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Methods based on "(Jacobian) matrix measure" to show the convergence of a dynamical system to a limit cycle (LC), generally assume that the measure is negative everywhere on the LC. We relax this assumption by assuming that the matrix measure is negative "on average" over one period of LC. Using an approximate Euler trajectory, we thus present a method that guarantees the LC existence, and allows us to construct a basin of attraction. This is illustrated on the example of the Van der Pol system.

I. INTRODUCTION

Consider the nonlinear dynamical system defined by 9 xptq f pxptqq.

(1) with f : R n Ñ R n and xp0q x 0 R n as initial condition. Let ξ x0 ptq denote the solution of (1) at time t with initial condition ξ x0 p0q x 0 .

For a long time, methods based on the notion of (Jacobian) matrix measure (noted as µ P p¤q) have been used to show the convergence of a solution ξ x0 ptq to a stationary point (see e.g. [START_REF] Söderlind | The logarithmic norm. History and modern theory[END_REF], [START_REF] Aminzare | Contraction methods for nonlinear systems: A brief introduction and some open problems[END_REF], [START_REF] Giesl | Review on contraction analysis and computation of contraction metrics[END_REF]). These methods essentially assume that a bound c is known for the measure of the (transverse) Jacobian matrix Jpxq with respect to x for any x belonging to a Ω forward invariant space. Formally, there exists c R such that, for all x Ω: µ P pJpxqq ¤ c.
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Under these conditions, we have the following information about the distance between two solutions ξ x0 ptq and ξ y0 ptq starting from two different initial conditions x 0 and y 0 : if |y 0 ¡ x 0 | ¤ ε 0 then |ξ y0 ptq ¡ ξ x0 ptq| ¤ ε 0 e ct , for all t ¥ 0 (see, e.g., [START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF], [START_REF] Fan | Bounded verification with on-the-fly discrepancy computation[END_REF]).

Similarly, methods based on the transverse component µ u P p¤q of µ p p¤q are used to show the convergence of ξ x0 ptq towards a limit cycle Γ (see e.g. [START_REF] Manchester | Transverse contraction criteria for existence, stability, and robustness of a limit cycle[END_REF]). Equation (2) becomes, for all x Ω:

µ u P pJpxqq ¤ c. (3) 
If c 0, the system is said to be contractive: The solutions ξ y0 ptq and ξ x0 ptq converge asymptotically to each other.

Within the framework of periodic systems, the transverse contractivity leads to the existence and uniqueness of a limit cycle Γ inside Ω. (see, e.g., [START_REF] Manchester | Transverse contraction criteria for existence, stability, and robustness of a limit cycle[END_REF]). These methods of proof of convergence consist essentially in finding a positive definite jawher.jerray@telecom-paris.fr 2 Laurent Fribourg is with University Paris-Saclay, CNRS, ENS Paris-Saclay, LMF, F-91190 Gif-Sur-Yvette, France fribourg@lsv.fr matrix P (possibly depending on x) ensuring (3) with c 0 for any point x. The discovery of such a matrix can be done by solving a convex optimization problem (via a linear matrix inequality or polynomial sum of squares, see [START_REF] Manchester | Transverse contraction criteria for existence, stability, and robustness of a limit cycle[END_REF]), but such a problem of optimization does not always have a solution.

We propose here to relax the criterion (3) by allowing that µ u P pJpxqq can be locally ¥ 0 on Γ, provided that µ u P pJpxqq is negative on average on Γ, i.e.:

» T 0 µ u P pJpξ x ¦ptqqqdt ¤ c 0, (4) 
where T is the period of Γ, and x ¦ a point of Γ.

We give a set-based criterion, based on the use of an Euler trajectory xptq of initial condition x0 . More precisely, we give an upperbound δptq of the error e y0 ptq |xptq¡ξ y0 ptq| where the initial point y 0 of the exact solution ξ y0 ptq is located in the vicinity of x0 ptq. By showing that δptq decreases at each round of the Euler trajectory, we prove the contraction "in average" of the system, thus highlighting the presence of a limit cycle Γ in the vicinity of xptq (see Theorem 1). This also allows us to construct an invariant zone C around Γ.

