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Abstract. Useful parameterisations of shapes for engineering models often climb from many
tens to a few hundred design variables, potentially jeopardising usual optimisation techniques.
Surrogate models are intractable when parameter numbers exceed a few tens, and gradient de-
scent through adjoint computation in high-dimension is threatened by potential multimodality.
Dimension reduction addresses these problems nicely. This paper aims to improve upon the Ac-
tive Subspaces dimension reduction method by applying a combination of active subspaces in
subregions of the design space, where their use of the objective function’s gradients will exploit
useful local information to discover specific trends instead of trying to identify global trends
over an entire design space. The partitioning of the input space is done through Gaussian Mix-
ture Model clustering, where the authors assume the distribution of the joint inputs/outputs to
be a mixture of Gaussians. This GMM clustering is used to drive a Support Vector Machines
(SVM) based supervised classifier, which will enable the definition of the overlapping zones in
the input space. The use of overlapping increases prediction accuracy at the boundaries be-
tween clusters, an improvement over recombination methods typically found in the literature.
The local expert of choice is Kriging, in part due to its built-in variance prediction.
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1 INTRODUCTION

Aerodynamic shape optimisation plays a fundamental role in aircraft design. Modern
aerospace design relies heavily on computer simulations to circumvent expensive and time-
consuming physical experiments. Yet, as design complexity continues to increase, the com-
putational cost for these numerical simulations becomes uncomfortably high, even on large
scale computing clusters. The problem is exacerbated in cases where the simulation needs to
be queried multiple times. Optimisation is one of these cases, since minimising an objective
function with regards to input parameters requires repeated evaluations of successive designs.
Uncertainty quantification (UQ) is another, where simulations must be run repeatedly in order to
evaluate the influence of variability in the input parameters. In optimisation, we typically seek
to minimise a scalar quantity of interest (QoI) such as drag or lift-to-drag ratio for winged-typed
surfaces (under lift and/or moment constraints) or isentropic efficiency (under pressure ratio and
mass flow requirements) for engine components. However, useful parameterisations of shapes
for engineering models often result in high-dimensional design spaces (several tens to several
hundreds of design variables) which can create challenges for both local and global optimisers.
A workaround to successive evaluations is surrogate modelling. A statistical model of the func-
tion of interest is trained using an initial set of simulations. This initial investment is offset by
using the model in lieu of actual CFD computations in order to evaluate the performance of new
designs, since calls to the surrogate model are essentially free.

The considered functions of interest have been shown to be potentially multimodal, either
due to non-convexity of the QoI with respect to the parameter space [1], or poorly converged
gradient computation [2], and as dimensionality rises we expect function topology to keep
increasing in complexity. When facing tortuous, possibly multimodal functions, a common
practice is to cluster the design space, essentially splitting up the problem into several smaller,
simpler problems. This Divide and Conquer approach is beneficial in the case of surrogate mod-
elling, since each surrogate model is now tasked with approximating the function in a subregion
of the design space, where it is hoped the objective function has less complex local variations.

A major limitation of typical response surfaces such as Kriging is that they do not easily scale
to high dimensions. This problem, amongst others, can be addressed nicely through dimension
reduction. A technique for reducing the dimension of the parameter space has been proposed
by Constantine [3]. The idea consists in revealing a low-dimensional subspace that captures
the trends in the QoIs by leveraging gradient information, and then exploits these directions to
efficiently find an optimal design in the appropriate areas of the design space. This subspace is
called the Active Subspace (AS). The method is justified since many engineering QoIs exhibit
monotonic behaviour with respect to the input parameters. It is rooted in the same princi-
ples as well known Principal Component Analysis (PCA) or Proper Orthogonal Decomposition
(POD) methods but, unlike the two aforementioned methods who only discover correlation in
the input or output spaces, the use of gradient information enables the identification of rela-
tionships between the input and output spaces. When compared to the PLS method [4], the
Active Subspaces method benefits from the use of gradient information, as well as introduc-
ing a probabilistic framework which allows for built-in estimation of the quality of the spectral
information.

