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Proving the Convergence to Limit Cycles using Periodically Decreasing
Jacobian Matrix Measures

Jawher Jerray1 Laurent Fribourg2

Abstract— Methods based on “(Jacobian) matrix measure”
to show the convergence of a dynamical system to a limit cycle
(LC), generally assume that the measure is negative everywhere
on the LC. We relax this assumption by assuming that the
matrix measure is negative “on average” over one period of
LC. Using an approximate Euler trajectory, we thus present
a method that guarantees the LC existence, and allows us to
construct a basin of attraction. This is illustrated on the example
of the Van der Pol system.

I. INTRODUCTION

Consider the nonlinear dynamical system defined by

9xptq � fpxptqq. (1)

with f : Rn Ñ Rn and xp0q � x0 P Rn as initial condition.
Let ξx0

ptq denote the solution of (1) at time t with initial
condition ξx0

p0q � x0.
For a long time, methods based on the notion of (Jacobian)

matrix measure (noted as µP p�q) have been used to show
the convergence of a solution ξx0

ptq to a stationary point
(see e.g. [1], [2], [3]). These methods essentially assume
that a bound c is known for the measure of the (transverse)
Jacobian matrix Jpxq with respect to x for any x belonging
to a Ω forward invariant space. Formally, there exists c P R
such that, for all x P Ω:

µP pJpxqq ¤ c. (2)

Under these conditions, we have the following information
about the distance between two solutions ξx0

ptq and ξy0
ptq

starting from two different initial conditions x0 and y0:

if |y0 � x0| ¤ ε0 then |ξy0ptq � ξx0ptq| ¤ ε0e
ct,

for all t ¥ 0 (see, e.g., [4], [5]).
Similarly, methods based on the transverse component

µKP p�q of µpp�q are used to show the convergence of ξx0
ptq

towards a limit cycle Γ (see e.g. [6]). Equation (2) becomes,
for all x P Ω:

µKP pJpxqq ¤ c. (3)

If c   0, the system is said to be contractive: The solutions
ξy0

ptq and ξx0
ptq converge asymptotically to each other.

Within the framework of periodic systems, the transverse
contractivity leads to the existence and uniqueness of a limit
cycle Γ inside Ω. (see, e.g., [6]). These methods of proof of
convergence consist essentially in finding a positive definite
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stitut Polytechnique de Paris, Sophia-Antipolis, France
jawher.jerray@telecom-paris.fr

2Laurent Fribourg is with University Paris-Saclay, CNRS, ENS Paris-
Saclay, LMF, F-91190 Gif-Sur-Yvette, France fribourg@lsv.fr

matrix P (possibly depending on x) ensuring (3) with c   0
for any point x. The discovery of such a matrix can be done
by solving a convex optimization problem (via a linear matrix
inequality or polynomial sum of squares, see [6]), but such
a problem of optimization does not always have a solution.

We propose here to relax the criterion (3) by allowing that
µKP pJpxqq can be locally ¥ 0 on Γ, provided that µKP pJpxqq
is negative on average on Γ, i.e.:» T

0

µKP pJpξx�ptqqqdt ¤ c   0, (4)

where T is the period of Γ, and x� a point of Γ.
We give a set-based criterion, based on the use of an Euler

trajectory x̃ptq of initial condition x̃0. More precisely, we
give an upperbound δptq of the error ey0

ptq � |x̃ptq�ξy0
ptq|

where the initial point y0 of the exact solution ξy0
ptq is

located in the vicinity of x̃0ptq. By showing that δptq
decreases at each round of the Euler trajectory, we prove
the contraction “in average” of the system, thus highlighting
the presence of a limit cycle Γ in the vicinity of x̃ptq (see
Theorem 1). This also allows us to construct an invariant
zone C around Γ.

Thanks to an additional numeric criterion, which is a dis-
crete version of (4) (see (28), Section IV) we then determine
a basin of attraction of Γ. See Theorem 2. The method is
illustrated on the example of the Van der Pol system.

Note that, although our method can be defined using a
norm |x|P :�

?
xJPx for a symmetric positive definite

matrix P , we restrict ourselves in the following to the case
where P is the identity matrix I , the norm | � |I (just denoted
| � |) is the Euclidean norm, and µIp�q (just denoted µp�q) is
the associated matrix measure (see Section II).

