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Abstract10

The H-Coloring problem is a well-known generalization of the classical NP-complete problem11

k-Coloring where the task is to determine whether an input graph admits a homomorphism to the12

template graph H. This problem has been the subject of intense theoretical research and in this13

paper we study the complexity of H-Coloring with respect to the parameters clique-width and the14

more recent component twin-width, which describe desirable computational properties of graphs. We15

give two surprising linear bounds between these parameters, thus improving the previously known16

exponential and double exponential bounds. These linear bounds entail natural approximations of17

component twin-width, by making use of the results known for clique-width. On the algorithmic side18

we target the richer problem of counting the number of homomorphism to H (#H-Coloring). The19

first algorithm uses a contraction sequence of the input graph G parameterized by the component20

twin-width of G. This leads to a positive FPT result for the counting version. The second uses a21

contraction sequence of the template graph H and here we instead measure the complexity with22

respect to the number of vertices in the input graph. Using our linear bounds we show that the23

latter always beats the previously best algorithm (based on clique-width) and we thus obtain the24

fastest general purpose algorithm for graph coloring.25
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Keywords and phrases Component twin-width, Clique-width, Graph coloring, Parameterized com-27

plexity, Fine-grained complexity28

1 Introduction29

Graph coloring is a well-known computational problem where the goal is to color a graph30

in a consistent way. This problem is one of the most well-studied NP-hard problems and31

enjoys a wide range of applications e.g., in planning, scheduling, and resource allocation [20].32

There are many variants and different formulations of the coloring problem, but the most33

common formulation is certainly the k-Coloring problem that asks whether the vertices of34

an input graph can be colored using k available colors in such a way that no two adjacent35

vertices are assigned the same color. This problem can be extended in many ways and in this36

paper we are particularly interested in the more general problem where any two adjacent37

vertices in the input graph G have to be mapped to two adjacent vertices in a fixed template38

graph H (the H-Coloring problem). It is not difficult to see that k-Coloring is then39

Kk-Coloring, where Kk is the k-vertex clique.40

The basic H-Coloring problem has been extended in many directions, of which one41

of the most dominant formalisms is the counting extension of where the task is not only to42

decide whether there is at least one solution (coloring) but to return the number of solutions43

(#H-Coloring). This framework makes it possible to encode phase transition systems44
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Figure 1 A contraction sequence of the 7-cycle.

modelled by partition functions, modeling problems from statistical physics such as counting45

q-particle Widom–Rowlinson configurations and counting Beach models, or the classical Ising46

model (for further examples, see e.g. Dyer & Greenhill [17]). The #H-Coloring problem is47

#P-hard unless every connected component of H is either a single vertex without a loop,48

a clique or a bipartite complete graph, and it is in P otherwise [17]. The question is then49

to which degree we can still hope to solve it efficiently, or at least improve upon the naive50

bound of |VH ||VG| (where VH is the set of vertices in the template graph H and VG the set51

of vertices in the input graph G).52

In this paper we tackle this question by targeting properties of graphs, so-called graph53

parameters, which give rise to efficiently solvable subproblems. We will see below several54

concrete examples of graph parameters, but for the moment we simply assume that each55

graph G is associated with a number k ∈ N, a parameter, which describes a structural56

property of G. Here, the idea is that small values of k correspond to graphs with a simple57

structure, while large values correspond to more complicated graphs.58

There are then two ways to approach intractable H-Coloring problems: we either59

restrict the class of input graphs G, or the class of template graphs H to graphs where60

the parameter is bounded by some reasonably small constant. The first task is typically61

studied using tools from parameterized complexity where goal is to prove that problems are62

fixed-parameter tractable (FPT), i.e., obtaining running times of the form f(k) · ∥G∥O(1) for63

a computable function f : N→ N (where ∥G∥ is the number of bits required to represent the64

input graph G). The second task is more closely related to fine-grained complexity where65

the goal is to prove upper and lower bounds of the form 2f(k) · ∥G∥O(1) for a sufficiently66

“fine-grained” parameter k, which in our case is always going to denote the number of vertices67

|VG| in the input graph G. Here, it is worth remarking that H-Coloring is believed to be a68

very hard problem, and the general Coloring problem, where the template is part of the69

input, is strongly believed to be unsolvable in 2O(|VG|) · (∥G∥+ ∥H∥)O(1) time [19]. Hence,70

regardless whether one studies the problem under the lens of parameterized or fine-grained71

complexity, one needs to limit the class of considered graphs via a suitable parameter.72

There are several graph parameters proposed to address the limitations of tree-width and73

that generalize the class of co-graphs. We briefly survey two noteworthy graph parameters74

(see Section 2 for formal definitions).75

1. clique-width (cw). The class of graphs (with labelled vertices) with clique-width k ≥ 176

is defined as the smallest class of graphs that contains the one vertex graphs •i with 177

vertex labelled by i ∈ [k], and that is stable by the following operations for (i, j) ∈ [k]278

with i ̸= j: (i) disjoint union of graphs, (ii) relabelling every vertex of label i to label j,79

and (iii) constructing edges between every vertex labelled by i and every vertex labelled80

by j. Note that the class of cographs (which contains cliques) is exactly that of graphs81

with clique-width at most 2.82

2. twin-width (tww). The class of graphs of twin-width k ≥ 1 is usually formulated via83

contraction sequences where graphs are gradually merged into a single vertex (see Figure 184

for an example). Red edges represent an inconsistency in the merged vertex (see Section85
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2.3 for a formal definition), and the maximum red degree in the sequence thus represents86

the largest loss of information. A graph has twin-width ≤ k if it admits such a contraction87

sequence where the maximum red degree does not exceed k.88

For clique-width, Ganian et. al [21] identified a structural parameter s of graphs and89

presented an algorithm for H-Coloring that runs in O∗(s(H)cw(G)) time1. It is also optimal90

in the sense that if there exists an algorithm that solves H-Coloring in time O∗((s(H)−91

ε)cw(G)), then the SETH fails [21]. Again, alternative algorithms exist for templates of92

bounded clique-width, and Wahlström [27] solves #H-Coloring in O∗((2cw(H) + 1)|VG|)93

time.94

Twin-width, on the other hand, is a much more recent parameter, but has in only a95

few years attracted significant attention [1, 2, 3, 5, 4, 6, 7, 8, 9, 11, 12]. One of its greatest96

achievement is that checking if a graph is a model of any first order formula can be decided97

in FPT time parameterized by the twin-width of the input graph. Thus, a very natural98

research question in light of the above results concerning tree- and clique-width is to study99

the complexity of (#)H-Coloring via twin-width. Unfortunately, it is easy to see that under100

standard assumptions, H-Coloring is generally not FPT parameterized by twin-width.101

