets.
The first U-Net detected the presence of single aliasing while
the second U-Net was trained to identify and segment double-
aliased pixels. They evaluated the performance of their model
by training it with different types of ultrasound information.
They found that the model trained with a combination of
Doppler frequency, power, and bandwidth performed the best
for dealiasing in the femoral bifurcation.

In our work, we focused on Doppler echocardiography. In
contrast to vascular flow imaging, cardiac color flow imaging
can be subject to substantial clutter signals originating from
the myocardium and tending to spread the aliased patterns.
With the goal of proposing a robust DL method that correctly
handles aliasing in most situations, we developed and com-
pared several architectures. Our main contributions are:

1) We designed a primal-dual network based on the idea
of deep unfolding, and compared it with state-of-the-art
DL segmentation methods and DeAN.

2) We used a private color Doppler echocardiographic
dataset acquired in apical three-chamber view (45 pa-
tients, 1,338 aliased and 2,379 non-aliased frames) to
train the neural networks and analyze their performance.

3) We investigated the value of adding Doppler power as
input information to improve dealiasing.

4) We introduced a data augmentation strategy that gener-
ates synthetic aliasing, which solved the class imbalance
problem and improved dealiasing performance on diffi-
cult color Doppler images.

II. METHODOLOGY

Aliasing artifacts occur when axial blood speeds (velocity
magnitudes) exceed the Nyquist velocity VN . The acquired
Doppler velocity VD can be written as a function of the

unwrapped or alias-free Doppler velocity Vu as follows:

VD = Vu − 2× nN VN , (1)

where nN is an integer called the Nyquist number, which
represents the number of times the signal wraps around the
Nyquist limit. The Nyquist number reads (see [7] for the
demonstration)

nN = floor
(
Vu + VN

2VN

)
. (2)

Except for highly turbulent flows that may occur in
transvalvular or transseptal jets, there is no multiple aliasing
in the adult left ventricle scanned in the apical long-axis
view, i.e., the integer nN belongs to {−1, 0, 1}. Indeed, in
adult echocardiography with a 3 MHz phased array, Nyquist
velocities typically range from 0.55 to 0.7 m/s. Thus, single
(i.e., nN = −1 or 1) or no (i.e., nN = 0) wrapping occurs as
long as the actual blood speed is less than 1.65-2.1 m/s (see
(4)). It follows that double aliasing does not occur in the left
ventricle in most situations without valvular disease or cardiac
shunt. Equations (1) and (2) can be rewritten to express VD

as a wrapped version of Vu:

VD = K(Vu) = (Vu + VN )mod (2VN )− VN , (3)

where mod is the modulo operation. In particular, for nN ∈
{−1, 0, 1}, the wrapping function K becomes

VD = K(Vu) =


Vu − 2VN if VN < Vu < 3VN
Vu if − VN ≤ Vu ≤ VN
Vu + 2VN if − 3VN < Vu < −VN

. (4)

This representation implies that the dealiasing problem can
be approached in two different ways: i) a problem that inverts
the wrapping function (3) and recovers Vu from the Doppler
velocities VD by changing absolute jumps greater than VN

to their 2×VN complement; ii) a multi-class segmentation
approach that assigns a Nyquist number nN (2) to each
pixel of the input image then computes the actual unwrapped
velocities using (1). We investigated three deep learning (DL)
models for dealiasing color Doppler. The first method was
derived from the deep unfolding/unrolling framework and
solved the inverse problem defined in (3) to estimate the
actual velocities. We faced a nonlinear inverse problem on
non-trivial data, whose solution may contain phase jumps at
the blood/myocardium interfaces. Unrolled methods are well
suited for solving inverse problems. Primal-dual optimization,
on the other hand, is useful for nonlinear problems. For these
reasons, we tested a learned primal-dual algorithm inspired
by Adler et al. [13], as described in the following subsection.
The other two methods were state-of-the-art networks that
we have adapted for determining Nyquist numbers in color
Doppler images. Fig. 1 illustrates the pipeline used for all
three methods, whose input data were the Doppler velocity
multiplied by the Doppler power before scan-conversion.

A. OriPDNet: A Primal-Dual-based Deep Unfolding
Network to Solve Inverse Problems

To solve our nonlinear inverse problem (3), we used
OriPDNet (refer to Fig. 2 in [13] for the network architecture),



LING et al.: PHASE UNWRAPPING OF COLOR DOPPLER ECHOCARDIOGRAPHY USING DEEP LEARNING 3

Highlights

• Our deep-unfolding-based primal-dual network (PDNet) incorporated the forward operator as prior information and had only 0.03M
parameters.