In this paper, we present a Clustered Active Subspaces strategy that combines a model-based
clustering using Gaussian mixture with local Active Subspace discovery. Kriging surrogate
models are then constructed in each of the reduced subspaces. These local experts are appro-
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priately recombined to obtain a scalable surrogate model for a high-dimensional design space.
Typically, in the case of highly complex topologies, a mixture of experts strategy is expected
to improve model accuracy. However, with the smooth recombination using a weighted sum
of neighbouring experts, this may not always be the case: early tests have shown the bulk of
the error being located at the cluster boundaries. We attribute this result to Kriging’s (and other
response surfaces) poor performance when extrapolating. We propose an original overlapping-
based approach to circumvent this difficulty, whereby the training sets of the response surfaces
are enhanced by including appropriate points from nearby clusters. In doing so, we create an
overlapped area around the cluster boundaries, where both experts are more likely to be accu-
rate since they have been trained on surrounding points. The use of gradient information is a
recurring theme in this work as we want to benefit from this additional information, since have
access to the adjoint solver embarked in the ONERA elsA CFD solver [5], which yields the
gradients at an affordable cost [6].

Figure 1: Clustered Active Subspaces Strategy

We demonstrate the efficiency of this approach on the Branin analytical function [7] and on
two existing datasets for the 2D NACA12 aerofoil and the 3D ONERA M6 wing [8]. These
datasets are available as part of Constantine’s Active Subspaces toolbox for Python.

The paper is structured as follows: we begin by explaining the strategy behind the Clustered
Active Subspaces method, before laying out the groundwork for Active Subspaces, Gaussian
Mixture Model clustering and Kriging. Section 3 explains the two improved recombination
strategies developed here, and section 4 presents the novel automatic dimension selection cri-
terion for AS. Section 5.1 introduces the two physics-based datasets used to test our method,
and section 5 provides a performance analysis for the CAS method on the aforementioned test
cases. We will close with a discussion of the results.

2 METHODOLOGY

We now present the building blocks of the Clustered Active Subspace method. A presenta-
tion of the method’s workflow is presented in section 2.4

2.1 Kriging

Kriging is a family of metamodels stemming from Gaussian Processes, benefiting from em-
bedded uncertainty modelling. Like other response surfaces, the objective is to learn the rela-
tionship between a numerical experiment’s inputs and outputs, in order to predict new values
without the need for new, expensive simulations.

The distribution of a Gaussian process is fully characterised by:

• its mean function µ defined over X ⊂ Rd

• its covariance function, kernel k (., .) , defined over X×X : k(x,x′) = cov (Y (x), Y (x′))

Note the input is the d dimensional vector x ∈ X . In this work, we consider without any loss
of generality the quantity of interest to be a scalar output function Y (x) ∈ R.
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The current statistical model can thus be expressed as follows:

Y (x) ∼ N
(
µ(x), k(x,x)

)
Y (x) = µ(x) + Z(x) µ is known (deterministic)
Z(x) ∼ N (0, k(x,x))

(1)

A valid kernel must be symmetric (k(u,u′) = k(u′,u)) and positive semi-definite (∀u ∈
RM ,uTKu ≥ 0,K = k(u,u),K ∈ RM×M ). Although many functions satisfy these crite-
ria, in this work we will use exclusively the squared exponential kernel, whose full expression
is given below.

k(x,x′) = σ2 exp

(
−1

2

d∑
i=1

(xi − x′
i)
2

θ2i

)
, k : (x,x′) → k(x,x′), Rd×d → R (2)

With Gaussian vector conditioning, we can write the joint distribution of the observed target
value and the function values at the test location x∗ under the prior:[

y
y∗

]
∼ N

(
0,

[
k(X,X) + σ2

nI k(X,x∗)
k(x∗,X) k(x∗,x∗)

])
, X ∈ RM×d (3)

from which we arrive at the predictive equations for regression Kriging:

µ̂(x∗) = µ+ k(x∗,X)
[
k(X,X) + σ2

nI
]−1

(y − µ) (4)

σ̂2(x∗) = σ̂2 − k(x∗,X) k(X,X)−1 k(x∗,X)T (5)

The Kriging hyperparameters are determined by maximizing the probability of the hyperpa-
rameters, given the observations. This can be done in of two ways, either through optimisation
of Maximum Likelihood function [9], or through Cross-Validation. In either case, as dimen-
sionality rises, complexity rises to the point where the numerical problem becomes intractable.
This is where dimension reduction comes into play.