Indeed, since twin-width is bounded on planar graphs [23], the existence of an FPT algorithm102

for 3-Coloring running in O∗(f(tww(G))) time implies an O∗(1) time (ie. a polynomial103

time) algorithm for 3-Coloring on planar graphs (since f(tww(G)) = O(1) if G is a planar104

graph). Since 3-Coloring is NP-hard on planar graphs, this would imply P=NP. Thus,105

3-Coloring is para-NP-hard [16] parameterized by twin-width.106

Despite this hardness result it is possible to analyse H-Coloring by a variant of twin-107

width known as component twin-width (ctww) [8]. This parameter equals the maximal size108

of a red-connected component (instead of the maximal red-degree for twin-width). It is then109

known that component twin-width is functionally equivalent2 to boolean-width [8], which in110

turn is functionally equivalent to clique-width [13]. Hence, H-Coloring is FPT parameterized111

by component twin-width, and the specific problem k-Coloring is additionally known to112

be solvable in O∗((2k − 1)ctww(G)) time [8]. As remarked Bonnet et al., the theoretical113

implications of this particular algorithm are limited due to the aformentioned (under the114

SETH) optimal algorithm parameterized by clique-width [21]. However, this still leaves115

several gaps in our understanding of component twin-width for H-Coloring and its counting116

extension #H-Coloring.117

Our paper has three major contributions to bridge these gaps. Firstly, the best known118

bounds between clique-width and component twin-width are obtained by following the119

proof of functional equivalence between component twin-width and boolean-width, and then120

between boolean-width and clique-width. We thereby obtain121

ctww ≤ 2cw+1 and cw ≤ 22ctww
122

and H-Coloring is thus solvable in O∗(s(H)22ctww(G)

) time. This proves FPT but is clearly123

not a practically applicable algorithm and the main question is whether it is possible to124

improve this to a single-exponential running time O∗(2O(ctww(G))). (This line of research is125

relatively new but of growing importance and has seen several landmark results [15].) We126

prove that it is indeed possible by significantly strengthening the bounds between cw and127

1 The notation O∗ means that we ignore polynomial factors.
2 I.e., each parameter is bounded by a function of the other.
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ctww and obtain the linear bounds128

cw ≤ ctww + 1 ≤ 2cw.129

Our proof is constructive which gives a fast algorithm to derive a contraction-sequence from130

a clique-width expression and vice versa.131

Secondly, we discuss how these bounds can be exploited to approximate ctww by making132

use of the results known on cw. Thus, an immediate consequence of our linear bounds is133

that H-Coloring is solvable in O∗(s(H)ctww(G)+1) time, which is a major improvement to134

the aforementioned triple exponential upper bound.135

Thirdly, we consider the generalized problem of counting the number of solutions. It136

seems unlikely that the optimal algorithm (under SETH) by Ganian et al. [21] can be137

lifted to #H-Coloring, and while the algorithm by Wahlström [27] successfully solves138

#H-Coloring, it does so with the significantly worse bound of O∗((2cw(H) + 1)|VG|). We139

tackle this problem in Section 5 by designing a novel algorithm for #H-Coloring for input140

graphs with bounded component twin-width and which runs in O∗((2|VH | − 1)ctww(G)) time.141

We also consider #H-Coloring when the template graph H has bounded component142

twin-width. We use an optimal contraction sequence of H in order to obtain a O∗((ctww(H)+143

2)|VG|) algorithm for #H-Coloring. Combining this result with our linear bounds cw ≤144

ctww + 1 ≤ 2cw, we conclude that our algorithm always runs faster (asymptotically) than145

the O∗((2cw(H) + 1)|VG|) time algorithm by Wahlström [27], which was, to our knowledge,146

the fastest general #H-Coloring algorithm available in the literature. Moreover, the147

technique employed in this paper could similarly be used to derive the same results applied148

to the more general frameworks of counting the solutions of binary constraint satisfaction149

problems, ie. problems of the forms #Binary-Csp(Γ) with Γ a set of binary relations over a150

finite domain, even though we restrict to #H-Coloring here for the sake of simplicity.151

2 Preliminaries152

Throughout this paper, a graph G is a tuple (VG, EG), where VG is a finite set (the set of153

vertices of G), and EG is a binary irreflexive symmetric relation over VG (the set of edges154

of G). We will denote the number of vertices of a graph G by n(G) or, simply, by n when155

there is no danger of ambiguity. The neighborhood of a vertex u of a graph G is the set156

NG(u) = {v ∈ VG | (u, v) ∈ EG}. For a graph H we let H-Coloring be the computational157

problem of deciding whether there exists an homomorphism from an input graph G to158

H, i.e., whether there exists a function f : VG → VH such that (x, y) ∈ EG implies that159

(f(x), f(y)) ∈ EH . We write #H-Coloring for the associated counting problem where160

we instead wish to determine the exact number of such homomorphisms. As remarked in161

Section 1, the template graph H can be chosen with great flexibility to model many different162

types of problems.163

2.1 Parameterized complexity164

We assume that the reader is familiar with parameterized complexity and only introduce165

the strictly necessary concepts (we refer to Flum & Grohe [18] for further background).166

A parameterized counting problem is a pair (F, dom) where F : Σ∗ 7→ N (for an alphabet167

Σ, i.e., a finite set of symbols) and dom is a subset of Σ∗ × N. A parameterized counting168

problem (F, dom) is said to be fixed-parameter tractable (FPT) if there exists a computable169

function f : N→ N such that for any instance (x, k) ∈ dom of F , we can compute F (x) in170
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f(k) × ∥x∥O(1) time. An algorithm with this complexity is said to be an FPT algorithm.171

Note that even though f might be superpolynomial, which is expected if the problem is172

NP-hard, instances where k is reasonably small can still be efficiently solved.173

In practice, when studying FPT algorithms for an NP-hard counting problem, it is very174

natural to optimize the superpolynomial function f that appears in the complexity of the175

algorithm solving it. Typically, when dealing with graphs problems parameterized by the176

number of vertices n, an algorithm running in cn × ∥x∥O(1) will be considered efficient in177

practice if c > 1 is small. This field of research is referred to as fine-grained complexity.178

2.2 Clique-width179

For k ≥ 1, let [k] = {1, . . . , k}. A k-labelled graph G is a tuple (VG, EG, lG), where (VG, EG)180

is a graph and lG : VG → [k]. For i ∈ [k] and a k-labelled graph G, denote by V i
G = l−1

G ({i})181

the set of vertices of G of label i. A k-expression φ of a k-labelled graph G, denoted [φ] = G,182

is an expression defined inductively [14] using:183

1. •i with i ∈ [k]: [•i] is a k-labelled graph with one vertex labelled by i,184

2. ρi→j(φ) with (i, j) ∈ [k]2 and i ̸= j: [ρi→j(φ)] is the same graph as [φ], but where all185

vertices of G with label i now have label j,186

3. ηi,j(φ) with (i, j) ∈ [k]2 and i ̸= j: [ηi,j(φ)] is the same graph as [φ], but where all tuples187

of the form (u, v) with {lG(u), lG(v)} = {i, j} is now an edge, and188

4. φ1 ⊕ φ2: [φ1 ⊕ φ2] is the disjoint union of the graphs [φ1] and [φ2].189

A graph G has a k-expression φ if there exists l : VG 7→ [k] such that [φ] = (VG, EG, l).190

