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ABSTRACT 

 

In this paper, we introduce a novel approach for the design of robust low-noise amplifiers (LNAs) using wide-bandgap 

GaN MMIC technology. The objective of this work is to compare two robust LNA design strategies. While a method 

already mentioned in the literature reaches high linearity performance levels by making use of highly sized device at the 

price of noise figure (NF) degradation, this work proposes an alternative design option which allows to switch in a 

reversive way from optimum NF performance to optimum power compression point, by suitably changing the quiescent 

point of the transistor. This second strategy of design implies beforehand an adequate selection of the transistor's sizing 

taking into account its capacity to be matched at its input and at its output whatever the biasing condition. Thus, a 

comparison is performed for the two different LNA design strategies, results are presented and discussed. It is proven that 

the proposed reconfigurable LNA achieves the best NF results under nominal biasing conditions, while it can be DC-

voltage tuned to improve its linearity close to that of the highly sized transistor LNA: this operating mode allows the 

receiver to operate under electromagnetic aggression conditions. The new proposed LNA achieves an average noise figure 

of 1.05 dB for a small signal gain higher than 10 dB over the X-Band, and with an input compression point (IP1dB) that 

can increase by 10 dB between the two quiescent point, up to IP1dB of 14 dBm (IP1dB of 19 dBm is achieved for the non-

tunable design, with a NF 0.2 dB higher than our design).   

Keywords—Low-noise amplifier, LNA, Gallium Nitride, HEMTs, Linearity, Circuit Topology, Reconfigurable, MMICs. 

 

I - INTRODUCTION 

 
GaN HEMT active devices offer higher linear performance and robustness than their GaAs or SiGe counterparts. With 

power density 6 to 10 times higher, their use to design RF power amplifiers (PAs) has been widely democratized. 

Additionally, it has been proven that GaN-based semiconductors can provide interesting high-frequency noise properties. 

The combination of these two features makes these technologies excellent candidates for robust low noise applications. 

The combination of these properties makes GaN technologies a natural choice for military or altimetry systems that 

require high RF input levels while ensuring optimal detectivity. GaN-based receivers are advantageous for their ability to 

withstand high jamming powers without being degraded or destroyed [1]. It is then possible to partially or totally dispense 

with the protection devices placed before the LNA [2]. This improves the overall receiver block complexity (SWaP), as 

well as the overall NF (noise factor equals losses for passive protection systems). In order to build a robust LNA, one 

strategy is to oversize the transistor: this means larger physical sizing and/or electrical biasing of the transistor than that 

used for optimum low noise conditions [3]. In this way, non-linear performance is improved at the expense of the four 

noise parameters. We propose a new method which, by changing the quiescent point of the transistor, allows reconciling 

the low noise properties of GaN HEMT while exploiting to the maximum the linearity performances of a design. This 

paper presents a comparative study on the two different strategies for the design of robust GaN LNAs: our reconfigurable 

design (LNA#1) and the classical approach with a larger sized transistor (LNA#2). The measurements on single stage 

designs are presented for a fair comparison between each of these options, even if multi-stage LNAs have been designed 

and measured [4]. In the literature, other methods aiming at implementing robust LNAs are also proposed, each offering 

different advantages depending on the targeted application [5] [6] [7] [8].  

The first part of this article will be devoted to the choice of the most suitable active element relative to our repolarization 

strategy. The second part will focus on the precautions taken at the design circuit layout level. Finally, the last part will 

detail the simulations and measurements specific to each design, with a discussion on the two design strategies.  
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The GaN technology selected for this comparative study on LNAs is the OMMIC D01GH process on silicon substrate. It 

provides HEMT devices with a transition frequency of 110 GHz, high breakdown voltage of 36 V, and a good power 

density of 4 W/mm. This process is suitable for RF High Power Amplifier (HPA), robust LNA and Transceiver modules. 