2.2 The Active Subspace method

2.2.1 The basis behind the method

Accurate gradient information is available, so we use the Active Subspaces method proposed
by Constantine [3].

Consider a function f with m continuous inputs. The column vector x takes values in Rd;
we write x = [x1, . . . xd].

f = f(x), x ∈ X ⊆ Rd (6)

Let X be equipped with a bounded probability density function ρ : Rd → R+, where

ρ(x) > 0,x ∈ X (7)

Assuming f is continuous and square-integrable with respect to ρ, and with the gradient of f

stored in the column vector ∇xf(x) =
[

∂f
∂x1

· · · ∂f
∂xd

]T
, we define the d × d correlation matrix

C as the expectation of the outer product of the gradient vector with itself:

C = Eρ

[
(∇xf)(∇xf)

T
]

(8)
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Since C is symmetric and positive semidefinite, consider its eigenvalue decomposition:

C = WΛWT , Λ = diag(λ1, . . . , λd), λ1 ≥ · · · ≥ λd ≥ 0, WTW = I (9)

It is shown that the gradient of f with respect to an eigenvector is equal to the corresponding
eigenvalue.

Lemma 2.1. The mean-squared directional derivative of f with respect to the eigenvector wi

is equal to the corresponding eigenvalue: E
[(
(∇xf)

Tfwi

)2]
= λi.

With the eigenvalues sorted in decreasing order, we are able to separate eigenvectors (columns
of W) into two sets.

Λ =

[
Λ1

Λ2

]
, W = [W1 W2] (10)

where Λ1 = diag(λ1, . . . , λn) with n < d, and W1 is d× n.
Define the new, partitioned variables y ∈ Rn and z ∈ Rd−n by

y = WT
1 x, z = WT

2 x (11)

from which any point of the original domain X can be expressed:

f(x) = f(W1y +W2z) (12)

Consider the following lemma:

Lemma 2.2. The mean-squared gradients of f with respect to the coordinates y and z satisfy:

E
[
(∇yf)(∇yf)

T
]
= λ1 + . . .+ λn, (13)

E
[
(∇zf)(∇zf)

T
]
= λn + . . .+ λd (14)

Proofs for both of these Lemmas are found in [10]. With this split, we know that, on average,
f(x) is more sensitive to perturbations along the first set of eigenvectors. This result justifies
the term active subspace. If, for example, the smallest eigenvalue λd is exactly zero, the mean-
squared change in f along wd is null. Therefore, discarding the dth direction would lead to exact
dimension reduction, where no information is lost. This is the ideal scenario.

2.2.2 Approximation in the active subspace

Our goal is to construct a function g = g(y) that depends only on the n < d active variables,
and study its parametric dependence as a proxy for f(x), since we assume that the number of
parameters d is too large for proper standard response surface construction. Essentially, we wish
to approximate an d-variate function f by a function which is z-invariant. Doing so necessitates
managing at least two approximations. First, approximating f by a z-invariant function incurs
information loss, which leads to errors. Secondly, we must build an n-variate response surface,
which, by construction, may not always be perfectly fitted. These errors are bounded, and they
are analysed in this section.

5



Maxime Chapron, Christophe Blondeau, Michel Bergmann, Itham Salah el Din, and Denis Sipp

Conditional expectation For a certain coordinate y, the best guess one can make at the value
of f is the average over all values of x that map to y.

g(y) = E [f | y] =
∫
z

f (W1y +W2z) πZ|Y (z) dz (15)

Being a conditional expectation, G is the best mean-squared approximation of f given y.
As such, we can approximate the original function f(x) with a function, g, defined in the

reduced space:
f(x) ≈ F (x) ≡ g(WT

1 x) (16)

Doing so will inevitably lead to errors, unless the eigenvalues of the discarded subspace W2

are zero (exploiting Lemma 2.2). Further, theorem 2.3 provides an upper bound to the error
commited by this approximation.

