
HAL Id: hal-04142719
https://hal.science/hal-04142719v3

Preprint submitted on 13 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improved Bounds for Twin-Width Parameter Variants
with Algorithmic Applications to Counting Graph

Colorings
Ambroise Baril, Miguel Couceiro, Victor Lagerkvist

To cite this version:
Ambroise Baril, Miguel Couceiro, Victor Lagerkvist. Improved Bounds for Twin-Width Parameter
Variants with Algorithmic Applications to Counting Graph Colorings. 2023. �hal-04142719v3�

https://hal.science/hal-04142719v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Improved Bounds for Twin-Width Parameter

Variants with Algorithmic Applications to

Counting Graph Colorings

Ambroise Baril1*, Miguel Couceiro1,3 and Victor Lagerkvist2

1*LORIA, Université de Lorraine, France.
2Department of Computer and Information Science, Linköpings

universitet, Sweden.
3INESC-ID, IST, Universidade de Lisboa, Portugal.

*Corresponding author(s). E-mail(s): ambroise.baril@loria.fr;
Contributing authors: miguel.couceiro@loria.fr; victor.lagerkvist@liu.se;

Abstract

The H-Coloring problem is a well-known generalization of the classical NP-
complete problem k-Coloring where the task is to determine whether an input
graph admits a homomorphism to the template graph H. This problem has been
the subject of intense theoretical research and in this article we study the com-
plexity of H-Coloring with respect to the parameters clique-width and the more
recent component twin-width, which describe desirable computational properties
of graphs. We give two surprising linear bounds between these parameters, thus
improving the previously known exponential and double exponential bounds. Our
constructive proof naturally extends to related parameters and as a showcase
we prove that total twin-width and linear clique-width can be related via a tight
quadratic bound. These bounds naturally lead to algorithmic applications. The
linear bounds between component twin-width and clique-width entail natural
approximations of component twin-width, by making use of the results known for
clique-width. As for computational aspects of graph coloring, we target the richer
problem of counting the number of homomorphisms to H (#H-Coloring). The
first algorithm that we propose uses a contraction sequence of the input graph G
parameterized by the component twin-width of G. This leads to a positive FPT
result for the counting version. The second uses a contraction sequence of the
template graph H and here we instead measure the complexity with respect to
the number of vertices in the input graph. Using our linear bounds we show that
our algorithms are always at least as fast as the previously best #H-Coloring
algorithms (based on clique-width) and for several interesting classes of graphs

1

(e.g., cographs, cycles of length ≥ 7, or distance-hereditary graphs) are in fact
strictly faster.

1 Introduction

Graph coloring is a well-known computational problem where the goal is to color a
graph in a consistent way. This problem is one of the most well-studied NP-hard
problems and enjoys a wide range of applications e.g., in planning, scheduling, and
resource allocation [1]. There are many variants and different formulations of the
coloring problem, but the most common formulation is certainly the k-Coloring
problem that asks whether the vertices of an input graph can be colored using k
available colors in such a way that no two adjacent vertices are assigned the same color.
This problem can be extended in many ways and in this paper we are particularly
interested in the more general problem where any two adjacent vertices in the input
graph G have to be mapped to two adjacent vertices in a fixed template graph H
(the H-Coloring problem). It is not difficult to see that k-Coloring is then Kk-
Coloring, where Kk is the k-vertex clique.

The basic H-Coloring problem has been extended in many directions, of which
one of the most dominant formalisms is the counting extension where the task is not
only to decide whether there is at least one solution (coloring) but to return the
number of solutions (#H-Coloring). This framework makes it possible to encode
phase transition systems modeled by partition functions, modeling problems from
statistical physics such as counting q-particle Widom–Rowlinson configurations and
counting Beach models, or the classical Ising model (for further examples, see e.g.
Dyer & Greenhill [2]). The #H-Coloring problem is #P-hard unless every connected
component of H is either a single vertex without a loop, a looped clique or a bipartite
complete graph, and it is in P otherwise [2]. The question is then to which degree
we can still hope to solve it efficiently, or at least improve upon the naive bound of
|VH ||VG| (where VH is the set of vertices in the template graph H and VG the set of
vertices in the input graph G).

In this article we tackle this question by targeting properties of graphs, so-called
graph parameters, which give rise to efficiently solvable subproblems. We will see below
several concrete examples of graph parameters, but for the moment we simply assume
that each graph G is associated with a number k ∈ N, a parameter, which describes a
structural property of G. Here, the idea is that small values of k correspond to graphs
with a simple structure, while large values correspond to more complicated graphs.

There are then two ways to approach intractable H-Coloring problems: we either
restrict the class of input graphs G, or the class of template graphs H to graphs
where the parameter is bounded by some reasonably small constant. The first task is
typically studied using tools from parameterized complexity where the goal is to prove
that problems are fixed-parameter tractable (FPT), i.e., obtaining running times of the
form f(k) · ∥G∥O(1) for a computable function f : N→ N (where ∥G∥ is the number of
bits required to represent the input graph G). The second task is more closely related

2

a

b

c

de

f

g

ab

c

de

f

g

abc

de

f

g

abcd

e

f

g

abcde

f

g

abcdef

g

abcdefg

Fig. 1 A contraction sequence of the 7-cycle.

to fine-grained complexity1 where the goal is to prove upper and lower bounds of the
form 2f(k) · ∥G∥O(1) for a sufficiently “fine-grained” parameter k, which in our case is
always going to denote the number of vertices |VG| in the input graph G. Here, it is
worth remarking that H-Coloring is believed to be a very hard problem, and the
general Coloring problem, where the template is part of the input, is not solvable
in 2O(|VG|) · (∥G∥ + ∥H∥)O(1) time under the exponential-time hypothesis (ETH) [4].
Hence, regardless of whether one studies the problem under the lens of parameterized
or fine-grained complexity, one needs to limit the class of considered graphs via a
suitable parameter.

The most notable graph parameter in this context is likely treewidth which, intu-
itively, measures how close a graph is to being a tree. Bounded treewidth is in many
algorithmic applications sufficient to guarantee the existence of an FPT algorithm, but
with the shortcoming of failing to capture classes of dense graphs. There are many
graph parameters proposed to address this limitation of tree-width, and we briefly
survey two noteworthy examples (see Section 2 for formal definitions).

1. clique-width (cw). The class of graphs (with labelled vertices) with clique-width
≤ k is defined as the smallest class of graphs that contains the one vertex graphs
•i with 1 vertex labelled by i ∈ [k], and that is stable by the following operations
for (i, j) ∈ [k]2 with i ̸= j: (i) disjoint union of graphs, (ii) relabelling every vertex
of label i to label j, and (iii) constructing edges between every vertex labelled by
i and every vertex labelled by j. Note that the class of cographs (which contains
cliques) is exactly that of graphs with clique-width at most 2.

1The upper bound aspect of this field also goes under the name of “exact exponential-time algorithms” [3].
Let us also remark that fine-grained complexity is also strongly associated with proving sharp lower bounds
for problems in P .

3

2. twin-width (tww). The class of graphs of twin-width ≤ k is usually formulated
via contraction sequences where graphs are gradually merged into a single vertex
(see Figure 1 for an example). Red edges represent an inconsistency in the merged
vertex (see Section 2.3 for a formal definition), and the maximum red degree in the
sequence thus represents the largest loss of information. A graph has twin-width
≤ k if it admits such a contraction sequence where the maximum red degree does
not exceed k.

For clique-width, Ganian et. al [5] identified a structural parameter s of graphs (the
number of distinct non-empty intersections of neighborhoods over sets of vertices),
and presented an algorithm for H-Coloring that runs in O∗(s(H)cw(G)) time2. It
is also optimal in the sense that if there is an algorithm that solves H-Coloring in
time O∗((s(H) − ε)cw(G)), then the SETH fails [5]. Alternative algorithms exist for
templates of bounded clique-width, see Wahlström [6] who solves #H-Coloring in
O∗((2cw(H) + 1)|VG|) time, and Bulatov & Dadsetan [7] for extensions.

Twin-width, on the other hand, is a much more recent parameter, but has in only
a few years attracted significant attention [8–29]. One of its greatest achievements
is that checking if a graph is a model of any first-order formula can be decided in
FPT time parameterized by the twin-width of the input graph. Thus, a very natural
research question in light of the above results concerning tree- and clique-width is to
study the complexity of (#)H-Coloring via twin-width. Unfortunately, it is easy
to see that under standard assumptions, H-Coloring is generally not FPT param-
eterized by twin-width. Indeed, since twin-width is bounded on planar graphs [30],
the existence of an FPT algorithm for 3-Coloring running in O∗(f(tww(G))) time
implies an O∗(1) time (i.e. a polynomial time) algorithm for 3-Coloring on planar
graphs (since f(tww(G)) = O(1) if G is a planar graph). Since 3-Coloring is NP-
hard on planar graphs, this would imply P=NP. Thus, 3-Coloring is para-NP-hard
[31] parameterized by twin-width.

Despite this hardness result it is possible to analyze H-Coloring by a variant of
twin-width known as component twin-width (ctww) [15]. This parameter equals the
maximal size of a red-connected component (instead of the maximal red-degree for
twin-width). It is then known that component twin-width is functionally equivalent3

to boolean-width [15], which in turn is functionally equivalent to clique-width [32].
Hence, H-Coloring is FPT parameterized by component twin-width, and the spe-
cific problem k-Coloring is additionally known to be solvable in O∗((2k−1)ctww(G))
time [15]. As remarked by Bonnet et al., the theoretical implications of this particular
algorithm are limited due to the aforementioned (under the SETH) optimal algo-
rithm parameterized by clique-width [5]. However, this still leaves several gaps in our
understanding of component twin-width for H-Coloring and its counting extension
#H-Coloring.

Our paper has three major contributions to bridge these gaps. Firstly, the best
known bounds between clique-width and component twin-width are obtained by
following the proof of functional equivalence between component twin-width and

2The notation O∗ means that we ignore polynomial factors.
3I.e., each parameter is bounded by a function of the other.

4

boolean-width, and then between boolean-width and clique-width. We thereby obtain

ctww ≤ 2cw+1 and cw ≤ 22
ctww

and H-Coloring is thus solvable in O∗(s(H)2
2ctww(G)

) time. This proves FPT but
with a rather prohibitive run-time, and the main question is whether it is possible
to improve this to a single-exponential running time O∗(2O(ctww(G))). (This line of
research in parameterized complexity is relatively new but of growing importance and
has seen several landmark results, see e.g. Chapter 11 in Cygan et al. [33]). We prove
that it is indeed possible by significantly strengthening the bounds between cw and
ctww and obtain the linear bounds

cw ≤ ctww + 1 ≤ 2cw.

Our proof is constructive which gives a fast algorithm to derive a contraction-sequence
from a clique-width expression and vice versa. To demonstrate that these ideas are not
limited to these specific parameters we (in Section 3.3) consider the related problem of
proving tighter bounds between linear clique-width (lcw) and the recently introduced
total twin-width (ttww [15]). Linear clique-width is less explored than clique-width but
comes with the advantage that faster algorithms for graph classes of bounded linear
clique-width are sometimes possible (cf. the remark before Theorem 7 in Bodlaender
et al. [34]) and that lower bounds on clique-width in many interesting cases can be
generalized to linear clique-width [35]. The total twin-width parameter is then known
to be functionally equivalent to linear clique-width, yielding the doubly exponential
bounds lcw ≤ 22

ttww+1 and ttww ≤ (2lcw + 1)(2lcw−1 + 1). We significantly improve
the latter to

lcw − 1 ≤ 2ttww ≤ lcw(lcw + 1),

and thus demonstrate that virtually any complexity question regarding linear clique-
width can be translated to the total twin-width setting, with the possible advantage
of using contraction sequences as a unifying lens. Specifically, it can be expected that
contraction sequence related parameters are more convenient to use than (linear)
clique-width, since there is only one fundamental operation to handle (vertex contrac-
tion) whereas (linear) clique-width not only deals with vertex-labelled graphs, but also
introduces four fundamental operations.