• Our deep learning (DL) models outperformed a state-of-the-art non-DL approach in phase unwrapping of color Doppler
echocardiography, with nnU-Net being the best candidate, followed by PDNet with 233 times fewer parameters.

• Automatic and accurate color Doppler echocardiographic phase unwrapping ensures correct visualization and enables quantifi-
cation of intracardiac blood flow.

Fig. 1: Pipeline of the deep learning-based methods for color Doppler dealiasing.

a deep unfolding network based on a primal-dual optimization
scheme [13]. Given a general inverse problem aiming to obtain
the solution f from the measurement g with the forward
operator K:

g = K(f), (5)

the outline of OriPDNet to solve this problem is presented in
Algorithm 1.

Algorithm 1 OriPDNet: Original primal-dual network

Initialize f0, h0 = [0, 0, 0, 0, 0] ∈ RM×N×5

for i = 1, · · · , I do
hi ← Γθd

i
(hi−1,K(f

(2)
i−1), g)

fi ← Λθp
i
(fi−1, [∂K(f

(1)
i−1)]

∗ (h
(1)
i ))

end for
return f

(1)
I

OriPDNet involves several variables and operators, includ-
ing the forward operator K, the adjoint of its Fréchet derivative
[∂K]∗, the input measured data g, the primal and dual variables
fi and hi, and the learned primal and dual proximal operators
Λθp

i
and Γθd

i
. Convolutional layers are used to learn these

proximal operators. The hyperparameter I , which determines
the number of iterations, requires careful tuning for each
specific problem. The primal and dual variables, fi and hi,
are initialized then iteratively updated using the learned primal
and dual proximal operators, Λθp

i
and Γθd

i
. The solution to

the inverse problem (5) is obtained by extracting the first
element of the primal variables, f (1)

I . In [13], the authors rec-
ommended setting the dimension of the primal and dual spaces
to five as the best compromise between memory usage and
reconstruction quality, i.e., fi = [f

(1)
i , f

(2)
i , f

(3)
i , f

(4)
i , f

(5)
i ] ∈

RM×N×5 and hi = [h
(1)
i , h

(2)
i , h

(3)
i , h

(4)
i , h

(5)
i ] ∈ RM×N×5,

where (M × N) is the size of the input data. We conducted
preliminary testing and validated the use of five spaces, in
accordance with their suggestion.

B. PDNet: A Deep Unfolding Network for Color Doppler
Dealiasing

To deal with our specific inverse problem (3) for color
Doppler dealiasing, we adapted OriPDNet. The modified ver-
sion was named as PDNet and summarized in Algorithm 2,
with the main changes highlighted in blue.

Algorithm 2 PDNet: Proposed primal-dual network

Initialize V0, h0 = [0, 0, 0, 0, 0] ∈ RM×N×5

for i = 1, · · · , I do
hi ← Γθd(hi−1,K(V

(2)
i−1),VD)

Vi ← Λθp(Vi−1,h
(1)
i )

end for
return Cθ(V

(1)
I )

with Vu = V
(1)
I and nN = Cθ(V

(1)
I ).

Specifically, we defined the forward operator K as a
wrapping function given by (3). Despite the discontinuity of
this function at each V = VN ± 2kVN (with k ∈ Z∗),
its derivative was an identity function, i.e., ∂K(V ) = id.
Thus, its adjoint [∂K(V )]∗ was also an identity function.
Unlike the original approach (see Algorithm 1), we used
the same feature maps for each iteration of the main loop,
which significantly reduced the number of parameters to learn
(30,000 instead of 30,000×I , with I being the number of
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TABLE I: Main configurations of the three methods evaluated in this study. Lowest resolution: Size of the lowest resolution
of feature maps in pixels. Down. scheme: Downsampling scheme. Up. scheme: Upsampling scheme. Optimization scheme:
Optimizer + initial learning rate (+ learning rate scheduler used). # param.: Number of trainable parameters.

Methods Number of Lowest Down. Up. Normalization Batch Optimization Loss # param.feature maps resolution scheme scheme scheme size scheme function

PDNet 32 → 32 → 5 192×40 - - - 4
ADAM [14] +
0.001 + cosine

annealing

Cross entropy
+ Dice 0.03M

nnU-Net 32 ↓ 480 ↑ 32 12×5 Stride
pooling

Transposed
conv.

