
HAL Id: hal-04142675
https://hal.science/hal-04142675

Submitted on 27 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Strategies to Compute Invariants, Bounds and
Stable Places of Petri nets

Yann Thierry-Mieg

To cite this version:
Yann Thierry-Mieg. Efficient Strategies to Compute Invariants, Bounds and Stable Places of Petri
nets. Petri Nets and Software Engineering PNSE’23, Jun 2023, Lisbon, Portugal. �hal-04142675�

https://hal.science/hal-04142675
https://hal.archives-ouvertes.fr

Efficient Strategies to Compute Invariants, Bounds and
Stable Places of Petri nets
Yann Thierry-Mieg1,†

1Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

Abstract
This paper presents a set of strategies to solve global behavioral properties of Petri nets. We introduce
efficient methods to compute structural invariants and bounds, and to decide presence of stable places for
both PT nets and colored nets.

Our focus is on proposing strategies that scale to very large nets, even if precision is degraded or the
test is only a semi-decision (e.g. a sufficient condition). These strategies form the decision procedures of
ITS-Tools, that has won the annual model-checking competition MCC in these categories in both 2021 and
2022.

Keywords
Petri Nets, Model Checking, Structural properties

1. Introduction

The model-checking competition MCC [1] is an annual event held since 2011 comparing
verification tools over a large set of Petri nets taken from diverse literature. The 2020 edition of
the contest introduced a new category called "GlobalProperties" that contains five examinations :

• One Safe : in any reachable state, are all place markings bounded by at most one token?
• StableMarking : is there at least one place whose marking never evolves?
• Reachability of a Deadlock : are there reachable states where no transition can be fired?
• Quasi-Liveness : is there a way to fire any given transition starting from the initial state?
• Liveness : is there a way to fire any given transition starting from any given reachable state?

We are additionally interested in the "Upper Bounds" examination where we must compute the
maximum number of tokens that can mark a given place of the net.

In this paper we propose integrated solutions to tackle some of these problems more efficiently.
While most of these queries could be treated by simply translating them to a set of (reachability)
assertions we try to avoid this step or at least reduce the number of queries needed to solve a given
question. We also focus on providing a full decision procedure that starts with very simple and
low complexity tests for sufficient conditions before escalating to incrementally harder tests.

These strategies have not been described elsewhere and form the basis of the decision procedures
of ITS-Tools [2] that has been consistently winning the contest for these examinations since 2021.

PNSE’23: Petri Nets for Software Engineering, June 27, 2023, Lisbon, PT
$ first.last@lip6.fr (Y. Thierry-Mieg)
� 0000-0001-7775-1978 (Y. Thierry-Mieg)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:first.last@lip6.fr
https://orcid.org/0000-0001-7775-1978
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

The structure of the paper is the following, we first set the basic definitions and notations used
in the paper Then for each property of interest, we present in detail a series of structural or low
complexity sufficient or necessary condition that can be tested. If these preliminary strategies
cannot conclude, we use a more complete model-checker but we limit as much as possible the
number of queries that we pose to the model-checker. We discuss computation of invariants in
section 3, then computation of bounds on place markings in section 4. This leads to decision
procedures for the one safe property in section 5. Finally we present strategies to decide the stable
marking property, i.e. are some place marking constant, in section 6.

2. Definitions

We first recall the definitions of a Petri net, then we informally introduce the notion of colored net
(also called "High Level Petri Net") with its unfolding and skeleton.

2.0.1. Petri net syntax and semantics

Definition 1. Structure. A Petri net 𝑁 = ⟨P,T ,W−,W+,𝑚0⟩ is a tuple where P is the set of
places, T is the set of transitions,W− : P×T ↦→N andW+ : P×T ↦→N represent the pre and
post incidence matrices, and 𝑚0 : P ↦→N is the initial marking.

Notation: We use 𝑝 (resp. 𝑡) to designate a place (resp. transition) or its index dependent on
the context. We let markings 𝑚 be manipulated as vectors of natural numbers with |P | entries.
We letW− (𝑡) andW+(𝑡) for any given transition 𝑡 represent vectors with |P | entries. W⊤

− ,W⊤
+

are the transposed flow matrices, where an entryW⊤
− (𝑝) is a vector of |T | entries. We denote

W𝑒 =W+−W− the integer matrix representing transition effects.
In vector spaces, we use 𝑣 ≥ 𝑣′ to denote ∀𝑖, 𝑣(𝑖) ≥ 𝑣′(𝑖), and offer sum 𝑣+𝑣′ and multiplication

of a vector by a scalar 𝑘 · 𝑣 for scalar 𝑘 with usual element-wise definitions.
We denote •𝑛 (resp. 𝑛•) the pre set (resp. post set) of a node 𝑛 (place or transition). E.g. for a

transition 𝑡 its pre set is •𝑡 = {𝑝 ∈ P |W− (𝑝, 𝑡) > 0}. A marking𝑚 is said to enable a transition 𝑡 if
and only if 𝑚 ≥W− (𝑡). A transition 𝑡 is said to read from place 𝑝 ifW− (𝑝, 𝑡) > 0∧W𝑒 (𝑝, 𝑡) = 0.

Definition 2. Semantics. The semantics of a Petri net are given by the firing rule 𝑡−→ that relates
pairs of markings: in any marking 𝑚 ∈ N | P | , if 𝑡 ∈ T satisfies 𝑚 ≥W− (𝑡), then 𝑚 𝑡−→ 𝑚′ with
𝑚′ = 𝑚 +W+(𝑡) −W− (𝑡). The reachable set R is inductively defined as the smallest subset of
N | P | satisfying 𝑚0 ∈ R, and ∀𝑡 ∈ T ,∀𝑚 ∈ R,𝑚 𝑡−→ 𝑚′⇒ 𝑚′ ∈ R.