In summary, our contribution is to

 give a sufficient set-based condition (see (18)) that

guarantees the existence of a limit cycle Γ, and allows
us to construct an invariant zone C around Γ,


 give an additional numeric condition (28) (which is a
discrete version of (4)) that allows us to determine a
basin of attraction of Γ,


 illustrate these points on the Van der Pol example.

Plan of the paper

After some preliminaries (Section II), we give a criterion
that guarantees the existence of a limit cycle Γ (Section III).
We then give an additional condition that allows us to deter-
mine a basin of attraction of Γ (Section IV). We conclude
in Section V.



II. PRELIMINARIES

We denote by R and N the set of real and natural numbers,
respectively. These symbols are annotated with subscripts to
restrict them in the usual way, e.g., R¥0 denotes the non-
negative real numbers. We denote by Rn a n-dimensional
Euclidean space. For a matrix A, we denote by AJ the
transpose of A. The Euclidean norm is denoted by | � |.
The ball of center x P Rn and radius δ P R¥0 is denoted
by Bpx, δq (i.e., Bpx, δq � ty P Rn : |x � y| ¤ δu).
The distance dpx,Γq of x P Rn to Γ � Rn is defined as
inft|x � y| : y P Γu. A set of successive integers of the
form t1, 2, . . . , ku is abbreviated as rks. The scalar product
of x P Rn and y P Rn is written xx, yy. Let Jpxq be
the Jacobian matrix of the vector field fpxq. Among the
eigenvectors of matrix Jpxq�JJpxq

2 , let v0pxq (resp. E0pxq)
be the tangent eigenvector (resp. associated eigenvalue) led
by fpxq, and v1pxq, . . . , vn�1pxq (resp. E1pxq, . . . , Enpxq) be
the other eigenvectors (resp. associated eigenvalues). Let

µpJpxqq � max
i�0,1,...,n�1

Eipxq. (5)

Given a global bound λ on µpJpxqq, we know that all
trajectories of (1) with initial conditions in Bpx0, δ0q lie
in Bpξx0

ptq, δ0eλtq (see, e.g., [4], [5]). If λ   0 then the
system (1) is said to be contracting (cf. [7]). Let

µKpJpxqq � max
i�1,...,n�1

Eipxq. (6)

Note that, while i � 0 belongs to the index domain of (5),
the index i � 0 is discarded in (6) because it corresponds to
the tangent direction.

Let L denote the Lipschitz constant of vector field f , and
Mf an upperbound on magnitude of f (i.e: Mf ¥ |fpzq| for
all z P Ω).

We denote by x̃i the Euler discretization of (1) at time
ti � ih, for i P N, where h is the time-step size. Given an
initial point x̃0 P Rn, x̃i�1 is defined, for i P N, by:

x̃i�1 � x̃i � hfpx̃iq. (7)

For s P r0, hs, t � ih � s, let x̃ipsq � x̃i � sfpx̃iq (so
x̃ip0q � x̃i, x̃iphq � x̃i�1), and x̃ptq � x̃ipsq.

III. PROOF OF EXISTENCE OF A LIMIT CYCLE

We now give a sufficient condition to guarantee the
existence of a limit cycle Γ solution of (1), and construct
a forward invariant zone around Γ.

Consider an Euler trajectory Γ̃, i.e. a solution x̃ptq of (7)
with time-step h P R¡0 and initial condition x̃0 P Rn. Let
S0 be the hyperplan through x̃0 orthogonal to fpx̃0q. Let
x̃i � x̃pihq, for i P N. We denote by Si the plan passing
through x̃i and orthogonal to fpx̃iq. Likewise, for s P r0, hq,
Sipsq is the plan through x̃ipsq orthogonal to fpx̃ipsqq.

We suppose that x̃ptq returns for the first time (in the
good direction) to S0 at time t � R̃1 P ppN1 � 1qh,N1hs
for some N1 P N¡0. More generally, we suppose that x̃ptq
returns for the p-th time (p P N¡0) to S0 at time t � R̃p P
ppNp � 1qh,Nphs for some Np P N¡0, so we have:

x̃pR̃pq P S0 and fpx̃0qJfpx̃pR̃pqq ¡ 0.