Secondly, we discuss how these bounds can be exploited to approximate ctww by
making use of the results known on cw. Thus, an immediate consequence of our linear
bounds is that H-Coloring is solvable in O∗(s(H)ctww(G)+1) time, which is a major
improvement to the aforementioned triple exponential upper bound.

Thirdly, we consider the generalized problem of counting the number of solutions.
It seems unlikely that the optimal algorithm (under SETH) by Ganian et al. [5] can be
lifted to #H-Coloring, and while the algorithm by Wahlström [6] successfully solves
#H-Coloring, it does so with the significantly worse bound of 22cw(G)×|VH |(|VG|+
|VH |)O(1). We tackle this problem in Section 4 by designing a novel algorithm for
#H-Coloring for input graphs with bounded component twin-width and which runs
in (2|VH | − 1)ctww(G) × (|VG| + |VH |)O(1) time. Since our linear bounds imply that

5

ctww(H)+2 ≤ 2cw(H)+1 and ctww(H)+2 ≤ lcw(H)+2 this is always at least as
fast as the (linear) clique-width algorithm by Wahlström, and strictly faster for several
interesting classes of graphs. For example, cographs with edges (component twin-width
1, versus clique-width 2), cycles of length at least 7 (component twin-width 3, versus
linear clique-width 4), and distance hereditary graphs (component twin-width 3 versus
clique-width 3 [36]).

We also consider #H-Coloring when the template graph H has bounded
component twin-width. We use an optimal contraction sequence of H in order to
obtain a O∗((ctww(H) + 2)|VG|) algorithm for #H-Coloring. For comparison,
Wahlström [6] solves #H-Coloring in O∗((2cw(H) + 1)|VG|) and, slightly faster,
O∗((lcw(H)+2)|VG|). Due to our linear bounds we again conclude that our algorithm
is always at least as fast as the O∗((2cw(H) + 1)|VG|) time clique-width algorithm
by Wahlström [6], and strictly faster for the aforementioned classes of graphs. For
example, if H is a cograph with edges then our algorithm solves #H-coloring in
O∗(3|VG|) time which beats the clique-width O∗(5|VG|) algorithm by a significant mar-
gin. Let us also remark that the class of cographs does not have bounded linear
clique-width, so the O∗((lcw(H) + 2)|VG|) algorithm is not relevant. Also, if H is
a distance-hereditary graph, our algorithm solves #H-coloring in O∗(5|VG|) time
which beats the clique-width O∗(7|VG|) algorithm. If H is a cycle of length at least 7 we
instead get ctww(H) = 3, cw(H) = 4, lcw(H) = 4, yielding the bounds O∗(5|VG|),
O∗(9|VG|), and O∗(6|VG|), i.e., also in this case our algorithm is strictly faster.

Moreover, let us also remark that the technique employed in this article could
similarly be used to derive the same results applied to the more general frameworks of
counting the solutions of binary constraint satisfaction problems, i.e., problems of the
forms #Binary-Csp(Γ) with a set of binary relations Γ over a finite domain. However,
to simplify the presentation we restrict our attention to the #H-Coloring problem.

2 Preliminaries

Throughout this paper, a graph G is a tuple (VG, EG), where VG is a finite set (the set
of vertices of G), and EG is a binary irreflexive symmetric relation over VG (the set of
edges of G). A looped-graph is a G is a tuple (VG, EG), where VG is a finite set (the set
of vertices of G), and EG is a binary symmetric relation (not necessarily irreflexive)
over VG (the set of edges of G). We will denote the number of vertices of a graph G
by n(G) or, simply, by n when there is no danger of ambiguity. A cycle is a graph
isomorphic to the graph Cn = ([n], {(i, j) ∈ [n]2 | |i−j| ∈ {1, n−1}}) with n ≥ 3. The
neighborhood of a vertex u of a graph G is the set NG(u) = {v ∈ VG | (u, v) ∈ EG}.
For a graph H we let H-Coloring be the computational problem of deciding whether
there exists an homomorphism from an input graph G to H, i.e., whether there exists
a function f : VG → VH such that (x, y) ∈ EG implies that (f(x), f(y)) ∈ EH . We
write #H-Coloring for the associated counting problem where we instead wish to
determine the exact number of such homomorphisms. As remarked in Section 1, the
template graph H can be chosen with great flexibility to model many different types
of problems.

6

2.1 Parameterized complexity

We assume that the reader is familiar with parameterized complexity and only intro-
duce the strictly necessary concepts (we refer to Flum & Grohe [37] for further
background). A parameterized counting problem is a pair (F, dom) where F : Σ∗ 7→ N
(for an alphabet Σ, i.e., a finite set of symbols) and dom is a subset of Σ∗ × N. A
parameterized counting problem (F, dom) is said to be fixed-parameter tractable (FPT)
if there exists a computable function f : N→ N such that for any instance (x, k) ∈ dom
of F , we can compute F (x) in f(k)×∥x∥O(1) time. An algorithm with this complexity
is said to be an FPT algorithm. Note that even though f might be superpolynomial,
which is expected if the problem is NP-hard, instances where k is reasonably small
can still be efficiently solved.

In practice, when studying FPT algorithms for an NP-hard counting problem,
it is very natural to optimize the superpolynomial function f that appears in the
complexity of the algorithm solving it. Typically, when dealing with graph problems
parameterized by the number of vertices n, an algorithm running in cn × ∥x∥O(1) will
be considered efficient in practice if c > 1 is small. This field of research is sometimes
referred to as fine-grained complexity.

2.2 Clique-width

For k ≥ 1, let [k] = {1, . . . , k}. A k-labelled graph G is a tuple (VG, EG, ℓG), where
(VG, EG) is a graph and ℓG : VG → [k]. For i ∈ [k] and a k-labelled graph G, denote
by V i

G = ℓ−1
G ({i}) the set of vertices of G of label i. A k-expression φ of a k-labelled

graph G, denoted [φ] = G, is an expression defined inductively [38] using:

1. Single vertex: •i with i ∈ [k]: [•i] is a k-labelled graph with one vertex labelled
by i (we sometimes write •i(u) to state that the vertex is named u),

2. Disjoint Union: φ1⊕φ2: [φ1⊕φ2] is the disjoint union of the graphs [φ1] and [φ2].
3. Relabelling: ρi→j(φ) with (i, j) ∈ [k]2 and i ̸= j: [ρi→j(φ)] is the same graph as

[φ], in which all vertices of G with former label i now have label j,
4. Edge Creation: ηi,j(φ) with (i, j) ∈ [k]2 and i ̸= j: [ηi,j(φ)] is the same graph

as [φ], in which all tuples of the form (u, v) with {ℓG(u), ℓG(v)} = {i, j} is now an
edge.

A graph G has a k-expression φ if there exists ℓ : VG 7→ [k] such that [φ] =
(VG, EG, ℓ). The clique-width of a graph G (denoted by cw(G)) is the minimum k ≥ 1
such that G has a k-expression. An optimal expression of a graph G is a cw(G)-
expression of G. The subexpressions of an expression φ are defined similarly: the only
subexpression of •i is •i, the subexpressions of φ = φ1 ⊕ φ2 are φ and the subexpres-
sions of φ1 and φ2, the subexpressions of φ = ρi→j(φ

′) and φ = ηi,j(φ
′) are φ and

the subexpressions of φ′. A linear k-expression is a k-expression φ where for every
subexpression of φ of the form φ1 ⊕ φ2, φ2 is of the form •i with i ∈ [k]. The linear
clique-width (denoted by lcw(G)) of a graph G is the minimum k ≥ 1 such that G has
a linear k-expression.

The most notable of the many graph classes with bounded clique-width is perhaps
the class of cographs: it is the class of graph that do not contain an induced path

7

on 4 vertices [39]. The cographs are exactly the graphs of cliquewidth bounded by
2 [40]. Another notable graph class of bounded clique-width is the class of distance-
hereditary graphs: it is the class of graph in which the distances in any connected
induced subgraph are the same as they are in the original graph. The class of distance-
hereditary graphs strictly contains the class of cographs, and any distance-hereditary
graph has its clique-width bounded by 3 [36].

2.3 Parameters over contraction sequences

Let V be a finite set, and let n := |V |. A partition of V is a set P = {S1, . . . , Sk} (with
k ≥ 1) of non-empty subsets of V , such that every element of V belongs to exactly
one of the Si with i ∈ [k]. A partition sequence [15] (Pn, . . . ,P1) of V is a sequence of
partitions of V , such that Pn is the partition into singletons, and each Pk (with k ∈
[n−1]) is obtained by merging two parts of Pk+1: i.e. denoting Pk+1 = {S1, . . . , Sk+1},
there exists (i, j) ∈ [k+1] with i ̸= j and Pk = (Pk+1 \{Si, Sj})∪{Si∪Sj}. Note that
this definition implies for all k ∈ [n], that Pk has k elements, and that in particular,
P1 = {V }.

A trigraph [41] is a triplet G = (VG, EG, RG) where (VG, EG) is a graph and
(VG, RG) is a looped-graph, with EG ∩RG = ∅. The set EG is the set of (black) edges
of G, and RG the set of red edges of G. The red-degree of a vertex u ∈ VG is its degree
in the looped-graph (VG, RG) ignoring the red loops. A red-connected component of
a trigraph G is a connected component of the looped-graph (VG, RG). A trigraph is
naturally associated to every partition of the set of vertices of a graph via the following
definition.
Definition 1. Let G = (VG, EG) be a graph and P be a partition of VG, the trigraph
G/P = (P, EP , RP) is defined by :

• EP = {(S1, S2) ∈ P2 | S1 ̸= S2, S1 × S2 ⊆ EG},
• RP = ({(S1, S2) ∈ P2 | S1 ̸= S2, (S1×S2)∩EG ̸= ∅}\EP)∪{(S, S) | S ∈ P, |S| ≥ 2}.

These choices of definitions for EP and RP are strongly motivated by Property 1,
that enables to interpret the presence of edges between two different vertices S1 and
S2 via the bipartite graph induced on G with the bipartition {S1, S2}.
Property 1. Let G be a graph, P be a partition of VG, and let U and V be two
different vertices of G/P. For all u ∈ U and v ∈ V :

• (u, v) ∈ EG, whenever (U, V) ∈ EG/P , and
• (u, v) /∈ EG, whenever (U, V) /∈ EG/P ∪RG/P .

The presence of a black edge indicates a complete bipartite graph, whereas the
absence of an edge shows that the bipartite graph has no edge. In contrast, a red
edge can be viewed as a loss of information: it will therefore be natural to study
parameters that increase with the number of red-edges. The proof of the soundness
of our algorithms (in Section 4) that make use of partition sequences rely on this
fundamental property. It can be easily obtained by reformulating the definition of
partition sequences.

