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Abstract

The H-COLORING problem is a well-known generalization of the classical NP-
complete problem k-COLORING where the task is to determine whether an input
graph admits a homomorphism to the template graph H. This problem has been
the subject of intense theoretical research and in this article we study the com-
plexity of H-COLORING with respect to the parameters clique-width and the more
recent component twin-width, which describe desirable computational properties
of graphs. We give two surprising linear bounds between these parameters, thus
improving the previously known exponential and double exponential bounds. Our
constructive proof naturally extends to related parameters and as a showcase
we prove that total twin-width and linear clique-width can be related via a tight
quadratic bound. The linear bounds between component twin-width and clique-
width entail natural approximations of component twin-width, by making use of
the results known for clique-width. On the algorithmic side we target the richer
problem of counting the number of homomorphisms to H (#H-COLORING). The
first algorithm uses a contraction sequence of the input graph G parameterized
by the component twin-width of G. This leads to a positive FPT result for the
counting version. The second uses a contraction sequence of the template graph
H and here we instead measure the complexity with respect to the number of
vertices in the input graph. Using our linear bounds we show that our algorithms
are always at least as fast as the previously best # H-Coloring algorithms (based
on clique-width) and for several interesting classes of graphs (e.g., cographs, or
cycles of length > 6) are in fact strictly faster.



1 Introduction

Graph coloring is a well-known computational problem where the goal is to color a
graph in a consistent way. This problem is one of the most well-studied NP-hard
problems and enjoys a wide range of applications e.g., in planning, scheduling, and
resource allocation [1]. There are many variants and different formulations of the
coloring problem, but the most common formulation is certainly the k-COLORING
problem that asks whether the vertices of an input graph can be colored using k
available colors in such a way that no two adjacent vertices are assigned the same color.
This problem can be extended in many ways and in this paper we are particularly
interested in the more general problem where any two adjacent vertices in the input
graph G have to be mapped to two adjacent vertices in a fixed template graph H
(the H-COLORING problem). It is not difficult to see that k-COLORING is then Kj-
COLORING, where K, is the k-vertex clique.

The basic H-COLORING problem has been extended in many directions, of which
one of the most dominant formalisms is the counting extension where the task is not
only to decide whether there is at least one solution (coloring) but to return the
number of solutions (#H-COLORING). This framework makes it possible to encode
phase transition systems modeled by partition functions, modeling problems from
statistical physics such as counting g¢-particle Widom—Rowlinson configurations and
counting Beach models, or the classical Ising model (for further examples, see e.g.
Dyer & Greenhill [2]). The #H-COLORING problem is #P-hard unless every connected
component of H is either a single vertex without a loop, a looped clique or a bipartite
complete graph, and it is in P otherwise [2]. The question is then to which degree
we can still hope to solve it efficiently, or at least improve upon the naive bound of
[V |IVel (where Vi is the set of vertices in the template graph H and Vi the set of
vertices in the input graph G).

In this article we tackle this question by targeting properties of graphs, so-called
graph parameters, which give rise to efficiently solvable subproblems. We will see below
several concrete examples of graph parameters, but for the moment we simply assume
that each graph G is associated with a number k € N, a parameter, which describes a
structural property of G. Here, the idea is that small values of k correspond to graphs
with a simple structure, while large values correspond to more complicated graphs.

There are then two ways to approach intractable H-COLORING problems: we either
restrict the class of input graphs G, or the class of template graphs H to graphs
where the parameter is bounded by some reasonably small constant. The first task is
typically studied using tools from parameterized complexity where the goal is to prove
that problems are fized-parameter tractable (FPT), i.e., obtaining running times of the
form f(k)-||G||°™M) for a computable function f: N — N (where ||G|| is the number of
bits required to represent the input graph G). The second task is more closely related
to fine-grained complexity! where the goal is to prove upper and lower bounds of the
form 2/®) . ||G||°M) for a sufficiently “fine-grained” parameter k, which in our case is
always going to denote the number of vertices |V¢| in the input graph G. Here, it is

1The upper bound aspect of this field also goes under the name of “exact exponential-time algorithms” [3].
Let us also remark that fine-grained complexity is also strongly associated with proving sharp lower bounds
for problems in P.



Fig. 1 A contraction sequence of the 7-cycle.

worth remarking that H-COLORING is believed to be a very hard problem, and the
general COLORING problem, where the template is part of the input, is not solvable
in 200Vel) . (|G|l + || H )™ time under the ezponential-time hypothesis (ETH) [4].
Hence, regardless of whether one studies the problem under the lens of parameterized
or fine-grained complexity, one needs to limit the class of considered graphs via a
suitable parameter.

The most notable graph parameter in this context is likely treewidth which, intu-
itively, measures how close a graph is to being a tree. Bounded treewidth is in many
algorithmic applications sufficient to guarantee the existence of an FPT algorithm, but
with the shortcoming of failing to capture classes of dense graphs. There are many
graph parameters proposed to address this limitation of tree-width, and we briefly
survey two noteworthy examples (see Section 2 for formal definitions).

1. clique-width (cw). The class of graphs (with labelled vertices) with clique-width
< k is defined as the smallest class of graphs that contains the one vertex graphs
o, with 1 vertex labelled by ¢ € [k], and that is stable by the following operations
for (i,4) € [k]? with i # j: (i) disjoint union of graphs, (ii) relabelling every vertex
of label i to label j, and (ii¢) constructing edges between every vertex labelled by
¢ and every vertex labelled by j. Note that the class of cographs (which contains
cliques) is exactly that of graphs with clique-width at most 2.

2. twin-width (tww). The class of graphs of twin-width < k > is usually formulated
via contraction sequences where graphs are gradually merged into a single vertex
(see Figure 1 for an example). Red edges represent an inconsistency in the merged
vertex (see Section 2.3 for a formal definition), and the maximum red degree in the
sequence thus represents the largest loss of information. A graph has twin-width
< k if it admits such a contraction sequence where the maximum red degree does
not exceed k.

For clique-width, Ganian et. al [5] identified a structural parameter s of graphs
and presented an algorithm for H-COLORING that runs in O*(s(H)®W(%)) time?. Tt
is also optimal in the sense that if there is an algorithm that solves H-COLORING in
time O*((s(H) — €)°%(%)), then the SETH fails [5]. Alternative algorithms exist for
templates of bounded clique-width, see Wahlstrém [6] who solves #H-COLORING in
O*((2cw(H) + 1)!Vel) time, and Bulatov & Dadsetan [7] for extensions.

Twin-width, on the other hand, is a much more recent parameter, but has in only
a few years attracted significant attention [8-22]. One of its greatest achievements
is that checking if a graph is a model of any first-order formula can be decided in

2The notation O* means that we ignore polynomial factors.



FPT time parameterized by the twin-width of the input graph. Thus, a very natural
research question in light of the above results concerning tree- and clique-width is to
study the complexity of (#)H-COLORING via twin-width. Unfortunately, it is easy
to see that under standard assumptions, H-COLORING is generally not FPT param-
eterized by twin-width. Indeed, since twin-width is bounded on planar graphs [23],
the existence of an FPT algorithm for 3-COLORING running in O*(f(tww(G))) time
implies an O*(1) time (i.e. a polynomial time) algorithm for 3-COLORING on planar
graphs (since f(tww(G)) = O(1) if G is a planar graph). Since 3-COLORING is NP-
hard on planar graphs, this would imply P=NP. Thus, 3-COLORING is para-NP-hard
[24] parameterized by twin-width.

Despite this hardness result it is possible to analyze H-COLORING by a variant of
twin-width known as component twin-width (ctww) [15]. This parameter equals the
maximal size of a red-connected component (instead of the maximal red-degree for
twin-width). It is then known that component twin-width is functionally equivalent®
to boolean-width [15], which in turn is functionally equivalent to clique-width [25].
Hence, H-COLORING is FPT parameterized by component twin-width, and the spe-
cific problem k-COLORING is additionally known to be solvable in O*((2% —1)ctww(G))
time [15]. As remarked by Bonnet et al., the theoretical implications of this particular
algorithm are limited due to the aforementioned (under the SETH) optimal algo-
rithm parameterized by clique-width [5]. However, this still leaves several gaps in our
understanding of component twin-width for H-COLORING and its counting extension
# H-COLORING.