Thanks to an additional numeric criterion, which is a discrete version of (4) (see (28), Section IV) we then determine a basin of attraction of Γ. See Theorem 2. The method is illustrated on the example of the Van der Pol system. Note that, although our method can be defined using a norm |x| P : c

x t P x for a symmetric positive definite matrix P , we restrict ourselves in the following to the case where P is the identity matrix I, the norm |¤| I (just denoted | ¤ |) is the Euclidean norm, and µ I p¤q (just denoted µp¤q) is the associated matrix measure (see Section II). In summary, our contribution is to give a sufficient set-based condition (see (18)) that guarantees the existence of a limit cycle Γ, and allows us to construct an invariant zone C around Γ,

give an additional numeric condition (28) (which is a discrete version of (4)) that allows us to determine a basin of attraction of Γ, illustrate these points on the Van der Pol example.

Plan of the paper

After some preliminaries (Section II), we give a criterion that guarantees the existence of a limit cycle Γ (Section III). We then give an additional condition that allows us to determine a basin of attraction of Γ (Section IV). We conclude in Section V.

II. PRELIMINARIES

We denote by R and N the set of real and natural numbers, respectively. These symbols are annotated with subscripts to restrict them in the usual way, e.g., R ¥0 denotes the non- negative real numbers. We denote by R n a n-dimensional Euclidean space. For a matrix A, we denote by A t the transpose of A. The Euclidean norm is denoted by | ¤ |. The ball of center x R n and radius δ R ¥0 is denoted by Bpx, δq (i.e., Bpx, δq ty R n : |x ¡ y| ¤ δu). The distance dpx, Γq of x R n to Γ R n is defined as inft|x ¡ y| : y Γu. A set of successive integers of the form t1, 2, . . . , ku is abbreviated as rks. The scalar product of x R n and y R n is written xx, yy. Let Jpxq be the Jacobian matrix of the vector field f pxq. Among the eigenvectors of matrix Jpxq J t pxq 2 , let v 0 pxq (resp. E 0 pxq) be the tangent eigenvector (resp. associated eigenvalue) led by f pxq, and v 1 pxq, . . . , v n¡1 pxq (resp. E 1 pxq, . . . , E n pxq) be the other eigenvectors (resp. associated eigenvalues). Let µpJpxqq max i0,1,...,n¡1 E i pxq.

(5)

Given a global bound λ on µpJpxqq, we know that all trajectories of (1) with initial conditions in Bpx 0 , δ 0 q lie in Bpξ x0 ptq, δ 0 e λt q (see, e.g., [START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF], [START_REF] Fan | Bounded verification with on-the-fly discrepancy computation[END_REF]). If λ 0 then the system (1) is said to be contracting (cf. [START_REF] Lohmiller | On contraction analysis for nonlinear systems[END_REF]). Let µ u pJpxqq max i1,...,n¡1 E i pxq. [START_REF] Manchester | Transverse contraction criteria for existence, stability, and robustness of a limit cycle[END_REF] Note that, while i 0 belongs to the index domain of (5), the index i 0 is discarded in [START_REF] Manchester | Transverse contraction criteria for existence, stability, and robustness of a limit cycle[END_REF] because it corresponds to the tangent direction.

Let L denote the Lipschitz constant of vector field f , and M f an upperbound on magnitude of f (i.e: M f ¥ |fpzq| for all z Ω).

We denote by xi the Euler discretization of (1) at time t i ih, for i N, where h is the time-step size. Given an initial point x0 R n , xi 1 is defined, for i N, by: xi 1 xi hf px i q.

(7)

For s r0, hs, t ih s, let xi psq xi sf px i q (so xi p0q xi , xi phq xi 1 ), and xptq xi psq.

III. PROOF OF EXISTENCE OF A LIMIT CYCLE

We now give a sufficient condition to guarantee the existence of a limit cycle Γ solution of (1), and construct a forward invariant zone around Γ.

Consider an Euler trajectory Γ, i.e. a solution xptq of ( 7)

with time-step h R ¡0 and initial condition x0 R n . Let S 0 be the hyperplan through x0 orthogonal to f px 0 q. Let xi xpihq, for i N. We denote by S i the plan passing through xi and orthogonal to f px i q. Likewise, for s r0, hq, S i psq is the plan through xi psq orthogonal to f px i psqq.