Instance
norm. 4

SGD + 0.01 +
polynomial

decay

Cross entropy
+ Dice 7M

BATFormer 16 ↓ 256 ↑ 16 16×16 Max
pooling

2 × 2
repeats

Batch
norm. 4 ADAM +

0.001

Cross entropy
+ Dice +

smooth L1
1.2M

iterations) while maintaining the same accuracy. We made this
change to avoid training instabilities that we observed while
experimenting with OriPDNet. We also added a convolutional
layer Cθ at the end of the network to output the Nyquist
number from the estimated velocities V

(1)
I . The main reason

for this was to avoid non-integer Nyquist numbers due to the
regressed velocities. For a fair comparison between PDNet and
OriPDNet, the same convolution layer Cθ was also applied to
the output of OriPDNet.

C. Segmentation Networks for Color Doppler Dealiasing

nnU-Net is currently one of the best performing approaches
for medical image segmentation [15]. This model is based
on the U-Net architecture and implements several successful
DL tricks, such as automatic hyperparameter search of the
U-Net architecture to increase accuracy, a patch-wise approach
to preserve image resolution, a deep supervision strategy to
maintain accuracy at all scales, and data augmentation during
both training and inference to enforce generalization. In this
study, we addressed the dealiasing of color Doppler as a 3-
class segmentation problem with nnU-Net, where each class
corresponded to a Nyquist number nN ∈ {−1, 0, 1}. Our
network included four stages in the encoder/decoder parts and
had an input size of 192 × 40 pixels, which was the median
image size of our dataset. Table I provides more details about
the architecture and the training scheme (see Fig. C.1 in [15]
for an illustration of the nnU-Net architecture).

Recently, transformer-based approaches have been shown
to outperform the nnU-Net model in some medical challenges
[16]. These models attempt to solve the segmentation problem
in a different way, using attention mechanisms with receptive
fields that cover the entire image. Among the best-performing
models, we chose to train the BATFormer architecture [17] for
the color Doppler dealiasing task, using a segmentation-based
technique. This model employs a multiscale approach based
on a U-Net architecture, with transformer blocks added to the
decoder. This strategy results in an efficient and lightweight
architecture (1.2M parameters) that is suitable for learning
from small to medium-sized datasets. The main configurations
of BATFormer are listed in Table I, and an illustration of its
architecture can be found in Fig. 2 in [17].

D. Input Data Strategy

Color Doppler echocardiography produces two types of
information: i) Doppler velocity, which can be corrupted by
aliasing in regions of high blood speed, and ii) Doppler
power, which provides insight into the regions where velocity
measurements are reliable. Using both Doppler power and
velocity as input to DL models allowed them to learn how to
limit the dealiasing process in regions of interest and identify
ambiguous areas. Therefore, we performed an ablation study
to evaluate the potential improvement provided by Doppler
power. This study was conducted using the nnU-Net archi-
tecture, known for its stability in training and optimal con-
figurations. Specifically, three nnU-Net models were trained
with three combinations of input data: 1) nnU-Net #1 trained
with Doppler velocity only, 2) nnU-Net #2 trained with the
concatenation of Doppler velocity with Doppler power, and 3)
nnU-Net #3 trained with the multiplication of Doppler velocity
by Doppler power. After determining the best candidate for
the input data, we trained the three models, PDNet, nnU-Net,
and BATFormer, using this input combination to compute the
Nyquist numbers nN (2) from which the unwrapped Doppler
velocities Vu (1) were derived. Our goal was to increment or
decrement the Doppler velocities by 2nNVN , not to modify
them by smoothing, for example.

E. Artificial Aliasing Augmentation Strategy

Color Doppler images may exhibit aliasing only in local-
ized regions or frames, resulting in datasets that are often
imbalanced, with most pixels belonging to the background
class (i.e., without aliasing). To address this issue, we used
standard data augmentation techniques such as rotation, flip-
ping etc., during training. We also proposed an additional data
augmentation technique, which we called artificial aliasing
augmentation, to improve the generalizability of our algo-
rithms. This technique involved identifying regions with high
Doppler velocity and power on alias-free Doppler images, and
applying a wrapping function defined by (3) with a lower
Nyquist velocity to create artificial aliasing artifacts, followed
by a normalization. The ground-truth references of these
artificially aliased frames were created on the fly by comparing
the Doppler velocities before and after this augmentation.
By creating realistic artificially aliased frames, as shown in
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Fig. 2: Generation of synthetic images with artificial aliasing
artifacts (right column) from non-aliased images (left column).

Fig. 2, this strategy enabled us to balance the classes in
training batches. To evaluate the potential benefits of artificial
aliasing augmentation, we conducted an additional ablation
study where we tested the three DL models with and without
this technique during training.