Our paper has three major contributions to bridge these gaps. Firstly, the best
known bounds between clique-width and component twin-width are obtained by
following the proof of functional equivalence between component twin-width and
boolean-width, and then between boolean-width and clique-width. We thereby obtain

2CW+1 22<:tww

ctww < and cw <

and H-COLORING is thus solvable in O*(s(H)QZCtWW(G)) time. This proves FPT but
with a rather prohibitive run-time, and the main question is whether it is possible
to improve this to a single-exponential running time O*(29(¢*Ww(G)) (This line of
research in parameterized complexity is relatively new but of growing importance and
has seen several landmark results, see e.g. Chapter 11 in Cygan et al. [26]). We prove
that it is indeed possible by significantly strengthening the bounds between cw and
ctww and obtain the linear bounds

cw < ctww + 1 < 2cw.

Our proof is constructive which gives a fast algorithm to derive a contraction-sequence
from a clique-width expression and vice versa. To demonstrate that these ideas are not
limited to these specific parameters we (in Section 3.3) consider the related problem of
proving tighter bounds between linear clique-width (lew) and the recently introduced
total twin-width (ttww [15]). Linear clique-width is less explored than clique-width but

31‘6‘, each parameter is bounded by a function of the other.



comes with the advantage that faster algorithms for graph classes of bounded linear
clique-width is sometimes possible (cf. the remark before Theorem 7 in Bodlaender
et al. [27]) and that lower bounds on clique-width in many interesting cases can be
generalized to linear clique-width [28]. The total twin-width parameter is then known
to be functionally equivalent to linear clique-width, yielding the doubly exponential
bounds lew < 221 and ttww < (2'e% 4 1)(2'°%~1 4 1). We significantly improve
the latter to
lew — 1 < 2ttww < lew(lew + 1),

and thus demonstrate that virtually any complexity question regarding linear clique-
width can be translated to the total twin-width setting, with the possible advantage
of using contraction sequences as a unifying lens. Concretely, in terms of implemen-
tations, it can be expected that contraction sequence related parameters are more
convenient to use than (linear) clique-width, since there is only one fundamental oper-
ation to handle (vertex contraction) whereas (linear) clique-width not only deals with
vertex-labelled graphs, but also introduces four fundamental operations.

Secondly, we discuss how these bounds can be exploited to approrimate ctww by
making use of the results known on cw. Thus, an immediate consequence of our linear
bounds is that H-COLORING is solvable in O*(s(H)°t*"W(G)+1) time, which is a major
improvement to the aforementioned triple exponential upper bound.

Thirdly, we consider the generalized problem of counting the number of solutions.
It seems unlikely that the optimal algorithm (under SETH) by Ganian et al. [5] can be
lifted to #H-COLORING, and while the algorithm by Wahlstrém [6] successfully solves
#H-COLORING, it does so with the significantly worse bound of 22W (&) x V(15| 4-
[Viz|)°M. We tackle this problem in Section 4 by designing a novel algorithm for
# H-COLORING for input graphs with bounded component twin-width and which runs
in (2IVal — 1)etww(&) x (V| + [Vi[)OM) time. Since our linear bounds imply that
ctww(H)+2 < 2cw(H)+1 this is always at least as fast as the clique-width algorithm
by Wahlstrom, and strictly faster for several interesting classes of graphs. For example,
cographs with edges (component twin-width 1, versus clique-width 2) and cycles of
length 6 (component twin-width 3, versus clique-width 4).

We also consider #H-COLORING when the template graph H has bounded com-
ponent twin-width. We use an optimal contraction sequence of H in order to obtain a
O*((ctww (H) +2)!Vel) algorithm for #H-COLORING. For comparison, Wahlstrém [6]
solves #H-COLORING in O*((2cw(H) + 1)IVel) and, slightly faster, O*((lew(H) +
2)IVel) where lew(H) is the linear clique-width of H. Due to our linear bounds we
again conclude that our algorithm is always at least as fast as the O* ((2cw (H)+1)IVel)
time clique-width algorithm by Wahlstrom [6], and strictly faster for the aforemen-
tioned classes of graphs. For example, if H is a cograph with edges then our algorithm
solves #H-COLORING in O*(3/V¢l) time which beats the clique-width O*(5/V¢!) algo-
rithm by a significant margin. Let us also remark that this class of graphs does not
have bounded linear clique-width, so the O*((lew(H) + 2)/Vel) algorithm is not rel-
evant. If H is a cycle of length at least 6 we instead get ctww(H) = 3, cw(H) = 4,
lew(H) = 4, yielding the bounds O*(5Vel), O*(91Vel), and O*(6!Vel), i.e., also in this
case our algorithm is strictly faster.



Moreover, let us also remark that the technique employed in this article could
similarly be used to derive the same results applied to the more general frameworks of
counting the solutions of binary constraint satisfaction problems, i.e., problems of the
forms #BINARY-CsP(I') with a set of binary relations I" over a finite domain. However,
to simplify the presentation we restrict our attention to the #H-COLORING problem.

2 Preliminaries

Throughout this paper, a graph G is a tuple (Vg, E¢), where Vg is a finite set (the set
of vertices of G), and F¢ is a binary irreflexive symmetric relation over Vi (the set of
edges of G). We will denote the number of vertices of a graph G by n(G) or, simply,
by n when there is no danger of ambiguity. The neighborhood of a vertex u of a graph
G is the set Ng(u) = {v € Vi | (u,v) € Eg}. For a graph H we let H-COLORING
be the computational problem of deciding whether there exists an homomorphism
from an input graph G to H, i.e., whether there exists a function f: Vg — Vg such
that (z,y) € Eq implies that (f(z), f(y)) € En. We write #H-COLORING for the
associated counting problem where we instead wish to determine the exact number of
such homomorphisms. As remarked in Section 1, the template graph H can be chosen
with great flexibility to model many different types of problems.

2.1 Parameterized complexity

We assume that the reader is familiar with parameterized complexity and only intro-
duce the strictly necessary concepts (we refer to Flum & Grohe [29] for further
background). A parameterized counting problem is a pair (F,dom) where F : ¥* — N
(for an alphabet X, i.e., a finite set of symbols) and dom is a subset of ¥* x N. A
parameterized counting problem (F, dom) is said to be fized-parameter tractable (FPT)
if there exists a computable function f: N — N such that for any instance (x, k) € dom
of F, we can compute F(z) in f(k) x ||| time. An algorithm with this complexity
is said to be an FPT algorithm. Note that even though f might be superpolynomial,
which is expected if the problem is NP-hard, instances where k is reasonably small
can still be efficiently solved.

In practice, when studying FPT algorithms for an NP-hard counting problem,
it is very natural to optimize the superpolynomial function f that appears in the
complexity of the algorithm solving it. Typically, when dealing with graph problems
parameterized by the number of vertices n, an algorithm running in ¢ x ||z||°™) will
be considered efficient in practice if ¢ > 1 is small. This field of research is sometimes
referred to as fine-grained complexity.

2.2 Clique-width

For k > 1, let [k] = {1,...,k}. A k-labelled graph G is a tuple (Vg, Eg,lg), where
(Va, Eq) is a graph and lg : Vg — [k]. For i € [k] and a k-labelled graph G, denote
by V& = 15" ({i}) the set of vertices of G of label i. A k-expression ¢ of a k-labelled
graph G, denoted [p] = G, is an expression defined inductively [30] using:



1. o; with ¢ € [k]: [e;] is a k-labelled graph with one vertex labelled by i, we might
write o;(u) to state that the vertex is named wu.