We suppose that xptq returns for the first time (in the good direction) to S 0 at time t R1 ppN 1 ¡ 1qh, N 1 hs for some N 1 N ¡0 . More generally, we suppose that xptq returns for the p-th time (p N ¡0 ) to S 0 at time t Rp ppN p ¡ 1qh, N p hs for some N p N ¡0 , so we have: xp Rp q S 0 and f px 0 q t f pxp Rp qq ¡ 0.

By convention, let R0 0. Note that S 0 is "between" S Np¡1 and S Np for all p N ¡0 (see Figure 2, Section III). Given δ 0 R ¡0 and y 0 Bpx 0 , δ 0 qS 0 , we suppose that ξ y0 ptq returns to S 0 for the 1st time at t T y0 p1q R ¡0 .

So we have:

ξ y0 pT y0 p1qq S 0 and f px 0 q t f pξ y0 pT y0 p1qqq ¡ 0. We will suppose that there exists η R ¡0 such that:

T y0 p1q ¥ η ¡ 0 for all y 0 Bpx 0 , δ 0 q S 0 . (8) This will be used in Theorem 1 to show T y0 ppq Ñ V as p Ñ V, where T y0 ppq is the p-th return time of ξ y0 ptq to S 0 .

Along the lines of [START_REF] Giesl | Review on contraction analysis and computation of contraction metrics[END_REF], we now synchronize the time between xi ptq and the corresponding solution ξ yi ptq of (1) with y i Bpx i , δ i q S i . More precisely, we consider the time-reparametrisation θ yi p¤q defined so that ξ yi pθ yi ptqq belongs to S i ptq. Hence, given two adjacent points xi S i and y i S i with px i ¡y i q perpendicular to f px i q, we define θ yi ptq for all s r0, hq in an "implicit" manner as follows:

pξ yi pθ yi psqq ¡ xi psqq t f px i psqq 0. (9) 
This is possible due to the implicit function theorem if h and |y i ¡ x i | are sufficiently small (see [START_REF] Giesl | Review on contraction analysis and computation of contraction metrics[END_REF], Section 2.1). Using ( 9), we define θ yi psq with θ yi p0q y 0 , and y i 1 ξ yi pθ i phqq. Note that y i S i for all i N. We can now define Θ y0 p¤q so that ξ y0 pΘ y0 ptqq is synchronized with the solution xptq of (7) (with initial condition x0 ). Formally, given y 0 R n , Θ y0 p0q : y 0 and Θ y0 ptq : θ yi psq for t ih s with s p0, hs. Note ξ y0 pΘ y0 pihqq y i S i for all i N. We will ensure Θ y0 ptq Ñ V as t Ñ V thanks to assumption (8) coupled with assumption (18) (see Theorem 1).

We now define a i 1 py 0 q and b i 1 py 0 q (i N), or for the sake of notation simplicity, just a i 1 and b i 1 , as follows:

Definition 1. For i N, let:

0 a i 1 ¤ inf sr0,hs 9 θ yi psq, b i 1 ¥ sup sr0,hs 9 
θ yi psq.

Remark 1. The existence of a i 1 , b i 1 for all i N follows from the assumptions that the 1st return times of x0 ptq and ξ y0 ptq to S 0 are finite (i.e., R1 R ¡0 and T y0 p1q R ¡0 for all y 0 Bpx 0 , δ 0 q S 0 ) together with conditions ( 8)-(18) (see Theorem 1). The bounds a i and b i can be computed using the implicit function theorem by time derivation of (9)

(see [START_REF] Giesl | Review on contraction analysis and computation of contraction metrics[END_REF], Section 2.1). The assumption that a i 1 ¡ 0 (i.e., inf sr0,hs 9

θ yi psq ¡ 0) is true when h is sufficiently small and a lowerbound m ¡ 0 exists on the magnitude of vector field f (i.e., |fpxq| ¡ m for all x Ω).

We now define α i , Y i and Z i 1 along the lines of [START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF] (Algorithm 1), as follows:

Definition 2. Let α 0 δ 0 , α i 1 α i b i 1 M f h for i N,

More generally let

α i psq α i b i 1 M f s for i N, s r0, hs.
Let Y i Bpx i , α i q S i , for all i N.