 

II - SIZING OF THE ACTIVE ELEMENT 

 

In a conventional LNA design, the optimization of the first stage is realized based on the four noise parameters (minimum 

achievable noise figure NFmin, equivalent noise resistance Rn and complex optimum noise reflexion coefficient opt) and 

on the small signal parameters [S] criteria to respect the technical specifications imposed by the FRIIS formula [9] in the 

reception system under study. The transistor sizing (number of gate fingers and gate length for a High Electron Mobility 

Transistors, HEMT) and its static biasing (VGS; VDS) are then selected according to these aspects. Linearity of the receiver 

is then imposed by this selection. In Fig. 1, the input compression point IP1dB is plotted versus the minimum noise figure 

NFmin at the center frequency of 10 GHz. This mapping of the HEMT is developed for various sizing (number of gate 

fingers, gate individual length) and different biasing (VGS and VDS). The objective is to appreciate the possibility to get 

simultaneously low NFmin and high IP1dB in a first intention (even if these two parameters are not the only one to be 

considered for the design of an LNA). Four different transistors are reported in Fig. 1 as a possible illustration of these 

main trade-offs to operate for selecting the HEMT providing the appropriate value pairs (NFmin, IP1dB) (one small, two 

medium and one large size devices). Of course, second order criteria such as the small signal gain, the noise or small-

signal reflection coefficient magnitudes, the equivalent noise resistor are used to refine the active device selection. Three 

main areas are evidenced. It is admitted that all LNAs can be biased at several quiescent points more or less close to each 

other; the objective of our design strategy is to take maximum advantage of the elasticity of the electrical noise and power 

linearity performance of a component. The objective is therefore to make a judicious choice on the dimension of the 

component, which allows a maximum variation of the 1dB compression point (P1dB) of the device while keeping stable 

matching parameters (S11 & S22) as well as the small-signal gain (S21). 

-The area labelled as zone I is not eligible for this study: indeed, to have the best NFmin performance, the 

associated DC biases are around 3V and 5V and -0.9V and -0.7V. However, as we can see on Fig. 1.a, to increase the 

P1dB of the transistor, it is imperative to increase the drain voltage while keeping a stable gate voltage in order to place 

the component in a zone of higher linearity. It is then complicated, if not impossible, to increase the drain voltage without 

strongly changing the S22 parameter (4-6 dB worse). On top of that, even if NFmin is the best for this technology, the sizing 

and biasing of the transistor also increases the space between opt and the conjugate of S11 for matching conditions, and 

that can be sensed through an increase of NF (defined as NF=NF50-NFmin). The design effort of the input matching 

Fig. 1 : Device biasing and sizing selection for Low Noise or high compression IP1dB purposes 

(NFmin versus IP1dB @10 GHz). Sizing is for number of gate fingers and gate individual width 

respectively ranging between [2;4;6;8] and [20 µm to 100 µm by step of 20 µm], while biasing on 

VGS and VDS respectively range between [-1,7 V to 0 V by step of 0.2 V] and [3V;5V;8V;12V;20V]. 

The number of random sizing/ DC biasing combinations is 1000. 

 



network (IMN) tends to degrade the noise performance and offers, in fine, a NF50Ω of equivalent level to a slightly larger 

sized transistor.  

In order to avoid the deterioration of the output matching when the drain voltage increases, the only solution is also to 

open the channel of the transistor. Thus, the coherence on the VGS/VDS couple is a needed prerogative to keep the matching 

parameters relatively stable.  

-Zone II is related to transistors exhibiting a low NFmin, and a high IP1dB near the inflection between the low-

noise and high- linearity sections in Fig. 1. The lower trend zone (red dotted section) represents the most interesting 

features for our reconfigurable strategy (LNA#1) because it allows to have the best final NF50, while the upper trend zone 

(blue dashed section) is more suitable for obtaining a highly linear device (LNA#2). The larger transistors, although 

advantageous from the point of view of their linear performance, are not eligible to further increase their compression 

point because they are located at the edge of what the technology can offer in terms of recommended maximum output 

power. Moreover, these components (8*50µm or equivalent gate dimension) are located in an area with degraded noise 

parameters, so their size does not allow to guarantee a gain as high as for a transistor of smaller size (6*40µm or 

equivalent). 