2. pi—sj(p) with (4,7) € [k]? and i # j: [pi;(¢)] is the same graph as [¢], but where
all vertices of G with label i now have label j,

3. mi,j () with (4, j) € [k]? and i # j: [n; ()] is the same graph as [¢], but where all
tuples of the form (u,v) with {lg(u),lc(v)} = {i,j} is now an edge, and

4. o1 ® pa: [p1 D o] is the disjoint union of the graphs [p1] and [p2].

A graph G has a k-expression ¢ if there exists [ : Vo — [k] such that [¢] =
(Ve, Eg,1). The clique-width of a graph G (denoted by ew(G)) is the minimum k > 1
such that G has a k-expression. An optimal expression of a graph G is a cw(G)-
expression of G.

The subezpressions of an expression ¢ are defined similarly: the only subexpression
of e; is ;, the subexpressions of ¢ = @1 @® 2 are ¢ and the subexpressions of ¢; and
(2, the subexpressions of ¢ = p;,;(¢’) and ¢ = 1, ;(¢’) are ¢ and the subexpressions
of ¢'.

A linear k-expression is a k-expression ¢ where for every subexpression of ¢ of the
form 1 @ @2, s is of the form e; with i € [k]. The linear clique-width (denoted by
lew(G)) of a graph G is the minimum k > 1 such that G has a linear k-expression.

2.3 Parameters over contraction sequences

A trigraph [31] is a triplet G = (Vg, Eq, Rg) where (Vi, Eg) and (Vi, Rg) are graphs,
and Eg N Rg = (0. The graph (Vg, Eg) must be loopless, but (Vg, Rg) can contain
loops. The set Eg is the set of (black) edges of G, and R¢ the set of red edges of G.
A red-connected component of a trigraph G is a connected component of the graph
(Va, Ra)-

Let G be a trigraph and (u,v) € (Vg)? with u # v. The contraction of G with
respect to (u,v) is the trigraph G/(u,v) obtained from G by removing v and v and
adding a new vertex {u,v}*, where for all z € Vg \ {u,v}:

({u, v}, {u,v}) € Raj(uw) (i-e., {u,v} is a red loop),

({u,v}, 2) € Eguw) if (u,2) € Eg and (v, 2) € Eg,

({u,v},2) ¢ (EG/(u,U) URg/(uﬂ))) if (u,2) ¢ (EcURg) and (v, 2) ¢ (EqgURg), and
({u,v}, 2) € Rg)(u,w) otherwise, i.e. when (u,z) or (v,z) is already a red-edge, or
when among (u, z) and (v, z), one is a black edge and one is a non-edge.

A contraction sequence [31] of a graph G is a sequence of trigraphs of the form
(Gn,...,G1) with n = |Vg|, G, = (Vg, Eg,0), and for all k € [n — 1], Gg is a
contraction of Gx11. Note that Gy, has k vertices and, in particular, that G; has only
one vertex, which is necessarily the trigraph® G; = ({Vg},0,0).

The component twin-width [15] of a contraction sequence (G, ...,G1) is the max-
imal size of a red-connected component among the trigraphs Gy, for k € [n], and the
component twin-width of a graph G denoted by ctww(G), is the minimum component
twin-width of all its contraction sequences.

4Qccasionally written uwv.
5Each vertex of Gy, is a set of vertices of G that have been contracted.



Similarly, the total twin-width [15] of a contraction sequence is the maximal number
of red edges of a trigraph in the sequence, and the total twin-width of a graph G,
denoted by ttww(G), is the minimal total twin-width of its contraction sequences.

We also introduce a new parameter called total vertex twin-width. For a contraction
sequence we define the total vertex twin-width as the maximum over the trigraphs in
the sequence of the number of vertices of the trigraph that are incident to at least one
red edge, and the total vertex twin-width of a graph G denoted by tvtww(G), is then
the minimal total vertex twin-width of its contraction sequences. Clearly, if a graph
(with loops) has ¢ > 0 vertices of degree at least 1, it has at least ¢/2 edges and at
most (¢t + 1)/2 edges, which leads to the following quadratic bounds.
Theorem 1. For any graph G,

tvtww (G) < 2ttww(G) < (tvtww(G)) (tvtww(G) + 1).

The proof of the soundness of our algorithms (in Section 4) that make use
of contraction sequences rely on the following fundamental property of contraction
sequences. This property can be easily proven by induction on k, knowing that it
is indeed true for G,, = (Vg, Eg, ), and using the definition of a contraction of a
trigraph.

Property 2. Let (Gn,...,G1) be a contraction sequence of a graph G, k € [n], and
let U and V' be two different vertices of Gy. For allu € U andv € V:

e (u,v) € Eg, whenever (U, V) € Eg,, and

e (u,v) ¢ Eq, whenever (U, V) ¢ Eg, URg, .

Lastly, a cograph is a graph that has a contraction sequence with no red-edges
except red loops, i.e., graphs with component twin-width 1 [32].

2.4 Rank-width

A branch decomposition [33] of a graph G is a binary tree T' (a tree where each non-
leaf vertex has degree 3) whose set of leaves is exactly V. Let G be a graph and T a
branch decomposition of G. Every edge e of T corresponds to a bipartition (X, Y:) of
Ve by considering the bipartition of the leaves of T" into their connected components
of T — e (the tree T but where the edge e have been removed). For every edge e of T,
let A, be the (Z/2Z)-matrix whose set of rows is X, and whose set of columns is Y,
and whose coefficient of index (u,v) € X, x Y is 1 if (u,v) € Eg, and 0 otherwise.
Finally, let pg(T) = max rank(A.). The rank-width of G denoted by rw(G), is the
ecErp

minimum of pg(T) for every branch-decomposition T' of G. A branch decomposition
T realizing this minimum is called an optimal branch-decomposition of G. One of the
main interests of rank-width is made clear in the following remark.

Lemma 1. Let T be an optimal branch-decomposition of a graph G, and e € Ep. If
|X.| > 25W(E) | then there exists (u,u') € (X.)? with u # u' such that

Ng(u) ny, = Ng(u/) nyY,.



Proof. Since the rank of the matrix A, is lower than rw(G), the rows of G all belong
to a (Z/2Z)-vector space of dimension at most rw(G). The latter has a cardinality of
at most 2°W(%) and therefore, X, has 2 identical rows, which proves the result. [

3 Improved Bounds for Contraction Sequences
Related Parameters

Let us now begin the first major technical contribution of the article. In Section 3.1
we relate component twin-width and clique-width via a tight linear bound. As a con-
sequence, we also manage to relate linear clique-width to component twin-width and
show that the component twin-width of a graph is never higher than its linear clique-
width. Then, in Section 3.2 we turn to the problem of approrimating component
twin-width (for a given input graph). We show two positive results, one using clique-
width as an intermediate parameter, and an improved approximation via rank-width.
Lastly, we (in Section 3.3) prove a novel quadratic bound between total twin-width
and linear clique-width. Hence, not only can (linear) clique-width be expressed via
the twin-width parameter family, but this can be accomplished with a relatively small
overhead.

3.1 Comparing clique-width and component twin-width

In this section, we prove the linear bounds between clique-width cw and component
twin-width ctww.
Theorem 3. For every graph G cw(G) < ctww(G) + 1 < 2ew(G).
Firstly, we prove the leftmost inequality.
Proposition 4. For every graph G, cw(G) < ctww(G) + 1.

Proof. Let (G,,...,G1) be an optimal contraction sequence of G, and let x =
ctww(G). Note that, for all k € [n], every red-connected component of Gy, has size
< k. We explain how to construct a (k + 1)-expression of G.

We show the following invariant for all k € [n]:

P(k) : “Let C = {S1,...,Sp} be a red-connected component of Gy, and |JC = S U
-+ U Sp. There exists a (k + 1)-expression ¢ of the p-labelled graph G¢o = G[JC]
with Vi € [p], V&, = Si”

We first prove P(n). In G,, = (Vg, Eg, 0), there are no red edges: the red-connected
components are the singletons {u} for v € V. Thus e; is a (k + 1)-expression of
(G{u}], 1) (with I, : u+ 1), which proves P(n).