2.0.2. Colored Petri net syntax and semantics

A colored or high-level Petri net is similar to a Petri net structurally, but each place 𝑝 now has
a domain 𝑑 (𝑝) and place markings are a multiset (or bag) over this domain. Similarly, an arc
touching a place will bear a color function that itself resolves to a multiset over the domain of the
place. Finally, transitions come equipped with a guard that can forbid or enable the transition
depending on the type of tokens present in the connected places.

We avoid providing a formal definition of a colored net here, we recommend [3] for a formal
and recent presentation of the subject. In this work, we study colored nets by inspecting their
unfolding, a Petri net whose behavior exactly reflects the semantics of the colored net. However,
unfolding a net can be explosive [3], so that we first try to answer queries using the skeleton
net [4]. This is a Petri net that is obtained by basically forgetting about place domains and guards,
and replacing any multiset expression over a domain simply by the cardinality of the multiset.

This operation has a very low complexity, but yields a net whose behaviors are a strict superset
of the behaviors of the original colored net : the skeleton net can do anything that the original net
could do, and more. Hence if the skeleton net is unable to reach a certain behavior, the original
net cannot reach it either.

3. Computing invariants

The process of calculating the structural invariants of a Petri net, also known as flows, is based on
an analysis of the incidence matrix (effects) of a net. The strategy is well known, it essentially
consists in applying Farkas’s lemma to an extended matrix [5], and many extensions and revisited
versions have been proposed [6]. Its main strength is that it is a cheap structural approach with
complexity related to the size of the net (not its state space) but that still provides a decent
approximation of all reachable states.

This section presents the precise variant of this algorithm used within ITS-Tools. Our
implementation is in plain Java, and is based on source-code we took and adapted from the
APT [7] framework (with D-M. Borde and M. Gieseking listed as authors), and where the code
further traces the origins to the PIPE [8] tool. We first present the algorithm then compare it to
the solution offered by the Tina [9] package.

3.1. Data structures and setup

To store a vector 𝑣 we use a sparse array data structure, containing two integer arrays indexes
and values both of size 𝑘 the number of non zero entries in 𝑣. Indexes are maintained
sorted, values can never be 0. For instance vector 𝑣 = [0,0,6,0,0,4] would be stored as
𝑖𝑛𝑑𝑒𝑥𝑒𝑠 = [2,5], 𝑣𝑎𝑙𝑢𝑒𝑠 = [6,4], 𝑘 = 2. Iterations of non zero entries can be done in 𝑂 (𝑘),
and computing the number of non zero entries is 𝑂 (1). However, lookups with an index are
logarithmic to 𝑘 , arbitrary insertions are 𝑂 (𝑘), but appending is 𝑂 (1) (without reallocation).
Multiplication by a scalar as well as summing two sparse arrays are also sparse operations in
𝑂 (𝑘).

To store matrices we use a dynamically allocated array (ArrayList in Java) of sparse arrays
representing the columns of the matrix. So this structure is "semi sparse", each column has an
entry in the matrix even if it is empty. Transposition is possible with complexity proportional to
the number of non zero entries (exploiting the fact that appending to a sparse array is 𝑂 (1)).

We initialize the algorithm by computing the matrixW′
𝑒 :

• LetW𝑒 designate the effects matrix where columns are transitions and places are rows
• We first build a set from the normalized columns ofW𝑒; a set so elements are unique,

and normalized by dividing all entries in the vector by the greatest common divisor of its

entries. These operations will discard transitions identical up to a multiplicative factor on
arc inscriptions, as well as fuse any two transitions that differ only by "read" arcs, i.e. that
have the same effect but different enabling conditions. Applying this normalization step is
a new idea to the best of our knowledge.

• We then rebuild a matrix from this set (column order being unimportant), and finally
transpose it to obtain the inputW′

𝑒 of the next step where rows are transitions and columns
are places.

• We then compute for each row of theW′
𝑒 matrix the set of indexes that correspond to

strictly positive and strictly negative entries. This data structure is stored in a variable
𝑝𝑚 and updated during the computation. This structure is important to stay in complexity
related to non zero entries when working with a row index, so that we can directly find the
columns that contain non zero values in this row.

3.2. Main loop

Our goal in the next step is to empty the matrixW′
𝑒 , by replacing columns in the matrix by linear

combinations of other columns until we converge to a matrix only containing zeroes. Basically
we choose a row 𝑟 with some non zero entries in it, we then pick a column 𝑘 where the row has a
non zero entry 𝑟 [𝑘], and replace all other columns 𝑗 that have a non zero entry in the row with a
linear combination of columns 𝑘 and 𝑗 with coefficients chosen so that 𝑟 [𝑗] is set to 0. We then
discard column 𝑘 .

After each such step, another row in the matrix is nullified, so that convergence is ensured in a
polynomial number of steps. Progress is tracked by applying the same operations to an identity
matrix, from which invariants (if any) can be read directly at the end of the procedure. This
setting is classical, but we focus on only using sparse operations.

