Ambroise Baril
email: ambroise.baril@loria.fr

Miguel Couceiro
email: miguel.couceiro@loria.fr

Victor Lagerkvist
email: victor.lagerkvist@liu.se

Linear Bounds between Component Twin-Width and Clique-Width with Algorithmic Applications to Counting Graph Colorings

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Graph coloring is a well-known computational problem where the goal is to color a graph in a consistent way. This problem is one of the most well-studied NP-hard problems and enjoys a wide range of applications e.g., in planning, scheduling, and resource allocation [START_REF] Formanowicz | A survey of graph coloring-its types, methods and applications[END_REF]. There are many variants and different formulations of the coloring problem, but the most common formulation is certainly the k-Coloring problem that asks whether the vertices of an input graph can be colored using k available colors in such a way that no two adjacent vertices are assigned the same color. This problem can be extended in many ways and in this paper we are particularly interested in the more general problem where any two adjacent vertices in the input graph G have to be mapped to two adjacent vertices in a fixed template graph H (the H-Coloring problem). It is not difficult to see that k-Coloring is then K k -Coloring, where K k is the k-vertex clique.

The basic H-Coloring problem has been extended in many directions, of which one of the most dominant formalisms is the counting extension where the task is not only to decide whether there is at least one solution (coloring) but to return the number of solutions (#H-Coloring). This framework makes it possible to encode phase transition systems modeled by partition functions, modeling problems from statistical physics such as counting q-particle Widom-Rowlinson configurations and counting Beach models, or the classical Ising model (for further examples, see e.g. Dyer & Greenhill [START_REF] Dyer | The complexity of counting graph homomorphisms[END_REF]). The #H-Coloring problem is #P-hard unless every connected component of H is either a single vertex without a loop, a looped clique or a bipartite complete graph, and it is in P otherwise [START_REF] Dyer | The complexity of counting graph homomorphisms[END_REF]. The question is then to which degree we can still hope to solve it efficiently, or at least improve upon the naive bound of |V H | |V G | (where V H is the set of vertices in the template graph H and V G the set of vertices in the input graph G).

In this article we tackle this question by targeting properties of graphs, so-called graph parameters, which give rise to efficiently solvable subproblems. We will see below several concrete examples of graph parameters, but for the moment we simply assume that each graph G is associated with a number k ∈ N, a parameter, which describes a structural property of G. Here, the idea is that small values of k correspond to graphs with a simple structure, while large values correspond to more complicated graphs.

There are then two ways to approach intractable H-Coloring problems: we either restrict the class of input graphs G, or the class of template graphs H to graphs where the parameter is bounded by some reasonably small constant. The first task is typically studied using tools from parameterized complexity where the goal is to prove that problems are fixed-parameter tractable (FPT), i.e., obtaining running times of the form f (k) • ∥G∥ O (1) for a computable function f : N → N (where ∥G∥ is the number of bits required to represent the input graph G). The second task is more closely related to fine-grained complexity 1 where the goal is to prove upper and lower bounds of the form 2 f (k) • ∥G∥ O (1) for a sufficiently "fine-grained" parameter k, which in our case is always going to denote the number of vertices |V G | in the input graph G. Here, it is worth remarking that H-Coloring is believed to be a very hard problem, and the general Coloring problem, where the template is part of the input, is not solvable in 2 O(|V G |) • (∥G∥ + ∥H∥) O (1) time under the exponential-time hypothesis (ETH) [START_REF] Fomin | Lower bounds for the graph homomorphism problem[END_REF]. Hence, regardless of whether one studies the problem under the lens of parameterized or fine-grained complexity, one needs to limit the class of considered graphs via a suitable parameter.

The most notable graph parameter in this context is likely treewidth which, intuitively, measures how close a graph is to being a tree. Bounded treewidth is in many algorithmic applications sufficient to guarantee the existence of an FPT algorithm, but with the shortcoming of failing to capture classes of dense graphs. There are many graph parameters proposed to address this limitation of tree-width, and we briefly survey two noteworthy examples (see Section 2 for formal definitions).

clique-width (cw). The class of graphs (with labelled vertices) with clique-width

≤ k is defined as the smallest class of graphs that contains the one vertex graphs • i with 1 vertex labelled by i ∈ [k], and that is stable by the following operations for (i, j) ∈ [k]2 with i ̸ = j: (i) disjoint union of graphs, (ii) relabelling every vertex of label i to label j, and (iii) constructing edges between every vertex labelled by i and every vertex labelled by j. Note that the class of cographs (which contains cliques) is exactly that of graphs with clique-width at most 2. 2. twin-width (tww). The class of graphs of twin-width ≤ k ≥ is usually formulated via contraction sequences where graphs are gradually merged into a single vertex (see Figure 1 for an example). Red edges represent an inconsistency in the merged vertex (see Section 2.3 for a formal definition), and the maximum red degree in the sequence thus represents the largest loss of information. A graph has twin-width ≤ k if it admits such a contraction sequence where the maximum red degree does not exceed k.

For clique-width, Ganian et. al [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF] identified a structural parameter s of graphs and presented an algorithm for H-Coloring that runs in O * (s(H) cw(G)) time 2 . It is also optimal in the sense that if there is an algorithm that solves H-Coloring in time O * ((s(H) -ε) cw(G)), then the SETH fails [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF]. Alternative algorithms exist for templates of bounded clique-width, see Wahlström [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF] who solves #H-Coloring in O * ((2cw(H) + 1) |V G |) time, and Bulatov & Dadsetan [START_REF] Bulatov | Counting homomorphisms in plain exponential time[END_REF] for extensions.

Twin-width, on the other hand, is a much more recent parameter, but has in only a few years attracted significant attention [START_REF] Bergé | Deciding twin-width at most 4 is NP-complete[END_REF][START_REF] Bonnet | Twin-Width VIII: Delineation and Win-Wins[END_REF][START_REF] Bonnet | Twin-width can be exponential in treewidth[END_REF][START_REF] Bonnet | Twin-width III: Max Independent Set, Min Dominating Set, and Coloring[END_REF][START_REF] Bonnet | Twin-width II: small classes[END_REF][START_REF] Bonnet | Twin-width VII: groups[END_REF][START_REF] Bonnet | Twin-width IV: ordered graphs and matrices[END_REF][START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF][START_REF] Bonnet | Twin-width and polynomial kernels[END_REF][START_REF] Bonnet | Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond)[END_REF][START_REF] Bonnet | Twin-width and permutations[END_REF][START_REF] Schidler | A SAT approach to twin-width[END_REF][START_REF] Gajarský | Twin-width and types[END_REF][START_REF] Ahn | Bounds for the twin-width of graphs[END_REF][START_REF] Dreier | Twin-width and generalized coloring numbers[END_REF]. One of its greatest achievements is that checking if a graph is a model of any first-order formula can be decided in FPT time parameterized by the twin-width of the input graph. Thus, a very natural research question in light of the above results concerning tree-and clique-width is to study the complexity of (#)H-Coloring via twin-width. Unfortunately, it is easy to see that under standard assumptions, H-Coloring is generally not FPT parameterized by twin-width. Indeed, since twin-width is bounded on planar graphs [START_REF] Hlinený | Twin-width of planar graphs is at most 8, and at most 6 when bipartite planar[END_REF], the existence of an FPT algorithm for 3-Coloring running in O * (f (tww(G))) time implies an O * (1) time (i.e. a polynomial time) algorithm for 3-Coloring on planar graphs (since f (tww(G)) = O(1) if G is a planar graph). Since 3-Coloring is NPhard on planar graphs, this would imply P=NP. Thus, 3-Coloring is para-NP-hard [START_REF] Haan | Parameterized complexity classes beyond para-NP[END_REF] parameterized by twin-width.

Despite this hardness result it is possible to analyze H-Coloring by a variant of twin-width known as component twin-width (ctww) [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF]. This parameter equals the maximal size of a red-connected component (instead of the maximal red-degree for twin-width). It is then known that component twin-width is functionally equivalent3 to boolean-width [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF], which in turn is functionally equivalent to clique-width [START_REF] Bui-Xuan | Boolean-width of graphs[END_REF]. Hence, H-Coloring is FPT parameterized by component twin-width, and the specific problem k-Coloring is additionally known to be solvable in O * ((2 k -1) ctww(G)) time [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF]. As remarked by Bonnet et al., the theoretical implications of this particular algorithm are limited due to the aforementioned (under the SETH) optimal algorithm parameterized by clique-width [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF]. However, this still leaves several gaps in our understanding of component twin-width for H-Coloring and its counting extension #H-Coloring.