F. DeAN: State-of-the-Art non DL-Based Dealiasing
Method for CDI

DeAN, mentioned in Section I, is currently one of the most
powerful non DL-based methods for color Doppler dealiasing.
It is a semi-supervised method with a hyperparameter, Q. To
unwrap aliased pixels, DeAN first segments color Doppler im-
ages using a region-merging scheme based on the Hoeffding’s
probability inequality. Then, DeAN compares each segmented
region with its nearest neighbors and performs dealiasing if
necessary. This step is based on the assumption that the largest
segment is not aliased and is repeated until all the segments
have been analyzed. The main drawback of this method is the
need to manually search for the optimal Q hyperparameter for
each frame to obtain the best dealiasing results. We compared
the dealiasing performance of DeAN with both the default
Q = 10 and with the manually optimized Q hyperparameter,
against the three DL methods.

G. Evaluation metrics

All three DL models were designed to output the Nyquist
numbers nN ; the dealiased velocity maps, Vu, were recovered
using (1). To evaluate the accuracy of the dealiased velocity
maps and the Nyquist numbers outputted by each method, we
computed four evaluation metrics.

We compared the dealiased Doppler velocity maps Vu with
the ground-truth alias-free Doppler velocity maps Vref by
computing the cosine similarity index:

Cosim(Vu, Vref ) =
Vu · Vref

∥Vu∥ · ∥Vref∥
(6)

Cosine similarity is a commonly used similarity measure for
comparing text data or images. We used this similarity index

in our previous work on color Doppler dealiasing [11]. In
addition, we computed three classification metrics to verify
whether each pixel was classified correctly on color Doppler
images. The first classification metric was the balanced ac-
curacy score, which is more suitable for unbalanced datasets
than the classical accuracy score. It was calculated using the
following formula:

Accuracy =
1

2
×
(

TP
TP + FN

+
TN

TN + FP

)
(7)

where TP, FN, TN and FP refer to true positives, false nega-
tives, true negatives, and false positives, respectively. Besides,
the classical recall ( TP

TP+FN ) and precision ( TP
TP+FP ) metrics

were also computed to evaluate the overall performance of
the methods.

To ensure the reliability and relevance of the results, we
conducted a 9-fold cross-validation to compute the scores
presented in each table in Section III-B. For each fold, we
split the dataset into training, validation, and test sets using a
ratio of 36/4/5 patients. This resulted in an average of 2,974,
330, and 413 color Doppler frames for the training, validation,
and test sets, respectively.

III. EXPERIMENT SETUP AND RESULTS

A. Dataset and Training Strategies
1) Color Doppler dataset: To evaluate the performance of

our methods, we used a color Doppler echocardiographic
dataset of 45 patients that were acquired using a Vivid 7
ultrasound system (GE Healthcare, USA) and a GE 5S cardiac
sector probe (bandwidth = 2-5 MHz). Doppler velocity and
power data prior to scan conversion were extracted into
HDF formats using EchoPAC software (GE Healthcare). The
EchoPAC software returned unitless power data in the range
of 1-100. The power data, P , were compressed by taking
the logarithm and then scaled to [0,1]: log(P )/2 ← P .
The cardiologist used the default settings (center frequency,
pulse length, pulse repetition frequency, packet size, clutter
filter, etc.). These proprietary parameters are masked and
could not be extracted. In most cases, the Nyquist velocity
was about 0.6 m/s. Assuming a center frequency of 3 MHz,
the pulse repetition frequency was approximately 4500 Hz.
These anonymized data came from a previous published study
[18]. The patients were examined in the echocardiography
laboratory under standard medical conditions. As a result,
some patients had significant heart disease, while others had no
visible pathology. The random selection of patients and their
anonymization prevent us from knowing their demographic
and pathological status. The sequences were acquired in the
apical three-chamber view and included both Doppler velocity
and power information. Each sequence covered at least one
complete cardiac cycle, resulting in a total of 1,338 aliased
frames and 2,379 non-aliased frames. Since color Doppler
has a relatively low frame rate of 10 to 15 frames per
second in clinical echocardiography, we considered each frame
to be independent. To avoid interpolation artifacts, the data
were collected and processed in polar coordinates (i.e., before
scan-conversion), but for better visualization, the results were
presented in Cartesian coordinates.
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Fig. 3: Generation of the ground-truth masks from the Doppler velocities. The red, black, and green segmentation masks
correspond to Nyquist numbers nN = 1, 0, and −1, respectively.