Let 𝐼 designate the identity matrix with dimension equal to the number of columns inW′
𝑒 (i.e.

the number of places in the net). We initialize a square matrix 𝐵 = 𝐼.
We then iterate the following procedure until theW′

𝑒 matrix is empty :

• Find a row 𝑟 in the matrix such that exactly one entry is strictly negative or positive. We
use 𝑝𝑚 to test this. If such a row exists :

– Let 𝑘 designate the index of the single strictly positive (resp. negative) entry in 𝑟.
Then for all 𝑗 , 𝑗 ≠ 𝑘 , such that 𝑟 [𝑗] < 0 (resp. strictly positive),

∗ First compute 𝑔 = 𝑔𝑐𝑑 (|𝑟 [𝑘] |, |𝑟 [𝑗] |), then the coefficients 𝛼 𝑗 = |𝑟 [𝑗] |/𝑔 and
𝛼𝑘 = |𝑟 [𝑘] |/𝑔. We then replace column 𝑗 ofW′

𝑒 by column 𝑐 = 𝛼𝑘 ·W′
𝑒 [𝑗] +

𝛼 𝑗 ·W′
𝑒 [𝑘]. While computing 𝑐, we can compute indexes of rows 𝑟 ′ where

W′
𝑒 (𝑗) [𝑟 ′] ≠ 𝑐[𝑟 ′], and use this information to (sparsely) update 𝑝𝑚.

∗ We then also replace the column 𝐵(𝑗) of index 𝑗 in 𝐵 by 𝐵(𝑗) = 𝛼𝑘 · 𝐵(𝑗) +𝛼 𝑗 ·
𝐵(𝑘).

– Finally we clear the column 𝑘 ofW′
𝑒 , updating 𝑝𝑚 (sparsely, based on non zero

values ofW′
𝑒 (𝑘)), and clear column 𝑘 of 𝐵. Note we use the term "clear" deliberately

here, it is much preferable to set all entries to zero in a sparse data structure than
actually removing a column (and requiring to reindex elements with greater indices

non sparsely in 𝑝𝑚). Note that empty columns are irrelevant with respect to our
algorithm, and induce almost no extra cost with sparse data structures.

• If no such "exactly one entry is strictly negative or positive" row exists inW′
𝑒 , we look for

a row 𝑟 inW′
𝑒 such that there exists an index 𝑘 such that 𝑟 [𝑘] ≠ 0.

– While technically any such entry is appropriate, heuristically we want to choose a
position that minimizes subsequent iterations of the algorithm. We currently orient
this choice by looking for the column with index 𝑘 inW′

𝑒 that has the least non zero
entries (reducing the number of subsequent operations, and fast to test with sparse
structures), and in case of equality by taking the column with smallest summed
absolute value

∑︁
𝑖 |W′

𝑒 (𝑘) | (reducing the risk of coefficient blowup).
– Given 𝑘 , we let 𝑟 designate a row ofW′

𝑒 such that 𝑟 [𝑘]! = 0. We can choose any such
row without impacting performance of the algorithm, so we simply take the first non
zero entry in column of index 𝑘 .

– Using 𝑝𝑚 to identify them we then iterate over all other non zero entries of 𝑟 : let
𝑗 designate such an entry (𝑗 ≠ 𝑘,𝑟 [𝑗] ≠ 0), and 𝑔 = 𝑔𝑐𝑑 (𝑟 [𝑗], 𝑟 [𝑘]) designate the
greatest common divisor of these entries.

∗ Let 𝛼𝑘 = |𝑟 [𝑘] |/𝑔. Let 𝛼 𝑗 = 𝑟 [𝑗]/𝑔 if 𝑟 [𝑗] and 𝑟 [𝑘] have opposite sign, or
𝛼 𝑗 = −𝑟 [𝑗]/𝑔 otherwise. We then replace column 𝑗 ofW′

𝑒 by a new column
𝑐 = 𝛼𝑘 ·W′

𝑒 (𝑗) +𝛼 𝑗 ·W′
𝑒 (𝑘). During this product, and similarly to above we

should (sparsely) update the 𝑝𝑚 data structure.
∗ We then replace the column 𝐵(𝑗) of index 𝑗 in 𝐵 by 𝐵(𝑗) = 𝛼𝑘 ·𝐵(𝑗) +𝛼 𝑗 ·𝐵(𝑘).

– Finally we clear column 𝑘 from bothW′
𝑒 and 𝐵 (and update 𝑝𝑚).

• Note that we must iterate the procedure to a fixpoint. We end the procedure whenW′
𝑒

is empty hence none of the two above rules apply. We always iterate the search for an
appropriate row for the first test by iterating the rows in 𝑝𝑚 starting from the last row index
where a rule applied rather than starting from row 0, as this avoids repeating redundant
tests in most cases (and iterating elements in 𝑝𝑚 is not sparse).

At this stage, theW′
𝑒 matrix has been entirely emptied, and we can find the invariants in the 𝐵

matrix. We can post process the columns of 𝐵 by dropping empty columns, normalizing columns
(by dividing by the gcd of its entries, and possibly multiplying the column by −1 if all entries are
negative), and filtering any duplicate columns.

This algorithm produces a generative basis of the P-flows of the net, but can be applied toW⊤
𝑒

if we wish to compute T-flows. This basis of flows can further be used to compute semi-flows [5],
i.e. invariants where all coefficients are positive, that are often considered easier to read and
interpret by humans. However, while the number of flows is guaranteed to be at most equal to
the number of places in the net, the number of semi flows can be exponentially larger so that
computing them could be a limiting factor in a decision procedure. Since in our approach flows
are mostly used as a very rough approximation of reachable states that is then analyzed with an
SMT solver (that does not really mind negative coefficients), we prefer to stop the computation at
this step.

Notes: The idea of first looking for rows with a single positive/negative entry comes from
PIPE [5], it avoids introduction of negative coefficients unless they are really needed and favors

positive solutions (semi-flows) over generalized flows. Overall, it is critically important to ensure
all operations are sparse operations, with complexity related to number of non zero entries, this is
the main strength of this implementation. Incidence matrices of Petri nets are notably sparse,
but can be very large (think thousands of places, tens of thousands of transitions but on average
only a few arcs per transition). The normalization of 𝛼 coefficients using the 𝑔𝑐𝑑 during the
computation is important to avoid multiplicative growth of entries inW𝑒 that could lead to an
integer overflow pretty easily and is original to the best of our knowledge. The heuristic we use to
choose a pivot in the second part is also original to the best of our knowledge.