Theorem 2.3. The mean squared error of F defined in (16) is bounded from above by:
E [(f − F )2] ≤ C1(λn+1 + . . .+ λd), with C1 a constant.

The trouble with the approximation of g is that each evaluation of it requires an integration
with regards to the discarded variables z. In the case of successful active subspace discovery,
the number of discarded directions can be high, leading to consequential numerical integration
costs. However, if the discarded eigenvalues λn+1, . . . , λd are small, which we hope they are,
then small changes in z produce very little change in f . Thus, the variance of f along z is small,
and a standard Monte Carlo will accurately approximate the conditional expectation g while
deriving an error bound on said approximation. Define the Monte Carlo estimate ĝ = ĝ(y)

f(x) ≈ F̂ (x) ≡ ĝ(WT
1 x) (17)

which, after combining the usual error bound for a Monte Carlo approximation with the result of
Theorem 2.3 yields the total error bound made when approximating a function f by an N -point
Monte Carlo estimation of its conditional expectation at a given y.

E
[
(f − F̂ )2

]
≤ C1

(
1 +

1

N

)
(λn+1 + . . .+ λd) (18)

This gives an easy criterion to evaluate the precision of the subspace. In practice, a single point
Monte Carlo is accurate enough to, provided the sum of discarded eigenvalues is small enough.
If the error committed by these two successive approximations is too high, we can increase the
size of the subspace in order to reduce the error. The other option is to increase the size of the
training data set.

2.3 Clustering through Gaussian Mixture Models

Following a Divide and Conquer approach, we wish to split up our design space into smaller
domains where the function exhibits a certain trend. Since it is not in advance known what we
are looking for, we use unsupervised learning to identify patterns in the data. We formulate
a probabilistic model which postulates certain unobserved variables -called latent variables-
which correspond to things we are interested in inferring. We are focused on one type of latent
variable model: the Gaussian Mixture Model. In complex cases, distributions rarely follow
simple distributions. For instance, the data might be multimodal (figure 2).
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Figure 2: Probability density function of a one-dimensional GMM

In this situation, we model the data in terms of a mixture of several components, where
each component has a simple parametric form: a Gaussian distribution. We assume each data
point belongs to one of the components, and we try to infer the distribution for each component
separately. In contrast to usual methods such as K-means which rely on Euclidean distance
between the input locations, our clustering depends on the Mahalanobis distance in the joint
input-output space. Our clustering is thus driven by function topology, and is unbothered by
space-filling Designs of Experiments, where Euclidean distance is non informative. By consid-
ering the joint law of the inputs and outputs (X, Y ), function values play a key role in splitting
up the domain into clusters where the objective function exhibits similar trends. Note that we
could have considered the joint law of the inputs and the gradients in the same manner, and a
comparison of both these methods will be carried out in the future.

We are interested in making decisions based on function topology. Therefore, instead of
considering only the inputs X = (x1, . . . , xd) where xi ∈ Rd are assumed to come from a
set of identical and independently distributed random variables, we consider the joint law of
the inputs and their corresponding outputs, Y ∈ R. In this work, we only consider the scalar
function y = f(x) as the output, so the conjoint space of (X ,Y) = Z = (z1, . . . , zN) where
zi = (xi, yi) ∈ Rd+1 is considered. For future work, note that the formalism detailed here
would apply in the multi-output case with very little change. In the case of GMM, we assume
the probability density function of Z follows a weighted combination of a given number K of
multivariate Gaussian laws in Rd+1 such that:

Z ∼
K∑
k=1

αk N (µk,Σk) (19)

where αk is the proportion of the Gaussian k in the mixture. In eq.19, being probability density
functions, it goes without saying that ∀k ∈ [1, K] , αk ∈ [0, 1] and

∑K
k=1 αk = 1. Denote

µk =

(
µX

k

µY
k

)
the X and Y components of the vector of means. Similarly, Σk =

(
ΣX

k σk

σT
k ξk

)
is

the covariance matrix.
Recall that a multivariate Gaussian distribution is defined by its mean µk and its covariance

matrix Σk ∈ Md+1(R), which is symmetric positive definite. These parameters are estimated
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by the alternating Expectation-Maximisation algorithm [11], which was designed for this pur-
pose.