Our paper has three major contributions to bridge these gaps. Firstly, the best known bounds between clique-width and component twin-width are obtained by following the proof of functional equivalence between component twin-width and boolean-width, and then between boolean-width and clique-width. We thereby obtain ctww ≤ 2 cw+1 and cw ≤ 2) time. This proves FPT but with a rather prohibitive run-time, and the main question is whether it is possible to improve this to a single-exponential running time O * (2 O(ctww(G))). (This line of research in parameterized complexity is relatively new but of growing importance and has seen several landmark results, see e.g. Chapter 11 in Cygan et al. [START_REF] Cygan | Parameterized Algorithms[END_REF]). We prove that it is indeed possible by significantly strengthening the bounds between cw and ctww and obtain the linear bounds

cw ≤ ctww + 1 ≤ 2cw.
Our proof is constructive which gives a fast algorithm to derive a contraction-sequence from a clique-width expression and vice versa. To demonstrate that these ideas are not limited to these specific parameters we (in Section 3.3) consider the related problem of proving tighter bounds between linear clique-width (lcw) and the recently introduced total twin-width (ttww [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF]). Linear clique-width is less explored than clique-width but comes with the advantage that faster algorithms for graph classes of bounded linear clique-width is sometimes possible (cf. the remark before Theorem 7 in Bodlaender et al. [START_REF] Bodlaender | XNLPcompleteness for parameterized problems on graphs with a linear structure[END_REF]) and that lower bounds on clique-width in many interesting cases can be generalized to linear clique-width [START_REF] Fomin | Cliquewidth III: hamiltonian cycle and the odd case of graph coloring[END_REF]. The total twin-width parameter is then known to be functionally equivalent to linear clique-width, yielding the doubly exponential bounds lcw ≤ 2 2 ttww +1 and ttww ≤ (2 lcw + 1)(2 lcw-1 + 1). We significantly improve the latter to lcw -1 ≤ 2ttww ≤ lcw(lcw + 1), and thus demonstrate that virtually any complexity question regarding linear cliquewidth can be translated to the total twin-width setting, with the possible advantage of using contraction sequences as a unifying lens. Concretely, in terms of implementations, it can be expected that contraction sequence related parameters are more convenient to use than (linear) clique-width, since there is only one fundamental operation to handle (vertex contraction) whereas (linear) clique-width not only deals with vertex-labelled graphs, but also introduces four fundamental operations. Secondly, we discuss how these bounds can be exploited to approximate ctww by making use of the results known on cw. Thus, an immediate consequence of our linear bounds is that H-Coloring is solvable in O * (s(H) ctww(G)+1) time, which is a major improvement to the aforementioned triple exponential upper bound.

Thirdly, we consider the generalized problem of counting the number of solutions. It seems unlikely that the optimal algorithm (under SETH) by Ganian et al. [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF] can be lifted to #H-Coloring, and while the algorithm by Wahlström [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF] successfully solves #H-Coloring, it does so with the significantly worse bound of 1) . We tackle this problem in Section 4 by designing a novel algorithm for #H-Coloring for input graphs with bounded component twin-width and which runs in (2 1) time. Since our linear bounds imply that ctww(H)+2 ≤ 2cw(H)+1 this is always at least as fast as the clique-width algorithm by Wahlström, and strictly faster for several interesting classes of graphs. For example, cographs with edges (component twin-width 1, versus clique-width 2) and cycles of length 6 (component twin-width 3, versus clique-width 4).

2 2cw(G)×|V H | (|V G | + |V H |) O(
|V H | -1) ctww(G) × (|V G | + |V H |) O(
We also consider #H-Coloring when the template graph H has bounded component twin-width. We use an optimal contraction sequence of H in order to obtain a O * ((ctww(H) + 2) |V G |) algorithm for #H-Coloring. For comparison, Wahlström [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF] solves #H-Coloring in O * ((2cw(H) + 1) |V G |) and, slightly faster, O * ((lcw(H) + 2) |V G |) where lcw(H) is the linear clique-width of H. Due to our linear bounds we again conclude that our algorithm is always at least as fast as the O * ((2cw(H)+1) |V G |) time clique-width algorithm by Wahlström [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF], and strictly faster for the aforementioned classes of graphs. For example, if H is a cograph with edges then our algorithm solves #H-coloring in O * (3 |V G |) time which beats the clique-width O * (5 |V G |) algorithm by a significant margin. Let us also remark that this class of graphs does not have bounded linear clique-width, so the O * ((lcw(H) + 2)

|V G |) algorithm is not rel- evant. If H is a cycle of length at least 6 we instead get ctww(H) = 3, cw(H) = 4, lcw(H) = 4, yielding the bounds O * (5 |V G |), O * (9 |V G |), and O * (6 |V G |), i.e.
, also in this case our algorithm is strictly faster.

Moreover, let us also remark that the technique employed in this article could similarly be used to derive the same results applied to the more general frameworks of counting the solutions of binary constraint satisfaction problems, i.e., problems of the forms #Binary-Csp(Γ) with a set of binary relations Γ over a finite domain. However, to simplify the presentation we restrict our attention to the #H-Coloring problem.

Preliminaries

Throughout this paper, a graph G is a tuple (V G , E G), where V G is a finite set (the set of vertices of G), and E G is a binary irreflexive symmetric relation over V G (the set of edges of G). We will denote the number of vertices of a graph G by n(G) or, simply, by n when there is no danger of ambiguity. The neighborhood of a vertex u of a graph G is the set

N G (u) = {v ∈ V G | (u, v) ∈ E G }.
For a graph H we let H-Coloring be the computational problem of deciding whether there exists an homomorphism from an input graph G to H, i.e., whether there exists a function f :

V G → V H such that (x, y) ∈ E G implies that (f (x), f (y)) ∈ E H .
We write #H-Coloring for the associated counting problem where we instead wish to determine the exact number of such homomorphisms. As remarked in Section 1, the template graph H can be chosen with great flexibility to model many different types of problems.

Parameterized complexity

We assume that the reader is familiar with parameterized complexity and only introduce the strictly necessary concepts (we refer to Flum & Grohe [START_REF] Flum | Parameterized Complexity Theory[END_REF] for further background). A parameterized counting problem is a pair (F, dom) where F : Σ * → N (for an alphabet Σ, i.e., a finite set of symbols) and dom is a subset of Σ * × N. A parameterized counting problem (F, dom) is said to be fixed-parameter tractable (FPT) if there exists a computable function f : 1) time. An algorithm with this complexity is said to be an FPT algorithm. Note that even though f might be superpolynomial, which is expected if the problem is NP-hard, instances where k is reasonably small can still be efficiently solved.

N → N such that for any instance (x, k) ∈ dom of F , we can compute F (x) in f (k) × ∥x∥ O(
In practice, when studying FPT algorithms for an NP-hard counting problem, it is very natural to optimize the superpolynomial function f that appears in the complexity of the algorithm solving it. Typically, when dealing with graph problems parameterized by the number of vertices n, an algorithm running in c n × ∥x∥ O(1) will be considered efficient in practice if c > 1 is small. This field of research is sometimes referred to as fine-grained complexity.

Clique-width

For k ≥ 1, let [k] = {1, . . . , k}. A k-labelled graph G is a tuple (V G , E G , l G), where (V G , E G) is a graph and l G : V G → [k]. For i ∈ [k] and a k-labelled graph G, denote by V i G = l -1 G ({i}) the set of vertices of G of label i. A k-expression φ of a k-labelled graph G, denoted [φ] = G, is an expression defined inductively [30] using: 1. • i with i ∈ [k]: [• i] is a k-labelled graph with one vertex labelled by i, we might write • i (u) to state that the vertex is named u. 2. ρ i→j (φ) with (i, j) ∈ [k] 2 and i ̸ = j: [ρ i→j (φ)] is the same graph as [φ]
, but where all vertices of G with label i now have label j, 3. η i,j (φ) with (i, j) ∈ [k] 2 and i ̸ = j: [η i,j (φ)] is the same graph as [φ], but where all tuples of the form (u, v) with {l G (u), l G (v)} = {i, j} is now an edge, and 4.