The clique-width of a graph G (denoted by cw(G)) is the minimum k ≥ 1 such that G has a191

k-expression. An optimal expression of a graph G is a cw(G)-expression of G.192

The subexpressions of an expression φ are defined similarly: the only subexpression of193

•i is •i, the subexpressions of φ = φ1 ⊕ φ2 are φ and the subexpressions of φ1 and φ2, the194

subexpressions of φ = ρi→j(φ′) and φ = ηi,j(φ′) are φ and the subexpressions of φ′.195

A linear k-expression is a k-expression φ where for every subexpression of φ of the form196

φ1 ⊕ φ2, φ2 is of the form •i with i ∈ [k]. The linear clique-width (denoted by linearcw(G))197

of a graph G is the minimum k ≥ 1 such that G has a linear k-expression.198

2.3 Component twin-width199

A trigraph is a triplet G = (VG, EG, RG) where (VG, EG) and (VG, RG) are graphs, and200

EG ∩RG ̸= ∅. The set VG is said to be the set of vertices of G, EG is the set of (black) edges201

of G, and RG the set of red edges of G. A red-connected component of a trigraph G is a202

connected component of the graph (VG, RG).203

Let G be a trigraph and (u, v) ∈ (VG)2 with u ≠ v. The trigraph G/(u, v) is defined as204

the graph G where u and v have been removed and replaced by a new vertex uv, and where205

for all z ∈ VG \ {u, v}:206

(uv, z) ∈ EG/(u,v) if (u, z) ∈ EG and (v, z) ∈ EG,207

(uv, z) /∈ (EG/(u,v) ∪RG/(u,v)) if (u, z) /∈ (EG ∪RG) and (v, z) /∈ (EG ∪RG), and208

(uv, z) ∈ RG/(u,v) otherwise, i.e. when (u, z) or (v, z) is already a red-edge, or when209

among (u, z) and (v, z), one is a black edge and one is a non-edge.210

A contraction of a trigraph G is a graph of the form G/(u, v) with (u, v) ∈ (VG)2 and211

u ̸= v. A contraction sequence of a graph G is a sequence of trigraphs of the form (Gn, . . . , G1)212

with n = |VG|, Gn = (G, ∅), and for all k ∈ [n− 1], Gk is a contraction of Gk+1. Note that213
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Gk has k vertices and, in particular, that G1 has only one vertex, which is necessarily the214

trigraph3 G1 = ({VG}, ∅, ∅). A contraction sequence is said to be linear if any of its trigraph215

contains at most one red-connected component with at least 2 vertices of the original graph.216

The component twin-width of a contraction sequence (Gn, . . . , G1) is the maximal size of a217

red-connected component among the trigraphs Gk for k ∈ [n]. The (linear) component twin-218

width of a graph G denoted by linearctww(G)/ctww(G) is the minimum (linear) component219

twin-width of all its contraction sequences. The soundness proof of our algorithms that220

make use of contraction sequences rely on the following fundamental property of contraction221

sequences. This property can be easily proven by induction on k, knowing that it is indeed222

true for Gn = (VG, EG, ∅), and using the definition of a contraction of a trigraph.223

▶ Property 1. Let (Gn, . . . , G1) be a contraction sequence of a graph G, k ∈ [n], U and V224

two different vertices of Gk, u ∈ U and v ∈ V .3 Then225

(u, v) ∈ EG, whenever (U, V ) ∈ EGk
, and226

(u, v) /∈ EG, whenever (U, V ) /∈ EGk
∪RGk

.227

A cograph is a graph that has a contraction sequence with no red-edges, i.e., graphs with228

component twin-width 1 [10].229

2.4 Rank-width230

A branch decomposition of a graph G is a ternary tree T (a tree where each non-leaf vertex has231

degree 3) whose set of leaves is exactly VG. Let G be a graph and T a branch decomposition232

of G. Every edge e of T corresponds to a bipartition (Xe, Ye) of VG by considering the233

bipartition of the leaves of T into their connected components of T − e (the tree T but where234

the edge e have been removed). For every edge e of T , let Ae be the (Z/2Z)-matrix whose set235

of rows is Xe and whose set of columns is Ye, and whose coefficient of index (u, v) ∈ Xe × Ye236

is 1 if (u, v) ∈ EG, and 0 otherwise.237

Finally, let ρG(T ) = max
e∈ET

rank(Ae). The rank-width of G denoted by rw(G) is the238

minimum of ρG(T ) for T a branch-decomposition of G. A branch decomposition T realising239

this minimum is called an optimal branch-decomposition of G. The main interest of rank-240

width is made clear in the following remark.241

▶ Remark 2. Let T be an optimal branch-decomposition of a graph G, and e ∈ ET . If |Xe| >242

2rw(G), then there exists (u, u′) ∈ (Xe)2 with u ̸= u′ such that NG(u) ∩ Ye = NG(u′) ∩ Ye.243

Proof. Since the rank of the matrix Ae is lower than rw(G), the rows of G all belong to a244

(Z/2Z)-vector space of dimension at most rw(G). The latter has a cardinality of at most245

2rw(G), and therefore, Xe has 2 identical rows, which proves the result. ◀246

3 Comparing Clique-Width and Component Twin-Width247

In this section, we prove the linear bounds between clique-width cw and component twin-248

width ctww:249

cw ≤ ctww + 1 ≤ 2cw250

and that the similar bounds hold for their linear versions.251

Firstly, we prove the leftmost inequality.252

3 Each vertex of Gk is a set of vertices of G that have been contracted.
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▶ Theorem 3. For every graph G, cw(G) ≤ ctww(G) + 1.253

Proof. Let (Gn, . . . , G1) be an optimal contraction sequence of G, and let κ = ctww(G).254

Note that, for all k ∈ [n], every red-connected component of Gk has size ≤ κ. We explain255

how to construct a (κ + 1)-expression of G.256

We show the following invariant for all k ∈ [n]:257

P(k) : “Let C = {S1, . . . , Sp} be a red-connected component of Gk and3 ⋃
C = S1 ∪ · · · ∪Sp.258

There exists a (κ+1)-expression φC of the p-labelled graph GC = G[
⋃

C] with ∀i ∈ [p], V i
GC

=259

Si.”260

We first prove P(n). In Gn = (VG, EG, ∅), there are no red edges: the red-connected261

component are the singletons {u} for u ∈ VG. Thus •1 is a (κ + 1)-expression of (G[{u}], lu)262