-In zone III, the increase on NFmin for a poor benefit on IP1dB will prevent the selection of these HEMT biasing 

and sizing solutions for the design of an LNA. Moreover, as the size of the component increases, the gain also tends to 

decrease. 

Fig. 2 reports the static output characteristics for specifically selected HEMT sizing and biasing, also with the 50  load 

line and safe operating area (SOA) set at 4 W/mm static power per mm of overall gate width [10]. As we can see on Fig. 

2.b, the transistor whose dimensions are optimal for a low noise application (6*40µm) can also achieve the same high 

IP1dB as what a larger transistor can propose. This is done at the expense of the noise figure degradation, which increases 

significantly while moving the DC gate/drain quiescent point of this selected. The incursion of the quiescent point in the 

area of maximum continuous power dissipation (PDC=4W/mm) is acceptable thanks to the RF power considered at the 

input of the device. Indeed, by taking into consideration the compression point at the input of the device and its gain, it is 

possible to deduce the RF power evacuated by the device. This RF power comes to reduce the thermal stress caused by 

the DC bias applied to the transistor. In view of the high RF levels involved at the input of robust GaN LNAs, the 

considerations usually reserved for power amplifiers (PAs) are applicable here [11].  

In consideration of the compromise on NF and IP1dB, and taking into account the maximum achievable power 

considerations, the 6*40µm transistor is therefore selected for our voltage-reconfigurable design (LNA#1), while the 

8*50µm device is selected to realize a classic robust LNA (LNA#2) for comparison. 

 

                    (a)                                                                           (b) 

Fig. 3 : Layout of the two LNAs considered for the study: (a) LNA#1 with the 6*40µm transistor, 

(b) LNA#2 with the 8*50µm transistor. 

                           

                          (a)                                                            (b)                                                           (c) 

Fig. 2 : Static characteristics [IDS(VDS)] for three transistor dimensions (4*50µm, 6*40µm & 8*50µm). Each quiescent 

point appears with NFmin and associated P1dB. The areas of maximum DC power dissipation are shown in gray. 



 

III – LAYOUT OF THE LNAS 

 

Once the active components are selected, input (IMN) and output (OMN) matching network are implemented. 

In the case of the two layouts implemented on Fig. 3, the goal is to get two realizations with the lowest possible noise; 

the inductive feedback on the gate access is mandatory to bring the optimum noise reflection coefficient Sopt closer to the 

conjugate of S11. Concerning the classical robust LNA (8*50µm) this feedback appears as a critical element. Indeed, if 

the noise matching effort seems to require significant feedback, the latter has the effect of reducing the gain. Consequently, 

the small signal gain is all the lower as the size of the transistor is high. A compromise is made to ensure a minimum gain  

of 7.5 dB at 12 GHz. Beyond that, a series inductor and a decoupling system mixing capacitance and resistance are added 

to guarantee the stability at medium frequency. The decrease in gain caused during the design steps of the final layout has 

the effect of increasing IP1dB by 4dB. 

Concerning our voltage reconfigurable LNA#1 strategy, the feedback appears to be a less critical parameter due to the 

higher gain of the transistor (6*40µm) in X band. The IMN and OMN are implemented by checking the stability of the 

small signal gain as well as the matching parameters stability versus the two quiescent points with the objective of 

ensuring maximum elasticity of the linearity performances (ΔP1dB). As for the classical robust design LNA#2, the decrease 

of the gain will increase the IP1dB. Considering the RF power levels at the input and output of the device and the limit of 

the power dissipated by the technology, it is thus possible to bias the device at VDS=12V and VGS=-0.6V.  The ΔP1dB 

increases to reach 8dB of elasticity over its compression point, the P1dB going from 12dBm under low noise bias, to 20 

dBm under aggression mode bias. 

 

IV – SIMULATIONS AND RESULTS 

 

LNA#1 will be presented in red for its low noise configuration and black for its DC biasing in EM aggression mode. The 

classical robust LNA, also noted LNA#2, is presented in blue.  