φ 1 ⊕ φ 2 : [φ 1 ⊕ φ 2] is the disjoint union of the graphs [φ 1] and [φ 2]. A graph G has a k-expression φ if there exists l : V G → [k] such that [φ] = (V G , E G , l). The clique-width of a graph G (denoted by cw(G)) is the minimum k ≥ 1 such that G has a k-expression. An optimal expression of a graph G is a cw(G)- expression of G.
The subexpressions of an expression φ are defined similarly: the only subexpression of • i is • i , the subexpressions of φ = φ 1 ⊕ φ 2 are φ and the subexpressions of φ 1 and φ 2 , the subexpressions of φ = ρ i→j (φ ′) and φ = η i,j (φ ′) are φ and the subexpressions of φ ′ .

A linear k-expression is a k-expression φ where for every subexpression of φ of the form

φ 1 ⊕ φ 2 , φ 2 is of the form • i with i ∈ [k]. The linear clique-width (denoted by lcw(G)) of a graph G is the minimum k ≥ 1 such that G has a linear k-expression.

Parameters over contraction sequences

A trigraph [31] is a triplet G = (V G , E G , R G) where (V G , E G) and (V G , R G) are graphs, and E G ∩ R G = ∅. The graph (V G , E G) must be loopless, but (V G , R G) can contain loops. The set E G is the set of (black) edges of G, and R G the set of red edges of G. A red-connected component of a trigraph G is a connected component of the graph (V G , R G).
Let G be a trigraph and (u,

v) ∈ (V G) 2 with u ̸ = v.
The contraction of G with respect to (u, v) is the trigraph G/(u, v) obtained from G by removing u and v and adding a new vertex {u, v} 4 , where for all z ∈ V G \ {u, v}:

• ({u, v}, {u, v}) ∈ R G/(u,v) (i.e., {u, v} is a red loop), • ({u, v}, z) ∈ E G/(u,v) if (u, z) ∈ E G and (v, z) ∈ E G , • ({u, v}, z) / ∈ (E G/(u,v) ∪ R G/(u,v)) if (u, z) / ∈ (E G ∪ R G) and (v, z) / ∈ (E G ∪ R G)
, and • ({u, v}, z) ∈ R G/(u,v) otherwise, i.e. when (u, z) or (v, z) is already a red-edge, or when among (u, z) and (v, z), one is a black edge and one is a non-edge.

A contraction sequence [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF] of a graph G is a sequence of trigraphs of the form

(G n , . . . , G 1) with n = |V G |, G n = (V G , E G , ∅), and for all k ∈ [n -1], G k is a contraction of G k+1 . Note that G k has k vertices and, in particular, that G 1 has only one vertex, which is necessarily the trigraph 5 G 1 = ({V G }, ∅, ∅).
The component twin-width [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF] of a contraction sequence (G n , . . . , G 1) is the maximal size of a red-connected component among the trigraphs G k for k ∈ [n], and the component twin-width of a graph G denoted by ctww(G), is the minimum component twin-width of all its contraction sequences.

Similarly, the total twin-width [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF] of a contraction sequence is the maximal number of red edges of a trigraph in the sequence, and the total twin-width of a graph G, denoted by ttww(G), is the minimal total twin-width of its contraction sequences.

We also introduce a new parameter called total vertex twin-width. For a contraction sequence we define the total vertex twin-width as the maximum over the trigraphs in the sequence of the number of vertices of the trigraph that are incident to at least one red edge, and the total vertex twin-width of a graph G denoted by tvtww(G), is then the minimal total vertex twin-width of its contraction sequences. Clearly, if a graph (with loops) has t ≥ 0 vertices of degree at least 1, it has at least t/2 edges and at most t(t + 1)/2 edges, which leads to the following quadratic bounds. Theorem 1. For any graph G,

tvtww(G) ≤ 2ttww(G) ≤ (tvtww(G))(tvtww(G) + 1).
The proof of the soundness of our algorithms (in Section 4) that make use of contraction sequences rely on the following fundamental property of contraction sequences. This property can be easily proven by induction on k, knowing that it is indeed true for G n = (V G , E G , ∅), and using the definition of a contraction of a trigraph. Property 2. Let (G n , . . . , G 1) be a contraction sequence of a graph G, k ∈ [n], and let U and V be two different vertices of G k . For all u ∈ U and v ∈ V :

• (u, v) ∈ E G , whenever (U, V) ∈ E G k , and • (u, v) / ∈ E G , whenever (U, V) / ∈ E G k ∪ R G k .
Lastly, a cograph is a graph that has a contraction sequence with no red-edges except red loops, i.e., graphs with component twin-width 1 [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF].

Rank-width

A branch decomposition [START_REF] Oum | Graphs of Bounded Rank-width[END_REF] of a graph G is a binary tree T (a tree where each nonleaf vertex has degree 3) whose set of leaves is exactly V G . Let G be a graph and T a branch decomposition of G. Every edge e of T corresponds to a bipartition (X e , Y e) of V G by considering the bipartition of the leaves of T into their connected components of T -e (the tree T but where the edge e have been removed). For every edge e of T , let A e be the (Z/2Z)-matrix whose set of rows is X e and whose set of columns is Y e , and whose coefficient of index (u, v) ∈ X e × Y e is 1 if (u, v) ∈ E G , and 0 otherwise.

Finally, let ρ G (T) = max e∈E T rank(A e). The rank-width of G denoted by rw(G), is the minimum of ρ G (T) for every branch-decomposition T of G. A branch decomposition T realizing this minimum is called an optimal branch-decomposition of G. One of the main interests of rank-width is made clear in the following remark. Lemma 1. Let T be an optimal branch-decomposition of a graph G, and e ∈ E T . If

|X e | > 2 rw(G) , then there exists (u, u ′) ∈ (X e) 2 with u ̸ = u ′ such that N G (u) ∩ Y e = N G (u ′) ∩ Y e .
Proof. Since the rank of the matrix A e is lower than rw(G), the rows of G all belong to a (Z/2Z)-vector space of dimension at most rw(G). The latter has a cardinality of at most 2 rw(G) , and therefore, X e has 2 identical rows, which proves the result.

Improved Bounds for Contraction Sequences Related Parameters

Let us now begin the first major technical contribution of the article. In Section 3.1 we relate component twin-width and clique-width via a tight linear bound. As a consequence, we also manage to relate linear clique-width to component twin-width and show that the component twin-width of a graph is never higher than its linear cliquewidth. Then, in Section 3.2 we turn to the problem of approximating component twin-width (for a given input graph). We show two positive results, one using cliquewidth as an intermediate parameter, and an improved approximation via rank-width. Lastly, we (in Section 3.3) prove a novel quadratic bound between total twin-width and linear clique-width. Hence, not only can (linear) clique-width be expressed via the twin-width parameter family, but this can be accomplished with a relatively small overhead.

Comparing clique-width and component twin-width

In this section, we prove the linear bounds between clique-width cw and component twin-width ctww. Theorem 3.

For every graph G cw(G) ≤ ctww(G) + 1 ≤ 2cw(G).
Firstly, we prove the leftmost inequality. Proposition 4. For every graph G, cw(G) ≤ ctww(G) + 1.

Proof. Let (G n , . . . , G 1) be an optimal contraction sequence of G, and let κ = ctww(G). Note that, for all k ∈ [n], every red-connected component of G k has size ≤ κ. We explain how to construct a (κ + 1)-expression of G.