(with lu : u 7→ 1), which proves P(n).263

Now, take k ∈ [n − 1] and assume P(k + 1). We will prove P(k). By definition of264

a contraction sequence, Gk is of the form Gk = Gk+1/(u, v) for two different vertices u265

and v of Gk+1. Observe that each red-connected component of Gk is also a red-connected266

component of Gk+1, except the red-connected component C containing uv. Hence, it suffices267

to prove P(k) for the red-connected component C. Notice also that (C \ {uv}) ∪ {u, v} is a268

union of red-connected component C1, . . . , Cq of Gk+1 (every pair of red-connected vertices269

in Gk+1 that does not contain u or v is also red-connected in Gk). We thus have that270

C =: (C1 ∪ · · · ∪ Cq ∪ {uv}) \ {u, v}.271

Denote by {S1, . . . , Sp−1, S′
p} the set of vertices of C, with p = |C|, and S′

p = uv. We272

have seen that C1 ∪ · · · ∪ Cq = {S1, . . . , Sp−1, Sp, Sp+1}, with Sp := u and Sp+1 := v. For273

each i ∈ [p + 1], Si belongs to a unique Cj with j ∈ [q]: let j(i) ∈ [q] be such that Si ∈ Cj(i).274

By P(k + 1) and up to interchanging labels, for every j ∈ [q] there exists a (κ + 1)-275

expression φCj
of the p-labelled graph GCj

= G[
⋃

Cj ] with for all i ∈ [p] with j(i) = j,276

V i
GCj

= Si. Therefore, φ′ := φC1 ⊕ · · · ⊕ φCq
expresses the disjoint union of the graphs277

GC1 , ..., GCq
. Furthermore, φ′ is an expression of a graph over the same vertices as G[

⋃
C],278

however, we still need to construct the black edges crossing these red-connected components.279

We thus apply ηi,i′ to φ′ for every black edge of the form (Si, Si′) in Gk+1, to obtain an280

expression φ′′. Since the vertices with labels i and i′ are exactly the vertices of Si and Si′ ,281

we create exactly the edges between vertices of Si and of Si′ . By Property 1, we construct282

the correct black edges in G[
⋃

C], and thus φ′′ is an expression of G[
⋃

C].283

Moreover, we need to make sure that the labels in φ′′ match the expectations of P(k).284

For that, we apply ρp+1→p to φ′′ to get an expression φGC
. By doing so, Sp (say, u) and285

Sp+1 (say, v) have the same label in φGC
. Hence, φGC

witnesses P(k) (since Sp = u and286

Sp+1 = v are now contracted together as the vertex S′
p = uv in Gk) for the red-connected287

component C. Indeed, we have used p + 1 = |C|+ 1 ≤ κ + 1 different labels to construct288

φGC
from φC1 , . . . , φCq

.289

Since {VG} is a red-connected component of G1 = ({VG}, ∅, ∅), it follows from P(1) that290

G[VG] = G has a (κ + 1)-expression, and thus cw(G) ≤ κ + 1. Recall that κ = ctww(G),291

and thus cw(G) ≤ ctww(G) + 1. ◀292

Moreover, if the contraction sequence given is linear, we obtain a linear (κ + 1)-expression.293

We thus get for all graph G that linearcw(G) ≤ linearctww(G) + 1.294

Notice that linearcw can not be bounded by a function of ctww. For instance, the class295

of cographs (and even of trees) have unbounded linear clique-width [22], despite having a296

bounded component twin-width of 1. We now prove the rightmost bound.297

▶ Theorem 4. For every graph G, we have:298

(i) ctww(G) ≤ 2cw(G)− 1, and299
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(ii) ctww(G) ≤ linearcw(G).300

Proof. We first prove (i) and then adapt it to prove (ii). Let k := cw(G) and take a301

k-expression of G. We will explain how to construct a contraction sequence of G in which302

every red-connected component has size ≤ 2k − 1. The following remark will be implicitly303

used throughout this proof.304

▶ Remark 5. Two vertices that have the same label in an expression φ′ also have the same305

label in any expression of φ that has φ′ as a sub-expression.306

We prove the following property of k-expressions of φ by structural induction:307

H(φ) : “Let (G, lG) := [φ]. There exists a (partial) contraction sequence (Gn, . . . , Gk′) with308

k′ ≤ k of G such that:309

every red-connected component in the trigraphs Gn, . . . , Gk′ has size ≤ 2k − 1,310

the vertices of Gk′ are exactly the non-empty V i
G for i ∈ [k], and311

every pair of vertices contracted have the same labels in (G, lG)4.312

If φ = •i with i ∈ [k], there is nothing to do since G has only one vertex. If φ is of the313

form ρi→j(φ′) (with (i, j) ∈ [k]2 and i ̸= j), consider for G the partial contraction sequence314

of (G′, lG′) := [φ′] given by H(φ′), and then contract V i
G′ and V j

G′ to obtain V j
G = V i

G′ ∪ V j
G′ .315

Since φ′ is also a k-expression of G, this partial contraction sequence of G satisfies H(φ).316

If φ is of the form ηi,j(φ′) (with (i, j) ∈ [k]2 and i ̸= j), consider for G the partial317

contraction sequence of (G′, lG′) := [φ′] given by H(φ′). To prove that it is sufficient to prove318

H(φ), it is sufficient to justify that it does not create any red edge in the contraction of G319

that was not present in the contraction of G′. The first red-edge (x, y) that would appear in320

the contraction of G = [ηi,j(φ′)] that does not appear in the same contraction of G′ = [φ′],321

results necessarily of the contraction of two vertices u and v with x = uv and y being in the322

symmetric difference of the neighborhoods of u and v in G = [ηi,j(φ′)] but not in G′ = [φ′].323

Such a red-edge can not exist because we contract only vertices with the same label in φ′
324

(or, equivalently, in φ), and that ηi,j can only decrease (w.r.t. ⊆) the symmetric difference325

between the neighborhood of vertices with the same label in φ. By Remark 5, this implies326

that it is also true for vertices having the same label in any subexpression of φ.327

If φ is of the form φ = φ′ ⊕ φ′′: denote (G′, l′) := [φ′] and (G′′, l′′) := [φ′′], thereby,328

VG = VG′ ∪ VG′′ . Consider the partial contraction sequence of G given by:329

1. contract the vertices in VG′ in accordance to the contraction sequence given by H(φ′),330

2. contract the vertices in VG′′ in accordance to the contraction sequence given by H(φ′′)331