By convention, let R̃0 � 0. Note that S0 is “between” SNp�1

and SNp for all p P N¡0 (see Figure 2, Section III).
Given δ0 P R¡0 and y0 P Bpx̃0, δ0qXS0, we suppose that

ξy0
ptq returns to S0 for the 1st time at t � Ty0

p1q P R¡0.
So we have:

ξy0pTy0p1qq P S0 and fpx̃0qJfpξy0pTy0p1qqq ¡ 0.

We will suppose that there exists η P R¡0 such that:

Ty0
p1q ¥ η ¡ 0 for all y0 P Bpx̃0, δ0q X S0. (8)

This will be used in Theorem 1 to show Ty0ppq Ñ 8 as
pÑ8, where Ty0

ppq is the p-th return time of ξy0
ptq to S0.

Along the lines of [3], we now synchronize the time
between x̃iptq and the corresponding solution ξyiptq of (1)
with yi P Bpx̃i, δiq X Si. More precisely, we consider
the time-reparametrisation θyi

p�q defined so that ξyi
pθyi

ptqq
belongs to Siptq. Hence, given two adjacent points x̃i P Si

and yi P Si with px̃i� yiq perpendicular to fpx̃iq, we define
θyiptq for all s P r0, hq in an “implicit” manner as follows:

pξyi
pθyi

psqq � x̃ipsqqJfpx̃ipsqq � 0. (9)

This is possible due to the implicit function theorem if h
and |yi � xi| are sufficiently small (see [3], Section 2.1).
Using (9), we define θyipsq with θyip0q � y0, and yi�1 �
ξyipθiphqq. Note that yi P Si for all i P N. We can now
define Θy0

p�q so that ξy0
pΘy0

ptqq is synchronized with the
solution x̃ptq of (7) (with initial condition x̃0). Formally,
given y0 P Rn, Θy0

p0q :� y0 and Θy0
ptq :� θyi

psq for
t � ih � s with s P p0, hs. Note ξy0pΘy0pihqq � yi P
Si for all i P N. We will ensure Θy0ptq Ñ 8 as t Ñ 8
thanks to assumption (8) coupled with assumption (18) (see
Theorem 1).

We now define ai�1py0q and bi�1py0q (i P N), or for the
sake of notation simplicity, just ai�1 and bi�1, as follows:

Definition 1. For i P N, let:

0   ai�1 ¤ inf
sPr0,hs

9θyi
psq, bi�1 ¥ sup

sPr0,hs

9θyi
psq.

Remark 1. The existence of ai�1, bi�1 for all i P N follows
from the assumptions that the 1st return times of x̃0ptq and
ξy0ptq to S0 are finite (i.e., R̃1 P R¡0 and Ty0p1q P R¡0 for
all y0 P Bpx̃0, δ0q X S0) together with conditions (8)-(18)
(see Theorem 1). The bounds ai and bi can be computed
using the implicit function theorem by time derivation of (9)
(see [3], Section 2.1). The assumption that ai�1 ¡ 0 (i.e.,
infsPr0,hs 9θyipsq ¡ 0) is true when h is sufficiently small
and a lowerbound m ¡ 0 exists on the magnitude of vector
field f (i.e., |fpxq| ¡ m for all x P Ω).

We now define αi, Yi and Zi�1 along the lines of [4]
(Algorithm 1), as follows:

Definition 2. 
 Let
α0 � δ0,
αi�1 � αi � bi�1Mfh for i P N,
More generally let
αipsq � αi � bi�1Mfs for i P N, s P r0, hs.




 Let Yi � Bpx̃i, αiq X Si, for all i P N.
More generally let:
Yipsq � Bpx̃ipsq, αipsqqXSipsq for all i P N, s P r0, hs.


 Let Zi�1 �
�

sPr0,hs Yipsq for all i P N.

Remark 2. Note that Y0 � Bpx̃0, δ0qXS0 and Yi�1 � Zi�1X
Si�1. Note also that, given y0 P Y0, we have: ξyipθyipsqq P
Zi�1 for all i P N, s P r0, hs. We have also: ξy0pΘy0ptqq P
Zi�1 for all t � ih � s with s P r0, hs. This implies that
Zi�1 is an overapproximation of the “reachability” set tz P
Rn| z � ξy0

pΘy0
pih�sqq for some y0 P Y0 and s P r0, hsu.