More generally let:

Y i psq Bpx i psq, α i psqqS i psq for all i N, s r0, hs. Let Z i 1 sr0,hs Y i psq for all i N. Remark 2. Note that Y 0 Bpx 0 , δ 0 qS 0 and Y i 1 Z i 1 S i 1 . Note also that, given y 0 Y 0 , we have: ξ yi pθ yi psqq Z i 1 for all i N, s r0, hs. We have also: ξ y0 pΘ y0 ptqq Z i 1 for all t ih s with s r0, hs. This implies that Z i 1 is an overapproximation of the "reachability" set tz R n | z ξ y0 pΘ y0 pih sqq for some y 0 Y 0 and s r0, hsu. Let us now define Λ i 1 R (i N), as follows:

Λ i 1 ¥ sup zZi 1 µ u rJpzqs,
Note that Λ i 1 satisfies for all z 1 , z 2 Z i 1 (see e.g. [START_REF] Söderlind | The logarithmic norm. History and modern theory[END_REF]):

xfpz 1 q ¡ f pz 2 q, z 1 ¡ z 2 y ¤ Λ i 1 |z 1 ¡ z 2 | 2 . ( 10 
)
Let γ ¡ 0 be a positive real (arbitrarily chosen). Definition 3. For all i N, let

σ i 1 1 2 a i 1 Λ i 1 if Λ i 1 ¡γ, σ i 1 3 2 b i 1 maxp|Λ i 1 |, γq if Λ i 1 ¥ ¡γ. Remark 3. Note that a i , b i , Z i , Λ i , σ i are not defined for i 0. The constant σ i 1 is a conservative approximation of the matrix measure Λ i 1 on Z i 1 .
The constant γ is used to isolate the problematic neighborhood of µ u rJpzqs around 0, (and get a positive lowerbound of |σ i 1 |): If z is such that |µ u rJpzqs| γ, then |µ u rJpzqs| is replaced by γ. It follows from the definition that for all i N:

|σ i 1 | ¥ γ 2 a i 1 ¡ 0 (11) 
Given δ 0 , let us define δ i , δptq and ẽyi , ẽy0 ptq as follows: Definition 4. Let ẽy0 |x 0 ¡ y 0 |, and for i N let: if we adopt the convention Σ i k1 σ k 0 for i 0. We now show that, under certain condition, ẽy0 ptq ¤ δptq.

δ i 1 δ i e σi 1h , ẽyi 1 |x i 1 ¡ y i 1 |.
Proposition 1. Let i N, y i Y i . If ẽyi ¤ δ i , we have: ẽyi psq ¤ maxpδ i psq, hp Mi 1 p 2L γa i 1 1q b i 1 M f qq (12)
for all s r0, hs, where Mi 1 an upperbound of |fpx i psqq| on s r0, hs.

Furthermore, for all i N ¡0 , s r0, hs, y 0 Y 0 :

ẽyi¡1 psq ¤ maxpδ i¡1 psq, hp Mi p 2L γa i 1q b i M f qq. ( 13 
)
Proof. The proof of ( 12) is an adaptation of the proof of Theorem 1 of [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF] to the context of transverse contraction.

Consider y i Y i . Let: ẽyi ptq |ξ yi pθ yi ptqq ¡ xi ptq| for t r0, hs. Hence ẽyi p0q |y i ¡ xi | ¤ δ i . For the sake of simplicity, we will write xt instead of xi ptq, y θt instead of ξ yi pθ yi ptqq, 9 θ t instead of 9 θ yi ptq. For all t r0, hs, we have by (10):

xfpy θt q ¡ f px t q, y θt ¡ xt y ¤ Λ i 1 |y θt ¡ xt | 2 (14) since y θt , xt Z i 1 .
So for all t r0, hs, ẽyi ptq |y θt ¡ xt | satisfies:

1 2 d dt pẽ 2 yi ptqq x 9 θ t f py θt q ¡ f px i q, y θt ¡ xt y 9 θ t xfpy θt q ¡ f px t q, y θt ¡ xt y x 9 θ t f px t q ¡ f px i q, y θt ¡ xt y 9 θ t xfpy θt q ¡ f px t q, y θt ¡ xt y x¡fpx i q, y θt ¡ xt y (using the fact f px t q u py θt ¡ xt q) ¤ 9 θ t Λ i 1 ẽ2

yi ptq x¡fpx i q, y θt ¡ xt y (using ( 14))