The training, validation, and test data sets, i.e., the pairs
of original and alias-free Doppler velocity maps, were gen-
erated by an experienced analyzer. For this task, the non-
scan-converted clinical Doppler maps were oversegmented and
labeled using a statistical growing region method (see Fig. 1.B
in [11]). The analyst manually identified the aliased regions,
specifically focusing on those related to intraventricular blood
flow, which were then corrected by applying ±2VN . The
noisy regions associated with low Doppler power were left
unchanged. Examples of color Doppler frames along with their
reference segmentations are illustrated in Fig. 3.

2) Training strategies: To train the deep learning (DL)
methods described in Section II, we performed supervised
learning using the ground-truth segmentations from our in-
house dataset. Besides applying the data augmentation strate-
gies mentioned in Section II-E, we further addressed the
class imbalance of our dataset by ensuring that each batch
contained at least one aliased image, whether real or synthetic.
The BATFormer model was designed using the official im-
plementation proposed in its GitHub repository1. This model
took color Doppler images resized to 256 × 256 pixels as
input and was trained for 400 epochs. On the other hand,
nnU-Net and PDNet were implemented using the ASCENT
framework2. For these two approaches, we used a patch-wise
approach to preserve the resolution of the input data. The
models were trained for 1000 epochs to prevent any potential
under/overfitting. More details on the BATFormer, nnU-Net,
and PDNet architectures are provided in Table I.

B. Experimental Results
1) Doppler power information was useful in dealiasing difficult

case: Table II reports the results of the ablation study aimed at
identifying the optimal combination of input data. The results
indicate that the three nnU-Net models performed similarly
across all metrics, implying that incorporating Doppler power
information in the input data did not substantially improve
the models’ performance. However, upon evaluation on a
challenging test set (right part of Table II), the model that
was trained with the multiplication of Doppler velocity and

1https://github.com/xianlin7/BATFormer
2https://github.com/creatis-myriad/ASCENT

Doppler power (nnU-Net #3) demonstrated better performance
for all metrics except precision. The last two columns of Fig.
4 show two samples taken from the difficult fold, where the
aliased and non-aliased regions had similar hues. This made
the correction of the aliased velocities difficult. Thus, although
not critical, using the Doppler velocity-Doppler power product
as input data is recommended as it can enhance the models’
generalization ability, especially for challenging data. For
subsequent experiments and results, we trained all DL methods
with this input combination.

2) PDNet outperformed its original counterpart: We con-
ducted a study to determine the optimal number of iterations
for updating the primal and dual variables in both OriPDNet
and PDNet, given the sensitivity of this type of method to
this parameter. The results are shown in Table III. From
this table, we can see that OriPDNet reached a plateau after
10 iterations, and beyond 20 iterations, it became unstable
during training and failed to produce results. On the other
hand, PDNet exhibited greater training stability and reached
a performance plateau after 20 iterations. Moreover, PDNet
achieved better optimal results than OriPDNet for all metrics
except for the cosine similarity index, where both methods
performed equally well. These results suggest that using the
same feature maps in the primal-dual approach is more suitable
for the dealiasing task and support the use of our deep
unfolding network. Additionally, it is worth mentioning that
PDNet had only 30,000 parameters, making it the lightest
of the three DL models tested, as detailed in Table I. The
significant reduction in parameters of PDNet as compared with
other models was due to the inclusion of the forward operator
as prior information and the use of the same feature maps per
iteration.

3) Artificial aliasing augmentation improved the performance
of segmentation-based networks: The results presented in
Table IV show that the use of artificial aliasing augmentation
during training had varying effects on the performance of the
different DL models. For nnU-Net, there was a slight improve-
ment in all metrics except precision. In contrast, BATFormer
showed significant improvement in accuracy, recall, and pre-
cision metrics, with values increasing from 0.88, 0.76, and
0.85 to 0.91, 0.81, and 0.91, respectively. However, for PDNet,
the use of artificial aliasing augmentation resulted in degraded
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TABLE II: Dealiasing by nnU-Net trained with different combinations of input data using 9-fold cross-validation. #1, #2,
and #3 correspond to the use of Doppler velocity only, the concatenation of Doppler velocity with Doppler power, and the
multiplication of the Doppler velocity by Doppler power as input data, respectively. The Difficult fold column shows the
evaluation results of different nnU-Net models on a challenging test set containing color Doppler frames with aliased and
non-aliased regions of similar hue.