We show the following invariant for all k ∈ [n]:

P(k) : "Let C = {S 1 , . . . , S p } be a red-connected component of G k and C = S 1 ∪ • • • ∪ S p . There exists a (κ + 1)-expression φ C of the p-labelled graph G C = G[C] with ∀i ∈ [p], V i G C = S i ."
We first prove P(n). In G n = (V G , E G , ∅), there are no red edges: the red-connected components are the singletons {u} for u ∈ V G . Thus • 1 is a (κ + 1)-expression of (G[{u}], l u) (with l u : u → 1), which proves P(n). Now, take k ∈ [n -1] and assume P(k + 1). We will prove P(k). By definition of a contraction sequence, G k is of the form G k = G k+1 /(u, v) for two different vertices u and v of G k+1 . Observe that each red-connected component of G k is also a redconnected component of G k+1 , except the red-connected component C containing uv. Hence, it suffices to prove P(k) for the red-connected component C. Notice also that (C \ {uv}) ∪ {u, v} is a union of red-connected component C 1 , . . . , C q of G k+1 (every pair of red-connected vertices in G k+1 that does not contain u or v is also red-connected in G k). We thus have that

C =: (C 1 ∪ • • • ∪ C q ∪ {uv}) \ {u, v}.
Denote by {S 1 , . . . , S p-1 , S ′ p } the set of vertices of C, with p = |C|, and S ′ p = uv. We have seen that C 1 ∪• • •∪C q = {S 1 , . . . , S p-1 , S p , S p+1 }, with S p := u and S p+1 := v. For each i ∈ [p + 1], S i belongs to a unique C j with j ∈ [q]: let j(i) ∈ [q] be such that S i ∈ C j(i) .

By P(k + 1) and up to interchanging labels, for every j ∈ [q] there exists a (κ + 1)expression φ Cj of the p-labelled graph

G Cj = G[C j] with for all i ∈ [p] with j(i) = j, V i G C j = S i . Therefore, φ ′ := φ C1 ⊕ • • • ⊕ φ Cq
expresses the disjoint union of the graphs G C1 , ..., G Cq . Furthermore, φ ′ is an expression of a graph over the same vertices as G[C], Now, we still need to construct the black edges crossing these red-connected components.

We thus apply η i,i ′6 to φ ′ for every black edge of the form (S i , S i ′) in G k+1 , to obtain an expression φ ′′ . Since the vertices with labels i and i ′ are exactly the vertices of S i and S i ′ , we create exactly the edges between vertices of S i and of S i ′ when applying η i,i ′ . By Property 2, we construct the correct black edges in G[C], and thus φ ′′ is an expression of G[C].

Moreover, we need to make sure that the labels in φ ′′ match the requirements of P(k). For that, we set φ G C := ρ p+1→p (φ ′′). By doing so, S p (say, u) and S p+1 (say, v) have the same label in φ G C . Thus, it follows that φ G C witnesses P(k) (since S p = u and S p+1 = v are now contracted into S ′ p = uv in G k) for the red-connected component C. Indeed, we have used p

+ 1 = |C| + 1 ≤ κ + 1 different labels to construct φ G C from φ C1 , . . . , φ Cq . Since {V G } is a red-connected component of G 1 = ({V G }, ∅, ∅), it follows from P(1) that G[V G] = G has a (κ + 1)-expression, and thus cw(G) ≤ κ + 1. As κ = ctww(G), we have cw(G) ≤ ctww(G) + 1.
Note, however, that lcw can not be bounded by a function of ctww. For instance, the class of cographs (and even of trees) have unbounded linear clique-width [START_REF] Gurski | On the relationship between nlc-width and linear nlcwidth[END_REF], despite having a bounded component twin-width of 1. Let us now continue by proving the rightmost bound of Theorem 3. Proposition 5. For every graph G, we have:

(i) ctww(G) ≤ 2cw(G) -1, and (ii) ctww(G) ≤ lcw(G).
Proof. We first prove (i) and then adapt it to prove (ii). Let k := cw(G) and take a k-expression of G. We will explain how to construct a contraction sequence of G in which every red-connected component has size ≤ 2k -1. The following remark will be implicitly used throughout this proof.

Remark 1. Two vertices that have the same label in an expression φ ′ also have the same label in any expression of φ that has φ ′ as a sub-expression.

We prove the following property of k-expressions of φ by structural induction:

H(φ) : "Let (G, l G) := [φ]. There exists a (partial) contraction sequence (G n , . . . , G k ′) with k ′ ≤ k of G such that: • every red-connected component in the trigraphs G n , . . . , G k ′ has size ≤ 2k -1, • the vertices of G k ′ are exactly the non-empty V i G for i ∈ [k], and
• every pair of vertices contracted have the same labels in (G, l G) 7 ."

If φ = • i with i ∈ [k],
there is nothing to do since G has only one vertex. If φ is of the form ρ i→j (φ ′) (with (i, j) ∈ [k] 2 and i ̸ = j), consider for G the partial contraction sequence of (G ′ , l G ′) := [φ ′] given by H(φ ′), and then contract

V i G ′ and V j G ′ to obtain V j G = V i G ′ ∪ V j G ′ .
Since φ ′ is also a k-expression of G, and since that last contraction happens in a trigraph with at most k vertices, this partial contraction sequence of G satisfies H(φ).

If φ is of the form η i,j (φ ′) (with (i, j) ∈ [k] 2 and i ̸ = j), consider for G the partial contraction sequence of (G ′ , l G ′) := [φ ′] given by H(φ ′). To prove that it is sufficient to prove H(φ), it is sufficient to justify that it does not create any red edge in the contraction of G that was not present in the contraction of G ′ . The first red-edge (x, y) that would appear in the contraction of G = [η i,j (φ ′)] that does not appear in the same contraction of G ′ = [φ ′], results necessarily of the contraction of two vertices u and v with x = uv and y being in the symmetric difference of the neighborhoods of u and v in G = [η i,j (φ ′)] but not in G ′ = [φ ′]. Such a red-edge can not exist because we contract only vertices with the same label in φ ′ (or, equivalently, in φ), and that η i,j can only decrease (with respect to ⊆) the symmetric difference between the neighborhood of vertices with the same label in φ. By Remark 1, this implies that it is also true for vertices having the same label in any subexpression of φ.

If

φ is of the form φ = φ ′ ⊕ φ ′′ : denote (G ′ , l ′) := [φ ′] and (G ′′ , l ′′) := [φ ′′], thereby, V G = V G ′ ∪ V G ′′ .
Consider the partial contraction sequence of G given by: 1. contract the vertices in V G ′ in accordance to the contraction sequence given by H(φ ′), 2. contract the vertices in V G ′′ in accordance to the contraction sequence given by

H(φ ′′), 3. for all i ∈ [k], contract V i G ′ with V i G ′′ (if both are nonempty) to get V i G = V i G ′ ∪ V i G ′′ .
Steps 1 and 2 do not create a red-edge adjacent to both V G ′ and V G ′′ (since these are two distinct connected components of G). Thus, before step 3, we have a trigraph with ≤ 2k vertices (because both trigraphs obtained after H(φ ′) and H(φ ′′) have less than k vertices), and every red-component that have appeared so far has size ≤ 2k -1. After the first contraction of step 3, the resulting trigraph has ≤ 2k -1 vertices, and thus no red-connected component of size > 2k -1 can emerge. Such a contraction satisfies every requirement of H(φ). We have thus proven H(φ) for every k-expression. Now, take a k-expression φ of G. Up to applying ρ i→1 for all i ∈ [k] to φ, we can assume that (G, l G) := [φ] with l G being constant equal to 1. The partial contraction sequence of G given by H(φ) is a total contraction sequence of G of component twinwidth ≤ 2k -1. Since k = cw(G), we have proven that ctww(G) ≤ 2cw(G) -1. To prove (ii), we show a similar property H lin (φ) for every linear k-expression. The only difference between H lin and H is that we replace the condition ≤ 2k -1 by ≤ k. The proof then follows exactly the same steps, except for the case φ = φ ′ ⊕ φ ′′ , where step 2 (the contraction according to H lin (φ ′′)) is not necessary anymore, since φ ′′ is of the form • i (i ∈ [k]), and we obtain a trigraph of size k + 1 instead of 2k, since φ ′′ 7 Inductively, we say that the label of a vertex S ∈ V G l (k ′ ≤ l ≤ n) is then the common label of the vertices that have been contracted together to produce S. has 1 vertex instead of k. This ensures that every red-connected component has size ≤ (k + 1) -1 = k instead of 2k -1 in the non-linear case.

For step 3, i.e., contracting vertices of the same color in φ ′ and in φ ′′ , just note that it consists of at most 1 contraction instead of k in the linear case.