Let us now define Λi�1 P R (i P N), as follows:

Λi�1 ¥ sup
zPZi�1

µKrJpzqs,

Note that Λi�1 satisfies for all z1, z2 P Zi�1 (see e.g. [1]):

xfpz1q � fpz2q, z1 � z2y ¤ Λi�1|z1 � z2|2. (10)

Let γ ¡ 0 be a positive real (arbitrarily chosen).

Definition 3. For all i P N, let
σi�1 � 1

2ai�1Λi�1 if Λi�1   �γ,
σi�1 � 3

2bi�1 maxp|Λi�1|, γq if Λi�1 ¥ �γ.

Remark 3. Note that ai, bi, Zi,Λi, σi are not defined for i �
0. The constant σi�1 is a conservative approximation of the
matrix measure Λi�1 on Zi�1. The constant γ is used to
isolate the problematic neighborhood of µKrJpzqs around 0,
(and get a positive lowerbound of |σi�1|): If z is such that
|µKrJpzqs|   γ, then |µKrJpzqs| is replaced by γ. It follows
from the definition that for all i P N:

|σi�1| ¥ γ

2
ai�1 ¡ 0 (11)

Given δ0, let us define δi, δptq and ẽyi
, ẽy0

ptq as follows:

Definition 4. Let ẽy0
� |x̃0 � y0|, and for i P N let:

δi�1 � δie
σi�1h, ẽyi�1

� |x̃i�1 � yi�1|.
More generally for i P N, s P r0, hs, t � ih� s, let:

δipsq � δie
σi�1s ẽyi

psq � |x̃ipsq � yipθyi
psqq|,

δptq � δipsq, ẽy0
ptq � |x̃ptq � ξy0

pΘy0
ptqq|.

Remark 4. For i P N and s P r0, hs, we have:
δpih� sq � δipsq � δ0e

hΣi
k�1σk�sσi�1

if we adopt the convention Σi
k�1σk � 0 for i � 0.

We now show that, under certain condition, ẽy0
ptq ¤ δptq.

Proposition 1. Let i P N, yi P Yi.
If ẽyi

¤ δi, we have:

ẽyi
psq ¤ maxpδipsq, hpM̃i�1p 2L

γai�1
�1q� bi�1Mf qq (12)

for all s P r0, hs, where M̃i�1 an upperbound of |fpx̃ipsqq|
on s P r0, hs.

Furthermore, for all i P N¡0, s P r0, hs, y0 P Y0:

ẽyi�1
psq ¤ maxpδi�1psq, hpM̃ip 2L

γai
� 1q � biMf qq. (13)

Proof. The proof of (12) is an adaptation of the proof of
Theorem 1 of [8] to the context of transverse contraction.

Consider yi P Yi. Let: ẽyi
ptq � |ξyi

pθyi
ptqq � x̃iptq| for

t P r0, hs. Hence ẽyip0q � |yi � x̃i| ¤ δi. For the sake of
simplicity, we will write x̃t instead of x̃iptq, yθt instead of
ξyi
pθyi

ptqq, 9θt instead of 9θyi
ptq.

For all t P r0, hs, we have by (10):

xfpyθtq � fpx̃tq, yθt � x̃ty ¤ Λi�1|yθt � x̃t|2 (14)

since yθt, x̃t P Zi�1. So for all t P r0, hs, ẽyiptq � |yθt� x̃t|
satisfies:

1
2

d
dt pẽ2yi

ptqq � x 9θtfpyθtq � fpx̃iq, yθt � x̃ty

� 9θtxfpyθtq � fpx̃tq, yθt � x̃ty
�x 9θtfpx̃tq � fpx̃iq, yθt � x̃ty

� 9θtxfpyθtq � fpx̃tq, yθt � x̃ty �x�fpx̃iq, yθt � x̃ty
(using the fact fpx̃tq K pyθt � x̃tq)

¤ 9θtΛi�1ẽ
2
yi
ptq �x�fpx̃iq, yθt � x̃ty (using (14))

¤ 9θtΛi�1ẽ
2
yi
ptq �L|fpx̃iq|tẽyiptq

(because, using again fpx̃tq K pyθt � x̃tq:
|x�fpx̃iq, yθt � x̃ty| � |xfpx̃tq � fpx̃iq, yθt � x̃ty|