Now, take k € [n — 1] and assume P(k + 1). We will prove P (k). By definition of
a contraction sequence, Gy, is of the form Gy = Ggy1/(u,v) for two different vertices
u and v of Gg41. Observe that each red-connected component of Gy is also a red-
connected component of G41, except the red-connected component C' containing uv.
Hence, it suffices to prove P(k) for the red-connected component C. Notice also that
(C\ {uwv}) U {u,v} is a union of red-connected component C4,...,C, of Gy1 (every
pair of red-connected vertices in G41 that does not contain u or v is also red-connected
in G). We thus have that C' =: (C1 U---UCy U {uv}) \ {u,v}.



Denote by {S1,...,5,-1,5,} the set of vertices of C, with p = |C|, and S}, = uv.
We have seen that C1U- - -UCy = {S1,...,Sp_1,Sp, Sp+1}, with S, := wand Sp41 :=v.
For each i € [p+ 1], S; belongs to a unique C; with j € [g]: let j(i) € [¢] be such that
S; € Cj(i).

By P(k+1) and up to interchanging labels, for every j € [g] there exists a (k4 1)-
expression @¢, of the p-labelled graph G¢; = G[|J C;] with for all i € [p] with j(i) = j,
Vécj = S;. Therefore, ¢’ := pc, @ --- @ @c, expresses the disjoint union of the graphs
Gc,, ..., Go,. Furthermore, ¢ is an expression of a graph over the same vertices as
G[UC], Now, we still need to construct the black edges crossing these red-connected
components.

We thus apply 7, +® to ¢’ for every black edge of the form (S;,Si/) in Ggi1, to
obtain an expression ¢”. Since the vertices with labels ¢ and ¢ are exactly the vertices
of S; and S;/, we create exactly the edges between vertices of S; and of S;; when
applying 7; ;. By Property 2, we construct the correct black edges in G[|JC], and
thus ¢ is an expression of G[J C].

Moreover, we need to make sure that the labels in ¢ match the requirements of
P(k). For that, we set pg. := pp+1-p(¢”). By doing so, S, (say, v) and S,41 (say, v)
have the same label in ¢ . Thus, it follows that ¢, witnesses P(k) (since S, = u
and S, 41 = v are now contracted into S}, = uv in G},) for the red-connected component
C'. Indeed, we have used p+ 1 = |C] + 1 < k + 1 different labels to construct ¢g,.
from ¢c,,...,¢c,. Since {Vg} is a red-connected component of G1 = ({Vg},0,0), it
follows from P(1) that G[Viz] = G has a (k + 1)-expression, and thus ew(G) < k + 1.
As k = ctww(G), we have cw(G) < ctww(G) + 1. O

Note, however, that lcw can not be bounded by a function of ctww. For instance,
the class of cographs (and even of trees) have unbounded linear clique-width [34],
despite having a bounded component twin-width of 1. Let us now continue by proving
the rightmost bound of Theorem 3.

Proposition 5. For every graph G, we have:

(i) ctww(G) < 2cw(G) — 1, and
(77) ctww(G) < lew(G).

Proof. We first prove (i) and then adapt it to prove (ii). Let k := cw(G) and take a
k-expression of G. We will explain how to construct a contraction sequence of G in
which every red-connected component has size < 2k — 1. The following remark will be
implicitly used throughout this proof.

Remark 1. Two vertices that have the same label in an expression ¢’ also have the
same label in any expression of ¢ that has ©' as a sub-expression.

We prove the following property of k-expressions of ¢ by structural induction:
H(p) : “Let (G,lg) := [¢]. There exists a (partial) contraction sequence (G, ..., Gj)
with k' < k of G such that:

® cvery red-connected component in the trigraphs G,,, ..., Gy has size < 2k — 1,
® the vertices of Gy are exactly the non-empty V¢ for i € [k], and

6See Section 2.2 for the notations relative to clique-width.
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e cvery pair of vertices contracted have the same labels in (G,lg)".”

If ¢ = o; with ¢ € [k], there is nothing to do since G has only one vertex. If ¢ is of
the form p;_,;(¢’) (with (4,7) € [k]*> and i # j), consider for G the partial contraction
sequence of (G',lg) := [¢'] given by H(¢'), and then contract V&, and V&, to obtain
Vi = Vi, U VZ,. Since ¢’ is also a k-expression of GG, and since that last contraction
happens in a trigraph with at most k vertices, this partial contraction sequence of G
satisfies H(yp).

If ¢ is of the form n; ;(¢') (with (4,5) € [k]* and i # j), consider for G the partial
contraction sequence of (G',lg/) := [¢'] given by H(¢'). To prove that it is sufficient
to prove H(yp), it is sufficient to justify that it does not create any red edge in the
contraction of G that was not present in the contraction of G’. The first red-edge
(x,y) that would appear in the contraction of G = [n; ;(¢’)] that does not appear in
the same contraction of G’ = [¢'], results necessarily of the contraction of two vertices
u and v with x = uv and y being in the symmetric difference of the neighborhoods
of u and v in G = [n;,;(¢")] but not in G’ = [¢’]. Such a red-edge can not exist
because we contract only vertices with the same label in ¢’ (or, equivalently, in ¢),
and that 7; ; can only decrease (with respect to C) the symmetric difference between
the neighborhood of vertices with the same label in . By Remark 1, this implies that
it is also true for vertices having the same label in any subexpression of .

If ¢ is of the form ¢ = ¢’ @ ¢": denote (G',1") := [¢'] and (G”,1") := [¢"], thereby,
Ve = Vg U V. Consider the partial contraction sequence of G given by:

1. contract the vertices in Vg in accordance to the contraction sequence given by
H(¥),

2. contract the vertices in Vi~ in accordance to the contraction sequence given by
H(e"),

3. for all i € [k], contract Vi, with Vi, (if both are nonempty) to get Vi = Vi, UV,

Steps 1 and 2 do not create a red-edge adjacent to both Vig» and Vg (since these
are two distinct connected components of G). Thus, before step 3, we have a trigraph
with < 2k vertices (because both trigraphs obtained after H (') and H (") have less
than & vertices), and every red-component that have appeared so far has size < 2k —1.
After the first contraction of step 3, the resulting trigraph has < 2k — 1 vertices, and
thus no red-connected component of size > 2k — 1 can emerge. Such a contraction
satisfies every requirement of H (). We have thus proven H () for every k-expression.

Now, take a k-expression ¢ of G. Up to applying p;—1 for all i € [k] to ¢, we can
assume that (G,lg) := [p] with l¢ being constant equal to 1. The partial contraction
sequence of G given by H() is a total contraction sequence of G of component twin-
width < 2k — 1. Since k = cw(G), we have proven that ctww(G) < 2cw(G) — 1. To
prove (ii), we show a similar property Hji, (@) for every linear k-expression. The only
difference between Hy, and H is that we replace the condition < 2k — 1 by < k. The
proof then follows exactly the same steps, except for the case ¢ = ¢’ @ ¢”, where
step 2 (the contraction according to Hj,(¢”)) is not necessary anymore, since ¢’ is
of the form e; (i € [k]), and we obtain a trigraph of size k + 1 instead of 2k, since ¢”

"Inductively, we say that the label of a vertex S € Ve, (k" <1 < n) is then the common label of the
vertices that have been contracted together to produce S.
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has 1 vertex instead of k. This ensures that every red-connected component has size
< (k+1)— 1=k instead of 2k — 1 in the non-linear case.

For step 3, i.e., contracting vertices of the same color in ¢’ and in ¢”, just note
that it consists of at most 1 contraction instead of k in the linear case. O

3.2 Approximating component twin-width

The linear bounds established in Section 3.1 entail reasonable approximation results
for component twin-width by making use of known approximations of clique-width [35].
The best currently known approximation algorithm for clique-width is given by
Theorem 6.