A contraction sequence [41] of a graph G on at least two vertices is a sequence of
trigraphs of the form (Gn, . . . , G1) with n = |VG|, such that there exists a partition

8

sequence (Pn, . . . ,P1) with for all k ∈ [n], Gk = G/Pk. If U and V are the elements
of Pk+1 that are such that Pk = (Pk+1 \ {U, V }) ∪ {U ∪ V }, we write that Gk =
Gk+1/(U, V), as Gk is obtained from Gk+1 by contracting the vertices U and V of
Gk+1. In order to alleviate notations, we will (abusively) denote the vertex U ∪ V
of Gk as UV . Note that Gk has k vertices and, in particular, the trigraph Gn =
(VGn , EGn , ∅) has no red edge, and the graph (VGn , EGn) is isomorphic to G. Note
also that G1 has only one vertex, and is necessarily the trigraph4 with one vertex
G1 = ({VG}, ∅, {(VG, VG)}).

We can remark that a trigraph Gk (with k ∈ [n − 1]) obtained in a contraction
sequence can be derived easily from Gk+1. The rules to follow when performing a
contraction are given in Remark 1.
Remark 1. For each k ∈ [n − 1], the trigraph Gk = Gk+1/(U, V) can easily be
described in function of the graph Gk+1, noticing that for all vertices X and Y of Gk:

• If both X ̸= UV and Y ̸= UV , (X,Y) is a black edge (respectively a red edge) in
Gk if and only if it is a black edge (respectively red edge) in Gk+1.

• If X = Y = UV , then (X,Y) is a red loop in Gk.
• If X = UV and Y ̸= X, and if both (U, Y) and (V, Y) are black edges in Gk+1, then

(X,Y) is a black edge in Gk.
• If X = UV and Y ̸= X, and if both (U, Y) and (V, Y) are non-edges (i.e. neither a

black edge nor a red edge) in Gk+1, then (X,Y) is a non-edge in Gk.
• In any other case where X = UV and Y ̸= X, (X,Y) is a red edge in Gk.

To define the parameters related to contraction sequences, we introduce various
notions of “width” for a trigraph, which is a function assigning an integer to any
trigraph. We extend the notion of width to contraction sequences by considering the
maximum width of the trigraphs occurring in the sequence. Finally, the width of a
graph is defined as the minimum width among all its contraction sequences. Also, if
the width notion is clear from the context, we say that a contraction sequence of a
graph G is optimal if its width equals the width of G.

The twin-width (tww) [41] of a trigraph is the maximal red-degree of its vertices.
Similarly, the component twin-width (ctww) of a trigraph is the maximal size of a red-
connected component. Also, the total twin-width (ttww)[15] of trigraph is its number
of red-edges.

It is known that the class of graph that admits a contraction sequence without red
edges (except red loops) is exactly the class of cographs [41]. As a consequence, the
cographs are exactly the graphs of twin-width 0, and of component twin-width 1.

We also introduce a new parameter that we call the total vertex twin-width. The
total vertex twin-width (tvtww) of a trigraph is its number of vertices adjacent to at
least one red edge (including red loops). We believe that this “vertex-based parameter”
opens more interesting computational applications than the “edge-based parameter”
total twin-width, as it is arguably more natural for algorithms to iterate over vertices
than over edges. However, the two parameter are closely connected by natural linear
and quadratic bounds. Clearly, if a looped-graph has t ≥ 0 vertices of degree at least

4Each vertex of Gk is a set of vertices of G that have been contracted.

9

1, it has at least t/2 edges and at most t(t + 1)/2 edges. Applying these remarks to
the red graphs (VG′ , RG′) of a trigraph G′ leads to the following quadratic bounds.
Theorem 2. For any graph G,

tvtww(G) ≤ 2ttww(G) ≤ (tvtww(G))(tvtww(G) + 1).

2.4 Rank-width

A branch decomposition [42] of a graph G is a binary tree T (a tree where each non-
leaf vertex has degree 3) whose set of leaves is exactly VG. Let G be a graph and T a
branch decomposition of G. Every edge e of T corresponds to a bipartition (Xe, Ye) of
VG by considering the bipartition of the leaves of T into their connected components
of T − e (the tree T but in which the edge e have been removed). For every edge e of
T , let Ae be the F2-matrix whose set of rows is Xe and whose set of columns is Ye,
and whose coefficient of index (u, v) ∈ Xe × Ye is 1 if (u, v) ∈ EG, and 0 otherwise.

Finally, let ρG(T) = max
e∈ET

rank(Ae). The rank-width of G denoted by rw(G), is the

minimum of ρG(T) for every branch-decomposition T of G. A branch decomposition
T realizing this minimum is called an optimal branch-decomposition of G. One of the
main interests of rank-width is made clear in the following remark.
Lemma 1. Let T be an optimal branch-decomposition of a graph G, and e ∈ ET . If
|Xe| > 2rw(G), then there exists (u, u′) ∈ (Xe)

2 with u ̸= u′ such that

NG(u) ∩ Ye = NG(u′) ∩ Ye.

Proof. Since the rank of the matrix Ae is lower than rw(G), the rows of G all belong
to a F2-vector space of dimension at most rw(G). The latter has a cardinality of at
most 2rw(G), and therefore, Xe has 2 identical rows, which proves the result.

3 Improved Bounds for Contraction Sequences
Related Parameters

Let us now begin the first major technical contribution of the article. In Section 3.1
we relate component twin-width and clique-width via a tight linear bound. As a con-
sequence, we also manage to relate linear clique-width to component twin-width and
show that the component twin-width of a graph is never higher than its linear clique-
width. Then, in Section 3.2 we turn to the problem of approximating component
twin-width (for a given input graph). We show two positive results, one using clique-
width as an intermediate parameter, and an improved approximation via rank-width.
Lastly, we (in Section 3.3) prove a novel quadratic bound between total twin-width
and linear clique-width. Hence, not only can (linear) clique-width be expressed via
the twin-width parameter family, but this can be accomplished with a relatively small
overhead.

10

3.1 Comparing clique-width and component twin-width

In this section, we prove the linear bounds between clique-width cw and component
twin-width ctww. As the presence of red-loops does not impact the component twin-
width, we ignore them in this section.
Theorem 3. For every graph G, cw(G) ≤ ctww(G) + 1 ≤ 2cw(G).

Firstly, we prove the leftmost inequality. An exemple of the application of the proof
of Proposition 4 is provided in Appendix A.1.
Proposition 4. For every graph G, cw(G) ≤ ctww(G) + 1.

Proof. Let (Gn, . . . , G1) be an optimal contraction sequence of G, and let κ =
ctww(G). Note that, for all k ∈ [n], every red-connected component of Gk has size
≤ κ. We explain how to construct a (κ + 1)-expression of G.

We show the following invariant for all k ∈ [n]:
P(k) : “Let C = {S1, . . . , Sp} be a red-connected component of Gk and

⋃
C = S1 ∪

· · · ∪ Sp. There exists a (κ + 1)-expression φC of the p-labelled graph GC = G[
⋃

C]
with ∀i ∈ [p], V i

GC
= Si.”

We first prove P(n). In Gn, there are no red edges: the red-connected components
are the singletons {u} for u ∈ VG. Thus •1 is a (κ+ 1)-expression of (G[{u}], ℓu) (with
ℓu : u 7→ 1), which proves P(n).

Now, take k ∈ [n − 1] and assume P(k + 1). We will prove P(k). By definition of
a contraction sequence, Gk is of the form Gk = Gk+1/(U, V) for two different vertices
U and V of Gk+1.

Observe that each red-connected component of Gk is also a red-connected compo-
nent of Gk+1, except the red-connected component C containing UV . Hence, it suffices
to prove P(k) for the red-connected component C. Notice also that (C\{UV })∪{U, V }
is a union of red-connected components C1, . . . , Cq of Gk+1 (every pair of red-
connected vertices in Gk+1 that does not contain U or V is also red-connected in Gk).
We thus have that C =: (C1 ∪ · · · ∪ Cq ∪ {UV }) \ {U, V }.

Denote by {S1, . . . , Sp−1, S
′
p} the set of vertices of C, with p = |C|, and S′

p = UV .
We have seen that C1∪· · ·∪Cq = {S1, . . . , Sp−1, Sp, Sp+1}, with Sp := U and Sp+1 :=
V . For each i ∈ [p + 1], Si belongs to a unique Cj with j ∈ [q]: let j(i) ∈ [q] be such
that Si ∈ Cj(i).

By P(k+ 1) and up to interchanging labels, for every j ∈ [q] there exists a (κ+ 1)-
expression φCj of the p-labelled graph GCj = G[

⋃
Cj] with for all i ∈ [p] with j(i) = j,

V i
GCj

= Si. Therefore, φ′ := φC1 ⊕· · ·⊕φCq expresses the disjoint union of the graphs

GC1
, ..., GCq

. Furthermore, φ′ is an expression of a graph over the same vertices as
G[

⋃
C], Now, we still need to construct the black edges crossing these red-connected

components.
We thus apply ηi,i′ (edge creation)5 to φ′ for every black edge of the form (Si, Si′)

in Gk+1, to obtain an expression φ′′. Since the vertices with labels i and i′ are exactly
the vertices of Si and Si′ , we create exactly the edges between vertices of Si and
of Si′ when applying ηi,i′ . By Property 1, we only construct correct black edges in
G[

⋃
C], and thus φ′′ is an expression of G[

⋃
C]. Conversely, as P(k + 1) ensures that

φC1
, . . . , φCq

represent exactly GC1
, . . . , GCq

, we have that the edges of G[
⋃

C] that

5See Section 2.2 for the notations relative to clique-width.

11

are not represented in φ′ are exactly the edges crossing the red-connected components
C1, . . . , Cq of Gk+1. In other words, the edges missing in φ′ are necessarily of the form
(a, b) ∈ Si×Si′ , where Si and Si′ do not belong to the same red-connected component.
Since (Si, Si′) is not a red edge of Gk+1 and since (a, b) ∈ EG∩ (Si×Si′), we conclude
by Definition 1 that (Si, Si′) is a black edge of Gk+1. Thus, ηi,i′ has been applied when
constructing φ′′, constructing thereby the edge (a, b) in φ′′.

Moreover, we need to make sure that the labels in φ′′ match the requirements of
P(k). For that, we set φGC

:= ρp+1→p(φ′′) (relabelling). By doing so, Sp (say, U) and
Sp+1 (say, V) have the same label in φGC

. Thus, it follows that φGC
witnesses P(k)

(since Sp = U and Sp+1 = V are now contracted into S′
p = UV in Gk) for the red-

connected component C. Indeed, we have used p+ 1 = |C|+ 1 ≤ κ+ 1 different labels
to construct φGC

from φC1 , . . . , φCq . Since {VG} is a red-connected component of G1,
it follows from P(1) that G[VG] = G has a (κ+1)-expression, and thus cw(G) ≤ κ+1.
As κ = ctww(G), we have cw(G) ≤ ctww(G) + 1.

Note, however, that lcw can not be bounded by a function of ctww. For instance,
the class of cographs have unbounded linear clique-width [43], despite having a
bounded component twin-width of 1. Let us now continue by proving the rightmost
bound of Theorem 3. An exemple of the application of the proof of Proposition 5 is
provided in Appendix A.2.
Proposition 5. For every graph G, we have:

(i) ctww(G) ≤ 2cw(G)− 1, and
(ii) ctww(G) ≤ lcw(G).