Approximating component twin-width

The linear bounds established in Section 3.1 entail reasonable approximation results for component twin-width by making use of known approximations of clique-width [START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF]. The best currently known approximation algorithm for clique-width is given by Theorem 6. Theorem 6. [START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF] Let k be a fixed positive integer. There is an O(|V G | 3)-time algorithm that either outputs an (8 k -1)-expression of an input graph G or confirms that the clique-width of G is larger than k.

From Theorem 6 and the linear bounds established in Proposition 4 and Proposition 5, we immediately obtain an approximation algorithm for component twin-width. Theorem 7. Let p be a fixed positive integer. There is an O(|V G | 3)-time algorithm that either outputs a contraction sequence of component twin-width ≤ 2 3p+4 -3 of an input graph G or confirms that the component twin-width of G is larger than p.

Proof. The algorithm consists of applying the algorithm of Theorem 6 to G with k := p+1. If the algorithm confirms that cw(G) > p+1, then we know that ctww(G) > p by Proposition 4. Otherwise, it outputs a (2 3(p+1) -1)-expression of G, which we transform into a contraction sequence of G of component twin-width ≤ 2 × (2 3(p+1) -1) -1 = 2 3p+4 -3 through the constructive proof of Proposition 5, which can be performed in linear time in the size of the (2 3(p+1) -1)-expression of G.

It is still interesting to see that a direct comparison between component twin-width and rank-width yields to a better approximation ratio, thanks to Theorem 8. In fact, Theorem 6 was also obtained by this method. By avoiding using clique-width as an intermediate parameter, it is not surprising that we obtain a better ratio. Theorem 8. [START_REF] Oum | Approximating rank-width and clique-width quickly[END_REF] Let k be a fixed positive integer. There is an O(|V (G)| 3)-time algorithm that either outputs a rank-decomposition (of an input graph G) of width at most 3k -1 or confirms that the rank-width of G is larger than k.

We can indeed make use of the bounds given by Theorem 9. The proof is very similar to the proof of functional equivalence between boolean-width and component twin-width [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF], which is not surprising, since Lemma 1 applies both to rank-width and boolean-width. Theorem 9. For every graph G, rw(G) -

1 ≤ ctww(G) ≤ 2 rw(G)+1 .
Proof. The first inequality rw(G) -1 ≤ ctww(G) follows from Proposition 4 , stating that cw(G) -1 ≤ ctww(G) and the fact that rw(G) ≤ cw(G) [START_REF] Oum | Graphs of Bounded Rank-width[END_REF].

We now focus on proving the second bound of ctww(G) ≤ 2 rw(G)+1 . This proof follows the same scheme as the proof of the functional equivalence between booleanwidth and component twin-width [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF].

Similarly to a branch-decomposition of graphs, a branch-decomposition of a trigraph G ′ is a binary tree whose set of leaves is V G ′ . It is said to be rooted if a non-leaf vertex has been chosen to be the root, which leads to the usual definition of children and descendants in a rooted tree. The set of leaves descending from a vertex v of a tree T is denoted by D v . Now, let G be a graph and T be an optimal branch decomposition of G, and let r := rw(G). We prove by induction the following property for k ∈ [n].

P(k)

: "There exists a (partial) contraction sequence (G n , . . . , G k) of G of component twin-width ≤ 2 r+1 . Moreover, there exists a branch-decomposition T k of G k such that for every t ∈ V T k with |D t | > 2 r , there is no red-edge crossing the bipartition

(D t , V G k \ D t)."
Note that P(n) is indeed true since G = G n has no red-edge. Now assume P(k + 1) with k ∈ [n -1]. We will prove P(k). First, note that if k ≤ 2 r , contracting any two arbitrary vertices and giving any branch decomposition of G k proves P(k). We may thus assume that k > 2 r . The root ρ satisfies |D ρ | ≥ 2 r +1. Observe that there exists a node v of T k+1 such that 2 r + 1 ≤ |D v | ≤ 2 r+1 : a node v such that D v has size at least 2 r + 1 and which is furthest from the root meets the condition. Moreover, any child w of v verifies |D w | ≤ 2 r . If we use Lemma 1 with respect to an edge adjacent to v, then there are two vertices u and u ′ that satisfy

N G (u)∩(V G k+1 \D v) = N G (u ′)∩(V G k+1 \D v).
To prove P(k), we will prove that it is sufficient to contract the vertices u and u ′ of G k+1 to obtain G k , and to identify the leaves u and u ′ of T k+1 to obtain T k (i.e. we remove u ′ and shortcut every degree 2 vertex that appears, and we then rename u as uu ′). Note that all the red-edges created by the contraction of u and u ′ are adjacent to the new vertex uu ′ .

Firstly, by our choice of u and u ′ , we do not create any red-edge crossing (D v , V G k \ D v). Due to the property of T k+1 ensured by

P(k + 1) (recall that |D v | > 2 r), there is no red-edge crossing (D v , V G k \ D v) in T k . The red-connected component C of the new vertex uu ′ is thus contained in D v ,
and thus has size at most 2 r+1 . Since C is the only red-connected component of G k that was not a red-connected component of G k+1 , G k indeed meets the requirements of P(k).

Secondly, due to the choice of v, any node t of T k with |D t | > 2 r containing the new vertex uu ′ is an ancestor of v. Since D v ⊆ D t , by the above argument, there is no red-edge crossing (D t , V G k \ D t).

The proof of P(k) is now complete: P(1) justifies that ctww(G) ≤ 2 r+1 .

This bound naturally leads to the approximation given in Theorem 10. Theorem 10. Let p be a fixed positive integer. There is an O(|V G | 3)-time algorithm that either outputs a contraction sequence of component twin-width ≤ 8 p+1 of an input graph G or confirms that the component twin-width of G is larger than p.

Proof. This result can be obtained similarly to Theorem 7, by using Theorem 8 and Theorem 9 instead of Theorem 3 and Theorem 6.

Comparing total twin-width and linear clique-width

In this section, we provide a quadratic bound between total twin-width and linear clique-width. Note that these parameters are already known to be functionally equivalent, as they are both known to be functionally equivalent to linear boolean-width through the following relations [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF][START_REF] Oum | Approximating clique-width and branch-width[END_REF]:

• lbw ≤ lcw ≤ 2 lbw+1 , • lbw ≤ 2 ttww , • ttww ≤ (2 lbw + 1)(2 lbw-1 + 1),
which entail the exponential and double-exponential bounds between linear cliquewidth and total twin-width:

• ttww ≤ (2 lcw + 1)(2 lcw-1 + 1), • lcw ≤ 2 2 ttww +1 .
Here, we will improve these bounds by establishing: Theorem 11. For every graph G, lcw(G) -1 ≤ 2ttww(G) ≤ lcw(G)(lcw(G) + 1).

The proof technique mirrors those of Proposition 4 and Proposition 5. Hence, our proof constructions appear to be generally applicable for showing stronger relationships between graph parameters than mere functional equivalence. We begin by first comparing linear clique-width and total vertex twin-width, and then use Theorem 1. Surprisingly, as we will prove, the parameter tvtww is exactly the same as lcw (up to a difference of 1). Theorem 12. For every graph G, lcw(G) -1 ≤ tvtww(G) ≤ lcw(G).

Firstly, we show the leftmost inequality. Proposition 13. For every graph G, lcw(G) ≤ tvtww(G) + 1.