¤ 9 θ t Λ i 1 ẽ2
yi ptq L|f px i q|tẽ yi ptq (because, using again f px t q u py θt ¡ xt q:

|x¡fpx i q, y θt ¡ xt y| |xfpx t q ¡ f px i q, y θt ¡ xt y| ¤ L|x t ¡ xi ||y θt ¡ xt | ¤ Lt|f px i q|ẽ yi ptq
Hence for all t r0, hs:

1 2 d dt pẽ 2 yi ptqq ¤ ρ i 1 Λ i 1 ẽ2 yi ptq L|f px i q|tẽ yi ptq (15) (with ρ i 1 a i 1 if Λ i 1 ¡γ, ρ i 1 b i 1 otherwise). By subtracting L|f px i q|tẽ yi ptq from ρ i 1 Λ i 1 ẽ2
yi ptq in the right-hand side of (15), we get using (11)

If h ¤ γai 1 2L|f pxiq| ẽyi ptq for all t p0, hs, then

1 2 d dt pẽ 2 yi ptqq ¤ σ i 1 ẽ2
yi ptq. It then follows by integration that, for all i N, y i Y i : If h ¤ γai 1 2L|f pxiq| ẽyi psq for all s r0, hs, then, assuming ẽyi ¤ δ i : ẽyi psq ¤ δ i e σi 1s δ i psq for all s r0, hs. (16) Suppose that the hypothesis h ¤ γai 1 2L|f pxiq| ẽyi psq is not satisfied for some s 0 r0, hs, i.e: ẽyi ps 0 q Ch where C 2L|f pxiq| γai 1 . It then follows for all s r0, hs: ẽyi psq Ch |ẽ yi ps 0 q ¡ e yi psq| ¤ Ch |ξ yi pθ yi psqq ¡ ξ yi pθ yi ps 0 qq| |x i psq ¡ xi ps 0 q| ¤ Ch hb i 1 M f h Mi 1 . Using (16), we have then for all s r0, hs:

ẽyi psq ¤ maxpδ i psq, h Mi 1 p 2L γai 1 1q b i 1 M f q,
i.e. (12).

By induction on i, using the fact that ẽy0 |y 0 ¡ x0 | ¤ δ 0 (since y 0 Y 0 Bpx 0 , δ 0 q), we prove (13). Definition 5. For all i N, let

C i 1 ¤ sr0,hs Bpx i psq, δ i psqq S i psq. Besides C N1 ¤ i1 C i ,
where N 1 r R1 h s and R1 R ¡0 is the 1st return time of xptq to S 0 .

Using Proposition 1, we now show that a simple test of set inclusion (see ( 18)) guarantees the existence of a limit cycle.

Theorem 1. Consider an Euler trajectory Γ and δ 0 R ¡0 . Suppose that, for all i rN 1 s, s r0, hs:

δ i¡1 psq ¥ hp Mi p 2L γa i 1q b i M f q, ( 17 
)
and

C N1 S 0 Y 0 . ( 18 
)
Suppose furthermore that there exists η R ¡0 such that (8)

holds. Then

C is forward invariant w.r.t. Y 0 , i.e.: For all t r0, Vq, y Y 0 , we have ξ y ptq C, and C contains a limit cycle Γ.

Proof. From ( 13) and ( 17), we deduce: e y0 ptq ¤ δptq for all y 0 Y 0 , t r0, N 1 hs. In particular, at the time of the 1st return of xptq to S 0 at t R1 ppN 1 ¡ 1qh, N 1 hs, we have e y0 p R1 q ¤ δp R1 q. So: e y0 p R1 q |y 1 ¡ x1 | ¤ δp R1 q, where x1 xp R1 q and y 1 ξ y0 pT y0 p1qq are the 1st return points of xptq and ξ y0 ptq to S 0 respectively. From the definition of C N1 we can deduce that y 1 C N1 S 0 . Therefore, using (18), we have: y 1 Y 0 . Thus for all y Y 0 , we have y I ξ y0 pT y p1qq Y 0 . This shows by the Brouwer fixed-point theorem applied to the continuous function: y Y 0 Þ Ñ ξ y pT y p1qq, that there exists y ¦ C N1 S 0 Y 0 such that ξ y ¦pT y ¦p1qq y ¦ . We deduce that there exists a limit cycle Γ (closed solution de (1)) of period T T y ¦p1q which passes through y ¦ C N1 S 0 Y 0 .