Theorem 6. [35] Let k be a fized positive integer. There is an O(|Vg|*)-time algorithm
that either outputs an (8% — 1)-expression of an input graph G or confirms that the
clique-width of G is larger than k.

From Theorem 6 and the linear bounds established in Proposition 4 and Proposi-
tion 5, we immediately obtain an approximation algorithm for component twin-width.
Theorem 7. Let p be a fized positive integer. There is an O(|Vg|?)-time algorithm
that either outputs a contraction sequence of component twin-width < 23P*t* —3 of an
input graph G or confirms that the component twin-width of G is larger than p.

Proof. The algorithm consists of applying the algorithm of Theorem 6 to G with k :=
p+1. If the algorithm confirms that cw(G) > p+1, then we know that ctww(G) > p by
Proposition 4. Otherwise, it outputs a (23(P*1) —1)-expression of G, which we transform
into a contraction sequence of G of component twin-width < 2 x (23?1 — 1) — 1 =
23r+4 _ 3 through the constructive proof of Proposition 5, which can be performed in
linear time in the size of the (23(P+1) — 1)-expression of G. O

It is still interesting to see that a direct comparison between component twin-width
and rank-width yields to a better approximation ratio, thanks to Theorem 8. In fact,
Theorem 6 was also obtained by this method. By avoiding using clique-width as an
intermediate parameter, it is not surprising that we obtain a better ratio.

Theorem 8. [35] Let k be a fized positive integer. There is an O(|V (G)|?)-time algo-
rithm that either outputs a rank-decomposition (of an input graph G) of width at most
3k — 1 or confirms that the rank-width of G is larger than k.

We can indeed make use of the bounds given by Theorem 9. The proof is very
similar to the proof of functional equivalence between boolean-width and component
twin-width [15], which is not surprising, since Lemma 1 applies both to rank-width
and boolean-width.

Theorem 9. For every graph G, rw(G) — 1 < ctww(G) < 2rW(G)+1,

Proof. The first inequality rw(G) — 1 < ctww(G) follows from Proposition 4 , stating
that ew(G) — 1 < ctww(G) and the fact that rw(G) < ew(G) [33].

We now focus on proving the second bound of ctww(G) < 2"W(&+1 This proof
follows the same scheme as the proof of the functional equivalence between boolean-
width and component twin-width [15].

Similarly to a branch-decomposition of graphs, a branch-decomposition of a tri-
graph G’ is a binary tree whose set of leaves is V. It is said to be rooted if a non-leaf
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vertex has been chosen to be the root, which leads to the usual definition of children
and descendants in a rooted tree. The set of leaves descending from a vertex v of a tree
T is denoted by D,. Now, let G be a graph and T be an optimal branch decomposition
of G, and let r := rw(G). We prove by induction the following property for k € [n].

P(k): “There exists a (partial) contraction sequence (G, ..., Gx) of G of compo-
nent twin-width < 27!, Moreover, there exists a branch-decomposition T}, of G}, such
that for every ¢ € Vi, with |Dy| > 27, there is no red-edge crossing the bipartition
(Dt Vg, \ D).

Note that P(n) is indeed true since G = G,, has no red-edge. Now assume P(k+1)
with k € [n — 1]. We will prove P(k). First, note that if k < 2", contracting any two
arbitrary vertices and giving any branch decomposition of Gy, proves P(k). We may
thus assume that k£ > 2". The root p satisfies |D,| > 2"+ 1. Observe that there exists a
node v of T4 such that 2"+1 < |D,| < 27+1: a node v such that D, has size at least
2" 4+ 1 and which is furthest from the root meets the condition. Moreover, any child w
of v verifies | D,,| < 2". If we use Lemma 1 with respect to an edge adjacent to v, then
there are two vertices u and ' that satisfy Ng(u)N(Va,,, \Dv) = Na(u )NV, \Dw)-

To prove P(k), we will prove that it is sufficient to contract the vertices u and u’
of Gi41 to obtain Gy, and to identify the leaves u and u’ of Ty1 to obtain Ty, (i.e. we
remove ' and shortcut every degree 2 vertex that appears, and we then rename u as
uu’). Note that all the red-edges created by the contraction of u and v’ are adjacent
to the new vertex uu/'.

Firstly, by our choice of u and u’, we do not create any red-edge crossing (D, Vi, \
D,). Due to the property of Tj11 ensured by P(k + 1) (recall that |D,| > 27), there
is no red-edge crossing (D,, Vi, \ Dy) in Tj. The red-connected component C' of the
new vertex wu' is thus contained in D,, and thus has size at most 2"t!. Since C is
the only red-connected component of Gy that was not a red-connected component of
Gr+1, Gk indeed meets the requirements of P(k).

Secondly, due to the choice of v, any node ¢ of Ty with |D;| > 2" containing the
new vertex wu’ is an ancestor of v. Since D, C Dy, by the above argument, there is
no red-edge crossing (D, Vg, \ Dy).

The proof of P(k) is now complete: P(1) justifies that ctww(G) < 27+1. O

This bound naturally leads to the approximation given in Theorem 10.
Theorem 10. Let p be a fized positive integer. There is an O(|Vg|?)-time algorithm
that either outputs a contraction sequence of component twin-width < 8PT1 of an input
graph G or confirms that the component twin-width of G is larger than p.

Proof. This result can be obtained similarly to Theorem 7, by using Theorem 8 and
Theorem 9 instead of Theorem 3 and Theorem 6. O

3.3 Comparing total twin-width and linear clique-width

In this section, we provide a quadratic bound between total twin-width and linear
clique-width. Note that these parameters are already known to be functionally equiv-
alent, as they are both known to be functionally equivalent to linear boolean-width
through the following relations [15, 36]:
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¢ Ibw < lew < 2lbw+1,
o lbw < 2ttww7
o ttww < (2'PW 4 1)(2PW 1 1),

which entail the exponential and double-exponential bounds between linear clique-
width and total twin-width:

o ttww < (2!°W 4 1)(2lew T 4+ 1),
o lew < 2271

Here, we will improve these bounds by establishing:
Theorem 11. For every graph G, lew(G) — 1 < 2ttww(G) < lew(G)(lew(G) +1).
The proof technique mirrors those of Proposition 4 and Proposition 5. Hence, our
proof constructions appear to be generally applicable for showing stronger relation-
ships between graph parameters than mere functional equivalence. We begin by first
comparing linear clique-width and total vertex twin-width, and then use Theorem 1.
Surprisingly, as we will prove, the parameter tvtww is exactly the same as lew (up
to a difference of 1).
Theorem 12. For every graph G, lew(G) — 1 < tvtww(G) < lew(G).
Firstly, we show the leftmost inequality.
Proposition 13. For every graph G, lew(G) < tvtww(G) + 1.

Proof. The proof is similar to the proof of Proposition 4 but we include the details since
the proof is constructive and has potential algorithmic applications. Let (G,,...,G1)
be a contraction sequence of G witnessing x := tvtww(G). We explain how to
construct a linear (k + 1)-expression of G. We show the following invariant for all
k € [n]:

P(k) : “Let Cx = {S1,...,Sp} be the set of vertices of Gy of red-degree at least 1,
and |J Cy = S1U---US,. There exists a linear (x+ 1)-expression ¢¢, of the p-labelled
graph G¢, := G| Cx| with Véck =S, for all i € [p].”

Note that for all k € [n], |Ck| < & by definition of the total vertex twin-width. We
first prove P(n). In G,, = (Vg, Eg, 1), there are no red edges. Thus, C,, = () and there
is nothing to prove.