Methods

Full dataset (Number of frames = 3,717) Difficult fold (Number of frames = 413)

Cosim Accuracy Recall Precision Cosim Accuracy Recall Precision
±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ

nnU-Net #1
velocity only

0.99 0.95 0.90 0.92 0.98 0.93 0.86 0.95
±0.01 ±0.03 ±0.07 ±0.06 ±0.01 ±0.06 ±0.13 ±0.01

nnU-Net #2
velocity-power concatenation

0.99 0.95 0.91 0.91 0.98 0.94 0.88 0.92
±0.01 ±0.03 ±0.07 ±0.05 ±0.01 ±0.07 ±0.13 ±0.05

nnU-Net #3
velocity-power multiplication

0.99 0.95 0.89 0.90 0.99 0.94 0.89 0.92
±0.01 ±0.06 ±0.13 ±0.11 ±0.01 ±0.07 ±0.14 ±0.02

TABLE III: 9-fold cross-validation dealiasing results of PDNet trained with different number of iterations (# iter.) for updating
the primal and dual variables. The results on the left were obtained with OriPDNet, i.e., different feature maps per iteration,
while the results on the right were obtained with the proposed PDNet using the same feature maps for each iteration.

# iter.

OriPDNet: Different feature maps per iteration PDNet: Same feature maps for each iteration

Cosim Accuracy Recall Precision Cosim Accuracy Recall Precision
±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ

1 0.95 0.86 0.71 0.51 0.95 0.87 0.74 0.52
±0.03 ±0.06 ±0.13 ±0.09 ±0.03 ±0.06 ±0.12 ±0.10

10 0.98 0.92 0.84 0.78 0.98 0.92 0.84 0.80
±0.02 ±0.06 ±0.13 ±0.11 ±0.02 ±0.06 ±0.12 ±0.10

20 0.98 0.92 0.84 0.80 0.98 0.94 0.87 0.83
±0.02 ±0.06 ±0.12 ±0.11 ±0.01 ±0.06 ±0.13 ±0.11

30 - - - - 0.97 0.91 0.82 0.77
±0.02 ±0.07 ±0.13 ±0.14

TABLE IV: 9-fold cross-validation dealiasing results of the three implemented deep learning solutions trained with and without
the proposed artificial aliasing augmentation strategy.

Methods

Without artificial aliasing augmentation With artificial aliasing augmentation

Cosim Accuracy Recall Precision Cosim Accuracy Recall Precision
±σ ±σ ±σ ±σ ±σ ±σ ±σ ±σ

PDNet 0.98 0.94 0.87 0.83 0.98 0.88 0.77 0.84
±0.02 ±0.06 ±0.12 ±0.10 ±0.01 ±0.08 ±0.16 ±0.09

nnU-Net 0.99 0.95 0.89 0.90 0.99 0.96 0.91 0.89
±0.01 ±0.03 ±0.09 ±0.06 ±0.01 ±0.03 ±0.06 ±0.06

BATFormer 0.98 0.88 0.76 0.85 0.98 0.91 0.81 0.91
±0.02 ±0.08 ±0.17 ±0.11 ±0.02 ±0.07 ±0.14 ±0.07

performance, with accuracy and recall decreasing from 0.94
and 0.87 to 0.88 and 0.77, respectively. These results highlight
the challenge that the primal-dual-based regression methods
face when generalizing to different types of aliasing. Based on
the findings shown in Tables II to IV, we determined that the
multiplication of Doppler velocity and power should be used
as input for all methods, while artificial aliasing augmentation
should be applied during training only for the segmentation-
based techniques, i.e., nnU-Net and BATFormer.

4) nnU-Net gave the best dealiasing results: Table V
presents the final results of our study, where we compare the

three DL methods with their optimal configurations against
the DeAN algorithm. We observe that all three DL methods
outperformed the DeAN algorithm, even the version with the
manually chosen optimal Q hyperparameter. This outcome
confirms the potential of DL methods for color Doppler
dealiasing. Among the DL methods, nnU-Net achieved the
highest scores overall, with a cosine similarity close to 1, an
accuracy of 0.96, a recall of 0.91, and a precision of 0.89.
Therefore, we conclude that nnU-Net is the best DL approach
currently available for dealiasing tasks in echocardiography.
Additionally, it is interesting to note that BATFormer showed a
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TABLE V: 9-fold cross-validation final dealiasing results of
DL methods with their best configurations against non-DL
DeAN method.