3.3. Performance comparison

In this section we evaluate the performance of our implementation of this algorithm. We chose as
comparison the tool Tina [9] as it is a mature, efficient and well maintained package that proposes
this functionality, when some implementations that seem promising such as [6] are no longer
available (if they ever were). Tina proposes a native implementation (probably implemented in
StandardML, but source is not public) and an implementation that relies on 4ti2 [10] an efficient
C++ package dedicated to linear algebra to compute the solution. This second solution is more
efficient than the native implementation. We did not compare to either PIPE [8] or APT [7]
implementations despite our code originating from them since they are not sparse implementations
and really cannot compete.

The following performance evaluation 1 was performed on a Linux machine intel Core 7. We
used the full set of 1384 PT models from the 2022 edition of the model-checking contest and
computed P flows and T flows with both tools. The following table as well as Figure 3 summarize
the results. The column "Overflow" corresponds to integer overflowing in the representation of
the coefficients in the matrix. "Timeout" corresponds to exceeding the 120 seconds time limit,
and "Memory" is runs exceeding 16GB of RAM.

Tool Success Overflow Timeout Memory
ITS-Tools 1355 20 9 0
Tina 4ti2 1215 1 157 7
Tina 948 145 289 1

While in a few cases (16 overall) we meet integer overflow when Tina can produce a solution
(particularly with 4ti2), problems ITS-Tools can’t solve within one second are mostly unsolvable
by Tina, and our implementation is extremely memory efficient (peaking at 3GB) despite being
pure Java. Our implementation thus outperforms Tina [9] ("struct" component) even using "4ti2"
library [10], and scales to very large nets (up to 143908 places, up to 373236 transitions and up
to 8944506 arcs for the largest solved instances). The implementation is freely available as open
source code 2.

1To help reproduction of these experiments, we built a repository with the raw data and all useful commands, see
https://github.com/yanntm/InvariantPerformance

2Search for file "InvariantCalculator" in the https://github.com/lip6/ITSTools repository.

https://github.com/yanntm/InvariantPerformance
https://github.com/lip6/ITSTools

0.01s

0.1s

1s

10s

1min

2min

0.01s 0.1s 1s 10s 1min 2min
Time for ITS

T
im

e
fo

r
T

in
a

Both tools fail

Both tools solve

Only ITS solves

Only Tina solves

Run time to compute PFlow+TFlow as reported by tools

Figure 1: Comparison in solution time

10MB

100MB

1GB

3GB

10GB

16GB

100MB 1GB 3GB 10GB 16GB
Mem for ITS

M
em

 fo
r

T
in

a

Both tools fail

Both tools solve

Only ITS solves

Only Tina solves

Resident shared size to compute PFlow+TFlow as reported by time

Figure 2: Comparison on memory occupation

Figure 3: Experiments on the MCC’2022 models using ITS-Tools and Tina (with 4ti2). Each point is a
model, with horizontally time/memory consumption for ITS-Tools, and vertically consumption by Tina
plotted using Log/Log scale. We plot any timeout or memory overflow at 2 minutes in time and 16𝐺𝐵 in
RAM. ITS-Tools is both much faster and consumes much less memory, despite the startup penalty due
to the Java runtime requiring ≈ 100𝑀𝐵 RAM.

4. Computing Bounds

The goal of this task is to compute the maximum number of tokens in a place or group of places
that can actually be reached. Our approach consists in computing both a lower bound Maxseen
that represents the highest number of tokens actually confirmed to have been seen in this place
or group of places and an upper bound Maxstruct that represents a structural maximum that the
marking cannot exceed. When both values are equal, we can conclude, this value is the bound on
this place marking.

For instance, suppose we must compute the bounds on expression 𝑝0 + 𝑝1. Suppose that in the
initial marking, 𝑝0 = 1 and 𝑝1 = 0, so that Maxseen is 1. If we can compute an invariant that states
𝑝0 + 𝑝1 + 𝑝2 = 1, we can deduce that Maxstruct is also 1, so that the bound of 𝑝0 + 𝑝1 is 1.

For the lower bound Maxseen, we can simply explore (parts of) the state space, remembering the
highest value encountered. For the upper bound Maxstruct, we seek to compute structural bounds
if we can, rather than relying on an exhaustive exploration of the state space.

4.1. Computing rough structural upper bounds using P flows.

As a first step, we compute rough upper bounds on reachable markings using P flows. We first
compute the P-flows, using the algorithm presented in section 3.

The solution can naturally contain some positive invariants (semi-flows) that we integrate first.
Such an invariant is of the form : 𝛼0𝑝0 +𝛼1𝑝1 + . . . = 𝐾 with alpha coefficients and 𝐾 being
natural integers in N. Since at best all 𝑝𝑖 variables are 0 except one of them, we can compute an

approximate upper bound on each place marking 𝑝𝑖 with a non zero coefficient 𝛼𝑖 in the invariant
as 𝐾/𝛼𝑖 where / designates Euclidean division. For instance, suppose we have the invariant
2 · 𝑝0 + 𝑝3 = 5, we can deduce that 𝑝0 ≤ 2 and 𝑝3 ≤ 5.