Proof. We first prove (i) and then adapt it to prove (ii). Let k := cw(G) and take a
k-expression of G. We will explain how to construct a contraction sequence of G in
which every red-connected component has size ≤ 2k− 1. The following remark will be
implicitly used throughout this proof.

Remark 2. Two vertices that have the same label in an expression φ′ also have the
same label in any expression of φ that has φ′ as a sub-expression.

We prove the following property of k-expressions of φ by structural induction:
H(φ) : “Let (G, ℓG) := [φ]. There exists a (partial) contraction sequence (Gn, . . . , Gk′)
with k′ ≤ k of G such that:

• every red-connected component in the trigraphs Gn, . . . , Gk′ has size ≤ 2k − 1,
• the vertices of Gk′ are exactly the non-empty V i

G for i ∈ [k], and
• every pair of vertices contracted have the same labels in (G, ℓG)6.”

If φ = •i with i ∈ [k], there is nothing to do since G has only one vertex. If φ is of
the form ρi→j(φ

′) (with (i, j) ∈ [k]2 and i ̸= j), consider for G the partial contraction

sequence of (G′, ℓG′) := [φ′] given by H(φ′), and then contract V i
G′ and V j

G′ to obtain

V j
G = V i

G′ ∪ V j
G′ . Since φ′ is also a k-expression of G, and since that last contraction

happens in a trigraph with at most k vertices, this partial contraction sequence of G
satisfies H(φ).

6Inductively, we say that the label of a vertex S ∈ VGl
(k′ ≤ ℓ ≤ n) is then the common label of the

vertices that have been contracted together to produce S.

12

If φ is of the form ηi,j(φ
′) (with (i, j) ∈ [k]2 and i ̸= j), consider for G the partial

contraction sequence of (G′, ℓG′) := [φ′] given by H(φ′). To prove that it is sufficient
to prove H(φ), it is sufficient to justify that it does not create any red edge in the
contraction of G that was not present in the contraction of G′. The first red-edge
(x, y) that would appear in the contraction of G = [ηi,j(φ

′)] that does not appear in
the same contraction of G′ = [φ′], results necessarily of the contraction of two vertices
u and v with x = uv and y being in the symmetric difference of the neighborhoods
of u and v in G = [ηi,j(φ

′)] but not in G′ = [φ′]. Such a red-edge can not exist
because we contract only vertices with the same label in φ′ (or, equivalently, in φ),
and that ηi,j can only decrease (with respect to ⊆) the symmetric difference between
the neighborhood of vertices with the same label in φ. By Remark 2, this implies that
it is also true for vertices having the same label in any subexpression of φ.

If φ is of the form φ = φ′⊕φ′′: denote (G′, ℓ′) := [φ′] and (G′′, ℓ′′) := [φ′′], thereby,
VG = VG′ ∪ VG′′ . Consider the partial contraction sequence of G given by:

1. contract the vertices in VG′ in accordance to the contraction sequence given by
H(φ′),

2. contract the vertices in VG′′ in accordance to the contraction sequence given by
H(φ′′),

3. for all i ∈ [k], contract V i
G′ with V i

G′′ (if both are nonempty) to get V i
G = V i

G′ ∪V i
G′′ .

Steps 1 and 2 do not create a red-edge adjacent to both VG′ and VG′′ (since these
are two distinct connected components of G). Thus, before step 3, we have a trigraph
with ≤ 2k vertices (because both trigraphs obtained after H(φ′) and H(φ′′) have less
than k vertices), and every red-component that have appeared so far has size ≤ 2k−1.
After the first contraction of step 3, the resulting trigraph has ≤ 2k − 1 vertices, and
thus no red-connected component of size > 2k − 1 can emerge. Such a contraction
satisfies every requirement of H(φ). We have thus proven H(φ) for every k-expression.

Now, take a k-expression φ of G. Up to applying ρi→1 for all i ∈ [k] to φ, we can
assume that (G, ℓG) := [φ] with ℓG being constant equal to 1. The partial contraction
sequence of G given by H(φ) is a total contraction sequence of G of component twin-
width ≤ 2k − 1. Since k = cw(G), we have proven that ctww(G) ≤ 2cw(G)− 1. To
prove (ii), we show a similar property Hlin(φ) for every linear k-expression. The only
difference between Hlin and H is that we replace the condition ≤ 2k−1 (on the size of
red components) by ≤ k. The proof then follows exactly the same steps, except for the
case φ = φ′⊕φ′′, where step 2 (the contraction according to Hlin(φ′′)) is not necessary
anymore, since φ′′ is of the form •i (i ∈ [k]), and we obtain a trigraph of size k + 1
instead of 2k, since φ′′ has 1 vertex instead of k. This ensures that every red-connected
component has size ≤ (k + 1)− 1 = k instead of 2k − 1 in the non-linear case.

For step 3, i.e., contracting vertices of the same color in φ′ and in φ′′, just note
that it consists of at most 1 contraction instead of k in the linear case.

We see that the linearity of a k-expression enables to derive a stronger upperbound
on the component twin-width of the graph it represents. Note that more generally, if
for all subexpression of φ of the form φ1 ⊕ φ2, the sum of the number of labels in φ1

and in φ2 does not exceed an integer t ≥ 2, we can conclude with the same routine that

13

ctww(G) ≤ t − 1. This observation leads to a tight upper bound on the component
twin-width of distance-hereditary graphs.
Remark 3. Let G be a distance-hereditary graph. We have ctww(G) ≤ 3.

Indeed, if G is a distance-hereditary graph, Golumbic and Rotics [36] witness that
cw(G) ≤ 3 by providing a 3-expression φ of that is such that, for every subexpression
of φ of the form φ1 ⊕ φ2, only 2 different labels occur in φ1 and in φ2.

3.2 Approximating component twin-width

The linear bounds established in Section 3.1 entail reasonable approximation results
for component twin-width by making use of known approximations of clique-width [44].
The best currently known approximation algorithm for clique-width is given by
Theorem 6.
Theorem 6. [44] Let k be a fixed positive integer. There is an O(|VG|3)-time (FPT
parameterized by k) algorithm that either outputs an (8k − 1)-expression of an input
graph G or confirms that the clique-width of G is larger than k.

From Theorem 6 and the linear bounds established in Proposition 4 and Proposi-
tion 5, we immediately obtain an approximation algorithm for component twin-width.
Theorem 7. Let p be a fixed positive integer. There is an O(|VG|3)-time (FPT param-
eterized by k) algorithm that either outputs a contraction sequence of component
twin-width ≤ 23p+4−3 of an input graph G or confirms that the component twin-width
of G is larger than p.

Proof. The algorithm consists of applying the algorithm of Theorem 6 to G with k :=
p+1. If the algorithm confirms that cw(G) > p+1, then we know that ctww(G) > p by
Proposition 4. Otherwise, it outputs a (23(p+1)−1)-expression of G, which we transform
into a contraction sequence of G of component twin-width ≤ 2 × (23(p+1) − 1) − 1 =
23p+4 − 3 through the constructive proof of Proposition 5, which can be performed in
linear time in the size of the (23(p+1) − 1)-expression of G.

It is still interesting to see that a direct comparison between component twin-width
and rank-width yields to a better approximation ratio, thanks to Theorem 8. In fact,
Theorem 6 was also obtained by this method. By avoiding using clique-width as an
intermediate parameter, it is not surprising that we obtain a better ratio.
Theorem 8. [44] Let k be a fixed positive integer. There is an O(|V (G)|3)-time (FPT
parameterized by k) algorithm that either outputs a rank-decomposition (of an input
graph G) of width at most 3k−1 or confirms that the rank-width of G is larger than k.

We can indeed make use of the bounds given by Theorem 9. The proof is very
similar to the proof of functional equivalence between boolean-width and component
twin-width [15], which is not surprising, since both rely exclusively on Lemma 1, that
applies both to rank-width and boolean-width.
Theorem 9. For every graph G, rw(G)− 1 ≤ ctww(G) ≤ 2rw(G)+1.

Proof. The first inequality rw(G)−1 ≤ ctww(G) follows from Proposition 4 , stating
that cw(G)− 1 ≤ ctww(G) and the fact that rw(G) ≤ cw(G) [42].

14

We now focus on proving the second bound of ctww(G) ≤ 2rw(G)+1. This proof
follows the same scheme as the proof of the functional equivalence between boolean-
width and component twin-width [15].

Similarly to a branch-decomposition of graphs, a branch-decomposition of a tri-
graph G′ is a binary tree whose set of leaves is VG′ . It is said to be rooted if a non-leaf
vertex has been chosen to be the root, which leads to the usual definition of children
and descendants in a rooted tree. The set of leaves descending from a vertex v of a tree
T is denoted by Dv. Now, let G be a graph and T be an optimal branch decomposition
of G, and let r := rw(G). We prove by induction the following invariant for k ∈ [n].
P(k): “There exists a (partial) contraction sequence (Gn, . . . , Gk) of G of compo-

nent twin-width ≤ 2r+1. Moreover, there exists a branch-decomposition Tk of Gk such
that for every t ∈ VTk

with |Dt| > 2r, there is no red-edge crossing the bipartition
(Dt, VGk

\Dt).”
Note that P(n) is indeed true since G = Gn has no red-edge. Now assume P(k+1)

with k ∈ [n − 1]. We will prove P(k). First, note that if k ≤ 2r, contracting any
two arbitrary vertices and giving any branch decomposition of Gk proves P(k). We
may thus assume that k > 2r. The root ρ satisfies |Dρ| ≥ 2r + 1. Observe that
there exists a node v of Tk+1 such that 2r + 1 ≤ |Dv| ≤ 2r+1: a node v such that
Dv has size at least 2r + 1 and which is furthest from the root meets the condition.
Moreover, any child w of v verifies |Dw| ≤ 2r. Using Lemma 1 with respect to the
edge linking v to its father7, there are two vertices U and U ′ of Gk+1 that satisfy
NG(U) ∩ (VGk+1

\ Dv) = NG(U ′) ∩ (VGk+1
\ Dv). Here, the neighborhood are taken

with respect to the black edges only, as by P(k + 1), there is no red edge crossing the
bipartition (Dv, VGk+1

\Dv).
To prove P(k), we will prove that it is sufficient to contract the vertices U and U ′

of Gk+1 to obtain Gk, and to identify the leaves U and U ′ of Tk+1 to obtain Tk (i.e.
we remove u′ and shortcut every degree 2 vertex that appears, and we then rename
U as UU ′). Note that all the red-edges created by the contraction of U and U ′ are
adjacent to the new vertex UU ′.

Firstly, by our choice of U and U ′, we do not create any red-edge crossing (Dv, VGk
\

Dv). Due to the property of Tk+1 ensured by P(k + 1) (recall that |Dv| > 2r), there
is no red-edge crossing (Dv, VGk

\Dv) in Tk. The red-connected component C of the
new vertex UU ′ is thus contained in Dv, and thus has size at most 2r+1. Since C is
the only red-connected component of Gk that was not a red-connected component of
Gk+1, Gk indeed meets the requirements of P(k).

Secondly, due to the choice of v, any node t of Tk with |Dt| > 2r containing the
new vertex UU ′ is an ancestor of v. Since Dv ⊆ Dt, by the above argument, there is
no red-edge crossing (Dt, VGk

\Dt).
The proof of P(k) is now complete: P(1) justifies that ctww(G) ≤ 2r+1.