Proof. The proof is similar to the proof of Proposition 4 but we include the details since the proof is constructive and has potential algorithmic applications. Let (G n , . . . , G 1) be a contraction sequence of G witnessing κ := tvtww(G). We explain how to construct a linear (κ + 1)-expression of G. We show the following invariant for all k ∈ [n]: P(k) : "Let C k = {S 1 , . . . , S p } be the set of vertices of G k of red-degree at least 1, and

C k = S 1 ∪ • • • ∪ S p . There exists a linear (κ + 1)-expression φ C k of the p-labelled graph G C k := G[C k] with V i G C k = S i for all i ∈ [p]." Note that for all k ∈ [n], |C k | ≤ κ
by definition of the total vertex twin-width. We first prove P(n). In G n = (V G , E G , ∅), there are no red edges. Thus, C n = ∅ and there is nothing to prove. Now, take k ∈ [n -1] and assume P(k + 1). We will prove P(k). By definition of a contraction sequence, G k is of the form G k = G k+1 /(u, v) for two different vertices u and v of G k+1 . First, we need to build a linear (κ + 1)-expression over the right set of vertices. Denote C k = {S 1 , . . . , S p-1 , S ′ p } with S ′ p = uv. Letting S p = u and S p+1 = v, we have that S i is a vertex of G k+1 for all i ∈ [p + 1], and that

C k = p+1 i=1 S i . Observe that, C k+1 is of the form {S i | i ∈ I} with I ⊆ [p + 1]
. Also, the other vertices S j with j ∈ [p + 1] \ I of G k+1 are necessarily singletons. Otherwise, these vertices would have a red loop (by definition of a contraction sequence) and would thus belong to C k+1 . For all j ∈ [p + 1] \ I, let S j = {s j } with s j ∈ V G .

By P(k + 1), up to interchanging labels, there exists a linear (κ + 1)-expression

φ C k+1 of the |I|-labelled graph G C k+1 , such that for all i ∈ I, V i G C k+1 = S i . Therefore, φ ′ := φ C k+1 ⊕ ⊕ j∈[p+1]\I • j (s j)
is a linear expression over the same vertices of the graph

G C k , that satisfies V i [φ ′] = S i for all i ∈ [p + 1].
Now, we still need to construct the black edges crossing the different S i for i ∈ [p + 1]. We thus apply η i,i ′8 to φ ′ for every black edge of the form (S i , S i ′) in G k+1 (with (i, i ′) ∈ [p + 1]), to obtain an expression φ ′′ . Since the vertices with labels i and i ′ are exactly the vertices of S i and S i ′ , we create exactly the edges between vertices of S i and of S i ′ when applying η i,i ′ . By Property 2, and because φ C k+1 is a linear expression of G C k+1 , we have that φ ′′ is a linear expression of G C k .

Moreover, we need to make sure that the labels in φ ′′ match the requirements of P(k). For that, we set φ G C k := ρ p+1→p (φ ′′). By doing so, S p (say, u) and S p+1 (say, v) have the same label in φ G C k .

Thus, it follows that φ G C k witnesses P(k) (since S p = u and S p+1 = v are now contracted into S ′ p = uv in G k). Indeed, we have used p

+ 1 = |C k | + 1 ≤ κ + 1 different labels to construct the linear expression φ G C k . The expression φ G C k is indeed linear because φ G C k+1 is linear and because the right term of every ⊕ used to construct φ C k from φ C k+1 is of the form • j (s j) with s j ∈ V G . Since {V G } is a vertex of G 1 = ({V G }, ∅, ∅
) with a red loop (unless G is a graph on 1 vertex, in which case the theorem is trivial), it follows from P(1) that G[V G] = G has a linear (κ + 1)-expression, and thus lcw(G) ≤ κ + 1. As κ = tvtww(G), we have lcw(G) ≤ tvtww(G) + 1.

We now prove the rightmost bound. Proposition 14. For every graph G, we have, tvtww(G) ≤ lcw(G)

Proof. Again, we remark that the proof is similar to the proof of Proposition 5, but we include the details since the proof of the contraction sequence with the necessary properties is constructive and may be useful in its own right.

Let k := lcw(G) and take a linear k-expression φ G of G. We will explain how to construct a contraction sequence of G in which every trigraph has at most k vertices of red degree at least 1. We begin by defining the following property and then prove it by induction over φ: H(φ) : "Let (G, l G) := [φ]. There exists a (partial) contraction sequence (G n , . . . , G k ′) of G with k ′ ≤ k such that:

• each of the trigraphs G n , . . . , G k ′ have at most k vertices with red degree ≥ 1,

• the vertices of G k ′ are exactly the non-empty V i G for i ∈ [k], and • every pair of vertices contracted have the same labels in (G, l G) 9 ." computation can be seen as a pre-computation, since it does not involve the input graph G): we obtain a fine-grained algorithm running in time O * ((ctww(H) + 2) |V G |), whose complexity beats the best algorithms of the literature and that runs in time O * ((2cw(H) + 1) |V G |) [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF] and O * ((lcw(H) + 2) |V G |) [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF] through the linear bound of Section 3.1. Note that the technique employed in this paper could similarly be used to derive the same complexity results applied to the more general frameworks of counting the solutions of binary constraint satisfaction problems, ie. problems of the forms #Binary-Csp(Γ) with Γ a set of binary relations over a finite domain, even though we restrict to the simpler case of #H-Coloring here to avoid having to define contraction sequences of instances and template of binary constraint satisfaction problems.

Parameterized complexity

We present an algorithm solving #H-Coloring in FPT time parameterized by component twin-width. It is inspired by the algorithm solving k-Coloring [START_REF] Bonnet | Twin-width VI: the lens of contraction sequences[END_REF], thus proving that #H-Coloring is FPT parameterized by component twin-width and thus also by clique-width (by functional equivalence).

Let us remark that Walhström [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF] solves H-Coloring in time 1) , whenever a cw(G)-expression of G is given. We solve it in time 1) .

2 2cw(G)×|V H | (|V G | + |V H |) O(
(2 |V H | -1) ctww(G)+1 × (|V G | + |V H |) O(
Recall however that (1) ctww(G) + 1 ≤ 2cw(G) by Proposition 5, implying that our algorithm is always at least as fast, and that (2) our algorithm is strictly faster for e.g. cographs with edges (component twin-width 1, versus clique-width 2) and cycles of length 6 (component twin-width 3, versus clique-width 4). Theorem 15. For any graph H, there exists an algorithm running in time

(2 |V H | -1) ctww(G)+1 × (|V G | + |V H |) O(1)
that solves #H-Coloring on any input graph G (assuming that an optimal contraction sequence (G n , . . . , G 1) of G is given).

Proof.

For k ∈ [n], C = {S 1 , . . . , S p } ⊆ V G k a red-connected component of vertices of G k , and for γ : C → (2 V H \ ∅), a H-coloring of G[∪C] with profile γ is a H-coloring f of G[∪C]
such that for all i ∈ [p], f (S i) = γ(S i). I.e. the vertices of H used to color S i are exactly the colors of the set γ(S i). Then, define the set COL(C, γ) as the set of H-colorings of G[∪C] with profile γ. We see that for every red-connected component C of G k , the sets COL(C, γ) for

γ : C → (2 V H \ ∅) form a partition of the set of the H-colorings of G[∪C].
The principle of the algorithm is to inductively maintain (from k = n to 1) the knowledge of every

|COL(C, γ)| (stored in a tabular #col(C, γ)) for a red-connected component C of G k and γ : C → (2 V H \ ∅). In this way, since {V G } is a red-connected component of G 1 = ({V G }, ∅, ∅), we can obtain the number of H-colorings of G[V G] = G by computing T ∈(2 V H \∅) #col({V G }, V G → T).
First, note that the red-connected components of G n are the {u} for u ∈ V G (since

G n = (V G , E G , ∅) has no red edge). For every γ : u → γ(u) ∈ (2 |V H | \ ∅) we let #col({u}, γ) ← 0 if |γ(u)| ̸ = 1 and #col({u}, γ) ← 1 if |γ(u)| = 1.
Hence, we correctly store the value of |COL({u}, γ)| in the tabular #col({u}, γ).

We explain how to maintain this invariant after the contraction from G k+1 to G k (with k ∈ [n -1]). By definition of a contraction sequence, G k is of the form G k =: G k+1 /(u, v) with u and v two different vertices of G k+1 .

Note that every red-connected component of G k is also a red-connected component of G k+1 , except the red-connected component C containing uv. We only have to compute |COL(C, γ)| for any γ : C → 2 V H \∅, and to store it in the tabular #col(C, γ). Initialize the value of #col(C, γ) with 0.