Once the parameters have been estimated, we can calculate the probability of membership of
every point to every cluster, that is to say the probability for a given (x, y) to belong to cluster
k. It is given computing the posterior probabilities obtained by Bayes’ formula where κ denotes
the discrete random variable associated with the clusters:

π
(
κ = k | (X, Y ) = (x, y)

)
=

π(κ = k) π
(
(X, Y ) = (x, y) | κ = ki

)∑K
k=1 π(κ = k) π

(
(X, Y ) = (x, y) | κ = k

) (20)

=
αk N (µk,Σk)

π(X, Y )

We then partition our data points by assigning each point to the cluster to which it has the
highest probability of membership. Mathematically, given (xi, yi) in the conjoint space, that
particular training point i lies in cluster j, where:

j∗ = arg max
j=1,...,K

π (κ = j | (X, Y ) = (xi, yi)) , i = 1, . . . , N (21)

2.3.1 Recombination

Now that the parameters have been identified, and that every point in the dataset has been
labelled, we can train the local Kriging experts. Each expert is trained using the data points
of that specific cluster. In order to have a global surrogate model able to predict the unknown
response y of a new entry x ∈ Rd, we must then recombine the local experts, fk. We proceed
by constructing a linear combination of the local experts:

f̂(x) =
K∑
i=1

βk(x)fk(x) (22)

where β = (β1, . . . , βK) is the vector of the local weighting functions (local in the sense that
its values depend on x). Please note however, that while each expert has been trained using the
training set of its specific cluster, each expert is defined over the entire design space. Mathe-
matically, this reads:

The support of each expertfk(x) is the entire domain X ∈ X ⊂ Rd

The training set of cluster k is denoted Xk

The entire dataset is made up of the union of the training sets, such that:

X = ∪K
k=1Xk

Xi ∩Xj = ∅, i ̸= j

The most basic form of recombination is what is sometimes known as a hard recombination:

the gating network is the Heaviside function: βk(x) =

{
1, if x belongs to cluster k
0, otherwise

.

This is justified since the local expert fk is best equipped to accurately predict a value located
in cluster k. This kind of recombination is very useful to deal with discontinuous objective
functions. However, when dealing with continuous functions, such a recombination strategy
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could lead to approximation errors. Furthermore, in the context of optimisation through gradient
descent, we need the surrogate model to be continuous and even differentiable, requiring what
is most often known as smooth recombination.

In order to maximize performance, the weights making up the linear combination will not
be constant throughout the design space. Most response surfaces are most accurate when in-
terpolating. Take cluster k, for example. Near µk (the center of cluster k), it is most likely
that fk can provide the most accurate estimation of the objective function, since it has been
trained by the surrounding points. Therefore, we will strongly lean on this expert by weight-
ing it heavily. To achieve this, we weigh the experts’ predictions according to the location’s
probability of belonging to a particular cluster. It just so happens that the GMM parame-
ter estimation yields the analytical formula for the probability of belonging to each cluster,
βk =

(
π(κ = 1 | X = x), . . . π(κ = K | X = x)

)
. This leads to the classical expression for

mixture of experts smooth recombination, as expressed by Jordan and Jacobs [12]:

f̂(x) =
K∑
k=1

βk(x)fk(x) =
K∑
k=1

π(κ = k | X = x)fk(x) (23)

Notice how the expression of βk depends only upon x. This result is critical as it allows
the surrogate model to predict new points, not just the points at which it was trained. These
expressions are easily obtained from the Gaussian parameters computed by the EM algorithm:
from the conjoint law (X, Y ) ∼

∑K
k=1 αkN (µk,Σk) we can derive the law of X | κ = k

without knowing y.
π(X | κ = k) = N

(
µX

k ,Σ
X
k

)
(24)

where µX
k ,Σ

X
k are defined under equation (19). This is different from the laws we would have

obtained by applying the EM solely on the inputs: in essence, it is a marginalisation of the
probability of membership of the conjoint law, where we have marginalised with regards to the
known outputs y = {f(xi)}i=1,...,N .

2.4 Clustered Active Subspaces method

These building blocks enable us to present the strategy behind the Clustered Active Sub-
spaces method.