3. for all i ∈ [k], contract V i
G′ with V i

G′′ (if both are nonempty) to get V i
G = V i

G′ ∪ V i
G′′ .332

Steps 1 and 2 do not create a red-edge adjacent to both VG′ and VG′′ (since these are333

two distinct connected components of G).334

Thus, before step 3, we have a trigraph with ≤ 2k vertices (because both trigraphs335

obtained after H(φ′) and H(φ′′) have less than k vertices), and every red-component that336

have appeared so far has size ≤ 2k − 1. After the first contraction of step 3, the resulting337

trigraph has ≤ 2k − 1 vertices, and thus no red-connected component of size > 2k − 1 can338

emerge. Such a contraction satisfies every requirement of H(φ). We have thus proven H(φ)339

for every k-expression.340

4 Inductively, we say that the label of a vertex S ∈ VGl
(k′ ≤ l ≤ n) is then the common label of the

vertices that have been contracted together to produce S.
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Now, take a k-expression φ of G. Up to applying ρi→1 for all i ∈ [k] to φ, we can assume341

that (G, lG) := [φ] with lG being constant equal to 1. The partial contraction sequence of G342

given by H(φ) is a total contraction sequence of G of component twin-width ≤ 2k− 1. Since343

k = cw(G), we have proven that ctww(G) ≤ 2cw(G)− 1.344

To prove (ii), we show a similar property Hlin(φ) for every linear k-expression. The345

only difference between Hlin and H is that we replace the condition ≤ 2k − 1 by ≤ k. The346

proof then follows exactly the same steps, except for the case φ = φ′ ⊕ φ′′, where step 2347

(the contraction according to Hlin(φ′′)) is not necessary anymore, since φ′′ is of the form •i348

(i ∈ [k]), and we obtain a trigraph of size k + 1 instead of 2k, since φ′′ has 1 vertex instead349

of k. This ensures that every red-connected component has size ≤ (k + 1)− 1 = k instead of350

2k − 1 in the non-linear case.351

For step 3, i.e., contracting vertices of the same color in φ′ and in φ′′, just note that it352

consists of at most 1 contraction instead of k in the linear case. ◀353

Moreover, in the proof of (i), if the k-expression given is linear, we obtain a linear354

contraction sequence. We get that for every graph G, linearctww(G) ≤ 2linearcw(G)− 1.355

4 Approximating Component Twin-Width356

The linear bounds established in Section 3 entail reasonable approximation results for357

component twin-width by making use of known approximations of clique-width [26]. The358

best currently known approximation algorithm for clique-width is given by Theorem 6.359

▶ Theorem 6. [26] Let k be a fixed positive integer. There is an O(|VG|3)-time algorithm that360

either outputs an (8k − 1)-expression of an input graph G or confirms that the clique-width361

of G is larger than k.362

From Theorem 6 and the linear bounds established in Theorem 3 and Theorem 4, we363

immediately obtain an approximation algorithm for component twin-width.364

▶ Theorem 7. Let p be a fixed positive integer. There is an O(|VG|3)-time algorithm that365

either outputs a contraction sequence of component twin-width ≤ 23p+4 − 3 of an input graph366

G or confirms that the component twin-width of G is larger than p.367

Proof. The algorithm consists of applying the algorithm of Theorem 6 to G with k := p + 1.368

If the algorithm confirms that cw(G) > p + 1, then we know that ctww(G) > p by Theorem369

3. Otherwise, it outputs a (23(p+1)−1)-expression of G, which we transform into a contraction370

sequence of G of component twin-width ≤ 2 × (23(p+1) − 1) − 1 = 23p+4 − 3 through the371

constructive proof of Theorem 4, which can be performed in linear time in the size of the372

(23(p+1) − 1)-expression of G. ◀373

It is still interesting to see that a direct comparison between component twin-width and374

rank-width yields to a better approximation ratio, thanks to Theorem 8. In fact, Theorem 6375

was also obtained by this method. By avoiding using clique-width as an intermediate376

parameter, it is not surprising that we obtain a better ratio.377

▶ Theorem 8. [26] Let k be a fixed positive integer. There is an O(|V (G)|3)-time algorithm378

that either outputs a rank-decomposition (of an input graph G) of width at most 3k − 1 or379

confirms that the rank-width of G is larger than k.380

We can indeed make use of the bounds given by Theorem 9. The proof is very similar to381

the proof of functional equivalence between boolean-width and component twin-width [8],382

which is not surprising, since Remark 2 applies both to rank-with and boolean-width.383
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▶ Theorem 9. For every graph G, rw(G)− 1 ≤ ctww(G) ≤ 2rw(G)+1
384

Proof. The first inequality rw(G) − 1 ≤ ctww(G) follows from Theorem 3, stating that385

cw(G)− 1 ≤ ctww(G) and the fact that rw(G) ≤ cw(G) [25].386

We now focus on proving the second bound of ctww(G) ≤ 2rw(G)+1. This proof follows387

the same scheme as the proof of the functional equivalence between boolean-width and388

component twin-width [8], primarily since Remark 2 also applies to both boolean-width.389

Similarly to a branch-decomposition of graphs, a branch-decomposition of a trigraph G′
390

is a ternary tree whose set of leaves is VG′ . It is said to be rooted if a non-leaf vertex has391

been chosen to be the root, which leads to the usual definition of children and descendants392

in a rooted tree. The set of leaves descending from a vertex v of a tree T is denoted by Dv.393

Now, let G be a graph and T be an optimal branch decomposition of G, and let r := rw(G).394

We prove by induction the following property for k ∈ [n].395

P(k): “There exists a (partial) contraction sequence (Gn, . . . , Gk) of G of component396

twin-width ≤ 2r+1. Moreover, there exists a branch-decomposition Tk of Gk such that for397

every t ∈ VTk
with |Dt| > 2r, there is no red-edge crossing the bipartition (Dt, VGk

\Dt).”398

Note that P(n) is indeed true since G = Gn has no red-edge. Now assume P(k + 1) with399

k ∈ [n− 1]. We will prove P(k). First, note that if k ≤ 2r, contracting any two arbitrary400

vertices and giving any branch decomposition of Gk proves P(k). We may thus assume that401

k > 2r. The root ρ satisfies |Dρ| ≥ 2r + 1. Observe that there exists a node v of Tk+1 such402

that 2r + 1 ≤ |Dv| ≤ 2r+1: a node v such that Dv has size at least 2r + 1 and which is403

furthest from the root meets the condition. Moreover, any child w of v verifies |Dw| ≤ 2r.404

If we use Remark 2 with respect to an edge adjacent to v, then there are two vertices u405

and u′ that satisfy NG(u) ∩ (VGk+1 \Dv) = NG(u′) ∩ (VGk+1 \Dv).406

To prove P(k), we will prove that it is sufficient to contract the vertices u and u′ of Gk+1407

to obtain Gk, and to identify the leaves u and u′ of Tk+1 to obtain Tk (ie. we remove u′ and408

shortcut every degree 2 vertex that appear, and we then rename u as uu′). Note that all the409

red-edges created by the contraction of u and u′ are adjacent to the new vertex uu′.410

First, by our choice of u and u′, we do not create any red-edge crossing (Dv, VGk
\Dv).411