Now that at least some variables have an upper bound, we can look at generalized flows with
both positive and negative coefficients. We write them under the form (𝛼0𝑝0 +𝛼1𝑝1 + . . .) −
(𝛽0𝑝0 + 𝛽1𝑝1 + ...) = 𝐾 where 𝛼 and 𝛽 coefficients are natural integers, and for any given place 𝑝𝑖 ,
one of 𝛼𝑖 or 𝛽𝑖 at least is zero, and 𝐾 is a relative integer. This presentation highlights a positive
term (𝛼𝑖) and a negative term (𝛽𝑖). If either of these two terms is bounded, we can now bound the
other one. For instance, suppose we have the invariant 𝑝0− 𝑝1 = 2, and that we have the bound
𝑝1 ≤ 1 already, we can deduce that 𝑝0−1 ≤ 2 hence 𝑝0 ≤ 3. The same invariant 𝑝0− 𝑝1 = 2 can
also be written 𝑝1 = 𝑝0−2, so if we know that 𝑝0 ≤ 5 we can deduce that 𝑝1 ≤ 3. We iterate the
procedure on generalized flows until no new bounds are detected since results might otherwise
depend on the order in which the invariants are inspected.

If for instance all the places of the net are covered by simple semi-flows 𝑝0 + 𝑝1 + 𝑝2 = 1,
𝑝3 + 𝑝4 + 𝑝5 = 1 . . . this "rough" strategy is still enough to conclude correctly that the net is one
safe. Note however that the computations are very rough, for instance suppose we have invariants
𝑝0 + 𝑝1 = 1 and 𝑝0 + 𝑝1− 𝑝2 = 0. The first invariant gives us the bounds 𝑝0 ≤ 1 and 𝑝1 ≤ 1, the
second invariant however will give 𝑝2 ≤ 2 because we approximate both 𝑝0 and 𝑝1 using their
current bound (despite having a tighter bound on 𝑝0 + 𝑝1). Of course a more powerful approach,
e.g. an ILP or SMT solver would be able to better exploit this kind of tight bounds, however this
"rough" strategy is extremely fast and scales just as well as invariant computation does (so it
scales much better than delegating problems to an ILP/SMT solver or doing any kind of actual
model-checking).

4.2. Refining structural upper bounds with SMT

As described in [11], ITS-Tools uses a series of incrementally more complex constraints to
structurally approximate the state space with an SMT solver (we use Microsoft Z3[12]).

In this process, the SMT solver works with an over-approximation of the state space so that
states unreachable according to SMT are definitely unreachable, but SMT may believe some states
are reachable when it is is not the case.

When we query the SMT solver, we ask it to exhibit a "reachable" marking satisfying a given
predicate 𝑝. We thus either get a trusted "UNSAT" answer, that means such a situation is not
possible, or we get a "SAT" answer that cannot be fully trusted (but that we can try to replay,
see [11] for details).

The strategy to define "reachable" consists in successive approximations that are progressively
more constraining. We start with reals (where the complexity of any linear algebra is much lower)
and only try natural solutions in a second step. We introduce constraints and additional variables
to support those constraints incrementally, starting with flows, then the state equation, then trap
constraints. . . as explained in [11] in details.

Suppose we have computed a lower bound Maxseen on the marking of a place or group of places.
We ask the SMT solver to test whether a state with strictly more tokens than Maxseen in those
places is "reachable". If we get "UNSAT", we can conclude, this maximum seen bound cannot be
exceeded, it is the bound on this expression.

When we get "SAT", we can try to replay the solution provided by the solver to confirm it. In
this process, we exploit the fact that Z3 has an optimizing component, so that we ask the solver to
maximize the value of the target expression when it reaches a SAT verdict. This lets the example
exhibited by the solver (if we can replay it) be potentially a run that exhibits the true bound, so
that in the next iteration when Maxseen has this value and we ask the solver to produce a state with
a larger value, we actually get UNSAT and can conclude.

4.3. A full workflow for Upper Bounds

Our full strategy to compute upper bounds thus consists in the following steps :
• For colored nets, we can start by computing Maxstruct using the skeleton net and the rough

approximation of section 4.1 and/or the more refined one provided by SMT in section 4.2.
This is correct since the behavior of the skeleton net is an over-approximation of the behavior
of the net. We then unfold the net and proceed with the same algorithm as for PT nets.

• For any kind of net, we initialize Maxseen with the value of expressions in the initial marking.
We also compute the P flows of the net and initialize Maxstruct using the rough structural
bounds of section 4.1.

• We then iterate the following steps until a solution is reached (or we time out) :
– If Maxstruct = Maxseen conclude
– Try to increase Maxseen by exploring (parts of) the state space. We can use pseudo-

random or directed walks for instance. We do not need to be exhaustive, Maxseen is
always an under-approximation of the bound we are looking for. So any state space
exploration is fine, ITS-Tools typically runs a decision diagram engine, the LTSMin
engine with partial-order reduction [13] as well as pseudo-random walk(s) [11]
typically for a few seconds. If any of these strategies can build the whole state space,
of course we can conclude.

– Test if SMT believes that Maxseen can be exceeded. If not, conclude, else try to replay
the solution.

– Apply structural reduction rules preserving reachability [11] to the net such as
agglomerations, detection of constant places, of dead or redundant transitions...
yielding a smaller net for the next iteration. One rule that is specific to this process is
when we are looking for a bound on a single place 𝑝 and that Maxstruct = 1 (hence
Maxseen = 0 or we would already have concluded), we simply discard all transitions
consuming from 𝑝.

• This whole strategy can complement a model-checking run that might conclude simply by
exploring all states of the system; however in many cases where full model-checking is not
possible due to state space explosion, our procedure still can conclude. In the worst case,
we do detect some bounds even if not all, and alleviate any subsequent work for a more
exhaustive approach.