9
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Algorithm 1: Clustered Active Subspaces method
1 Construct an initial dataset of N samples {D} = (xi, yi,∇xyi). These are independent

samples “drawn” according to the spatial density distribution.
2 Assemble the joint data zi = (xi, yi) ∈ Rd+1, i = 1, . . . , N and set a number of

clusters K.
3 Assume Z = (z1, . . . , zN) follows a Gaussian mixture

π (z | αk,µk,Σk) =
K∑
k=1

αk N (µk,Σk) with

{
µk ∈ Rd+1,Σk ∈ Md+1(R)∑K

k=1 αk = 1

4 Identify hyperparameters using the Expectation-Maximisation algorithm
5 Perform hard clustering from highest posterior probability. For (xi, yi) ∈ z:

j∗ = arg max
j=1,...,K

p
(
k = j | (X, Y ) = (xi, yi)

)
i = 1, . . . , N

6 for k in [1, K] do
7 Obtain local empirical covariance of gradients with

Ck ≈ Ĉk = Eρk(x)

[
∇f(x)∇f(x)T

]
=

1

M

M∑
j=1

∇f(xj)∇f(xj)
T , M = |k|

8 Decompose matrix Ĉk = WkΛkW
T
k with WT

kWk = Ik
9 In each cluster, f(x) ≈ Gk(W

T
1,kx) with Wk = [W1,k,W2,k]

10 Define local AS kernel kk(WT
1,kx,W

T
1,kx

′; Θ) with Θ = (µk,Σk)

11 Train local Kriging fk(xk) using the points of current cluster.
12 end
13 Recombine local experts to form a global surrogate model.

3 OVERLAPPING

Initial tests have shown that most of the prediction errors of our surrogate model originate
at the boundaries between clusters. We attribute this error to extrapolation: each of the local
experts are trained using data belonging to their cluster. When asked to predict new values near
the boundaries, none of the local response surfaces have been trained in that area, which leads to
prediction errors. In order to mitigate this issue, we extend the training set of each cluster so that
they encompass these frontier areas, reducing areas of extrapolation and therefore improving
predictive accuracy.

3.1 Probability of membership based overlapping

The first idea is to rely more heavily on the probability of membership functions (βk =
π(κ = k | X = x)) yielded by the Gaussian Mixture Model. These functions are each defined
over the entire domain, as shown in figure 3a on a two dimensional space corresponding to the
domain of the Branin function [7].
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(a) Probability of membership to each cluster in a
two-dimensional input space

(b) Maximal probability of membership to a
cluster in a two-dimensional input space

Figure 3: Exploiting the probability of membership functions

For each cluster, instead of only assigning points through their maximal probability of mem-
bership, we add points whose joint probability of membership is superior to a certain threshold,
say γ ≥ 0.3. This threshold could be another hyperparameter we would need to optimally
choose. Including too many points would increase computation time as well as increase the
possibility of adding irrelevant or even detrimental points to the training set. However, enough
points must be added in order to sufficiently enrich the response surface and increase perfor-
mance by reducing the recombination error around the cluster boundaries.

Figure 4 shows which of the training points of the original dataset are added to the training
set of cluster 4 (bottom right cluster). Graphically, white points are the points which have been
identified as belonging to cluster 4 by the true probability of membership, as computed by the
joint law of (X, Y ): argmaxj=1,...,K π

(
κ = j | (X, Y ) = (xi, yi)

)
. However, The marginal

probability of membership βk(x) = π(κ = k | X = x) misclassifies some of these points
(black points circled in pink).

Results are promising, since the overlapping procedure identifies both points which have
been misclassified and points belonging to other clusters but near the boundaries of cluster 4.
As a bonus, all suggested points are pertinent: no points are far away from the cluster, they
should all contribute positively to predictive power.
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Figure 4: Adding points to a cluster’s training set. White points belong to the considered cluster,
as determined by the GMM clustering. The contour is the marginal probability of membership
to the current cluster, as computed with βk. Cluster boundaries correspond to βk = 0.5. Black
points circled in purple are points added to the current cluster’s training set by the overlapping
procedure.