Let C =: {S 1 . . . , S p-1 , S ′ p }, with S ′ p := uv, and p := |C| ≤ ctww(G). Since every pair of red-connected vertices in G k+1 (that contains neither u nor v) are red-connected in G k (except u and v), C must be of the form

C := (C 1 ∪ • • • ∪ C q ∪ {S ′ p }) \ {S p , S p+1 },
with S p := u and S p+1 := v and C 1 ∪ • • • ∪ C q = {S 1 , . . . , S p-1 , S p , S p+1 }, 10 and where C 1 , . . . , C q (with q > 0) are red-connected components of G k+1 whose union contains both S p = u and S p+1 = v. Notice that each S i (for i ∈ [p + 1]) belongs to a unique C j(i) with j(i) ∈ [q]. These notions are illustrated in Figure 2.

The algorithm iterates over every family (γ j :

C j → (2 V H \ ∅)) 1≤j≤q . Let γ = γ 1 ∪• • •∪γ q that maps every S i (with i ∈ [p-1]) to γ j(i) (S i), and that maps S ′ p = uv = S p ∪ S p+1 = u ∪ v to γ j(p) (S p) ∪ γ j(p+1) (S p+1). We check if there exists a (i, i ′) ∈ [p] 2 with i ̸ = i ′ , a black edge between S i and S i ′ in G k+1 , and (γ(S i) × γ(S i ′)) \ E H ̸ = ∅, in time O(p 2).
If so, we move to the next family (γ j) 1≤j≤q . Otherwise, we increment #col(C, γ) by q j=1 #col(C j , γ j).

Soundness:

The soundness of this algorithm follows from the fact that for each γ : C → 2 V H \ ∅, COL(C, γ) is the disjointed union, for (γ 1 , . . . , γ q) such that γ = γ 1 ∪• • •∪γ q , of the sets of H-colorings f such that for all j ∈ [q] the profile of f | Cj is γ j , that we denote by COL(C, γ 1 , . . . , γ q). We only need to compute |COL(C, γ 1 , . . . , γ q)|, which can be derived by Claim 1. We then store the sum over (γ 1 , . . . , γ q) such that γ

= γ 1 ∪ • • • ∪ γ q in #col(C, γ).
Claim 1. There are two distinct cases: . sets stored as invariants in the algorithm do not necessarily represent disjoint subsets of partial coloring. This is acceptable if one only wants to determine the existence of a total coloring (as long as every coloring is represented at least once), but it causes issues when counting the number of colorings.

1. If there exists (i, i ′) ∈ [p] 2 such that (S i , S i ′) is a black edge of G k+1 and (γ j(i) (S i)× γ j(i ′) (S i ′)) \ E H ̸ = ∅, then COL(C, γ 1 , . . . , γ q) = ∅. S 1 S 2 S 3 S 4 S 5 S 6 u = S 7 v = S 8 G k+1 S 1 S 2 S 3 S 4 S 5 S 6 uv = S ′ 7 = S 7 ⊎ S 8 G k

Fine-grained complexity

We

V G . An H-coloring f of G[S 1 ∪ . . . , ∪S p] is said to have C-profile γ if for each i ∈ [p], f (S i) ⊆ T i . Denote by COL(γ, C) the set of partial H-colorings of G (i.e., a H-Coloring of an induced subgraph) with C-profile γ. It is easy to compute the |COL(γ, C)| for a red-connected component C of H m = (V H , E H , ∅) and γ = (S) with S ⊆ V G , since C is of the form C = {v} with v ∈ E H . We have |COL((S), {v})| = 1 if S 2 ∩ E G = ∅, and |COL((S), {v})| = 0, otherwise.
As in the proof of Theorem 11, for k ∈

[m -1] the only red-connected component of H k that is not a red-connected component of H k+1 , is the red-connected component C = {T 1 , . . . , T p-1 , T ′ p } that contains T ′ p = uv (the vertex obtained by contraction of T p = u and T p+1 = v in H k+1). Hence, C is of the form C = (C 1 ∪ • • • ∪ C q ∪ {T ′ p }) \ {T p , T p+1 }, with C 1 ∪ • • • ∪ C q = {T 1 , . . . , T p-1 , T p , T p+1 },
where C 1 , . . . , C q are the red-connected components of H k+1 whose union contains T p = u and T p+1 = v. Again, each T i belongs to a unique C j(i) with j(i) ∈ [q]. Then, as in the proof of Theorem 11, for all families of disjoint subsets of V G and γ = (S 1 , . . . , S p-1 , S ′ p), we can compute the value of |COL(γ, C)|. Indeed, as in the proof of Theorem 11, it is the sum for every family (γ j) 1≤j≤q that defines the profile γ (i.e., every γ j is a family of pairwise disjoint subsets of V G , and S ′ p is of the form S ′ p = S p ∪ S p+1 with S p ∩ S p+1 = ∅ and ∀j ∈ [q], γ j = (S i) i∈j -1 ({j})) of the value 1.

q j=1 |COL(γ j , C j)| if for every (i, i ′) ∈ [p] 2 with j(i) ̸ = j(i ′) and for every edge (u i , u i ′) of G with u i ∈ S i and u i ′ ∈ S i ′ , there is a black edge between T i and T i ′ in H k+1 , and 2. 0, otherwise. We again remark that, by Proposition 5, ctww(H) + 2 ≤ lcw(H) + 2 and ctww(H) + 2 ≤ 2cw(H) + 1 for any graph H. Therefore, the algorithm in the proof of Theorem 16 is always at least as fast as the clique-width approach by Wahlström [START_REF] Wahlström | New plain-exponential time classes for graph homomorphism[END_REF], and as remarked in Section 1, it is strictly faster for e.g. cographs with edges and cycles of length 6.

Conclusion and Future Research

In this article we explored component twin-width in the context of #H-Coloring problems. We improved the bounds of the functional equivalence between component twin-width and clique-width from the (doubly) exponential cw ≤ 2 2 ctww and ctww ≤ 2 cw+1 to the linear cw ≤ ctww + 1 ≤ 2cw.

In particular, this entails a single-exponential FPT algorithm for H-Coloring parameterized by component twin-width. From these linear bounds derives an approximation algorithm with exponential ratio, that can even be improved by a direct comparison with rank-width. We then demonstrated that our constructive proof technique could be extended to related parameters, and proved a quadratic bound between total twin-width and linear clique-width. Finally, we turned to algorithmic applications, and constructed two algorithms for solving #H-Coloring. The first uses a given optimal contraction sequence of the input graph G to solve #H-Coloring in FPT time parameterized by component twinwidth. The second uses a contraction sequence of the template graph H and beats the clique-width approach for solving #H-Coloring (with respect to |V G |). Let us now discuss some topics for future research.

Tightness of the bounds. Even though the bound cw ≤ ctww + 1 given by Proposition 4 is tight for any cograph with at least 1 edge, we do not currently know if this bound can be improved for graphs with greater clique-width or component twinwidth. Moreover, it would be interesting to determine whether the bound ctww ≤ 2cw-1 given by Proposition 5 is tight. The same remark holds for the bounds between component twin-width and rank-width given by Theorem 9. It would be interesting to study the tightness of the bound tww ≤ 2cw -2 (where tww designs the twinwidth), which is a direct consequence of Proposition 5. Also, since Propositions 13 and 14 provide very tight bounds, it is natural to ask for the characterization of the classes of graphs where each bound is attained.

Lower bounds on complexity. The algorithms relying on clique-width to solve H-Coloring by [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF] in O * (s(H) cw(G)) time are known to be optimal under the SETH. We have a similar optimality result for treewidth (tw), with an algorithm solving H-Coloring in time |V H | tw(G) , despite the existence of an algorithm in (|V H | -ε) tw(G) with ε > 0 being ruled out under SETH. A natural research direction is then to optimize the running time of the algorithm of Theorem 15, possibly by making use of s(H), and prove a similar lower bound.

Extensions. Instead of solving #H-Coloring the results of Section 4 can be extended to arbitrary binary constraints (binary constraint satisfaction problems, Bcsps). The notion of component twin-width indeed generalizes naturally to both instances and templates of a Bcsp. A natural continuation is then to investigate infinite-domain Bcsps which are frequently used to model problems of interest in qualitative temporal and spatial reasoning. Here, there are only a handful of results using the much weaker treewidth parameter [START_REF] Dabrowski | Solving infinite-domain CSPs using the patchwork property[END_REF], so an FPT algorithm using component twin-width or clique-width would be a great generalization. Additionally, one may note that the algorithms detailed in Section 4 can be adapted to solve a "cost" version of #H-Coloring: given a weight matrix C, the cost of a homomorphism f is u∈V G C(u, f (u)), and we want to find a homomorphism of minimal cost. Can this be extended to other types of generalized problems?