This bound naturally leads to the approximation given in Theorem 10.
Theorem 10. Let p be a fixed positive integer. There is an O(|VG|3)-time algorithm
that either outputs a contraction sequence of component twin-width ≤ 8p+1 of an input
graph G or confirms that the component twin-width of G is larger than p.

7If v is the root, the result is trivial.

15

Proof. This result can be obtained similarly to Theorem 7, by using Theorem 8 and
Theorem 9 instead of Theorem 3 and Theorem 6.

3.3 Comparing total twin-width and linear clique-width

In this section, we provide a quadratic bound between total twin-width and linear
clique-width. As discussed in Section 1 these parameters are known to be functionally
equivalent, since they are both known to be functionally equivalent to linear boolean-
width through the following relations [15, 45]:

• lbw ≤ lcw ≤ 2lbw+1,
• lbw ≤ 2ttww,
• ttww ≤ (2lbw + 1)(2lbw−1 + 1),

which entail the exponential and double-exponential bounds between linear clique-
width and total twin-width:

• ttww ≤ (2lcw + 1)(2lcw−1 + 1),
• lcw ≤ 22

ttww+1.

These exponential and double exponential bounds are similar to the bounds known
between component twin-width and clique-width presented in Section 1.

Here, we will improve these bounds by establishing:
Theorem 11. For every graph G, lcw(G)− 1 ≤ 2ttww(G) ≤ lcw(G)(lcw(G) + 1).

The proof technique mirrors those of Proposition 4 and Proposition 5. Hence, our
proof constructions appear to be generally applicable for showing stronger relation-
ships between graph parameters than mere functional equivalence. We begin by first
comparing linear clique-width and total vertex twin-width, and then use Theorem 2.
As we will prove, the parameter tvtww is exactly the same as lcw (up to a difference
of 1).
Theorem 12. For every graph G, lcw(G)− 1 ≤ tvtww(G) ≤ lcw(G).

Firstly, we show the leftmost inequality. An exemple of the application of the proof
of Proposition 13 is provided in Appendix A.1.
Proposition 13. For every graph G, lcw(G) ≤ tvtww(G) + 1.

Proof. The proof is similar to the proof of Proposition 4 but we include the details since
the proof is constructive and has potential algorithmic applications. Let (Gn, . . . , G1)
be a contraction sequence of G witnessing κ := tvtww(G). We explain how to
construct a linear (κ + 1)-expression of G. We show the following invariant for all
k ∈ [n]:
P(k) : “Let Ck = {S1, . . . , Sp} be the set of vertices of Gk of red-degree at least 1, and⋃

Ck = S1 ∪ · · · ∪ Sp. There exists a linear (κ + 1)-expression φCk
of the p-labelled

graph GCk
:= G[

⋃
Ck] with V i

GCk
= Si for all i ∈ [p].”

Note that for all k ∈ [n], |Ck| ≤ κ by definition of the total vertex twin-width. We
first prove P(n). In Gn, there are no red edges. Thus, Cn = ∅ and there is nothing to
prove.

Now, take k ∈ [n − 1] and assume P(k + 1). We will prove P(k). By definition of
a contraction sequence, Gk is of the form Gk = Gk+1/(U, V) for two different vertices

16

U and V of Gk+1. First, we need to build a linear (κ + 1)-expression over the right
set of vertices. Denote Ck = {S1, . . . , Sp−1, S

′
p} with S′

p = UV . Letting Sp = U and
Sp+1 = V , we have that Si is a vertex of Gk+1 for all i ∈ [p + 1], and that

⋃
Ck =

p+1⋃
i=1

Si.

Observe that, Ck+1 is of the form {Si | i ∈ I} with I ⊆ [p+1]. Also, the other vertices
Sj with j ∈ [p + 1] \ I of Gk+1 are necessarily singletons. Otherwise, these vertices
would have a red loop in Gk+1 (by Definition 1) and would thus belong to Ck+1. For
all j ∈ [p + 1] \ I, let Sj = {sj} with sj ∈ VG.

By P(k + 1), up to interchanging labels, there exists a linear (κ + 1)-expression
φCk+1

of the |I|-labelled graph GCk+1
, such that for all i ∈ I, V i

GCk+1
= Si. Therefore,

φ′ := φCk+1
⊕ ⊕

j∈[p+1]\I
•j (sj)

is a linear expression over the same vertices of the graph GCk
, that satisfies V i

[φ′] = Si

for all i ∈ [p + 1].
Now, we still need to construct the black edges crossing the different Si for i ∈

[p+1]. We thus apply ηi,i′
8 to φ′ for every black edge of the form (Si, Si′) in Gk+1 (with

(i, i′) ∈ [p+ 1]), to obtain an expression φ′′. Since the vertices with labels i and i′ are
exactly the vertices of Si and Si′ , we create exactly the edges between vertices of Si

and of Si′ when applying ηi,i′ (the reasioning is similar as in the proof of Proposition
4). By Property 1, and because φCk+1

is a linear expression of GCk+1
, we have that

φ′′ is a linear expression of GCk
.

Moreover, we need to make sure that the labels in φ′′ match the requirements of
P(k). For that, we set φGCk

:= ρp+1→p(φ′′). By doing so, Sp (say, U) and Sp+1 (say,
V) have the same label in φGCk

.
Thus, it follows that φGCk

witnesses P(k) (since Sp = U and Sp+1 = V are now
contracted into S′

p = UV in Gk). Indeed, we have used p+1 = |Ck|+1 ≤ κ+1 different
labels to construct the linear expression φGCk

. The expression φGCk
is indeed linear

because φGCk+1
is linear and because the right term of every ⊕ used to construct φCk

from φCk+1
is of the form •j(sj) with sj ∈ VG.

Since {VG} is a vertex of G1 with a red loop (unless G is a graph on 1 vertex,
in which case the theorem is trivial), it follows from P(1) that G[VG] = G has a
linear (κ + 1)-expression, and thus lcw(G) ≤ κ + 1. As κ = tvtww(G), we have
lcw(G) ≤ tvtww(G) + 1.

We now prove the rightmost bound of Theorem 12.
Proposition 14. For every graph G, we have, tvtww(G) ≤ lcw(G)

Proof. Again, we remark that the proof is similar to the proof of Proposition 5, but
we include the details since the proof of the contraction sequence with the necessary
properties is constructive and may be useful in its own right.

8See Section 2.2 for the notations relative to clique-width.

17

Let k := lcw(G) and take a linear k-expression φG of G. We will explain how to
construct a contraction sequence of G in which every trigraph has at most k vertices
of red degree at least 1. We begin by defining the following property and then prove
it by induction over φ:
H(φ) : “Let (G, ℓG) := [φ]. There exists a (partial) contraction sequence (Gn, . . . , Gk′)
of G with k′ ≤ k such that:

• each of the trigraphs Gn, . . . , Gk′ have at most k vertices with red degree ≥ 1,
• the vertices of Gk′ are exactly the non-empty V i

G for i ∈ [k], and
• every pair of vertices contracted have the same labels in (G, ℓG)9.”

If φ = •i with i ∈ [k], there is nothing to do since G has only one vertex. If φ is of
the form ρi→j(φ

′) (with (i, j) ∈ [k]2 and i ̸= j), consider for G the partial contraction

sequence of (G′, ℓG′) := [φ′] given by H(φ′), and then contract V i
G′ and V j

G′ to obtain

V j
G = V i

G′ ∪ V j
G′ . Since φ′ is also a k-expression of G, and since that last contraction

happens in a trigraph with less than k vertices, this partial contraction sequence of G
satisfies H(φ).

If φ is of the form ηi,j(φ
′) (with (i, j) ∈ [k]2 and i ̸= j), consider for G the partial

contraction sequence of (G′, ℓG′) := [φ′] given by H(φ′). To prove that it is sufficient
to prove H(φ), it is sufficient to justify that it does not create any red edge in the
contraction of G that was not present in the contraction of G′. The first red-edge
(x, y) that would appear in the contraction of G = [ηi,j(φ

′)] that does not appear in
the same contraction of G′ = [φ′], results necessarily of the contraction of two vertices
u and v with x = uv and y being in the symmetric difference of the neighborhoods
of u and v in G = [ηi,j(φ

′)] but not in G′ = [φ′]. Such a red-edge can not exist
because we contract only vertices with the same label in φ′ (or, equivalently, in φ),
and that ηi,j can only decrease (with respect to ⊆) the symmetric difference between
the neighborhood of vertices with the same label in φ. By Remark 2, this implies that
it is also true for vertices having the same label in any subexpression of φ.

If φ is of the form φ = φ′ ⊕ •i(u): denote (G′, ℓ′) := [φ′], thereby, VG = VG′ ∪ {u}.
Consider for G the partial contraction sequence obtained by performing the contrac-
tions in (G′, ℓG′) := [φ′] given by H(φ′), and then contracting V i

G′ (if not empty) and
u to obtain V i

G = V i
G′ ∪{u}. Since u is an isolated vertex in G, performing the contrac-

tions in G′ can not create any red edge in the contraction of G that did not already
exist in the contraction of G′. The last eventual contraction between u and V i

G′ occurs
in a trigraph with at most k + 1 vertices, resulting in a trigraph of at most k vertices.
In particular, there can not be more than k vertices adjacent to at least one red edge.
Such a contraction satisfies every requirement of H(φ). We have thus proven H(φ) for
every linear k-expression.

Now, take a linear k-expression φ of G. Up to applying ρi→1 for all i ∈ [k] to φ,
we can assume that (G, ℓG) := [φ] with ℓG being constant equal to 1. The partial
contraction sequence of G given by H(φ) is a total contraction sequence of G of total
vertex twin-width ≤ k. Since k = lcw(G), we have proven that tvtww(G) ≤ lcw(G).

9Inductively, we say that the label of a vertex S ∈ VGl
(k′ ≤ l ≤ n) is then the common label of the

vertices that have been contracted together to produce S.

18

From Theorem 2 and Theorem 12 we then obtain the quadratic bound

lcw − 1 ≤ 2ttww ≤ lcw(lcw + 1)

of Theorem 11.

4 Complexity Results

In the second part of the article we show two algorithmic applications of dynamic
programming over component twin-width to #H-Coloring. Let us remark that the
proof of Proposition 4 deals with component twin-width with a dynamic programming
principle in the following way.

• We keep track of an invariant (here, a clique-width expression) associated to every
red connected component.

• The “size of the invariant” (the number of labels) grows with the number of vertices
in the component.

• The difficulty of keeping track of the invariant though a contraction is overcame by
Property 1, that gives precise information on the structure of the edges intersecting
two different red components.

We see in this section how this idea can be used to design dynamic programming
algorithm in order to solve counting versions of graph coloring problems. The first
result assumes that an optimal contraction sequence of the input graph G is given,
and results in a FPT algorithm parameterized by ctww, running in time O∗((2|VH | −
1)ctww(G)). The second approach uses an optimal contraction sequence of the template
H (whose computation can be seen as a pre-computation, since it does not involve the
input graph G): we obtain a fine-grained algorithm running in time O∗((ctww(H) +
2)|VG|), which outperforms the best algorithms in the literature, with a running time
of O∗((2cw(H) + 1)|VG|) [6] and O∗((lcw(H) + 2)|VG|) [6] through the linear bound
of Section 3.1. Note that the technique employed in this paper could similarly be
used to derive the same complexity results applied to the more general frameworks
of counting the solutions of binary constraint satisfaction problems, i.e. problems of
the forms #Binary-Csp(Γ) with Γ a set of binary relations over a finite domain,
even though we restrict to the simpler case of #H-Coloring here to avoid having to
define contraction sequences of instances and template of binary constraint satisfaction
problems.