4.4. Performance comparison

The "UpperBounds" category of the MCC consists precisely in this examination. Figure 6) is a
performance comparison taken from the latest 2022 edition of the contest. It compares ITS-Tools

that obtained the gold medal in the category with a total of 23388 points against second place
finisher Tapaal that gathered 21687 points (roughly 8% less points). The third place finisher
GreatSPN using only exhaustive methods with advanced decision diagram technology [14]
obtained 13274 points.

While we can observe a large blob of relatively easy answers computed within 10 seconds by
Tapaal and that ITS-Tools can take up to two minutes to solve, there is also significant number of
points against the right border, corresponding to timeouts of Tapaal when ITS-Tools could answer
within a few minutes.

While our algorithm is very effective in most cases, our decision procedure cannot conclude
when dealing with unbounded expressions where we should answer +∞ (since Maxseen will never
reach this bound with the mechanism we propose to increase it). While they were exceedingly rare
originally, the number of unbounded models in the MCC benchmark has been growing steadily,
so that dealing with such models is clearly a direction for improvement.

5. One Safe

The goal of this examination is to prove that a net is one safe, i.e. in all reachable markings, all
place markings are bounded by one. For colored nets the definition is the same, at most one token
(all colors confused) per place is allowed.

5.1. Elementary tests

First we check if the initial state satisfies the property. If not, we can conclude.
Note that this test is conclusive for many models, particularly colored ones where the requirement

of having a single token in a colored place is pretty extreme (there is some debate on the definition
that was adopted in the MCC, the "color safe" property where there are never more than one token
of each color in a given place is perhaps more interesting), and ones with large initial markings
(e.g. scaleable models).

The next test consists simply in checking whether the input file contains a relevant NUPN
section [15], i.e. a decomposition of the net into simple interacting automata. The format includes
a tag "safe" that is true if the net is guaranteed to be one safe. This additional decomposition
into NUPN used to be provided only with a few models in a "tool specific" section of the PNML
model as an artefact of their generation process, but currently many models of the benchmark
bear this information, it was apparently computed a posteriori by the model maintainers [15] and
added to many of the benchmark models in 2020.

5.2. Reducing the amount of queries

A basic approach given a decision procedure that can prove an invariant is to simply place one
assert on each place of the net and try to prove this as one single big invariant

⋁︁
𝑝∈P 𝑝 ≤ 1 or

as a set of invariant queries ∀𝑝 ∈ P, 𝑝 ≤ 1. However this approach can scale poorly when the
number of places in the net grows due to the excessive size of the query for the "one big invariant"
approach or to the number of queries in the set of queries approach.

In the spirit of gradually treating the problem, we do think of the problem as a set of invariants
that we need to prove. Hence each one we can treat reduces the amount of work remaining for
downstream procedures.

Our next step consists in reusing the algorithm proposed to compute upper bounds of section 4.1.
We try to prove that Maxstruct = 1 for as many places as we can. Even if this bound is not reachable
(i.e. we have not computed Maxseen) we can still conclude the place is one safe. Places thus
proved to be one safe can be removed from the remaining queries. This strategy is particularly
effective on many nets whose places are covered by simple P semi flows.

Still in the spirit of reducing the amount of queries, we can look for places that cannot be fed
(and are initially one safe). Such a place can only allow output transitions to fire a single time.
Hence if these transitions are the single input of some place, that place is also one safe. More
formally, let 𝑃𝑠 ⊆ P designate an initially empty set of places, and 𝑇𝑠 ⊆ T designate an initially
empty set of transitions. We iterate to a fix point the following procedure :

• For any place 𝑝 such that •𝑝 = ∅, or •𝑝 = {𝑡} a single transition and 𝑡 ∈ 𝑇𝑠 andW+(𝑝, 𝑡) = 1,
then we add 𝑝 to 𝑃𝑠 : 𝑃𝑠← 𝑃𝑠∪{𝑝} and add all output transitions of 𝑝 to𝑇𝑠 : 𝑇𝑠←𝑇𝑠∪ 𝑝•.

At the end of the procedure, all places in 𝑃𝑠 are known to be one safe.
Correctness comes from the fact that transitions in the set 𝑇𝑠 can be fired at most once in any

execution of the net, hence their output places can receive at most one token in any execution.
This is a low complexity exploration of the structure of the net, that bypasses actual state space

exploration. It works particularly well for models of workflows that do not have loops. Any place
we deduce is one safe reduces the number of subsequent queries to a reachability engine.

5.3. A full workflow for One Safe

Our full strategy to compute whether a net is one safe thus consists in the following steps :

• Test initial conditions and the elementary conditions of section 5.1.
• Use the rules of section 5.2 to reduce the amount of queries
• If we have not yet concluded, delegate remaining queries to a reachability/invariant decision

procedure, as a set of invariants to prove.

These cheap structural tests ahead of a more complete model-checking approach thus help our
solution scale to larger models.

5.4. Performance evaluation

The "OneSafe" category of the MCC consists precisely in this examination. Figure 4) is a
performance comparison taken from the latest 2022 edition of the contest. It compares ITS-Tools
that won the category with a total of 25922 points against second place finisher Tapaal that
gathered 24707 points, GreatSPN [14] obtained 13145 points (roughly consistent with the number
of models for which full state space construction is feasible with decision diagrams). The results
on Figure 4 are much less ambiguous than the raw scores show, while the problem is not too hard
to solve within the 30 minute deadline of the MCC for Tapaal (and most of the models it solves
will be answered within 5 minutes), ITS-Tools treats practically all models within 10 seconds
(with a few that take up to two minutes).