Observe that for all y 0 Y 0 and t r0, T y0 p1qs, we have, by (13) of Proposition 1, e y k psq | xk psq ¡ ξpθ y k psqq| ¤ δ k psq, hence ξpθ y k psqq Bpx k psq, δ k psqq S k psq C k , and ξ y0 ptq N1 k1 C k C for all t r0, T y0 p1qs. Since y 1 ξ y0 pT y0 p1qq C N1 S 0 Y 0 , we can repeat the reasoning starting from y 1 , which gives ξ y1 ptq C for t r0, T y1 p1qs, hence ξ y0 ptq C for t r0, T y0 p2qs. By induction on p N ¡0 , we have more generally ξ y0 ptq C for all t r0, T y0 ppqs.

(
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Now, using ( 8) and ( 18), we have: T y0 ppq ¥ pη for all p N ¡0 , hence T y0 ppq Ñ V as p Ñ V. So we deduce from (19): ξ y0 ptq C for all t r0, Vq. In particular, the limit cycle Γ which is the trajectory ξ y ¦ptq for t r0, Vq, is included in C.

Note that a simple numerical sufficient condition for ( 18)

is: |xp R1 q ¡ x0 | δp R1 q δ 0 . Example 1.
Consider the Van der Pol system with p 0.3.

# du 1 {dt u 2 du 2 {dt pu 2 ¡ pu 2 1 u 2 ¡ u 1
We use the software ORBITADOR to perform the simulations (see https://perso.telecom-paristech.

fr/jjerray/orbitador/). Let h 10 ¡4 , δ 0 0.1, x0 p1.8929; ¡0.5383q, γ 0.015. We have L 1.516, M f 2.22, max irN1s Mi 2.22, R1 6.314, N 1 r R1 h s 63140, and min krN1s a k ¥ 0.9, max krN1s b k ¤ 1.1. Besides for all t r0, N 1 hs: δptq ¥ δpN 1 hq 0.0642. Note that µ u rJpxptqqs r¡4.2, 1.2s for t r0, R1 s, so the system is not uniformly contractive.

We check that (17) holds, i.e, for all i rN 1 s, s r0, hs:

δ i¡1 psq ¥ 0.0642 ¥ h max irN1s p Mi p 2L γai 1q b i M f q 0.05.
Besides, as checked by ORBITADOR, the inclusion (18) also holds. Hence by Theorem 1, there is a limit cycle Γ contained in an invariant set C. The inclusion (18) is highlighted in the following figures, using the time-step h 0.002 (instead of h 10 ¡4 ) in order to make the inclusion more visible. On Figure 1, the initial ball Bpx 0 , δ 0 q is depicted in orange, the invariant zone C in red, and the set sr0,hs Bpx N1¡1 psq, δ N1¡1 psqq in green. The sets C N1 S N1¡1 , Y 0 and C N1 S N1 have the form of straight line segments which are transverse to the Euler trajectory Γ. On Figure 1, Γ is depicted in black: it starts at the middle x0 of segment Y 0 (in blue), and turns clockwise. The segments C N1 S N1¡1 , Y 0 and C N1 S N1 appear successively from top to bottom in Figures 1 and2. (The bottom of Figure 1 and Figure 2 gives zoom views on C N1 S N1¡1 , Y 0 , C N1 S N1 .) We see (18): C N1 S 0 Bpx 0 , δ 0 q, where C N1 is the part of the green zone delimited by C N1 S N1¡1 (fuschia) and C N1 S N1 (cyan), Bpx 0 , δ 0 q is the orange ball, and S 0 is the straight line extending Y 0 (blue).

IV. ATTRACTIVITY OF THE LIMIT CYCLE

We know assume that the existence of the limit cycle Γ is known. Let y ¦ Γ S 0 be the intersection of Γ with S 0 . So far, the Euler approximation function xptq has been defined implicitly with x0 as initial condition. Let us now write xpt; zq to denote the Euler approximation function with z as initial condition, and let us write σ k pzq the corresponding coefficient σ k . For p N ¡0 and z Y 0 , let also Rp pzq be the time t taken by xpt; zq to make p rounds, and N p pzq r Rppzq h s. Note that under the hypotheses of Theorem 1: xp xp Rp px 0 q; x0 q xp R1 px p¡1 q; xp¡1 q Y 0 for all p N ¡0 .