Methods Cosim Accuracy Recall Precision
±σ ±σ ±σ ±σ

DeAN (Q=10) 0.95 0.81 0.62 0.53
±0.03 ±0.08 ±0.16 ±0.20

DeAN (Optimized Q) 0.98 0.91 0.83 0.80
±0.01 ±0.04 ±0.08 ±0.13

PDNet 0.98 0.94 0.87 0.83
±0.02 ±0.06 ±0.12 ±0.10

nnU-Net 0.99 0.96 0.91 0.89
±0.01 ±0.03 ±0.06 ±0.06

BATFormer 0.98 0.91 0.81 0.91
±0.02 ±0.07 ±0.14 ±0.07

clear improvement when we increased the amount of synthetic
data, indicating that this type of approach requires a larger
dataset to improve its performance for the dealiasing task.
Finally, it is worth noting that PDNet achieved promising
results with 233 times fewer parameters compared to nnU-Net,
highlighting the potential of incorporating analytical context
into the DL framework to regularize the solution space.

We also provide a visual inspection of the performance of
the various methods on aliased images with different degrees
of difficulty in Fig. 4. We can see that the DL methods
performed similarly well on the easy and moderate cases (first
two columns), but nnU-Net produced the closest results to the
reference on the more challenging case (third column). This
finding is consistent with the quantitative results presented
in Table V. The last column in Fig. 4 shows an example
where no method was able to handle aliasing correctly. This
example is similar to the one in the first column, but with a
more pronounced level of aliasing. In this particular case, the
DeAN method gave the best results. This suggests that it would
be advisable to supplement the training set with challenging
configurations.

IV. DISCUSSIONS

Color Doppler imaging takes high-pass-filtered in-
phase/quadrature (I/Q) data of the same region of interest
acquired along the slow-time axis and differentiates them
pairwise using a lag-1 autocorrelator. The resulting maps
show blood displacements between two consecutive slow-time
samples. By its very nature, color Doppler imaging is an
interferometric technique that enables the measurement of
displacements with a precision that can reach fractions
of the center wavelength. Similarly, synthetic aperture
radar interferometry (InSAR), a remote sensing technique
used to map the Earth’s surface deformations, generates
interferograms that display ground-surface displacements.
Like color Doppler, most interferometric imaging techniques
in fields such as medical imaging, remote sensing, and optical
metrology (e.g., phase-contrast MRI, InSAR, holographic
interferometry) are subject to aliasing, i.e., jumps that occur
whenever the phase shift equals ±π. Our study aimed to

address the issue of phase jumps. Among the traditional
methods for phase unwrapping, one can mention: i) graph
cuts [19], [20], which involve representing the wrapped
phase data as a graph and determining the minimum cut
that separates the known and unknown phase values; ii)
least-squares approaches, which minimize the differences
between partial derivatives of the wrapped phase and those
of the unwrapped solution [8], [21]. Specifically for color
Doppler echocardiography, Muth et al. developed DeAN, a
dealiasing algorithm based on statistical region merging [11],
which was used in this study for comparative purposes.

Recently, deep learning (DL) techniques have been used to
improve traditional methods in phase unwrapping [12], [22]–
[24]. Our goal was to obtain alias-free color Doppler echocar-
diography by applying DL to dealias clinical Doppler velocity
fields. DL-based approaches have been introduced for 2D
phase unwrapping in InSAR [24]. Unlike echocardiographic
images, InSAR interferograms are subject to multiple wraps,
making the networks proposed in our study not suited since
we focused only on single aliasing. On the other hand, InSAR
images are not subject to significant clutter, whereas clutter
in Doppler echocardiography generates substantial noise near
moving tissues, making 2D phase unwrapping challenging.
As a result, non-DL approaches such as graph cuts or least-
squares methods, which work well for InSAR interferograms,
are not effective for echocardiographic Doppler fields. Al-
though the DeAN technique largely solved the problem, it
still fails in some situations, as shown in our study. Therefore,
we turned to DL and conducted an in-depth analysis and
comparison of three architectures, including PDNet, which
utilizes an unfolding framework. In addition, we illustrated the
potential benefits of incorporating Doppler power information,
since low power generally indicates poor blood Doppler signal.
To better balance the aliased and non-aliased input data during
training, we resorted to data augmentation by generating
synthetic aliasing.