¤ L|x̃t � x̃i||yθt � x̃t| ¤ Lt|fpx̃iq|ẽyi
ptq

Hence for all t P r0, hs:
1

2

d

dt
pẽ2yi

ptqq ¤ ρi�1Λi�1ẽ
2
yi
ptq � L|fpx̃iq|tẽyi

ptq (15)

(with ρi�1 � ai�1 if Λi�1   �γ, ρi�1 � bi�1 otherwise).
By subtracting L|fpx̃iq|tẽyi

ptq from ρi�1Λi�1ẽ
2
yi
ptq in the

right-hand side of (15), we get using (11)
If h ¤ γai�1

2L|fpx̃iq|
ẽyiptq for all t P p0, hs, then

1
2

d
dt pẽ2yi

ptqq ¤ σi�1ẽ
2
yi
ptq.

It then follows by integration that, for all i P N, yi P Yi:
If h ¤ γai�1

2L|fpx̃iq|
ẽyi

psq for all s P r0, hs, then, assuming
ẽyi

¤ δi:

ẽyipsq ¤ δie
σi�1s � δipsq for all s P r0, hs. (16)

Suppose that the hypothesis h ¤ γai�1

2L|fpx̃iq|
ẽyi

psq is not
satisfied for some s0 P r0, hs, i.e: ẽyi

ps0q   Ch where
C � 2L|fpx̃iq|

γai�1
. It then follows for all s P r0, hs:

ẽyi
psq   Ch� |ẽyi

ps0q � eyi
psq|

¤ Ch� |ξyi
pθyi

psqq � ξyi
pθyi

ps0qq| � |x̃ipsq � x̃ips0q|
¤ Ch� hbi�1Mf � hM̃i�1.

Using (16), we have then for all s P r0, hs:
ẽyi

psq ¤ maxpδipsq, hM̃i�1p 2L
γai�1

� 1q � bi�1Mf q,
i.e. (12).

By induction on i, using the fact that ẽy0
� |y0� x̃0| ¤ δ0

(since y0 P Y0 � Bpx̃0, δ0q), we prove (13).

Definition 5. For all i P N, let

Ci�1 �
¤

sPr0,hs

Bpx̃ipsq, δipsqq X Sipsq.

Besides

C �
N1¤
i�1

Ci,



where N1 � r R̃1

h s and R̃1 P R¡0 is the 1st return time of
x̃ptq to S0.

Using Proposition 1, we now show that a simple test of set
inclusion (see (18)) guarantees the existence of a limit cycle.

Theorem 1. Consider an Euler trajectory Γ̃ and δ0 P R¡0.
Suppose that, for all i P rN1s, s P r0, hs:

δi�1psq ¥ hpM̃ip 2L
γai

� 1q � biMf q, (17)

and
CN1

X S0 � Y0. (18)

Suppose furthermore that there exists η P R¡0 such that (8)
holds. Then


 C is forward invariant w.r.t. Y0, i.e.: For all t P
r0,8q, y P Y0, we have ξyptq P C, and


 C contains a limit cycle Γ.

Proof. From (13) and (17), we deduce: ey0
ptq ¤ δptq for all

y0 P Y0, t P r0, N1hs. In particular, at the time of the 1st
return of x̃ptq to S0 at t � R̃1 P ppN1� 1qh,N1hs, we have
ey0pR̃1q ¤ δpR̃1q. So: ey0pR̃1q � |y1 � x̃1| ¤ δpR̃1q, where
x̃1 � x̃pR̃1q and y1 � ξy0

pTy0
p1qq are the 1st return points

of x̃ptq and ξy0
ptq to S0 respectively.

From the definition of CN1 we can deduce that y1 P CN1X
S0. Therefore, using (18), we have: y1 P Y0. Thus for all
y P Y0, we have y1 � ξy0

pTyp1qq P Y0. This shows by
the Brouwer fixed-point theorem applied to the continuous
function: y P Y0 ÞÑ ξypTyp1qq, that there exists y� P CN1 X
S0 � Y0 such that ξy�pTy�p1qq � y�. We deduce that there
exists a limit cycle Γ (closed solution de (1)) of period T �
Ty�p1q which passes through y� P CN1