Let us suppose that there exists a, b R ¡0 such that

0 a ¤ a i ¤ b i ¤ b for all i N. ( 20 
)
This property is guaranteed if we know that all round performed by the solution of ( 1) is completed in a known interval of time, i.e. if there exists T I , T P R ¡0 such that T I ¤ T 1 py 0 q ¤ T P for all y 0 Y 0 .

(21)

We will also use the assumption: there exists R I R ¡0 such that R1 pzq ¤ R I for all z Y 0 .

(
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Theorem 2. Consider an Euler trajectory Γ and δ 0 R ¡0 . Suppose that the system satisfies (17) and (18). Suppose C N 1 S 0 Bpx 0 , δ 0 q, where C N 1 is the green part delimited by

C N 1 S N 1 ¡1 and C N 1 S N 1 ,
and Bpx 0 , δ 0 q is the orange ball.

furthermore that there exists η, T I , T P , R I R ¡0 such that 

i.e., Y 0 is a basin of attraction of Γ.

A sufficient condition for (24) to hold is: for all z Y 0 , s r0, hs.

Proof. By Theorem 1, C is an invariant, and M C can be taken in place of M f and Mi for all i N. From (13) of Proposition 1 and (20) (which is implied by ( 21)), we then deduce: Let us now prove that (28) implies (24). We first show by induction on p that for all x0 Y 0 δp R1 px p¡1 qq ¤ δ 0 e pd for all p N ¡0 .

ẽy ptq ¤ maxpδptq, M C hp 2L γa b 1qq 
For the base case p 1, we have for some s p0, hs δp R1 q ¤ δ 0 e hΣ N 1 ¡1 k1 σ k sσ N 1 ¤ δ 0 e d (using (28)).

For p ¥ 2, we have for some s p0, hs δp Rp q ¤ δpR p¡1 qe hΣ N 1 px p¡1 q¡1 k1 σ k pxp¡1q sσ N 1 px p¡1 q pxp¡1q ¤ δpR p¡1 qe d (using (28) and the fact that xp¡1 Y 0 ) ¤ e pp¡1qd e d e pd (by induction hypothesis).

From (29) it then follows that δptq ¤ δ 0 e pd B for t r Rp , Rp 1 s, where B h max irN1pxpq¡1s,st0,su Σ i k1 hσ k px p q sσ i 1 px p q.

Using the fact that d 0 and that under (22), p Ñ V as t Ñ V, we have: lim tÑV δptq 0, i.e. (24).

Remark 5. Using a continuity argument, it can be seen that ( 28) holds for all z Y 0 , s r0, hs, if » T 0 ρptqµ u rJpξ y ¦ptqsdt ¤ 4d

holds (with ρptq 1 2 if µ u rJpξ y ¦ptqs γ, and ρptq ³ T 0 µ u rJpξ y ¦ptqqsdt ¤ d 0 (i.e., (30) implies ( 4)).

As a recapitulation, it follows from Theorems 1 and 2:

(17)-(18) coupled with (8) forms a sufficient condition that guarantees the existence of a limit cycle Γ, and allows us to construct an invariant zone C around Γ;

(28) (coupled with (21)-( 22)) is an additional numeric condition that allows us to determine a basin of attraction of Γ. Note that although (28) is a criterion that has to be a priori checked numerically, it can be formally established using, e.g., interval arithmetic [START_REF] Moore | Methods and applications of interval analysis[END_REF]. σ k pzq sσ N1pzq pzq for z Y 0 , and s r0, hs gives: Kpz, sq p¡0.34, ¡0.36q, hence Kpz, sq d with d ¡0.34. Therefore (28) holds, hence (24). It then follows from Theorem 2 that (25) holds and Y 0 Bpx 0 , δ 0 q S 0 is a basin of attraction of Γ.