This strategy is satisfying but only factors in the probability function value. It does not
allow us to control the distance (in the parameter space) between the point and the boundary.
Depending on the profile of this probability of membership function, additional points can be
selected regardless of their distance to the boundary. In order to relieve this limitation, we
propose to formulate a criterion which is linked to the Euclidean distance to the boundary. A
tool for this kind of job is Support Vector Classifier.

3.2 Supervised learning

We now propose to resort to supervised learning by training a classifier on the labels obtained
after GMM clustering. From the gallery of options [13], we chose a Support Vector Machines-
based classifier in order to benefit from one of its major advantages, the optimal separation
margin. In addition to giving us an explicit formulation for the cluster boundaries, the margin
allows us to define a Euclidean distance from each point in the domain to any cluster boundary.
This is information we can use to define the appropriate width of the overlapping region.

3.2.1 Support Vector Classifier

Support Vector Machines (SVM) [14] aim to identify the optimal hyperplane which max-
imises the minimal distance (in the direction normal to said hyperplane) between two points of
different sets. Consider our data (xi, yi)i=1,...,N where yi ∈ {−1, 1} are the labels given by a
classifier. In the case of linearly separable data, we aim to build a function, the decision function
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of the form
f(x) = wTx+ b = 0, w ∈ Rd (25)

Classification is induced by the sign of f , G(x) = sign
[
wTx+ b

]
. The margin between two

sets is defined as the minimum distance between all possible distances ∥.∥w,b between two
points from distinct sets.

M(X1, X−1;w, b) = min
x+∈X1,x−∈X−1

∥x+ − x−∥w,b (26)

The Optimal Separating Hyperplane is defined as the linear separator which maximises the
margin:

max
w, b

M(X1, X−1;w, b) (27)

It is shown in [15] that this maximisation problem simplifies to:

min
(w,b)∈Rd+1

∥w∥22 (28)

s.t. yi(w
Txi + b) ≥ 1 yi ∈ {−1, 1}

Another valuable feature of SVMs is that they can be extended to deal with non-linearly
separable data, by instead considering:

f(x) = wTϕ(x) + b (29)

This is known as the kernel trick, where ϕ(.) is a non-linear mapping. This is equivalent to
artificially increasing the dimension of the parameter space. Using a kernel
K(xi, xj) =< ϕ(xi), ϕ(xj) >H does not change the optimization problem, and we do not need
to explicitly know the mapping, only its dot product K(., .). This trick allows for much better
classification in the case of data which is tough to separate linearly, as shown in section 5.2.

SVC is traditionally a binary classifier, but extension to the multiclass scenario is straight-
forward.

4 SELECTION OF THE SIZE OF THE ACTIVE SUBSPACES

One of the key problems in dimension reduction is just how much reduction you can get away
with. Inevitably, reducing the dimension will lead to information loss, but keeping too many
dimensions will not help mitigate the problems stemming from the curse of dimensionality.
As such, it is common in the literature to implement an energy criterion on the spectrum of
eigenvalues of the empirical covariance matrix to determine the number of directions to discard.
Sometimes known as the Relative Information Content, common thresholds are 99% or 99.9%,
as seen in [16]. RIC is defined as the following ratio, with n the number of retained directions
in a d-dimensional problem:

RIC(n) =
∑n

i=1 λi∑d
i=1 λi

≥ ϵ (30)

Recall that our sample set is drawn from a population with an unknown probability distribu-
tion. Therefore, the eigenvalues and eigenvectors are probabilistic. We can then estimate them
by eigendecomposition of the empirical covariance matrix Ĉ. Rigourously, equation (8) should
read:

Ĉ =
1

N

N∑
j=1

∇xf(x)∇xf(x)
T (31)
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which can then be decomposed into:

Ĉ = ŴΛ̂ŴT , Λ̂ = diag(λ̂1, . . . , λ̂d), λ̂1 ≥ · · · ≥ λ̂d ≥ 0 (32)

Since the size of the sampling set is limited, this estimate is biased. One way to estimate
this error is to rely on the bootstrap replication technique [17]. The basic idea is to replace the
original population with a unique plugin sample. Statistics are obtained using a Monte Carlo
technique applied to bootstrap samples from drawing with replacement in the plugin dataset.
Applying this procedure to the eigenproblem of equation 31 provides error estimates for the
spectral information.