Fig. 1 A

 1 Fig. 1 A contraction sequence of the 7-cycle.

Fig. 2

 2 Fig. 2 An example where merging u = S 7 and v = S 8 causes j = 4 different red-connected components to merge into a red-connected component of size p = 7. With the notations of this proof, we could have C 1 = {S 1 , S 2 }, C 2 = {S 3 , S 4 , S 5 , S 7 }, C 3 = {S 6 } and C 4 = {S 8 }. For instance, j(1) = j(2) = 1, j(3) = j(4) = j(5) = j(7) = 2, j(6) = 3 and j(8) = 4

 The complexity of computing |COL(γ, C)| for every γ is (ctww(H) + 2) |V G | , since exploring every family (γ j) 1≤j≤q containing only pairwise disjoint subsets of|V G | requires to explore (q j=1 |C j | + 1) |V G |families (any vertex of G can be mapped to a unique element in {T 1 , T 2 , . . . , T p+1 } or none of them), which makes (|C| + 2) n ≤ (ctww(H) + 2) n possibilities. Since H 1 = ({V H }, ∅, ∅), we obtain the number of such H-colorings of G in time O * ((ctww(H) + 2) |V G |), and it is equal to |COL({V G }, {V H })|.

 2

 now consider the dual problem of solving #H-Coloring when H has bounded component twin-width. We therefore use an optimal contraction sequence of the template H instead of the input G, and obtain a fine-grained algorithm for #H-Coloring which runs in O * ((ctww(H) + 2) n) time.Theorem 16. #H-Coloring is solvable in time O * ((ctww(H) + 2) |V G |).Proof. Consider an optimal contraction sequence (H m , . . . , H 1) of H, with m := |V H |. We give an algorithm similar to that described in the proof of Theorem 11, except that we define profiles for red-connected component of eachH k , k ∈ [m].Let C = {T 1 , . . . , T p } be a red connected component of H k and let γ = (S 1 , . . . , S p) be a p-tuple of pairwise disjoint subsets of

The upper bound aspect of this field also goes under the name of "exact exponential-time algorithms"[START_REF] Fomin | Exact Exponential Algorithms[END_REF]. Let us also remark that fine-grained complexity is also strongly associated with proving sharp lower bounds for problems in P .

The notation O * means that we ignore polynomial factors.

I.e., each parameter is bounded by a function of the other.

Occasionally written uv.

Each vertex of G k is a set of vertices of G that have been contracted.

See Section 2.2 for the notations relative to clique-width.

See Section 2.2 for the notations relative to clique-width.

Inductively, we say that the label of a vertex S ∈ V G l (k ′ ≤ l ≤ n) is then the common label of the vertices that have been contracted together to produce S.

Note that uv = S ′ p = Sp ∪ Sp+1 = u ∪ v.

If φ = • i with i ∈ [k], there is nothing to do since G has only one vertex. If φ is of the form ρ i→j (φ ′) (with (i, j) ∈ [k] 2 and i ̸ = j), consider for G the partial contraction sequence of (G ′ , l G ′) := [φ ′] given by H(φ ′), and then contract V i G ′ and V j G ′ to obtain

Since φ ′ is also a k-expression of G, and since that last contraction happens in a trigraph with less than k vertices, this partial contraction sequence of G satisfies H(φ).

If φ is of the form η i,j (φ ′) (with (i, j) ∈ [k] 2 and i ̸ = j), consider for G the partial contraction sequence of (G ′ , l G ′) := [φ ′] given by H(φ ′). To prove that it is sufficient to prove H(φ), it is sufficient to justify that it does not create any red edge in the contraction of G that was not present in the contraction of G ′ . The first red-edge (x, y) that would appear in the contraction of G = [η i,j (φ ′)] that does not appear in the same contraction of G ′ = [φ ′], results necessarily of the contraction of two vertices u and v with x = uv and y being in the symmetric difference of the neighborhoods of u and v in G = [η i,j (φ ′)] but not in G ′ = [φ ′]. Such a red-edge can not exist because we contract only vertices with the same label in φ ′ (or, equivalently, in φ), and that η i,j can only decrease (with respect to ⊆) the symmetric difference between the neighborhood of vertices with the same label in φ. By Remark 1, this implies that it is also true for vertices having the same label in any subexpression of φ.

If

given by H(φ ′), and then contracting V i G ′ (if not empty) and u to obtain

Since u is an isolated vertex in G, performing the contractions in G ′ can not create any red edge in the contraction of G that did already exist in the contraction of G ′ . The last eventual contraction between u and V i G ′ occurs in a trigraph with at most k + 1 vertices, resulting in a trigraph of at most k vertices. In particular, there can not be more than k vertices adjacent to at least one red edge. Such a contraction satisfies every requirement of H(φ). We have thus proven H(φ) for every linear k-expression. Now, take a linear k-expression φ of G. Up to applying ρ i→1 for all i ∈ [k] to φ, we can assume that (G, l G) := [φ] with l G being constant equal to 1. The partial contraction sequence of G given by H(φ) is a total contraction sequence of G of total vertex twin-width ≤ k. Since k = lcw(G), we have proven that tvtww(G) ≤ lcw(G).

From Theorem 1 and Theorem 12 we then obtain the quadratic bound lcw -1 ≤ 2ttww ≤ lcw(lcw + 1) of Theorem 11.

Complexity Results

In the second part of the article we show two algorithmic applications of dynamic programming over component twin-width to #H-Coloring. The first assumes that an optimal contraction sequence of the input graph G is given, and results in a FPT algorithm parameterized by ctww, running in time O * ((2 |V H | -1) ctww(G)). The second approach uses an optimal contraction sequence of the template H (whose

) ⊆ E H , then a function f : ∪C → V H belongs to COL(C, γ 1 , . . . , γ q) iff, for all j ∈ [q], f restricted to C j (denoted by f j) belongs to COL(C j , γ j).

Proof. We treat the two cases separately. In the first case, assume that there exists (i, i ′) ∈ [p] 2 such that (S i , S i ′) is a black edge of G k+1 and (γ j(i) (S i)×γ j(i ′) (S i ′))\E H ̸ = ∅ and, for the sake of contradiction, suppose that there is f ∈ COL(C, γ 1 , . . . , γ q). Take

By definition of a profile, there exists

Then, since there exists a black edge between S i and S i ′ in G k+1 , this means by Property 2 that (u i , u

In the second case, assume that for all (i, i

To prove necessity, notice that the restriction of a partial H-coloring is also a partial H-coloring, and by definition of COL(C, γ 1 , . . . , γ q), if f ∈ COL(C, γ 1 , . . . , γ q), then f j ∈ COL(C j , γ j).

To prove sufficiency, assume that f :

Hence, we only have to prove that f is a H-coloring. So let (u, u ′) ∈ E G . We prove that (f (u), f (u ′)) ∈ E H . Observe that there exist S i and

From Claim 1 it follows that choosing an f in COL(C, γ 1 , . . . , γ q) is either impossible, or equivalent to choosing f j ∈ COL(C j , γ j) for all j ∈ [q], which is why we add either 0 or q j=1 #col(C j , γ j) when treating the part of #col(C, γ) relative to the family (γ 1 , . . . , γ q).

Complexity: To treat the red-connected component C, the only non-polynomial part is to iterate over every family (γ 1 , . . . , γ q), which represents

families to treat (recall that for all j ∈ [q], γ j is a non-empty subset of C j).

If one only wishes to solve H-Coloring rather than the counting problem, the algorithm by Ganian et al. [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF] which runs in O * (s(H) cw(G)) for a graph parameter s, is strictly more efficient. Indeed, for any graph H, its structural parameter s(H) is bounded by 2 |V H | -2 [START_REF] Ganian | The finegrained complexity of graph homomorphism parameterized by clique-width[END_REF] (the equality happens if and only if H is a clique), and as we have proven in Proposition 4, for any graph G, cw(G) ≤ ctww(G) + 1. However, it appears to be difficult to extend this algorithm to the counting problem since the