4.1 Parameterized complexity

We present an algorithm solving #H-Coloring in FPT time parameterized by com-
ponent twin-width, assuming that a contraction sequence is part of the input. It is
inspired by the algorithm solving k-Coloring [15], thus proving that #H-Coloring
is FPT parameterized by component twin-width and thus also by clique-width (by func-
tional equivalence). Throughout, we need to assume that we are given a contraction
sequence of the input graph.

19

Let us remark that Walhström [6] solves H-Coloring in time

22cw(G)×|VH |(|VG|+ |VH |)O(1),

whenever a cw(G)-expression of G is given. We solve it in time

(2|VH | − 1)ctww(G)+1 × (|VG|+ |VH |)O(1).

Recall however that (1) ctww(G) + 1 ≤ 2cw(G) by Proposition 5, implying that our
algorithm is always at least as fast, and that (2) our algorithm is strictly faster for e.g.
cographs with edges (component twin-width 1, versus clique-width 2), cycles of length
at least 7 (component twin-width 3, versus clique-width 4), and distance-hereditary
graphs that are not cographs (component twin-width ≤ 3 by Remark 3, clique-width
3).
Theorem 15. For any graph H, there exists an algorithm running in time

(2|VH | − 1)ctww(G)+1 × (|VG|+ |VH |)O(1)

that solves #H-Coloring on any input graph G (assuming that an optimal contrac-
tion sequence (Gn, . . . , G1) of G is given).

Proof. For k ∈ [n], C = {S1, . . . , Sp} ⊆ VGk
a red-connected component of vertices

of Gk, and for γ : C 7→ (2VH \ {∅}), an H-coloring of G[∪C] with profile γ is an H-
coloring f of G[∪C] such that for all i ∈ [p], f(Si) = γ(Si). I.e. the vertices of H used
to color Si are exactly the colors of the set γ(Si).

Then, define the set COL(C, γ) as the set of H-colorings of G[∪C] with profile
γ. We see that for every red-connected component C of Gk, the sets COL(C, γ) for
γ : C 7→ (2VH \ {∅}) form a partition of the set of the H-colorings of G[∪C].

The principle of the algorithm is to inductively maintain (from k = n to 1) the
knowledge of every |COL(C, γ)| (stored in a tabular #col(C, γ)) for each red-connected
component C of Gk and γ : C 7→ (2VH \ {∅}). In this way, since {VG} is a red-
connected component of G1, we can obtain the number of H-colorings of G[VG] = G
by computing ∑

T∈(2VH \{∅})

#col({VG}, VG 7→ T).

First, note that the red-connected components of Gn are the {u} for u ∈ VG (since
Gn has no red edge). For every γ : u 7→ γ(u) ∈ (2|VH | \ {∅}) we let #col({u}, γ) ← 0
if |γ(u)| ̸= 1 and #col({u}, γ) ← 1 if |γ(u)| = 1. Hence, we correctly store the value
of |COL({u}, γ)| in the tabular #col({u}, γ).

We explain how to maintain this invariant after the contraction from Gk+1 to
Gk (with k ∈ [n − 1]). By definition of a contraction sequence, Gk is of the form
Gk =: Gk+1/(U, V) with U and V two different vertices of Gk+1.

Note that every red-connected component of Gk is also a red-connected component
of Gk+1, except the red-connected component C containing UV . We only have to
compute |COL(C, γ)| for any γ : C 7→ 2VH \ {∅}, and to store it in the tabular
#col(C, γ). Initialize the value of #col(C, γ) with 0.

20

Let C =: {S1 . . . , Sp−1, S
′
p}, with S′

p := UV , and p := |C| ≤ ctww(G). Since
every pair of red-connected vertices in Gk+1 (that contains neither U nor V) are
red-connected in Gk, C must be of the form

C := (C1 ∪ · · · ∪ Cq ∪ {S′
p}) \ {Sp, Sp+1},

with Sp := U and Sp+1 := V and C1∪· · ·∪Cq = {S1, . . . , Sp−1, Sp, Sp+1},10 and where
C1, . . . , Cq (with q > 0) are red-connected components of Gk+1 whose union contains
both Sp = U and Sp+1 = V . Notice that each Si (for i ∈ [p + 1]) belongs to a unique
Cj(i) with j(i) ∈ [q]. These notions are illustrated in Figure 2.

The algorithm iterates over every family (γj : Cj 7→ (2VH \ {∅}))1≤j≤q. Let γ =
γ1 ∪ · · · ∪ γq be the profile of C that maps every Si (with i ∈ [p − 1]) to γj(i)(Si),
and that maps S′

p = UV = Sp ∪ Sp+1 to γj(p)(Sp) ∪ γj(p+1)(Sp+1). The algorithm
checks if there exists a (i, i′) ∈ [p]2 with i ̸= i′, a black edge between Si and Si′ in
Gk+1, and (γ(Si) × γ(Si′)) ⊆ EH , in time O(p2). If so, we increment #col(C, γ) by
q∏

j=1

#col(Cj , γj). Otherwise, we move to the next family (γj)1≤j≤q.

Soundness: For (γj : Cj 7→ (2VH \ {∅}))1≤j≤q, we denote by COL(C, γ1, . . . , γq)
the sets of H-colorings f of C such that for all j ∈ [q] the profile of f |Cj

is γj . The
algorithm is correct because, for each profile γ : C 7→ 2VH \ {∅} of C, COL(C, γ) is
the disjointed union, for (γ1, . . . , γq) with γ = γ1 ∪ · · · ∪ γq, of the COL(C, γ1, . . . , γq).

We only need to compute |COL(C, γ1, . . . , γq)|, which can be derived by Claim 1.
We then store the sum over (γ1, . . . , γq) such that γ = γ1 ∪ · · · ∪ γq in #col(C, γ). In
Claim 1, we say that (γ1, . . . , γq) is feasible if for all (i, i′) ∈ [p]2 such that (Si, Si′) is
a black edge of Gk+1, (γj(i)(Si)× γj(i′)(Si′)) ⊆ EH .

Claim 1. We have for all (γ1, . . . , γq) that:

1. If (γ1, . . . , γq) is not feasible, then COL(C, γ1, . . . , γq) = ∅.
2. If (γ1, . . . , γq) is feasible, then a function f : ∪C 7→ VH belongs to

COL(C, γ1, . . . , γq) if and only if, for all j ∈ [q], f restricted to Cj (denoted by fj)
belongs to COL(Cj , γj).

Proof. We treat the two cases separately. First, we assume that (γ1, . . . , γq) is not
feasible: there exists (i, i′) ∈ [p]2 such that (Si, Si′) is a black edge of Gk+1 and
(γj(i)(Si)× γj(i′)(Si′)) \EH ̸= ∅ and, for the sake of contradiction, suppose that there
is f ∈ COL(C, γ1, . . . , γq). Take (vi, vi′) ∈ (γj(i)(Si)× γj(i′)(Si′)) \ EH . By definition
of a profile, there exists (ui, ui′) ∈ Si × Si′ with f(ui) = vi and f(ui′) = vi′ . Then,
since there exists a black edge between Si and Si′ in Gk+1, this means by Property
1 that (ui, ui′) ∈ EG. But (f(ui), f(ui′)) = (vi, vi′) /∈ EH , so f is not an H-coloring,
which contradicts the definition of f .

Second, we assume that (γ1, . . . , γq) is feasible. To prove necessity, notice that the
restriction of a partial H-coloring is also a partial H-coloring, and by definition of
COL(C, γ1, . . . , γq), if f ∈ COL(C, γ1, . . . , γq), then fj ∈ COL(Cj , γj).

10Note that UV = S′
p = Sp ∪ Sp+1.

21

To prove sufficiency, assume that f : ∪C 7→ VH is such that for all j ∈
[q], fj ∈ COL(Cj , γj). Then, provided that f is an H-coloring of G[∪C], f ∈
COL(C, γ1, . . . , γq). Hence, we only have to prove that f is an H-coloring. So let
(u, u′) ∈ EG. We prove that (f(u), f(u′)) ∈ EH . Observe that there exist Si and Si′

(with (i, i′) ∈ [p]2) such that u ∈ Si and v ∈ Si′ . If Si and Si′ are in the same red-
connected component Cj (with j ∈ [q]) of Gk+1, then (f(u), f(u′)) = (fj(u), fj(u

′)) ∈
EH because fj is an H-coloring. Otherwise, (Si, Si′) is not a red edge of Gk+1, and
since (u, u′) ∈ EG and (u, u′) ∈ Si × Si′ , it follows that so (Si, Si′) is a black edge of
Gk+1 by Property 1. By assumption of feasibility, (γj(i)(Si)×γj(i′)(Si′)) ⊆ EH and, by
definition of a profile, (f(u), f(u′)) = (fj(i)(u), fj(i′)(u

′)) ∈ γj(i)(Si)×γj(i′)(Si′) ⊆ EH .
The latter shows that f is indeed an H-coloring.

From Claim 1 it follows that choosing an f in COL(C, γ1, . . . , γq) is either impos-
sible (if (γ1, . . . , γq) is not feasible), or equivalent to choosing fj ∈ COL(Cj , γj) for all

j ∈ [q] (in case of feasibility), which is why we add either 0 or
q∏

j=1

#col(Cj , γj) when

treating the part of #col(C, γ), relatively to the feasibility of the family (γ1, . . . , γq).
Complexity: To treat the red-connected component C, the only non-polynomial

part is to iterate over every family (γ1, . . . , γq), which represents

q∏
j=1

(2|VH | − 1)|Cj | = (2|VH | − 1)|C|+1 ≤ (2|VH | − 1)ctww(G)+1

families to treat (recall that for all j ∈ [q], γj is a non-empty subset of Cj).

If one only wishes to solve H-Coloring rather than the counting problem, the
algorithm by Ganian et al. [5] which runs in O∗(s(H)cw(G)) for a graph parameter s,
is strictly more efficient. The parameter s(H) counts the number of different possible
non-empty common neighborhoods for a subset of vertices of H. Indeed, for any graph
H, its structural parameter s(H) is bounded by 2|VH | − 2 [5] (the equality happens if
and only if H is a clique), and as we have proven in Proposition 4, for any graph G,
cw(G) ≤ ctww(G) + 1. However, it appears to be difficult to extend this algorithm
to the counting problem since the sets stored as invariants in the algorithm do not
necessarily represent disjoint subsets of partial coloring. This is acceptable if one only
wants to determine the existence of a total coloring (as long as every coloring is
represented at least once), but it causes issues when counting the number of colorings.

4.2 Fine-grained complexity

We now consider the dual problem of solving #H-Coloring when H has bounded
component twin-width. We therefore use an optimal contraction sequence of the tem-
plate H instead of the input G, and obtain a fine-grained algorithm for #H-Coloring
which runs in O∗((ctww(H) + 2)n) time.

Theorem 16. #H-Coloring is solvable in time O∗((ctww(H) + 2)|VG|).