Now, take k € [n — 1] and assume P(k + 1). We will prove P (k). By definition of a
contraction sequence, Gy, is of the form Gy = Giy1/(u,v) for two different vertices u
and v of Gg41. First, we need to build a linear (x + 1)-expression over the right set of
vertices. Denote Cy = {S1,...,5,-1,5,} with S}, = uv. Letting S, = u and Sp41 = v,
we have that S; is a vertex of G41 for all ¢ € [p+ 1], and that

p+1

Uce=Js:
i=1

Observe that, Cj41 is of the form {S; | i € I} with I C [p+1]. Also, the other vertices
S; with j € [p+ 1] \ I of Gj41 are necessarily singletons. Otherwise, these vertices
would have a red loop (by definition of a contraction sequence) and would thus belong
to Crq1. Forall j € [p+ 1]\ I, let S; = {s;} with s; € Vg.
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By P(k + 1), up to interchanging labels, there exists a linear (x + 1)-expression
©Cy4, of the |I|-labelled graph G, ,, such that for all i € I, Véck+1 = S;. Therefore,

!
=QC D D e (s
¥ k1 Jelpri\ j ( J)

is a linear expression over the same vertices of the graph G¢, , that satisfies V[;,] =5,
for all i € [p+1].

Now, we still need to construct the black edges crossing the different S; for i €
[p + 1]. We thus apply 7;:° to ¢ for every black edge of the form (S;,Sy) in Gyi1
(with (i,4") € [p+1]), to obtain an expression ¢". Since the vertices with labels ¢ and
i/ are exactly the vertices of S; and S/, we create exactly the edges between vertices
of S; and of S;; when applying 7; . By Property 2, and because ¢c, ., is a linear
expression of G, ,, we have that ¢ is a linear expression of G¢, .

Moreover, we need to make sure that the labels in ¢” match the requirements of
P(k). For that, we set pg, = pp+1-p(¢”). By doing so, S, (say, u) and Spi1 (say,
v) have the same label in pg,, .

Thus, it follows that ¢q., witnesses P(k) (since S, = u and Sp1 = v are now
contracted into S}, = uv in G},). Indeed, we have used p+1 = |Cy|+1 < k+1 different
labels to construct the linear expression ¢, . The expression ¢¢, is indeed linear
because PGy, is linear and because the right term of every @ used to construct ¢c,
from pc,, is of the form e;(s;) with s; € V.

Since {Vg} is a vertex of G1 = ({Vg}, 0, 0) with a red loop (unless G is a graph on
1 vertex, in which case the theorem is trivial), it follows from P(1) that G[Vg] = G
has a linear (k4 1)-expression, and thus lew(G) < k4 1. As k = tvtww(G), we have
lew(G) < tvtww(G) + 1. O

We now prove the rightmost bound.
Proposition 14. For every graph G, we have, tvtww(G) < lew(G)

Proof. Again, we remark that the proof is similar to the proof of Proposition 5, but
we include the details since the proof of the contraction sequence with the necessary
properties is constructive and may be useful in its own right.

Let k :=lcw(G) and take a linear k-expression ¢ of G. We will explain how to
construct a contraction sequence of G in which every trigraph has at most k vertices
of red degree at least 1. We begin by defining the following property and then prove
it by induction over (:

H(p) : “Let (G,lg) := [p]. There exists a (partial) contraction sequence (G, ..., Gy)
of G with k' < k such that:

® cach of the trigraphs G,,, ..., Gy have at most k vertices with red degree > 1,

e the vertices of Gy are exactly the non-empty V for i € [k], and

e every pair of vertices contracted have the same labels in (G,1g)°.”

8See Section 2.2 for the notations relative to clique-width.
9Inductively, we say that the label of a vertex S € Vg, (k" <1 < n) is then the common label of the
vertices that have been contracted together to produce S.
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If ¢ = o; with ¢ € [k], there is nothing to do since G has only one vertex. If ¢ is of
the form p;;(¢’) (with (4,7) € [k]* and i # j), consider for G the partial contraction
sequence of (G/,lg) := [¢'] given by H(¢'), and then contract Vi, and Vé, to obtain
VI = Vi, U VZ,. Since ¢’ is also a k-expression of GG, and since that last contraction
happens in a trigraph with less than k vertices, this partial contraction sequence of G
satisfies H(yp).

If ¢ is of the form n; ;(¢') (with (i,j) € [k]* and i # j), consider for G the partial
contraction sequence of (G',lg/) := [¢'] given by H(¢'). To prove that it is sufficient
to prove H(yp), it is sufficient to justify that it does not create any red edge in the
contraction of G that was not present in the contraction of G’. The first red-edge
(x,y) that would appear in the contraction of G' = [1; ;(¢")] that does not appear in
the same contraction of G’ = [¢'], results necessarily of the contraction of two vertices
u and v with x = uv and y being in the symmetric difference of the neighborhoods
of u and v in G = [n;;(¢’)] but not in G’ = [¢’]. Such a red-edge can not exist
because we contract only vertices with the same label in ¢’ (or, equivalently, in ),
and that 7; ; can only decrease (with respect to C) the symmetric difference between
the neighborhood of vertices with the same label in . By Remark 1, this implies that
it is also true for vertices having the same label in any subexpression of .

If ¢ is of the form ¢ = ¢’ @ e;(u): denote (G, ') := [¢'], thereby, Vo = Vi U {u}.
Consider for G the partial contraction sequence obtained by performing the contrac-
tions in (G',lg/) := [¢'] given by H(¢'), and then contracting Vi, (if not empty) and
u to obtain V¢ = V{4, U {u}. Since u is an isolated vertex in G, performing the con-
tractions in G’ can not create any red edge in the contraction of G that did already
exist in the contraction of G’. The last eventual contraction between u and Vi, occurs
in a trigraph with at most k 4 1 vertices, resulting in a trigraph of at most k vertices.
In particular, there can not be more than k vertices adjacent to at least one red edge.
Such a contraction satisfies every requirement of H(y). We have thus proven H () for
every linear k-expression.

Now, take a linear k-expression ¢ of G. Up to applying p;—; for all i € [k] to
©, we can assume that (G,lg) := [p] with lg being constant equal to 1. The partial
contraction sequence of G given by H(y) is a total contraction sequence of G of total
vertex twin-width < k. Since k = lew(G), we have proven that tvtww(G) < lew(G).

O

From Theorem 1 and Theorem 12 we then obtain the quadratic bound

lew — 1 < 2ttww < lew(lew + 1)
of Theorem 11.

4 Complexity Results

In the second part of the article we show two algorithmic applications of dynamic
programming over component twin-width to #H-COLORING. The first assumes that
an optimal contraction sequence of the input graph G is given, and results in a
FPT algorithm parameterized by ctww, running in time O*((2/V#! — 1)°tww(G)) The
second approach uses an optimal contraction sequence of the template H (whose
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computation can be seen as a pre-computation, since it does not involve the input
graph G): we obtain a fine-grained algorithm running in time O* ((ctww (H) +2)Vel),
whose complexity beats the best algorithms of the literature and that runs in time
O*((2cw(H) + 1)IVel) [6] and O*((lew(H) + 2)!Vel) [6] through the linear bound of
Section 3.1. Note that the technique employed in this paper could similarly be used to
derive the same complexity results applied to the more general frameworks of count-
ing the solutions of binary constraint satisfaction problems, ie. problems of the forms
#BINARY-Csp(I") with I a set of binary relations over a finite domain, even though we
restrict to the simpler case of #H-COLORING here to avoid having to define contraction
sequences of instances and template of binary constraint satisfaction problems.

4.1 Parameterized complexity

We present an algorithm solving # H-COLORING in FPT time parameterized by com-
ponent twin-width. It is inspired by the algorithm solving k-COLORING [15], thus
proving that # H-COLORING is FPT parameterized by component twin-width and thus
also by clique-width (by functional equivalence).