A. Comparison of the DL Methods

Our study found that the three DL methods we tested
(PDNet, nnU-Net, and BATFormer) outperformed the non-
DL DeAN method for color Doppler dealiasing. Notably, we
observed that nnU-Net had the best performance, suggesting
that the 2D U-Net architecture used in nnU-Net may be partic-
ularly well-suited for this task due to its ability to effectively
capture spatial features. For example, in a challenging case
where the aliased and non-aliased regions had similar hues
(Fig. 4, third column), nnU-Net was able to unwrap correctly
while other DL methods failed or were less successful. Similar
structures corrected by an expert were part of the training
dataset, which implies that nnU-Net probably learned the flow
patterns and leveraged this knowledge to achieve successful
outcomes. PDNet also performed well, requiring > 200 times
fewer parameters than nnU-Net, highlighting the potential
for simpler DL models to achieve competitive results in
color Doppler processing. Further exploration of this type of
unfolding approach, including more complex modeling of the
forward operator, is needed.
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Fig. 4: Color Doppler images acquired during: from left to right column, late diastolic filling, systolic ejection, early diastolic
filling, and diastole (a failed case). They were dealiased by DL-based methods and by DeAN with optimized Q hyperparameters.
First row: aliased raw color Doppler. Second row: alias-free ground truth (GT).

Although the third input strategy (velocity-power multipli-
cation) contained less information than the second (velocity-
power concatenation), it performed slightly better in the dif-
ficult fold (last row of Table II). The multiplication strategy
largely suppressed velocity discontinuities in noisy regions,
making the training task easier. In contrast, the concatenation
of Doppler power and velocity allowed the model to learn the
best strategy for combining these two inputs, which could be
beneficial in larger datasets.

While we did not observe significant performance gains
with BATFormer, the addition of synthetic data improved
the outcomes, indicating that BATFormer also has potential
for color Doppler dealiasing, especially when more data is

available. Our results demonstrate that DL methods can sig-
nificantly improve upon traditional methods for color Doppler
processing. Additionally, they underscore the importance of
further investigating the performance of different DL archi-
tectures for this task and finding ways to effectively exploit
the strengths of each architecture.

B. Limitations and Perspectives
Color Doppler aliasing in the left ventricle mainly occurs

in the mitral jet during early and late filling, as well as during
ejection into the ventricular outflow tract. As depicted in the
figures, the aliasing in our study was single. However, in
certain valvular diseases, such as mitral stenosis or aortic
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regurgitation, multiple aliasing can occur in the intraventricular
cavity due to the high fluctuating velocities of the turbulent
jet. The nature of multiple aliasing in this context differs from
that observed in InSAR, requiring specific studies to assess the
feasibility of removing aliasing in areas with significant local
flow perturbations. Although this remains to be verified, it is
likely that a similar strategy could also work with disturbed
flows, provided that we have access to Doppler data with their
alias-free references. Such ground truths could be obtained by
supervised correction, as in this study, and by simulations [25].

Since we used a clinical ultrasound system with a color
Doppler rate of 10 to 15 frames per second, our study did not
exploit temporal information. In the context of high-frame-rate
echocardiography [26], neural networks with enforced tempo-
ral consistency [6] or 3D U-Net could potentially improve
dealiasing performance by leveraging temporal information.
This approach would be especially relevant as high-frame-rate
color Doppler is subject to more noise related to clutter signals.

C. Applications in Quantitative Color Doppler

Once corrected, color Doppler images can be used to visual-
ize and quantify intracardiac blood flow. As mentioned in the
introduction, intraventricular vector flow mapping (iVFM) is
an approach to obtain comprehensive flow information, from
which hemodynamic parameters can be estimated. Using a
color M-mode, it is also possible to estimate the pressure
difference between the apex and the mitral base, which reflects
the cardiac filling [27], [28]. However, prior dealiasing is
required for this method [28]. To this end, the approaches
outlined in this study could be used with color M-mode im-
ages. In a more ambitious perspective, it would be conceivable
to develop neural networks that can directly infer velocity
vector fields or relative pressure fields from color Doppler
images, once properly trained. In this case, the dealiasing
process would be intrinsically integrated into the network. The
main difficulty would lie in obtaining paired input data that
provide the reference values. Simulations combining flows and
acoustics could provide a relevant avenue for this purpose [25],
[29].

V. CONCLUSION

While traditional methods are effective for interferometric
imaging, they are limited for color Doppler echocardiography
due to high noise generated by clutter signals in moving tissues
surrounding the blood flow. We have demonstrated that deep
learning (DL) techniques can achieve alias-free color Doppler
echocardiography. Our proposed DL methods outperformed
the non-DL DeAN method, with nnU-Net achieving the best
performance, followed by PDNet. In addition, the incorpora-
tion of power information and artificial aliasing augmentation
improved the results. The application of DL techniques to
color Doppler echocardiography is a promising approach that
could enhance the clinical utility of this widely used imaging
modality.
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