X S0 � Y0.
Observe that for all y0 P Y0 and t P r0, Ty0p1qs, we have,

by (13) of Proposition 1, eyk
psq � |x̃kpsq � ξpθyk

psqq| ¤
δkpsq, hence ξpθyk

psqq P Bpx̃kpsq, δkpsqq X Skpsq P Ck, and
ξy0ptq P

�N1

k�1 Ck � C for all t P r0, Ty0p1qs.
Since y1 � ξy0pTy0p1qq P CN1 X S0 � Y0, we can repeat
the reasoning starting from y1, which gives ξy1

ptq P C for
t P r0, Ty1

p1qs, hence ξy0
ptq P C for t P r0, Ty0

p2qs. By
induction on p P N¡0, we have more generally

ξy0
ptq P C for all t P r0, Ty0

ppqs. (19)

Now, using (8) and (18), we have: Ty0ppq ¥ pη for all p P
N¡0, hence Ty0ppq Ñ 8 as p Ñ 8. So we deduce from
(19): ξy0

ptq P C for all t P r0,8q. In particular, the limit
cycle Γ which is the trajectory ξy�ptq for t P r0,8q, is
included in C.

Note that a simple numerical sufficient condition for (18)
is: |x̃pR̃1q � x̃0| � δpR̃1q   δ0.

Example 1. Consider the Van der Pol system with p � 0.3.#
du1{dt � u2

du2{dt � pu2 � pu2
1u2 � u1

We use the software ORBITADOR to perform the simu-
lations (see https://perso.telecom-paristech.

fr/jjerray/orbitador/). Let h � 10�4, δ0 � 0.1,
x̃0 � p1.8929;�0.5383q, γ � 0.015. We have
L � 1.516,Mf � 2.22,maxiPrN1s M̃i � 2.22, R̃1 �
6.314, N1 � r R̃1

h s � 63140, and minkPrN1s ak ¥ 0.9,
maxkPrN1s bk ¤ 1.1.
Besides for all t P r0, N1hs: δptq ¥ δpN1hq � 0.0642.
Note that µKrJpx̃ptqqs P r�4.2,�1.2s for t P r0, R̃1s, so the
system is not uniformly contractive.
We check that (17) holds, i.e, for all i P rN1s, s P r0, hs:

δi�1psq ¥ 0.0642 ¥ hmaxiPrN1spM̃ip 2L
γai

�1q�biMf q �
0.05.
Besides, as checked by ORBITADOR, the inclusion (18)
also holds. Hence by Theorem 1, there is a limit cycle
Γ contained in an invariant set C. The inclusion (18) is
highlighted in the following figures, using the time-step
h � 0.002 (instead of h � 10�4) in order to make the
inclusion more visible. On Figure 1, the initial ball Bpx̃0, δ0q
is depicted in orange, the invariant zone C in red, and
the set

�
sPr0,hsBpx̃N1�1psq, δN1�1psqq in green. The sets

CN1
X SN1�1, Y0 and CN1

X SN1
have the form of straight

line segments which are transverse to the Euler trajectory Γ̃.
On Figure 1, Γ̃ is depicted in black: it starts at the middle x̃0

of segment Y0 (in blue), and turns clockwise. The segments
CN1

XSN1�1, Y0 and CN1
XSN1

appear successively from top
to bottom in Figures 1 and 2. (The bottom of Figure 1 and
Figure 2 gives zoom views on CN1

XSN1�1, Y0, CN1
XSN1

.)
We see (18): CN1 X S0 � Bpx̃0, δ0q, where CN1 is the part
of the green zone delimited by CN1 X SN1�1 (fuschia) and
CN1

X SN1
(cyan), Bpx̃0, δ0q is the orange ball, and S0 is

the straight line extending Y0 (blue).

IV. ATTRACTIVITY OF THE LIMIT CYCLE

We know assume that the existence of the limit cycle Γ is
known. Let y� � ΓX S0 be the intersection of Γ with S0.