Due to the property of Tk+1 ensured by P(k + 1) (recall that |Dv| > 2r), there is no red-edge412

crossing (Dv, VGk
\ Dv) in Tk. The red-connected component C of the new vertex uu′ is413

thus contained in Dv, and thus has size at most 2r+1. Since C is the only red-connected414

component of Gk that was not a red-connected component of Gk+1, Gk indeed meets the415

requirements of P(k).416

Second, due to the choice of v, any node t of Tk with |Dt| > 2r containing the new vertex417

uu′ is an ancestor of v. Since Dv ⊆ Dt, by the above argument, there is no red-edge crossing418

(Dt, VGk
\Dt).419

The proof of P(k) is now complete: P(1) justifies that ctww(G) ≤ 2r+1. ◀420

This bounds naturally leads to the approximation given in Theorem 10.421

▶ Theorem 10. Let p be a fixed positive integer. There is an O(|VG|3)-time algorithm that422

either outputs a contraction sequence of component twin-width ≤ 8p+1 of an input graph G423

or confirms that the component twin-width of G is larger than p.424

Proof. This result can be obtained similarly to Theorem 7, by using Theorems 8 and 9425

instead of Theorems 3 and 4 and 6. ◀426
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5 Complexity Results427

We show two algorithmic applications of dynamic programming over component twin-width428

to #H-Coloring. The first assumes that an optimal contraction sequence of the input429

graph G is given, and results in a FPT algorithm parameterized by ctww, running in time430

O∗((2|VH | − 1)ctww(G)). The second approach uses an optimal contraction sequence of the431

template H (whose computation can be seen as a pre-computation, since it does not involve432

the input graph G): we obtain a fine-grained algorithm running in time O∗((ctww(H) +433

2)|VG|), whose complexity beats the best algorithms of the literature and that runs in time434

O∗((2cw(H) + 1)|VG|) and O∗((linearcw(H) + 2)|VG|) [27] through the linear bounds of435

Section 3. Note that the technique employed in this paper could similarly be used to derive436

the same complexity results applied to the more general frameworks of counting the solutions437

of binary constraint satisfaction problems, ie. problems of the forms #Binary-Csp(Γ) with438

Γ a set of binary relations over a finite domain, even though we restrict to the simpler case439

of #H-Coloring here to avoid having to define contraction sequences of instances and440

template of binary constraint satisfaction problems.441

5.1 Parameterized complexity442

We present an algorithm solving #H-Coloring in FPT time parameterized by component443

twin-width. It is inspired by the algorithm solving k-Coloring [8], thus proving that #H-444

Coloring is FPT parameterized by component twin-width and thus also by clique-width445

(by functional equivalence). The proof can be found in Appendix A.446

▶ Theorem 11. For any graph H, there exists an algorithm running in time O∗((2|VH | −447

1)ctww(G)) that solves #H-Coloring on any input graph G (assuming that an optimal448

contraction sequence (Gn, . . . , G1) of G is given).449

If one only wishes to solve H-Coloring rather than the counting problem, the algorithm450

by Ganian et al. [21] which runs in O∗(s(H)cw(G)) for a graph parameter s, is strictly more451

efficient. Indeed, for any graph H, its structural parameter s(H) is bounded by 2|VH | − 2452

[21] (the equality happens if and only if H is a clique), and as we have proven in Theorem 3,453

for any graph G, cw(G) ≤ ctww(G) + 1. However, it is difficult to extend this algorithm to454

the counting problem since the sets stored as invariants in the algorithm do not necessarily455

represent disjoint subsets of partial coloring. This is acceptable if one only wants to determine456

the existence of a total coloring (as long as every coloring is represented at least once), but457

which causes issues when counting the number of colorings.458

More precisely, for the #k-Coloring problem, one may remark that the O∗((2k−2)cw(G))459

algorithm by [24] also solves the counting problem, and thus runs faster than the algorithm460

given in the proof of Theorem 11. However, our algorithm is strictly more general since it is461

applicable to any #H-Coloring problem.462

5.2 Fine-grained complexity463

We now consider the dual problem of solving #H-Coloring when H has bounded com-464

ponent twin-width. We therefore use an optimal contraction sequence of the template H465

instead of the input G, and obtain a fine-grained algorithm for #H-Coloring which runs466

in O∗((ctww(H) + 2)n) time. The algorithm is inspired by the algorithms running in467

O∗((2cw(H) + 1)n) and O∗((linearcw(H) + 2)n) time by Wahlström [27], but it is always468

at least as fast as both.469
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▶ Theorem 12. #H-Coloring is solvable in time

O∗((ctww(H) + 2)|VG|).

The proof can be found in Appendix B. By Theorem 4, ctww(H) + 2 ≤ linearcw(H) + 2470

and ctww(H) + 2 ≤ 2cw(H) + 1 for any graph H. Therefore, the algorithm in the proof of471

Theorem 12 is always asymptotically faster than the clique-width approach by Wahlström472

[27] that solves the problem in O∗((linearcw(H) + 2)|VG|) and O∗((2cw(H) + 1)|VG|) time.473

6 Conclusion and Future Research474

In this paper we explored component twin-width in the context of #H-Coloring problems.
We improved the bounds of the functional equivalence between component twin-width and
clique-width from the (doubly) exponential cw ≤ 22ctww and ctww ≤ 2cw+1 to the linear

cw ≤ ctww + 1 ≤ 2cw.

In particular, this entails a practical FPT algorithm for H-Coloring parameterized by475

component twin-width. From these linear bounds derives an approximation algorithm with476

exponential ratio, that can even be improved by a direct comparison with rank-width. Finally,477

we constructed two algorithms for solving #H-Coloring. The first uses a given optimal478

contraction sequence of the input graph G to solve #H-Coloring in FPT time parameterized479

by component twin-width. The second uses a contraction sequence of the template graph H480

and beats the clique-width approach for solving #H-Coloring (with respect to |VG|).481

We now discuss some topics for future research.482

6.1 Tightness of the bounds483

Even though the bound cw ≤ ctww + 1 given by Theorem 3 is tight for any cograph with at484

least 1 edge, we do not currently know if this bound can be improved for graphs with greater485

clique-width or component twin-width. Moreover, it would be interesting to determine486

whether the bound ctww ≤ 2cw− 1 given by Theorem 4 is tight. The same remark holds487

for the bounds between component twin-width and rank-width given by Theorem 9. It would488

be interesting to study the tightness of the bound tww ≤ 2cw− 2 (where tww designs the489

twin-width), which is a direct consequence of Theorem 4.490

6.2 Lower bounds on complexity491

The algorithms relying on clique-width to solve H-Coloring by [21] in O∗(s(H)cw(G)) time492

are known to be optimal under the SETH. We have a similar optimality result for treewidth493