Let us remark that Walhstrom [6] solves H-COLORING in time

22cw(G)><|VH|(|VG| + |VH|)O(1),
whenever a cw(G)-expression of G is given. We solve it in time
(Q\VH\ _ l)ctww(G)Jrl ~ (|VG| + |VHDO(1)-

Recall however that (1) ctww(G) + 1 < 2cw(G) by Proposition 5, implying that our
algorithm is always at least as fast, and that (2) our algorithm is strictly faster for
e.g. cographs with edges (component twin-width 1, versus clique-width 2) and cycles
of length 6 (component twin-width 3, versus clique-width 4).

Theorem 15. For any graph H, there exists an algorithm running in time

(2|VH| o 1)ctww(G)+1 « (|VG| + |VH|)O(1)

that solves #H-COLORING on any input graph G (assuming that an optimal contrac-
tion sequence (G, ...,G1) of G is given).

Proof. For k € [n], C = {S1,...,S,} C Vg, a red-connected component of vertices of
G, and for v : C + (2V% \ 0)), a H-coloring of G[UC] with profile ~y is a H-coloring f
of G[UC] such that for all ¢ € [p], f(S;) = v(S;). Le. the vertices of H used to color
S; are exactly the colors of the set (S;).

Then, define the set COL(C,v) as the set of H-colorings of G[UC] with profile
~v. We see that for every red-connected component C' of Gy, the sets COL(C,~) for
v : C i+ (2V% \ ) form a partition of the set of the H-colorings of G[UC].

The principle of the algorithm is to inductively maintain (from k& = n to 1) the
knowledge of every |COL(C,~)| (stored in a tabular #col(C,~)) for a red-connected
component C of Gy and 7 : C + (2% \ (). In this way, since {V} is a red-connected
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component of G; = ({Va},0,0), we can obtain the number of H-colorings of G[Vg| =
G by computing
> #eo({Ve} Vo T).
Te(2Va\0)

First, note that the red-connected components of G,, are the {u} for u € V& (since
G, = (Va,FEq,0) has no red edge). For every v : u +— y(u) € (2V21\ 0) we let
#col({u},v) < 0if |y(u)| # 1 and #col({u},7y) < 1if |7(u)| = 1. Hence, we correctly
store the value of |COL({u},~)| in the tabular #col({u},).

We explain how to maintain this invariant after the contraction from Gp41 to
Gy, (with k € [n — 1]). By definition of a contraction sequence, Gy is of the form
Gi =: Gg41/(u,v) with v and v two different vertices of Gy1.

Note that every red-connected component of G, is also a red-connected component
of Gg41, except the red-connected component C' containing uv. We only have to
compute |COL(C, )| for any 7 : C +— 2V#\ ), and to store it in the tabular #col(C, 7).
Initialize the value of #col(C,~) with 0.

Let C =:{S1...,8p-1,8,}, with S, := uv, and p := [C| < ctww(G). Since every
pair of red-connected vertices in G (that contains neither « nor v) are red-connected
in G (except v and v), C must be of the form

C:=(CrU---UCU{S, )\ {Sp, Sps1},

with S, :=u and Spi1 :=vand C1U---UC, = {S1,...,Sp-1,5p, Sp+1},'° and where
Cy,...,Cq (with ¢ > 0) are red-connected components of G411 whose union contains
both S, = w and Sp+1 = v. Notice that each S; (for i € [p+ 1]) belongs to a unique
Cj) with j(i) € [q]. These notions are illustrated in Figure 2.

The algorithm iterates over every family (v; : C; — (2V% \ 0))1<j<q. Let v =
Y1U- - U7, that maps every S; (with i € [p—1]) to 7;(;)(S:), and that maps S}, = uv =
Sp U Sp1 = uUv t0 V() (Sp) Uj(ps1)(Sps1). We check if there exists a (i) € [p]?
with ¢ # ¢/, a black edge between S; and Sy in Gri1, and (v(S;) x ¥(S¢)) \ En # 0,
in time O(p?). If so, we move to the next family (v;)1<j<4. Otherwise, we increment

q
#col(C,~) by ‘H1 #col(Cy, v ).
j=
Soundness: The soundness of this algorithm follows from the fact that for each
v Cw 2Y5\ ), COL(C,7) is the disjointed union, for (y1,...,7,) such that v =
Y1U- - U7y, of the sets of H-colorings f such that for all j € [g] the profile of f|c; is 7;,

that we denote by COL(C, 1, . .., 7). We only need to compute |COL(C, 1, ... ,7)|,
which can be derived by Claim 1. We then store the sum over (vq,...,7,) such that

Y=7U-Uyg in #col(C, 7).
Claim 1. There are two distinct cases:

1. If there eists (i,i") € [p|? such that (S, Si7) is a black edge of Gry1 and (v;;)(Si) x
7](2’)(SZ’)) \EH 3& ®7 then OOL(Oa Yis- - a’}/q) = @

10Note that uv = S’; =SpUSpr1 =uUw.
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2. If for all (i,i') € [p]* such that (S;,Si) is a black edge of Gry1, (i) (Si) %
Yii(Sir)) € Em, then a function f: UC w Vg belongs to COL(C,v1,...,7,) iff;
for all j € [q], f restricted to C; (denoted by f;) belongs to COL(C};, ;).

Proof. We treat the two cases separately. In the first case, assume that there exists
(i,4') € [p)? such that (S;, ;) is a black edge of Gj41 and () (Ss) X V(i) (S )\ En #
) and, for the sake of contradiction, suppose that there is f € COL(C,v,...,7q)-
Take (vi,vi) € (7j(5)(Si) X Vj(iry(Si+)) \ Em. By definition of a profile, there exists
(uj,uy) € S; x Sy with f(u;) = v; and f(u;) = vy Then, since there exists a black
edge between S; and S; in Gjy1, this means by Property 2 that (u;,uy) € Eg.
But (f(u;), f(ui)) = (vi,vir) € Eg, so f is not a H-coloring, which contradicts the
definition of f.

In the second case, assume that for all (i,i') € [p]® such that (S;,Sy) is a
black edge of Gy1, (7j(5)(Si) X ;i) (Sir)) € Ep. To prove necessity, notice that the
restriction of a partial H-coloring is also a partial H-coloring, and by definition of
COL(C,m1,...,7q), if f € COL(C,m1,...,7q), then f; € COL(C},~;).

To prove sufficiency, assume that f : UC — Vg is such that for all j € [q¢], f; €
COL(C}j,;). Then, provided that f is a H-coloring of G[UC], f € COL(C,71,...,7,)-
Hence, we only have to prove that f is a H-coloring. So let (u,u’) € Eg. We prove that
(f(u), f(u')) € Eg. Observe that there exist S; and Sy (with (i,4’) € [p]?) such that
uw e S; and v € Sy. If S; and S;r are in the same red-connected component C; (with
J € [q]) of Grq1, then (f(u), f(u')) = (fj(u), f;(v')) € Ex because f; is a H-coloring.
Otherwise, (S;,S;/) is not a red edge of Ggy1, so (S;,Si) is a black edge of Ggi1,
since (u,u') € Eg and (u,u') € S; x Sy, by Property 2. By assumption, (v;(;)(S:) x
vy (Si)) € Eg and, by definition of a profile, (f(u), f(u')) = (f;u)(w), fij@)(u')) €
Yi (i) (Si) X ;i1 (Si) € En. The latter shows that f is indeed a H-coloring. O

From Claim 1 it follows that choosing an f in COL(C,v1,...,7,) is either impos-
sible, or equivalent to choosing f; € COL(C},~;) for all j € [g], which is why we add

q
either 0 or [] #col(C},~,) when treating the part of #col(C, ) relative to the family

j=1
(71,5 Ya)-
Complexity: To treat the red-connected component C', the only non-polynomial
part is to iterate over every family (v1,..., "), which represents
q

H(Q\VH\ —DIGI = (2Val _1)IC1+1 < (olVal _ q)etww(G)+1

j=1
families to treat (recall that for all j € [g], 7; is a non-empty subset of C). O