Finally, we give a numerical evidence of (25). Figure 3 gives the evolution of ẽy0 ptq |ξ y0 pΘ y0 ptqq¡ xptq| for y 0 p1.8037; ¡0.5057q Y 0 and different values of time-step h (The exact solution ξ y0 ptq is here approximated as xpt; y 0 q with time-step 10 ¡6 ). The different curves ẽy0 ptq are given from top to bottom for h 1 5 10 ¡4 (red), h 2 2.5 10 ¡4 (green), h 3 1.25 10 ¡4 (blue). The curves are in agreement with (25): lim sup tÑV ẽy0 ptq ¤ Dh. 

V. FINAL REMARKS

We have given an original set of conditions involving the Euler approximation of (1) that allows us to prove the existence of a limit cycle Γ, and determine an invariant set C around Γ as well as a basin of attraction of Γ.

In the future, it would be interesting to apply this method together with non-Euclidean norms such as the weighted norms of [START_REF] Maidens | Reachability analysis of nonlinear systems using matrix measures[END_REF].
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 8 , (21) and (22) hold. Then we have for all t r0, Vq, y Y 0 : ẽy ptq ¤ maxpδptq, Dhq, (23) where D M C p 2L γa b 1q and M C is an upper bound on magnitude of f over the elements of C. Besides if lim tÑV the Euler trajectory xpt; x0 q converges asymptotically to Γ as h Ñ 0) and: lim tÑV dpξ y ptq, Γq 0 for all y Y 0 ,

Fig. 2 .

 2 Fig. 2. Further zooms on C N 1 showing from top to bottom C N 1 S N 1 ¡1(fuschia), Y 0 (blue) and C N 1 S N 1 (cyan). We see (18): C N 1 S 0 Bpx 0 , δ 0 q.
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 3 otherwise), and if h is sufficiently small, and δ 0 (hence |x 0 ¡y ¦ |) is sufficiently small. Note that (30) is a strong form of (4):

Example 2 .

 2 Let us continue the Van der Pol of example 1 (with h 10 ¡4 ). We have a 0.9, b 1.1 and D M C hp 2L γa b 1q 500. The numeric computation of Kpz, sq : hΣ N1pzq¡1 k1

Fig. 3 .

 3 Fig. 3. Evolution of ẽy 0 ptq with h 1 5 ¤ 10 ¡4 (red), h 2 2.5 ¤ 10 ¡4 (green) and h 3 1.25 ¤ 10 ¡4 (blue), showing agreement with (25): lim sup tÑV ẽy 0 ptq ¤ Dh.

  More generally for i N, s r0, hs, t ih s, let:δ i psq δ i e σi 1sẽyi psq |x i psq ¡ y i pθ yi psqq|, δptq δ i psq, ẽy0 ptq |xptq ¡ ξ y0 pΘ y0 ptqq|. Remark 4. For i N and s r0, hs, we have: δpih sq δ i psq δ 0 e hΣ i k1 σ k sσi 1

  maxpδptq, Dhq, i.e. (23). So if lim tÑV δptq 0, δptq becomes after a sufficient long time t ¥ t 0 less than Dh, and by (23), we have: ẽy ptq ¤ Dh for t ¥ t 0 , i.e. (25). In particular, since y ¦ Y 0 , for y y ¦ , we have lim sup tÑV ẽy ¦ptq ¤ Dh, i.e. lim sup tÑV |xptq ¡ ξ y ¦pΘ y ¦ptqq| ¤ Dh, hence lim sup tÑV dpxptq, Γq ¤ D, i.e. (26), since ξ y ¦ptq Γ for all t. Besides we have: dpξ y pΘ y ptqq, Γq ¤ dpξ y pΘ y ptqq, xptqq dpxptq, Γq ¤ e y ptq dpxptq, Γq. By taking the lim sup of both sides of the inequality, we have: lim sup tÑV dpξ y pΘ y ptqq, Γq ¤ lim sup tÑV ẽy ptq lim sup tÑV dpxptq, Γq, hence, using (25) and (26): lim sup tÑV dpξ y pΘ y ptqq, Γq ¤ 2Dh, and since Θ y ptq Ñ V as t Ñ V: lim sup tÑV dpξ y ptq, Γq ¤ 2Dh. Now since dpξ y ptq, Γq does not depend on h, we have: lim tÑV dpξ y ptq, Γq 0, i.e. (27).