(tw), with an algorithm solving H-Coloring in time |VH |tw(G), despite the existence of an494

algorithm in (|VH | − ε)tw(G) with ε > 0 being ruled out under SETH. A natural research495

direction is then to optimize the running time of the algorithm of Theorem 11, possibly by496

making use of s(H), and prove a similar lower bound.497

6.3 Extensions498

Instead of solving #H-Coloring the results of Section 5 can be extended to arbitrary499

binary constraints (binary constraint satisfaction problems, Bcsps). The notion of component500

twin-width indeed generalize naturally to both instances and a templates of a Bcsp.501
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Additionally, one may note that the algorithms detailed in Section 5 can be adapted502

to solve a “cost” version of #H-Coloring: given a weight matrix C, the cost of an503

homomorphism f is
∑

u∈VG

C(u, f(u)), and we want to find an homomorphism of minimal cost.504
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A Proof of Theorem 11505

▶ Theorem 11. For any graph H there exists an algorithm running in time O∗((2|VH | −506

1)ctww(G)) which solves #H-COLORING on any input graph G (assuming that an optimal507

contraction sequence (Gn, . . . , G1) of G is given).508

Proof. For k ∈ [n], C = {S1, . . . , Sp} ⊆ VGk
a red-connected component of vertices of Gk,509

and for γ : C 7→ (2VH \ ∅), a H-coloring of G[∪C] with profile γ is a H-coloring f of G[∪C]510

such that for all i ∈ [p], f(Si) = γ(Si). I.e. the vertices of H used to color Si are exactly the511

colors of the set γ(Si).512

Then, define the set COL(C, γ) as the set of H-colorings of G[∪C] with profile γ. We see513

that for every red-connected component C of Gk, the sets COL(C, γ) for γ : C 7→ (2VH \ ∅)514

form a partition of the set of the H-colorings of G[∪C].515

The principle of the algorithm is, similarly to the proof of Theorem 2 in the main text,
to inductively maintain (from k = n to 1) the knowledge of every |COL(C, γ)| (stored in
a tabular #col(C, γ)) for a red-connected component C of Gk and γ : C 7→ (2VH \ ∅). In
this way, since {VG} is a red-connected component of G1 = ({VG}, ∅, ∅), we can obtain the
number of H-colorings of G[VG] = G by computing∑

T ∈(2VH \∅)

#col({VG}, VG 7→ T ).

First, note that the red-connected components of Gn are the {u} for u ∈ VG (since Gn =516

(VG, EG, ∅) has no red edge). For every γ : u 7→ γ(u) ∈ (2|VH | \ ∅) we let #col({u}, γ)← 0517

if |γ(u)| ≠ 1 and #col({u}, γ) ← 1 if |γ(u)| = 1. Hence, we correctly store the value of518

|COL({u}, γ)| in the tabular #col({u}, γ).519

We explain how to maintain this invariant after the contraction from Gk+1 to Gk (with520

k ∈ [n− 1]). By definition of a contraction sequence, Gk is of the form Gk =: Gk+1/(u, v)521

with u and v two different vertices of Gk+1.522

Note that every red-connected component of Gk is also a red-connected component of523

Gk+1, except the red-connected component C containing uv. We only have to compute524

|COL(C, γ)| for any γ : C 7→ 2VH \ ∅, and to store it in the tabular #col(C, γ). Initialize the525

value of #col(C, γ) with 0.526

Let C =: {S1 . . . , Sp−1, S′
p}, with S′

p := uv, and p := |C| ≤ ctww(G). Since every pair
of red-connected vertices in Gk+1 (that contains neither u nor v) are red-connected in Gk

(except u and v), C must be of the form

C := (C1 ∪ · · · ∪ Cq ∪ {S′
p}) \ {Sp, Sp+1},

with Sp := u and Sp+1 := v and C1 ∪ · · · ∪ Cq = {S1, . . . , Sp−1, Sp, Sp+1},5 and where527

C1, . . . , Cq (with q > 0) are red-connected components of Gk+1 whose union contains both528

Sp = u and Sp+1 = v. Notice that each Si (for i ∈ [p + 1]) belongs to a unique Cj(i) with529

j(i) ∈ [q].530

An illustration of these notations are given in Figure 2.531

The algorithm iterates over every family (γj : Cj 7→ (2VH \ ∅))1≤j≤q. Let γ = γ1 ∪ · · · ∪ γq532

that maps every Si (with i ∈ [p−1]) to γj(i)(Si), and that maps S′
p = uv = Sp∪Sp+1 = u∪v533

to γj(p)(Sp) ∪ γj(p+1)(Sp+1). We check if there exists a (i, i′) ∈ [p]2 with i ̸= i′, a black edge534

5 Note that uv = S′
p = Sp ∪ Sp+1 = u ∪ v.
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between Si and Si′ in Gk+1, and (γ(Si)× γ(Si′)) \EH ̸= ∅, in time O(p2). If so, we move to535

the next family (γj)1≤j≤q. Otherwise, we increment #col(C, γ) by
q∏

j=1
#col(Cj , γj).536

Soundness: The soundness of this algorithm follows from the fact that for each γ : C 7→537

2VH \ ∅, COL(C, γ) is the disjointed union, for (γ1, . . . , γq) such that γ = γ1 ∪ · · · ∪ γq, of538

the sets of H-colorings f such that for all j ∈ [q] the profile of f |Cj is γj , that we denote by539

COL(C, γ1, . . . , γq). We only need to compute |COL(C, γ1, . . . , γq)|, which can be derived by540

Claim 13. We then store the sum over (γ1, . . . , γq) such that γ = γ1 ∪ · · · ∪ γq in #col(C, γ).541

▷ Claim 13. There are two distinct cases:542

1. If there exists (i, i′) ∈ [p]2 such that (Si, Si′) is a black edge of Gk+1 and (γj(i)(Si) ×543

γj(i′)(Si′)) \ EH ̸= ∅, then COL(C, γ1, . . . , γq) = ∅.544

2. If for all (i, i′) ∈ [p]2 such that (Si, Si′) is a black edge of Gk+1, (γj(i)(Si)× γj(i′)(Si′)) ⊆545

EH , then a function f : ∪C 7→ VH belongs to COL(C, γ1, . . . , γq) iff, for all j ∈ [q], f546

restricted to Cj (denoted by fj) belongs to COL(Cj , γj).547

Proof. We treat the two cases separately. In the first case, assume that there exists548

(i, i′) ∈ [p]2 such that (Si, Si′) is a black edge of Gk+1 and (γj(i)(Si)× γj(i′)(Si′)) \ EH ̸= ∅549

and, for the sake of contradiction, suppose that there is f ∈ COL(C, γ1, . . . , γq). Take550

(vi, vi′) ∈ (γj(i)(Si)×γj(i′)(Si′))\EH . By definition of a profile, there exists (ui, ui′) ∈ Si×Si′551

with f(ui) = vi and f(ui′) = vi′ . Then, since there exists a black edge between Si and Si′ in552