6. Stable Marking

The goal of the "Stable Marking" examination is to prove that there are no places whose marking
is constant in all reachable states. This typically could indicate "dead code" or that parts of the
net cannot be activated. It suffices to find a single "stable place" whose marking is a constant to
answer the query.

6.1. Tests for Colored nets

For colored nets and prior to unfolding we try to detect that all outgoing arcs of a colored place to
a transition 𝑡 have a symmetric incoming arc from 𝑡 inscribed with the same color function. This
criterion for constant places in the net reflects a usage pattern in colored models of using complex
place markings to encode discretized functions, that are "queried" but never actually updated.
This can also be exploited during unfolding to reduce the size of the unfolded net. In any case
such a place is stable letting us answer the query.

Still prior to unfolding, we can check if the skeleton net contains stable places (recursively
using the same procedure, but it is much smaller). Since its behavior is a super set of the behaviors
of the real unfolding, if a place is stable in the skeleton, it must also be stable in the unfolding.
The reverse is not true, even if all places of the skeleton can be updated this does not imply that
the unfolding satisfies the property.

Failing these two first tests we proceed to unfold the colored net.

6.2. Reducing the complexity

The first test on PT nets is to look for an empty row in the incidence matrixW𝑒. More precisely
we look for an empty column inW⊤

𝑒 given the sparse data structures we use to store matrices.
This indicates a constant place, hence the net has "stable markings".

We then look for unmarked syphons (see [11], rule 10 in section 4), these are places that are
not and never will be marked, hence they are stable and we can conclude.

The next step consists in building a graph representing "free" token flow. We let places be the
vertices of the graph, and add an edge from place 𝑝 to place 𝑝′ iff. there exists a transition with
•𝑡 = {𝑝}, 𝑡• = {𝑝′} and arc weights one. Such "transfer" transitions could be an artifact resulting
from model generation, but they also occur naturally in many manually built models. This graph
is relatively simple, but we can exploit it to remove the burden of proving for many places that
they are not constant.

We use two strategies, both based on computing suffixes in this graph.
Firstly, all places in the suffix of a place that is initially marked, as well as the place itself are

not stable. Indeed, the tokens in the place can flow freely to any place "downstream".
Next we can take all remaining places that are not currently proved to be unstable but are

connected in this graph, and compute a minimal set of places 𝑃 such that all nodes in the graph
are reachable from a node in 𝑃. This requires a small prefix search and computing the SCC
of the graph, but the complexity of these operations is quite incomparable to any downstream
model-checking treatment to prove invariants. More precisely, we look for a vertex that has no
predecessor, add it to 𝑃 and discard all places in its suffix (i.e. we assert that we have proven they

are not stable). When all nodes have a predecessor, only SCC and their suffix remain; we simply
pick an arbitrary vertex belonging to an SCC, add it to 𝑃 and discard all places in its suffix. The
procedure is iterated until there are no more connected nodes in the graph.

We retain only places in 𝑃 in the subsequent proof burden, and (optimistically) suppose that
all places in their suffix (in the free token flow graph) have already been proved non stable. If
one of the places in 𝑃 is indeed stable, we will conclude instantly anyway, otherwise all places
downstream can indeed be updated, hence the optimistic view we took is justified.

6.3. A full workflow for Stable Marking

Our full strategy to compute whether a net satisfies the stable marking property thus consists in
the following steps :

• If the net is colored, check for constant colored places and try to prove the property using
the skeleton prior to a full unfolding.

• Use the rules of section 6.2 to conclude if possible or at least reduce the amount of queries
• If we have not yet concluded, delegate remaining queries to a reachability/invariant decision

procedure, as a set of invariants to prove of the form 𝑚(𝑝) ≠𝑚0(𝑝) for all remaining places.

The structural tests help the solution scale, by reducing the burden of proof on subsequent
steps. By eliminating the burden of proof for some places we also help the decision procedures
in the reachability solver to bootstrap more effectively, particularly when they are sensitive to
the alphabet of the property. For instance, places whose marking is used in a property cannot
be reduced by structural reduction rules and typically neither can neighboring transitions be
agglomerated.

6.4. Performance evaluation

The "StableMarking" category of the MCC consists precisely in this examination. Figure 5) is a
performance comparison taken from the latest 2022 edition of the contest. It compares ITS-Tools
that won the category with a total of 24405 points against second place finisher Tapaal that
gathered 21560 points, GreatSPN [14] obtained 13145 points.

The results on Figure 5 overall advantage ITS-Tools particularly on harder models. There is a
dense blob of points above the diagonal corresponding to Tapaal solving within one second while
ITS-Tools takes as much as ten seconds. However as models become more difficult to solve, most
points end up below the diagonal (and far from it, particularly in a log/log scale), and the relatively
dense border to the right indicates many timeouts of Tapaal when ITS-Tools could conclude.

While part of these results come from the good performances of our reachability engine
described in [11], the techniques presented in this section do contribute to the overall efficiency
and help to deal with very large colored or generated models in particular.

7. Performances

In this section mostly consisting of figures we regroup performance plots taken from the website
of the Model Checking Contest in its 2022 edition, see https://mcc.lip6.fr/2022/results.php.

https://mcc.lip6.fr/2022/results.php

These log/log scatter plots compare ITS-Tools that won each of these categories to Tapaal that
obtained second place. Each point is a model, with horizontally time consumption for ITS-Tools,
and vertically consumption by Tapaal. Points below the diagonal advantage ITS-Tools while
points above it advantage Tapaal.

Timeout was 30 minutes on all examinations except upper bounds that is granted one hour. In
total, 1617 model instances coming from 150 model families are represented. For upper bounds,
each query additionally contains 16 bounds to compute on a given model, for the other plots a
single answer is expected.