So far, the Euler approximation function x̃ptq has been
defined implicitly with x̃0 as initial condition. Let us now
write x̃pt; zq to denote the Euler approximation function
with z as initial condition, and let us write σkpzq the
corresponding coefficient σk. For p P N¡0 and z P Y0, let
also R̃ppzq be the time t taken by x̃pt; zq to make p rounds,
and Nppzq � r

Rppzq
h s. Note that under the hypotheses of

Theorem 1: x̃p � x̃pR̃ppx̃0q; x̃0q � x̃pR̃1px̃p�1q; x̃p�1q P Y0

for all p P N¡0.
Let us suppose that there exists a, b P R¡0 such that

0   a ¤ ai ¤ bi ¤ b for all i P N. (20)

This property is guaranteed if we know that all round
performed by the solution of (1) is completed in a known
interval of time, i.e. if there exists T 1, T 2 P R¡0 such that

T 1 ¤ T1py0q ¤ T 2 for all y0 P Y0. (21)

We will also use the assumption: there exists R1 P R¡0 such
that

R̃1pzq ¤ R1 for all z P Y0. (22)

Theorem 2. Consider an Euler trajectory Γ̃ and δ0 P R¡0.
Suppose that the system satisfies (17) and (18). Suppose

https://perso.telecom-paristech.fr/jjerray/orbitador/
https://perso.telecom-paristech.fr/jjerray/orbitador/


Fig. 1. Top: Euler trajectory Γ̃ (black); invariant zone C (red);�
sPr0,hsBpx̃N1�1psq, δN1�1psqq (green); segments CN1

X SN1�1

(fuschia), Y0 (blue), and CN1 X SN1 (cyan). Bottom: zoom showing (18):
CN1

X S0 � Bpx̃0, δ0q, where CN1
is the green part delimited by

CN1
X SN1�1 and CN1

X SN1
, and Bpx̃0, δ0q is the orange ball.

furthermore that there exists η, T 1, T 2, R1 P R¡0 such that
(8), (21) and (22) hold. Then we have for all t P r0,8q, y P
Y0:

ẽyptq ¤ maxpδptq, Dhq, (23)

where D �MCp 2Lγa � b� 1q and MC is an upper bound on
magnitude of f over the elements of C. Besides if

lim
tÑ8

δptq � 0, (24)

then
lim sup
tÑ8

ẽyptq ¤ Dh, for all y P Y0, (25)

lim sup
tÑ8

dpx̃ptq,Γq ¤ Dh (26)

(hence, the Euler trajectory x̃pt; x̃0q converges asymptoti-
cally to Γ as hÑ 0) and:

lim
tÑ8

dpξyptq,Γq � 0 for all y P Y0, (27)

i.e., Y0 is a basin of attraction of Γ.
A sufficient condition for (24) to hold is:

Fig. 2. Further zooms on CN1
showing from top to bottom CN1

XSN1�1

(fuschia), Y0 (blue) and CN1 X SN1 (cyan). We see (18): CN1 X S0 �
Bpx̃0, δ0q.

There exists d P R 0 such that

hΣ
N1pzq�1
k�1 σkpzq � sσN1pzqpzq ¤ d   0 (28)

for all z P Y0, s P r0, hs.
Proof. By Theorem 1, C is an invariant, and MC can be taken
in place of Mf and M̃i for all i P N. From (13) of Proposi-
tion 1 and (20) (which is implied by (21)), we then deduce:
ẽyptq ¤ maxpδptq,MChp 2Lγa � b � 1qq � maxpδptq, Dhq,
i.e. (23). So if limtÑ8 δptq � 0, δptq becomes after a
sufficient long time t ¥ t0 less than Dh, and by (23),
we have: ẽyptq ¤ Dh for t ¥ t0, i.e. (25). In particular,
since y� P Y0, for y � y�, we have lim suptÑ8 ẽy�ptq ¤
Dh, i.e. lim suptÑ8 |x̃ptq � ξy�pΘy�ptqq| ¤ Dh, hence
lim suptÑ8 dpx̃ptq,Γq ¤ D, i.e. (26), since ξy�ptq P Γ for
all t. Besides we have:
dpξypΘyptqq,Γq
¤ dpξypΘyptqq, x̃ptqq � dpx̃ptq,Γq
¤ eyptq � dpx̃ptq,Γq.