22

S1

S2

S3 S4

S5

S6

U = S7

V = S8

Gk+1

S1

S2

S3 S4

S5

S6

UV = S′
7 = S7 ∪ S8

Gk

Fig. 2 An example where contracting U = S7 and V = S8 causes j = 4 different red-connected
components to merge into a red-connected component of size p = 7. With the notations of this
proof, we could have C1 = {S1, S2}, C2 = {S3, S4, S5, S7}, C3 = {S6} and C4 = {S8}. For instance,
j(1) = j(2) = 1, j(3) = j(4) = j(5) = j(7) = 2, j(6) = 3 and j(8) = 4.

Proof. Consider an optimal contraction sequence (Hm, . . . ,H1) of H, with m := |VH |.
Note that as H is part of the template and not part of the input, an optimal con-
traction sequence can be precomputed (for instance by exhaustive search). We give an
algorithm similar to that described in the proof of Theorem 11, except that we define
profiles for red-connected component of each Hk, with k ∈ [m].

Let C = {T1, . . . , Tp} be a red connected component of Hk and let γ = (S1, . . . , Sp)
be a p-tuple of pairwise disjoint subsets of VG. An H-coloring f of G[S1 ∪ . . . ,∪Sp] is
said to have C-profile γ if for each i ∈ [p], f(Si) ⊆ Ti. Denote by COL(γ,C) the set
of partial H-colorings of G (i.e., an H-Coloring of an induced subgraph) with C-
profile γ. It is easy to compute the |COL(γ,C)| for a red-connected component C of
Hm (since Hm has no edge) and γ = (S) with S ⊆ VG, since C is of the form C = {v}
with v ∈ VH . We have |COL((S), {v})| = 1 if S2 ∩EG = ∅, and |COL((S), {v})| = 0,
otherwise.

As in the proof of Theorem 11, for k ∈ [m− 1] the only red-connected component
of Hk = Hk+1/(U, V) that is not a red-connected component of Hk+1, is the red-
connected component C = {T1, . . . , Tp−1, T

′
p} that contains T ′

p = UV (the vertex
obtained by contraction of Tp = U and Tp+1 = V in Hk+1). Hence, C is of the form

C = (C1 ∪ · · · ∪ Cq ∪ {T ′
p}) \ {Tp, Tp+1},

with C1 ∪ · · · ∪Cq = {T1, . . . , Tp−1, Tp, Tp+1}, where C1, . . . , Cq are the red-connected
components of Hk+1 whose union contains Tp = U and Tp+1 = V . Again, each Ti

belongs to a unique Cj(i) with j(i) ∈ [q].

23

Then, as in the proof of Theorem 11, for all families of disjoint subsets of VG and
γ = (S1, . . . , Sp−1, S

′
p), we can compute the value of |COL(γ,C)|. Indeed, as in the

proof of Theorem 11, it is the sum for every family (γj)1≤j≤q that defines the profile
γ (i.e., each γj is a family of pairwise disjoint subsets of VG, and S′

p is of the form
S′
p = Sp ∪ Sp+1 with Sp ∩ Sp+1 = ∅ and ∀ℓ ∈ [q], γℓ = (Si)i∈j−1({ℓ})

11) of the value

1.
q∏

j=1

|COL(γj , Cj)| if (γ1, . . . , γq) is feasible,

2. 0 otherwise.

Here we say that (γ1, . . . , γq) is feasible if for every (i, i′) ∈ [p]2 with j(i) ̸= j(i′)
and for every edge (ui, ui′) of G with ui ∈ Si and ui′ ∈ Si′ , there is a black edge
between Ti and Ti′ in Hk+1,

The complexity of computing |COL(γ,C)| for every γ is (ctww(H) + 2)|VG|, since
exploring every family (γj)1≤j≤q containing only pairwise disjoint subsets of |VG|

requires to explore (
q∑

j=1

|Cj | + 1)|VG| families (any vertex of G can be mapped to a

unique element in {T1, T2, . . . , Tp+1} or none of them), which makes (|C| + 2)n ≤
(ctww(H)+2)n possibilities. Since VH is a red connected component of H1, we obtain
the number of such H-colorings of G in time O∗((ctww(H) + 2)|VG|), and it is equal
to |COL({VG}, {VH})|.

We again remark that, by Proposition 5, ctww(H) + 2 ≤ lcw(H) + 2 and
ctww(H)+2 ≤ 2cw(H)+1 for any graph H. Therefore, the algorithm in the proof of
Theorem 16 is always at least as fast as the clique-width approach by Wahlström [6],
and as remarked in Section 1, it is strictly faster for e.g. cographs with edges and cycles
of length ≥ 7, and distance hereditary graphs that are not cographs by Remark 3.

5 Conclusion and Future Research

In this article we explored component twin-width in the context of #H-Coloring
problems. We improved the bounds of the functional equivalence between component
twin-width and clique-width from the (doubly) exponential cw ≤ 22

ctww

and ctww ≤
2cw+1 to the linear

cw ≤ ctww + 1 ≤ 2cw.

In particular, this entails a single-exponential FPT algorithm for H-Coloring param-
eterized by component twin-width. From these linear bounds derives an approximation
algorithm with exponential ratio, that can even be improved by a direct compari-
son with rank-width. We then demonstrated that our constructive proof technique
could be extended to related parameters, and proved a quadratic bound between total
twin-width and linear clique-width.

Finally, we turned to algorithmic applications, and constructed two algorithms for
solving #H-Coloring. The first uses a given optimal contraction sequence of the
input graph G to solve #H-Coloring in FPT time parameterized by component twin-
width. The second uses a contraction sequence of the template graph H and beats the

11In other words, γℓ is the tuple of the Si where i ∈ [p+1] is such that Ti belongs to the component Cℓ.

24

clique-width approach for solving #H-Coloring (with respect to |VG|). Let us now
discuss some topics for future research.

Tightness of the bounds. Even though the bound cw ≤ ctww + 1 given by
Proposition 4 is tight for any cograph with at least 1 edge, we do not currently know if
this bound can be improved for graphs with greater clique-width or component twin-
width. Moreover, it would be interesting to determine whether the bound ctww ≤
2cw−1 given by Proposition 5 is tight. In particular, we believe that identifying classes
of graphs, such as distance-hereditary graphs, for which a similar reasoning to the one
presented in Remark 3 applies, constitutes a promising direction for future research.
The same remark on tightness holds for the bounds between component twin-width
and rank-width given by Theorem 9. It would be interesting to study the tightness
of the bound tww ≤ 2cw − 2 (where tww designs the twin-width), which is a direct
consequence of Proposition 5. Also, since Propositions 13 and 14 provide very tight
bounds, it is natural to ask for the characterization of the classes of graphs where each
bound is attained.

Lower bounds on complexity. The algorithms relying on clique-width to solve
H-Coloring by [5] in O∗(s(H)cw(G)) time are known to be optimal under the SETH.
We have a similar optimality result for treewidth (tw), with an algorithm solving H-
Coloring in time |VH |tw(G), and the existence of a (|VH | − ε)tw(G) algorithm with
ε > 0 being ruled out under SETH. A natural research direction is then to optimize
the running time of the algorithm of Theorem 15, possibly by making use of s(H),
and prove a similar lower bound.

Extensions. Instead of solving #H-Coloring the results of Section 4 can be
extended to arbitrary binary constraints (binary constraint satisfaction problems,
Bcsps). The notion of component twin-width indeed generalizes naturally to both
instances and templates of a Bcsp. A natural continuation is then to investigate
infinite-domain Bcsps which are frequently used to model problems of interest in
qualitative temporal and spatial reasoning. Here, there are only a handful of results
using the much weaker treewidth parameter [46], so an FPT algorithm using com-
ponent twin-width or clique-width would be a great generalization. Additionally, one
may note that the algorithms detailed in Section 4 can be adapted to solve a “cost”
version of #H-Coloring: given a weight matrix C, the cost of a homomorphism f is∑
u∈VG

C(u, f(u)), and we want to find a homomorphism of minimal cost. Can this be

extended to other types of generalized problems?

References

[1] Formanowicz, P., Tanaś, K.: A survey of graph coloring-its types, methods and
applications. Foundations of Computing and Decision Sciences 37(3), 223–238
(2012)

[2] Dyer, M., Greenhill, C.: The complexity of counting graph homomorphisms.
Random Structures & Algorithms 17(3-4), 260–289 (2000)

[3] Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical

25

Computer Science. An EATCS Series. Springer, Berlin, Heidelberg (2010)

[4] Fomin, F.V., Golovnev, A., Kulikov, A.S., Mihajlin, I.: Lower bounds for the
graph homomorphism problem. In: Proceedings of the 42nd International Collo-
quium on Automata, Languages, and Programming (ICALP-2015). Lecture Notes
in Computer Science, vol. 9134, pp. 481–493 (2015)

[5] Ganian, R., Hamm, T., Korchemna, V., Okrasa, K., Simonov, K.: The fine-
grained complexity of graph homomorphism parameterized by clique-width. In:
Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) Proceedings of the 49th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP-2022).
LIPIcs, vol. 229, pp. 66–16620 (2022)

[6] Wahlström, M.: New plain-exponential time classes for graph homomorphism.
Theory of Computing Systems 49(2), 273–282 (2011)

[7] Bulatov, A.A., Dadsetan, A.: Counting homomorphisms in plain exponential time.
In: Czumaj, A., Dawar, A., Merelli, E. (eds.) Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP-2020). LIPIcs,
vol. 168, pp. 21–12118 (2020)

[8] Bergé, P., Bonnet, É., Déprés, H.: Deciding twin-width at most 4 is NP-complete.
In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) Proceedings of the 49th
International Colloquium on Automata, Languages, and Programming (ICALP-
2022). LIPIcs, vol. 229, pp. 18–11820 (2022)

[9] Bonnet, E., Chakraborty, D., Kim, E.J., Köhler, N., Lopes, R., Thomassé, S.:
Twin-Width VIII: Delineation and Win-Wins. In: Dell, H., Nederlof, J. (eds.)
Proceedings of the 17th International Symposium on Parameterized and Exact
Computation (IPEC-2022). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 249, pp. 9–1918 (2022)

[10] Bonnet, É., Déprés, H.: Twin-width can be exponential in treewidth. Journal of
Combinatorial Theory, Series B 161, 1–14 (2023)

[11] Bonnet, E., Geniet, C., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width III:
Max Independent Set, Min Dominating Set, and Coloring. In: Proceedings of
the 48th International Colloquium on Automata, Languages, and Programming
(ICALP-2021). Leibniz International Proceedings in Informatics (LIPIcs), vol.
198, pp. 35–13520 (2021)

[12] Bonnet, É., Geniet, C., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width II:
small classes. In: Proceedings of the 32nd ACM-SIAM Symposium on Discrete
Algorithms (SODA-2021), pp. 1977–1996 (2021)

[13] Bonnet, É., Geniet, C., Tessera, R., Thomassé, S.: Twin-width VII: groups. CoRR
abs/2204.12330 (2022)

26

[14] Bonnet, É., Giocanti, U., Mendez, P., Simon, P., Thomassé, S., Toruńczyk, S.:
Twin-width IV: ordered graphs and matrices. In: Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing (STOC-2022), pp. 924–937
(2022)

[15] Bonnet, É., Kim, E.J., Reinald, A., Thomassé, S.: Twin-width VI: the lens of con-
traction sequences. In: Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA-2022), pp. 1036–1056 (2022)