Gk+1, this means by Property 1 that (ui, ui′) ∈ EG. But (f(ui), f(ui′)) = (vi, vi′) /∈ EH , so553

f is not a H-coloring, which contradicts the definition of f .554

In the second case, assume that for all (i, i′) ∈ [p]2 such that (Si, Si′) is a black edge555

of Gk+1, (γj(i)(Si) × γj(i′)(Si′)) ⊆ EH . To prove necessity, notice that the restriction of a556

partial H-coloring is also a partial H-coloring, and by definition of COL(C, γ1, . . . , γq), if557

f ∈ COL(C, γ1, . . . , γq), then fj ∈ COL(Cj , γj).558

To prove sufficiency, assume that f : ∪C 7→ VH is such that for all j ∈ [q], fj ∈559

COL(Cj , γj). Then, provided that f is a H-coloring of G[∪C], f ∈ COL(C, γ1, . . . , γq).560

Hence, we only have to prove that f is a H-coloring. So let (u, u′) ∈ EG. We prove that561

(f(u), f(u′)) ∈ EH . Observe that there exist Si and Si′ (with (i, i′) ∈ [p]2) such that u ∈ Si562

and v ∈ Si′ . If Si and Si′ are in the same red-connected component Cj (with j ∈ [q])563

of Gk+1, then (f(u), f(u′)) = (fj(u), fj(u′)) ∈ EH because fj is a H-coloring. Otherwise,564

(Si, Si′) is not a red edge of Gk+1, so (Si, Si′) is a black edge of Gk+1, since (u, u′) ∈ EG565

and (u, u′) ∈ Si × Si′ , by Property 1. By assumption, (γj(i)(Si)× γj(i′)(Si′)) ⊆ EH and, by566

definition of a profile, (f(u), f(u′)) = (fj(i)(u), fj(i′)(u′)) ∈ γj(i)(Si)× γj(i′)(Si′) ⊆ EH . The567

latter shows that f is indeed a H-coloring. ◀568

From Claim 13 it follows that choosing an f in COL(C, γ1, . . . , γq) is either impossible,569

or equivalent to choosing fj ∈ COL(Cj , γj) for all j ∈ [q], which is why we add either 0 or570
q∏

j=1
#col(Cj , γj) when treating the part of #col(C, γ) relative to the family (γ1, . . . , γq).571

Complexity: To treat the red-connected component C, the only non-polynomial part is
to iterate over every family (γ1, . . . , γq), which represents

q∏
j=1

(2|VH | − 1)|Cj | = (2|VH | − 1)|C|+1 ≤ (2|VH | − 1)ctww(G)+1

families to treat (recall that for all j ∈ [q], γj is a non-empty subset of Cj). ◀572
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B Proof of Theorem 12573

▶ Theorem 12. #H-Coloring is solvable in time

O∗((ctww(H) + 2)|VG|).

Proof. Consider an optimal contraction sequence (Hm, . . . , H1) of H, with m := |VH |. We574

give an algorithm similar to that described in the proof of Theorem 11, except that we define575

profiles for red-connected component of each Hk, k ∈ [m].576

Let C = {T1, . . . , Tp} be a red connected component of Hk and let γ = (S1, . . . , Sp) be a577

p-tuple of pairwise disjoint subsets of VG. An H-coloring f of G[S1 ∪ . . . ,∪Sp] is said to have578

C-profile γ if for each i ∈ [p], f(Si) ⊆ Ti. Denote by COL(γ, C) the set of partial H-colorings579

of G (i.e., a H-Coloring of an induced subgraph) with C-profile γ. It is easy to compute580

the |COL(γ, C)| for a red-connected component C of Hm = (VH , EH , ∅) and γ = (S) with581

S ⊆ VG, since C is of the form C = {v} with v ∈ EH . We have |COL((S), {v})| = 1 if582

S2 ∩ EG = ∅, and |COL((S), {v})| = 0, otherwise.583

As in the proof of Theorem 11, for k ∈ [m − 1] the only red-connected component
of Hk that is not a red-connected component of Hk+1, is the red-connected component
C = {T1, . . . , Tp−1, T ′

p} that contains T ′
p = uv (the vertex obtained by contraction of Tp = u

and Tp+1 = v in Hk+1). Hence, C is of the form

C = (C1 ∪ · · · ∪ Cq ∪ {T ′
p}) \ {Tp, Tp+1},

with C1 ∪ · · · ∪ Cq = {T1, . . . , Tp−1, Tp, Tp+1}, where C1, . . . , Cq are the red-connected com-584

ponents of Hk+1 whose union contains Tp = u and Tp+1 = v. Again, each Ti belongs to a585

unique Cj(i) with j(i) ∈ [q].586

Then, as in the proof of Theorem 11, for all families of disjoint subsets of VG and587

γ = (S1, . . . , Sp−1, S′
p), we can compute the value of |COL(γ, C)|. Indeed, as in the proof of588

Theorem 11, it is the sum for every family (γj)1≤j≤q that defines the profile γ (i.e., every589

γj is a family of pairwise disjoint subsets of VG, and S′
p is of the form S′

p = Sp ∪ Sp+1 with590

Sp ∩ Sp+1 = ∅ and ∀j ∈ [q], γj = (Si)i∈j−1({j}))591

of the value (1)
q∏

j=1
|COL(γj , Cj)| if for every (i, i′) ∈ [p]2 with j(i) ̸= j(i′) and for every592

edge (ui, ui′) of G with ui ∈ Si and ui′ ∈ Si′ , there is a black edge between Ti and Ti′ in593

Hk+1, and (2) 0, otherwise.594

The complexity of computing |COL(γ, C)| for every γ is (ctww(H) + 2)|VG|, since ex-595

ploring every family (γj)1≤j≤q containing only pairwise disjoint subsets of |VG| requires to596

explore (
q∑

j=1
|Cj |+ 1)|VG| families (any vertex of G can be mapped to a unique element in597

{T1, T2, . . . , Tp+1} or none of them), which makes (|C| + 2)n ≤ (ctww(H) + 2)n possib-598

ilities. Since H1 = ({VH}, ∅, ∅), we obtain the number of such H-colorings of G in time599

O∗((ctww(H) + 2)|VG|), and it is equal to |COL({VG}, {VH})| . ◀600
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S1

S2

S3 S4

S5

S6

u = S7

v = S8

Gk+1

S1

S2

S3 S4

S5

S6

uv = S′
7 = S7 ⊎ S8

Gk

Figure 2 An example where merging u = S7 and v = S8 causes j = 4 different red-connected
components to merge into a red-connected component of size p = 7. With the notations of this
proof, we could have C1 = {S1, S2}, C2 = {S3, S4, S5, S7}, C3 = {S6} and C4 = {S8}. For instance,
j(1) = j(2) = 1, j(3) = j(4) = j(5) = j(7) = 2, j(6) = 3 and j(8) = 4
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