Vi J

If one only wishes to solve H-COLORING rather than the counting problem, the
algorithm by Ganian et al. [5] which runs in O*(s(H)°%(%) for a graph parameter s,
is strictly more efficient. Indeed, for any graph H, its structural parameter s(H) is
bounded by 2/V#! — 2 [5] (the equality happens if and only if H is a clique), and as
we have proven in Proposition 4, for any graph G, cw(G) < ctww(G) + 1. However,
it appears to be difficult to extend this algorithm to the counting problem since the
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’U’U = 5!7 =Sy L‘HSg‘

o)

G

Fig. 2 An example where merging v = S7 and v = Sg causes j = 4 different red-connected com-
ponents to merge into a red-connected component of size p = 7. With the notations of this proof,
we could have C1 = {S1,S52},C2 = {S3,54,855,57},C3 = {S¢} and Cy4 = {Ss}. For instance,
J(1)=34(2)=1,j(3) =4(4) =34(5) =4(7) =2,j(6) = 3 and j(8) =4

sets stored as invariants in the algorithm do not necessarily represent disjoint subsets
of partial coloring. This is acceptable if one only wants to determine the existence of
a total coloring (as long as every coloring is represented at least once), but it causes
issues when counting the number of colorings.
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4.2 Fine-grained complexity

We now consider the dual problem of solving #H-COLORING when H has bounded
component twin-width. We therefore use an optimal contraction sequence of the tem-
plate H instead of the input G, and obtain a fine-grained algorithm for #H-COLORING
which runs in O*((ctww (H) + 2)™) time.

Theorem 16. #H-COLORING is solvable in time O*((ctww (H) + 2)IVel),

Proof. Consider an optimal contraction sequence (H,y,, ..., Hy) of H, with m := |Vp|.
We give an algorithm similar to that described in the proof of Theorem 11, except
that we define profiles for red-connected component of each Hy, k € [m].

Let C = {T4,...,T,} be ared connected component of Hy, and let v = (S1,...,5p)
be a p-tuple of pairwise disjoint subsets of V. An H-coloring f of G[S1 U ...,US,]
is said to have C-profile v if for each i € [p], f(S;) C T;. Denote by COL(~,C) the
set of partial H-colorings of G (i.e., a H-COLORING of an induced subgraph) with
C-profile v. It is easy to compute the |COL(y, C)| for a red-connected component C
of Hy, = (Vy, Eg,0) and v = (S) with S C Vg, since C is of the form C' = {v} with
v € Eg. We have |COL((S),{v})| = 1if SN Eg = 0, and |COL((S), {v})| = 0,
otherwise.

As in the proof of Theorem 11, for k € [m — 1] the only red-connected component
of Hj, that is not a red-connected component of Hy 1, is the red-connected component
C ={T,...,Tp-1,T,} that contains T} = uv (the vertex obtained by contraction of
T, =wand T,11 = v in Hyyq). Hence, C is of the form

C= (Cl U---u Cq U {T;;}) \ {Tpan-&-l}v

with C1 U---UC, ={Th,...,Tp—1,Tp, Tp+1}, where C4, ..., C, are the red-connected
components of Hyy; whose union contains 7, = u and Tj,; = v. Again, each T;
belongs to a unique Cj;) with j(i) € [q].

Then, as in the proof of Theorem 11, for all families of disjoint subsets of V5 and
v = (51,...,5-1,5,), we can compute the value of |[COL(v,C)|. Indeed, as in the
proof of Theorem 11, it is the sum for every family (v;)1<;<q that defines the profile
7 (i.e., every v; is a family of pairwise disjoint subsets of Vi, and S, is of the form

SII) =S, USpy1 with S, N Spy1 =0 and Vj € [¢], vj = (Si)iej—l({j})) of the value

q
L. TI |COL(v;,Cy)| if for every (i,i') € [p]* with j(i) # j(i’) and for every edge
j=1

(ui, uyr) of G with u; € S; and uy € Sy, there is a black edge between T; and T;
in Hg1q, and
2. 0, otherwise.

The complexity of computing |COL(vy,C)| for every v is (ctww(H) + 2)IVel

since exploring every family (v;)1<j<q containing only pairwise disjoint subsets of
a

|Ve| requires to explore (3 |C;| 4 1)/Vel families (any vertex of G can be mapped
j=1

to a unique element in {77,7%,...,T,11} or none of them), which makes (|C| +
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2)" < (ctww(H) + 2)™ possibilities. Since Hy = ({Vu},0,0), we obtain the num-
ber of such H-colorings of G in time O*((ctww(H) + 2)!Vel), and it is equal to
|ICOL({Va} AV}l H

We again remark that, by Proposition 5, ctww(H) + 2 < lew(H) + 2 and
ctww(H) + 2 < 2cw(H) + 1 for any graph H. Therefore, the algorithm in the proof
of Theorem 16 is always at least as fast as the clique-width approach by Wahlstrém
[6], and as remarked in Section 1, it is strictly faster for e.g. cographs with edges and
cycles of length 6.

5 Conclusion and Future Research

In this article we explored component twin-width in the context of #H-COLORING
problems. We improved the bounds of the functional equivalence between component
twin-width and clique-width from the (doubly) exponential cw < 22" and ctww <
2¢W+1 to the linear

cw < ctww + 1 < 2cw.

In particular, this entails a single-exponential FPT algorithm for H-COLORING param-
eterized by component twin-width. From these linear bounds derives an approximation
algorithm with exponential ratio, that can even be improved by a direct compari-
son with rank-width. We then demonstrated that our constructive proof technique
could be extended to related parameters, and proved a quadratic bound between total
twin-width and linear clique-width.

Finally, we turned to algorithmic applications, and constructed two algorithms for
solving #H-COLORING. The first uses a given optimal contraction sequence of the
input graph G to solve # H-COLORING in FPT time parameterized by component twin-
width. The second uses a contraction sequence of the template graph H and beats the
clique-width approach for solving #H-COLORING (with respect to |Viz|). Let us now
discuss some topics for future research.

Tightness of the bounds. Even though the bound cw < ctww + 1 given by
Proposition 4 is tight for any cograph with at least 1 edge, we do not currently know if
this bound can be improved for graphs with greater clique-width or component twin-
width. Moreover, it would be interesting to determine whether the bound ctww <
2cw —1 given by Proposition 5 is tight. The same remark holds for the bounds between
component twin-width and rank-width given by Theorem 9. It would be interesting
to study the tightness of the bound tww < 2cw — 2 (where tww designs the twin-
width), which is a direct consequence of Proposition 5. Also, since Propositions 13
and 14 provide very tight bounds, it is natural to ask for the characterization of the
classes of graphs where each bound is attained.

Lower bounds on complexity. The algorithms relying on clique-width to solve
H-COLORING by [5] in O*(s(H)*"(%)) time are known to be optimal under the SETH.
We have a similar optimality result for treewidth (tw), with an algorithm solving H-
COLORING in time |V |*W(©) | despite the existence of an algorithm in (|Vi| — &)tV(%)
with € > 0 being ruled out under SETH. A natural research direction is then to
optimize the running time of the algorithm of Theorem 15, possibly by making use of
s(H), and prove a similar lower bound.
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Extensions. Instead of solving # H-COLORING the results of Section 4 can be
extended to arbitrary binary constraints (binary constraint satisfaction problems,
Bcesps). The notion of component twin-width indeed generalizes naturally to both
instances and templates of a BCsp. A natural continuation is then to investigate
infinite-domain BCsPs which are frequently used to model problems of interest in
qualitative temporal and spatial reasoning. Here, there are only a handful of results
using the much weaker treewidth parameter [37], so an FPT algorithm using com-
ponent twin-width or clique-width would be a great generalization. Additionally, one
may note that the algorithms detailed in Section 4 can be adapted to solve a “cost”
version of #H-COLORING: given a weight matrix C, the cost of a homomorphism f is

> C(u, f(u)), and we want to find a homomorphism of minimal cost. Can this be
ueVg
extended to other types of generalized problems?
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