[16] Bonnet, É., Kim, E.J., Reinald, A., Thomassé, S., Watrigant, R.: Twin-width and
polynomial kernels. Algorithmica 84, 1–38 (2022)

[17] Bonnet, É., Kwon, O.-j., Wood, D.R., et al.: Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). arXiv preprint
arXiv:2202.11858 ”” (2022)

[18] Bonnet, É., Nešetřil, J., Mendez, P.O., Siebertz, S., Thomassé, S.: Twin-width
and permutations. CoRR abs/2102.06880 (2021)

[19] Schidler, A., Szeider, S.: A SAT approach to twin-width. In: Phillips, C.A., Speck-
mann, B. (eds.) Proceedings of the Symposium on Algorithm Engineering and
Experiments (ALENEX-2022), pp. 67–77 (2022)

[20] Gajarský, J., Pilipczuk, M., Przybyszewski, W., Torunczyk, S.: Twin-width and
types. In: Bojanczyk, M., Merelli, E., Woodruff, D.P. (eds.) Proceedings of
the 49th International Colloquium on Automata, Languages, and Programming
(ICALP-2022). LIPIcs, vol. 229, pp. 123–112321 (2022)

[21] Ahn, J., Hendrey, K., Kim, D., Oum, S.: Bounds for the twin-width of graphs.
SIAM Journal on Discrete Mathematics 36(3), 2352–2366 (2022)

[22] Dreier, J., Gajarský, J., Jiang, Y., Mendez, P.O., Raymond, J.: Twin-width and
generalized coloring numbers. Discrete Mathematics 345(3), 112746 (2022)

[23] Balabán, J., Hliněnỳ, P.: Twin-width is linear in the poset width. arXiv preprint
arXiv:2106.15337 (2021)

[24] Gajarskỳ, J., Pilipczuk, M., Toruńczyk, S.: Stable graphs of bounded twin-width.
In: Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, pp. 1–12 (2022)

[25] Ganian, R., Pokrỳvka, F., Schidler, A., Simonov, K., Szeider, S.: Weighted model
counting with twin-width. arXiv preprint arXiv:2206.01706 (2022)

[26] Král’, D., Pekárková, K., Štorgel, K.: Twin-width of graphs on surfaces. arXiv
preprint arXiv:2307.05811 (2023)

[27] Pilipczuk, M., Soko lowski, M., Zych-Pawlewicz, A.: Compact representation for

27

matrices of bounded twin-width. arXiv preprint arXiv:2110.08106 (2021)

[28] Balabán, J., Hliněnỳ, P., Jedelskỳ, J.: Twin-width and transductions of proper
k-mixed-thin graphs. Discrete Mathematics, 113876 (2024)

[29] Pilipczuk, M., Soko lowski, M.: Graphs of bounded twin-width are quasi-
polynomially χ-bounded. Journal of Combinatorial Theory, Series B 161, 382–406
(2023)

[30] Hlinený, P., Jedelský, J.: Twin-width of planar graphs is at most 8, and at most 6
when bipartite planar. In: Etessami, K., Feige, U., Puppis, G. (eds.) Proceedings
of the 50th International Colloquium on Automata, Languages, and Programming
(ICALP-2023). LIPIcs, vol. 261, pp. 75–17518 (2023)

[31] Haan, R., Szeider, S.: Parameterized complexity classes beyond para-NP. Journal
of Computer and System Sciences 87, 16–57 (2017)

[32] Bui-Xuan, B.-M., Telle, J.A., Vatshelle, M.: Boolean-width of graphs. Theoretical
Computer Science 412(39), 5187–5204 (2011)

[33] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms, 1st edn. Springer, Berlin,
Heidelberg (2015)

[34] Bodlaender, H.L., Groenland, C., Jacob, H., Jaffke, L., Lima, P.T.: XNLP-
completeness for parameterized problems on graphs with a linear structure. In:
Dell, H., Nederlof, J. (eds.) Proceedings of the 17th International Symposium on
Parameterized and Exact Computation (IPEC-2022). LIPIcs, vol. 249, pp. 8–1818
(2022)

[35] Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Clique-
width III: hamiltonian cycle and the odd case of graph coloring. ACM Transac-
tions on Algorithms 15(1), 9–1927 (2019)

[36] Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes.
International Journal of Foundations of Computer Science 11(03), 423–443
(2000)

[37] Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, Berlin, Heidelberg (2006)

[38] Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-
decomposable graphs. Theoretical Computer Science 109(1), 49–82 (1993)

[39] Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM Journal on Computing 14(4), 926–934 (1985)

[40] Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete

28

Applied Mathematics 101(1-3), 77–114 (2000)

[41] Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO
model checking. In: Proceedings of the 61st Annual Symposium on Foundations
of Computer Science (FOCS-2020), pp. 601–612 (2020)

[42] Oum, S.-i.: Graphs of Bounded Rank-width. Princeton University, Princeton, New
Jersey (2005)

[43] Gurski, F., Wanke, E.: On the relationship between nlc-width and linear nlc-
width. Theoretical Computer Science 347(1-2), 76–89 (2005)

[44] Oum, S.-i.: Approximating rank-width and clique-width quickly. ACM Transac-
tions on Algorithms 5(1), 1–20 (2008)

[45] Oum, S.-i., Seymour, P.: Approximating clique-width and branch-width. Journal
of Combinatorial Theory, Series B 96(4), 514–528 (2006)

[46] Dabrowski, K.K., Jonsson, P., Ordyniak, S., Osipov, G.: Solving infinite-domain
CSPs using the patchwork property. In: Proceedings of the Thirty-Fifth AAAI
Conference on Artificial Intelligence (AAAI-2021), pp. 3715–3723 (2021)

A Converting Contraction Sequences to
k-expression and vice-versa

In this appendix we provide a visual example of the constructive proof of the bounds
of Theorem 3.
Theorem 3. For every graph G, cw(G) ≤ ctww(G) + 1 ≤ 2cw(G).

We first illustrate the lefmost inequality in Section A.1, and then illustrate the
rightmost part in Section A.2

A.1 From contraction sequences to k-expressions

We begin by recalling Proposition 4 .
Proposition 4. For every graph G, cw(G) ≤ ctww(G) + 1.

As input the method takes a contraction sequence of the same graph that witnesses
that its component twin-width is ≤ κ, and and uses it do describe a (κ+1)-expression
of a graph. Also note that the same construction illustrates Proposition 13 over the
same graph (however, red-loops will not be represented).
Proposition 13. For every graph G, lcw(G) ≤ tvtww(G) + 1.

29

a

b

c

d

e

f

g

a

b

c

d

e

f

g

φa = •
φb = •
φc = •
φd = •
φe = •
φf = •
φg = •

Fig. 3 Initial situation. All vertices are blue, but we can interchange labels within an expression if
necessary.

a

b

c

d

e

f

g

a

b

c

d

e

f

g

φa = •
φb = •
φc = •
φd = •
φe = •
φf = •
φg = •

a

b

c

d

ef

g

a

b

c

d

e

f

g

φadef =

ρ•→•

η•,•η•,•η•,•

(φa ⊕ φd ⊕ φe ⊕ φf)

Fig. 4 We adapt the labels within components in anticipation of the contraction, perform disjoint
unions, and construct the correct edges. Then, we set e and f to the same color.

30

a

b

c

d

ef

g

a

b

c

d

e

f

g φadef

φg = •

ad

b

c

ef

g

a

b

c

d

e

f

g

φadefg =

ρ•→•

η•,•η•,•

(φadef ⊕ φg)

Fig. 5 Now, g joins the big red-connected component. Crucially, e and f “agree” on g.

ad

b

c

ef

g

a

b

c

d

e

f

g

φadefg =

φb = •

ad

c

bef

g

a

b

c

d

e

f

g

φadbefg =

ρ•→•

η•,•η•,•

(φadefg ⊕ φb)

Fig. 6 b joins the “big” red-connected component

31

ad

c

bef

g

a

b

c

d

e

f

g φadbefg

c bef adg

a

b

c

d

e

f

g

φadgbef =

ρ•→•

φadbefg

Fig. 7 The red-components are the same: only a relabelling happens.

c bef adg

a

b

c

d

e

f

g

φadgbef

φc

bcef adg

a

b

c

d

e

f

g

φadgbcef =

ρ•→•

η•,•

(φadgbef ⊕ φc)

Fig. 8 Now c joins the “big component”. We already have a 4-expression of the original graph.

32

abcdefg

a

b

c

d

e

f

g φabcdefg

Fig. 9 Final situation.

A.2 From k-expressions to contraction sequences

We continue by illustrating an example of the application of the method described in
Proposition 5 (establishing the rightmost part of the linear bounds of Theorem 3).
Proposition 5. For every graph G, we have:

(i) ctww(G) ≤ 2cw(G)− 1, and
(ii) ctww(G) ≤ lcw(G).

We concentrate on illustrating (i), since (ii) is analogous. The method takes as an
input a k-expression of a graph, and uses it to describe a contraction sequence of the
same graph that witnesses that its component twin-width is ≤ 2k.

This method progressively “collaps” the k-expression. A partition of the vertices
of the original graph correspond naturally to every step of the collapse: two vertices
are in the same subset of the partition if they have been collapsed together. Subsets
of vertices that have been collapsed together are referred to as parks.

η•,•

⊕

ρ•→•

η•,•

⊕

η•,•

⊕

a b

⊕

c ⊕

d ⊕

e f

ρ•→•

η•,•

⊕

η•,•

⊕

g ⊕

h i

j

a

b

c

d

e

f

g
h

i

j

Fig. 10 We represent the vertices with their current label.

33

η•,•

⊕

ρ•→•

η•,•

⊕

η•,•

⊕

a b

⊕

c def

ρ•→•

η•,•

⊕

η•,•

⊕

g hi

j

a

b

c def

g hi

j

Fig. 11 d, e and f are introduced together with the same label: they are twins. We can contract
them.

η•,•

⊕

ρ•→•

η•,•

⊕

ab cdef

ρ•→•

η•,•

⊕

ghi j

a

b

c def

g hi

j

Fig. 12 We collapse the k-expression and merge the “parks” accordingly.

η•,•

⊕

ρ•→•

abcdef

ρ•→•

ghij

a

bc def g hi

j

Fig. 13 We merge vertices with the same label in the same park: the red-edges created are confined
in the parks.

34

η•,•

⊕

abcdef ghij

abc def gj hi

Fig. 14 After the next step, only one park will remain. We can finish the contraction sequence
arbiltrarly.

2

1 3 2′ 1′

3′

2

1 3 2′ 1′

3′

2

3 2′

11′

3′

Fig. 15 Component twin-width in the worst
case: at worst we merge two colorful parks
(with cw(G) vertices), and the next contraction
will create a red connected component of size
2cw(G)− 1.

2

1 3 2′

2

1 3 2′

22′

1 3

Fig. 16 If the expression is linear, the worst
case component twin-width becomes lcw(G).

35

	Introduction
	Preliminaries
	Parameterized complexity
	Clique-width
	Parameters over contraction sequences
	Rank-width

	Improved Bounds for Contraction Sequences Related Parameters
	Comparing clique-width and component twin-width
	Approximating component twin-width
	Comparing total twin-width and linear clique-width

	Complexity Results
	Parameterized complexity
	Fine-grained complexity

	Conclusion and Future Research
	Converting Contraction Sequences to k-expression and vice-versa
	From contraction sequences to k-expressions
	From k-expressions to contraction sequences