ITS-Tools is clearly more efficient than the runner up Tapaal on all plots, with OneSafe being
the most blatant and Upper Bounds being the least clear cut.

8. Conclusion

Structural approaches to analyze Petri nets can allow to bypass the state space explosion that is the
main enemy of model-checking in many cases. In this paper we have presented efficient strategies
designed to answer some of the queries of the model-checking contest as well as computing
invariants of a net.

These strategies are used by the state of the art verification engine ITS-Tools and are partly
responsible for its success in the competition. While some "strategies" are seemingly trivial, this
paper is a precise if informal description of otherwise unpublished algorithms that have been
refined and tested over the huge benchmark of the MCC.

ITS-Tools is free open source under GPL, so please do feel free to look directly at the
implementations. It is distributed from its home page https://ddd.lip6.fr and hosted on GitHub https:
//github.com/lip6/ITSTools.

Acknowledgments

We would like to thank Amine Benslimane and Sofiane Braneci who helped to integrate support
for global properties into ITS-Tools during an internship in 2021.

References

[1] E. G. Amparore, B. Berthomieu, G. Ciardo, S. Dal-Zilio, F. Gallà, L. Hillah, F. Hulin-
Hubard, P. G. Jensen, L. Jezequel, F. Kordon, D. L. Botlan, T. Liebke, J. Meĳer, A. S. Miner,
E. Paviot-Adet, J. Srba, Y. Thierry-Mieg, T. van Dĳk, K. Wolf, Presentation of the 9th
edition of the model checking contest, in: TACAS (3), volume 11429 of Lecture Notes in
Computer Science, Springer, 2019, pp. 50–68.

[2] Y. Thierry-Mieg, Symbolic model-checking using its-tools, in: TACAS, volume 9035 of
Lecture Notes in Computer Science, Springer, 2015, pp. 231–237.

[3] A. Bilgram, P. G. Jensen, T. Pedersen, J. Srba, J. H. Taankvist, Improvements in unfolding
of colored petri nets, in: RP, volume 13035 of Lecture Notes in Computer Science, Springer,
2021, pp. 69–84.

https://ddd.lip6.fr
https://github.com/lip6/ITSTools
https://github.com/lip6/ITSTools

Figure 4: Results from MCC’2022 comparing ITS-Tools to Tapaal in time taken to solve the One Safe
problems.

[4] S. Wallner, K. Wolf, Skeleton abstraction for universal temporal properties, Fundam.
Informaticae 187 (2022) 245–272.

[5] M. D’Anna, S. Trigila, Concurrent system analysis using Petri nets: an optimized algorithm
for finding net invariants, Computer Communications 11 (1988) 215–220.

[6] C. Law, B. Gwee, J. S. Chang, Fast and memory-efficient invariant computation of ordinary
petri nets, IET Comput. Digit. Tech. 1 (2007) 612–624.

[7] E. Best, U. Schlachter, Analysis of Petri nets and transition systems, in: ICE, volume 189 of
EPTCS, 2015, pp. 53–67.

[8] J. Bloom, C. Clark, C. Clifford, A. Duncan, H. Khan, M. Papantoniou, Platform inde-

Figure 5: Results from MCC’2022 comparing ITS-Tools to Tapaal in time taken to solve the Stable
Marking problems.

pendent petri-net editor final report., 2003. URL: https://pipe2.sourceforge.net/documents/
PIPE-Report.pdf.

[9] B. Berthomieu, F. Vernadat, Time petri nets analysis with TINA, in: QEST, IEEE Computer
Society, 2006, pp. 123–124.

[10] 4ti2 team, 4ti2—a software package for algebraic, geometric and combinatorial problems
on linear spaces, 2023. URL: https://4ti2.github.io.

[11] Y. Thierry-Mieg, Symbolic and structural model-checking, Fundam. Informaticae 183
(2021) 319–342.

[12] L. M. de Moura, N. Bjørner, Z3: an efficient SMT solver, in: TACAS, volume 4963 of

https://pipe2.sourceforge.net/documents/PIPE-Report.pdf
https://pipe2.sourceforge.net/documents/PIPE-Report.pdf
https://4ti2.github.io

Figure 6: Results from MCC’2022 comparing ITS-Tools to Tapaal in time taken to solve the Upper
Bounds problems.

Lecture Notes in Computer Science, Springer, 2008, pp. 337–340.
[13] A. Laarman, Stubborn transaction reduction, in: NFM, volume 10811 of Lecture Notes in

Computer Science, Springer, 2018, pp. 280–298.
[14] E. G. Amparore, S. Donatelli, G. Ciardo, Variable order metrics for decision diagrams in

system verification, Int. J. Softw. Tools Technol. Transf. 22 (2020) 541–562.
[15] H. Garavel, Nested-unit petri nets, J. Log. Algebraic Methods Program. 104 (2019) 60–85.

	1 Introduction
	2 Definitions
	2.0.1 Petri net syntax and semantics
	2.0.2 Colored Petri net syntax and semantics

	3 Computing invariants
	3.1 Data structures and setup
	3.2 Main loop
	3.3 Performance comparison

	4 Computing Bounds
	4.1 Computing rough structural upper bounds using P flows.
	4.2 Refining structural upper bounds with SMT
	4.3 A full workflow for Upper Bounds
	4.4 Performance comparison

	5 One Safe
	5.1 Elementary tests
	5.2 Reducing the amount of queries
	5.3 A full workflow for One Safe
	5.4 Performance evaluation

	6 Stable Marking
	6.1 Tests for Colored nets
	6.2 Reducing the complexity
	6.3 A full workflow for Stable Marking
	6.4 Performance evaluation

	7 Performances
	8 Conclusion