By taking the lim sup of both sides of the inequality, we
have:

lim suptÑ8 dpξypΘyptqq,Γq
¤ lim suptÑ8 ẽyptq � lim suptÑ8 dpx̃ptq,Γq,

hence, using (25) and (26):



lim suptÑ8 dpξypΘyptqq,Γq ¤ 2Dh,
and since Θyptq Ñ 8 as tÑ8:

lim suptÑ8 dpξyptq,Γq ¤ 2Dh.
Now since dpξyptq,Γq does not depend on h, we have:
limtÑ8 dpξyptq,Γq � 0, i.e. (27).
Let us now prove that (28) implies (24). We first show by
induction on p that for all x̃0 P Y0

δpR̃1px̃p�1qq ¤ δ0e
pd for all p P N¡0. (29)

For the base case p � 1, we have for some s P p0, hs
δpR̃1q ¤ δ0e

hΣ
N1�1

k�1 σk�sσN1 ¤ δ0e
d (using (28)).

For p ¥ 2, we have for some s P p0, hs
δpR̃pq ¤ δpRp�1qehΣ

N1px̃p�1q�1

k�1 σkpx̃p�1q�sσN1px̃p�1q
px̃p�1q

¤ δpRp�1qed (using (28) and the fact that x̃p�1 P Y0)
¤ epp�1qded � epd (by induction hypothesis).
From (29) it then follows that δptq ¤ δ0e

pd�B for t P
rR̃p, R̃p�1s, where

B � hmaxiPrN1px̃pq�1s,sPt0,suΣ
i
k�1hσkpx̃pq�sσi�1px̃pq.

Using the fact that d   0 and that under (22), p Ñ 8 as
tÑ8, we have: limtÑ8 δptq � 0, i.e. (24).

Remark 5. Using a continuity argument, it can be seen that
(28) holds for all z P Y0, s P r0, hs, if» T

0

ρptqµKrJpξy�ptqsdt ¤ 4d (30)

holds (with ρptq � 1
2 if µKrJpξy�ptqs   γ, and ρptq �

3
2 otherwise), and if h is sufficiently small, and δ0 (hence
|x̃0�y�|) is sufficiently small. Note that (30) is a strong form
of (4):

³T
0
µKrJpξy�ptqqsdt ¤ d   0 (i.e., (30) implies (4)).

As a recapitulation, it follows from Theorems 1 and 2:

 (17)-(18) coupled with (8) forms a sufficient condition

that guarantees the existence of a limit cycle Γ, and
allows us to construct an invariant zone C around Γ;


 (28) (coupled with (21)-(22)) is an additional numeric
condition that allows us to determine a basin of attrac-
tion of Γ.

Note that although (28) is a criterion that has to be a priori
checked numerically, it can be formally established using,
e.g., interval arithmetic [9].

Example 2. Let us continue the Van der Pol of example 1
(with h � 10�4). We have a � 0.9, b � 1.1 and D �
MChp 2Lγa � b� 1q � 500. The numeric computation of

Kpz, sq :� hΣ
N1pzq�1
k�1 σkpzq � sσN1pzqpzq

for z P Y0, and s P r0, hs gives: Kpz, sq P p�0.34,�0.36q,
hence Kpz, sq   d with d � �0.34. Therefore (28) holds,
hence (24). It then follows from Theorem 2 that (25) holds
and Y0 � Bpx̃0, δ0q X S0 is a basin of attraction of Γ.

Finally, we give a numerical evidence of (25). Figure 3
gives the evolution of ẽy0

ptq � |ξy0
pΘy0

ptqq� x̃ptq| for y0 �
p1.8037;�0.5057q P Y0 and different values of time-step h
(The exact solution ξy0

ptq is here approximated as x̃pt; y0q
with time-step 10�6). The different curves ẽy0ptq are given
from top to bottom for h1 � 5 10�4 (red), h2 � 2.5 10�4

(green), h3 � 1.25 10�4 (blue). The curves are in agreement
with (25): lim suptÑ8 ẽy0ptq ¤ Dh.

Fig. 3. Evolution of ẽy0 ptq with h1 � 5 � 10�4 (red), h2 � 2.5 �
10�4 (green) and h3 � 1.25 � 10�4 (blue), showing agreement with (25):
lim suptÑ8 ẽy0 ptq ¤ Dh.

V. FINAL REMARKS

We have given an original set of conditions involving
the Euler approximation of (1) that allows us to prove the
existence of a limit cycle Γ, and determine an invariant set
C around Γ as well as a basin of attraction of Γ.

In the future, it would be interesting to apply this method
together with non-Euclidean norms such as the weighted
norms of [4].
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