Before presenting the noise and nonlinear performances of the amplifiers, it is important to validate the S-parameters 

according to the chosen quiescent points. As can be seen on Fig. 4, the S-parameters for the two LNAs present 

measurements in good agreement with simulations. The measured small-signal gain is 0.5 dB higher than the simulation, 

but remains constant while switching between the two quiescent points for LNA#1. Matching parameters are slightly 

degraded compared to the simulations, but they still show similar trends. Despite a degradation of S22 in the order of 2 dB, 

the return losses for LNA#1 are better than 9 dB. Concerning LNA#2, its return losses are better than 11 dB for a gain 

varying between 11.5 dB and 8 dB in X-band. Concerning the non-linear characteristics of the devices, we observe IP1dB 

worse than those expected in simulation. This degradation of this figure of merit is explained by the increase in gain 

            

            

           

            
            

            

           

Fig. 4 : Simulated and measured S-parameters of LNA#1 [in its low noise configuration (VDS=5V / VGS=-1V), in EM 

aggression mode (VDS=12V / VGS=-0.6V)] and of LNA#2 (VDS=12V / VGS=-1.25V) 

Fig. 5 : Simulated and measured gain vs. RF power at LNAs input for LNA#1 [in its low noise configuration (VDS=5V / 

VGS=-1V), in EM aggression mode (VDS=12V / VGS=-0.6V)] and for LNA#2 (VDS=12V / VGS=-1.25V) 



between simulation and measurement. For LNA#1, the observed differences between measurement and simulation can be 

explained by the fact that for a voltage couple of VDS=12V & VGS=-0.6V, the associated drain current is simulated at 140 

mA, whereas a value of IDS=73 mA is measured in practice. This offset of the quiescent point when opening the channel 

does not take advantage of the theoretical maximum excursion along the 50 Ω load line, which allows maximizing IP1dB. 

Moreover, one cannot benefit from the increase in gain due to the improvement in power that one observes on the 

simulated plot of Fig. 5. Despite this, the LNA#1 present a ΔP1dB variation of 10 dB, which is consistent with the 

simulations. The classic robust LNA that does not need to operate at high drain current (IDS=48 mA) achieves a IP1dB of 

20 dBm. This represents almost the limit of what the technology can provide in terms of linear output power for a single 

stage architecture.  

Noise figure measurements were performed with the PNA-X N5244B from Keysight, using the accurate low NF 

measurement option 029. A fair correlation is found between simulations and measurements, with a difference between 

0.1 dB and 0.3 dB. Regarding the noise performance, Fig. 6 shows that the average noise figure of the LNA#1 under low 

noise configuration is as low as 1.05 dB, while the LNA#2 features a reasonable average noise figure of 1.2 dB over the 

X band. When biased under EM aggression mode, the NF50 of the LNA#1 increases by 0.5 dB. 

 

CONCLUSION 

 

In this paper, a new strategy for designing robust GaN LNA is proposed. By an appropriate selection of the sizing and 

biasing of the device, it makes it possible to alternately manage an optimal noise figure and a high linearity at the input 

of the designed amplifier. The proposed voltage reconfigurable LNA has an average noise figure of 1.05 dB over the X-

band. Its IP1dB is scalable and has an elasticity of 10 dB. This study on single-stage LNAs demonstrates the opportunity 

offered by this original strategy of reconfigurable LNA, as an alternative to robust LNA (or to the combination of a device 

protection prior to the LNA) as needed when the receiver operates under RF jamming aggressions. Indeed, with a lower 

noise figure and a better gain than that of LNA#2, LNA#1 stands as a good candidate for implementation in a multistage 

architecture, and even more so in a global reception chain: a two-stage version of the LNA using the proposed strategy of 

switchable biasing have been successfully implemented. The final objective of this work is to design a voltage 

reconfigurable system that can switch from a nominal low noise mode to an "EM aggression" protection mode. The design 

roadmap is to keep the system operating in a linear configuration, to still allow the detectivity of the desired signals. This 

design method is not limited to the X-band as proposed; indeed, a larger variety of selection in the adjustment parameters 

is obtained for lower frequencies. In contrast, the design paradigms on the transistor size/bias selection tend to tighten as 

frequency increases.   
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