Figure 5: Eigenvalue spectrum and cut-offs based on energy criterion threshold values

These errors are function of the size of the initial dataset, M [10], [18]. Certain considered
datasets may be small enough for the bootstrap estimated error on the spectral information to
exceed the threshold imposed by the RIC.

We propose to transpose the truncation criterion from spectral information (eigenvalues)
to the generalisation error of a response surface trained in the reduced space. The idea is to
gradually increase the number of retained dimensions and to monitor the generalisation error.
This is done via Q2, which is analogous to the Stone-Geisser R2 criterion, but based on model
predictions at unseen locations.

R2 = 1− Residual Sum of Squares
Total Sum of Squares

= 1−
∑N

i=1(y[i]− ŷ[i])2∑N
i=1(y[i]− y)2

(33)

Q2 = 1− Predicted Residual Sum of Squares
Total Sum of Squares

= 1−
∑N

i=1(y[i]− ŷ−i[i])
2∑N

i=1(y[i]− y)2
(34)

where ŷ is the model prediction, ŷ−i the prediction by the model where location i has been
witheld, and y is the mean of all training values y.

Anticipating that even a virtual LOO for Kriging in each subspace size will be expensive,
we replace Kriging with cheaper Ridge Regression [19]. The rationale is that both approaches
lead to the same truncation, but Ridge Regression will do so cheaply while remaining robust to
dataset size. These methods are compared in section 5.3.
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5 RESULTS

5.1 Applications

Another problem of high-dimensional problems is difficulty of visualisation. Our first test
case is the two dimensional Branin function [7]. While offering limited potential for dimen-
sion reduction, it is a well known test case for optimisation, and will help demonstrate certain
concepts concerning clustering and overlapping. Being ultimately interested in aerodynamic
shape optimisation, we apply the Clustered Active Subspaces method to a standard benchmark
in aerodynamics, the NACA0012 aerofoil. This dataset in included in the Active Subspaces
Python Toolbox.

5.1.1 The Branin function

f(x) =

(
x2 −

5.1

4π2
x2 +

5

π
x1 − 6

)2

+ 10

[(
1− 1

8π

)
cosx1 + 1

]
+ 5x1 (35)

Figure 6: The Branin function

5.1.2 NACA0012 aerofoil

The NACA class of symmetrical aerofoils are well known benchmarks for CFD solvers. This
particular implementation of the aerofoil is characterized by 18 Hicks-Henne bumps [3]. The
dataset is comprised of 1756 Euler CFD runs, with a space-filling design of experiments. It fea-
tures two objective functions, lift and drag, and all runs include the computations of the gradi-
ents of both objective functions with regards to all control parameters. Gradients are computed
using adjoint methods available in SU2 [20]. The lift function exhibits a simple dependence
upon the input parameters and is not challenging for dimension reduction. Therefore, in all
cases featuring the NACA test case, the function of interest will always be the drag function.

This is a large dataset, and rich considering it is ’only’ an 18-dimensional problem. There-
fore, we are able to split it into a training set and a testing set. We can thus estimate errors of
generalisation without the need for cross validation. The standard train/test split employed is
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Figure 7: Pressure field around a NACA0012 aerofoil resulting from an inviscid CFD compu-
tation with SU2

80-20, which leads to an effective training dataset of 1404 runs. This split is kept the same to
ensure repeatability.

5.1.3 ONERA M6 transonic wing

The second physics-based dataset is also included in the Active Subspaces toolbox. It is a
classic test for three-dimensional transonic flow, with the added bonus of multiple wind-tunnel
tests to which researchers can compare their results. In this particular implementation, the
wing is defined by 50 FFD control parameters. The dataset once again features two objective
functions, the lift and drag coefficients, as well as their gradients with respect to all 50 design
parameters. Due to the increased costs of 3D CFD simulations, this dataset features 300 points.

Figure 8: Surface flow on an M6 wing
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5.1.4 Data analysis

Before launching oneself into anything, it is vital to approach the data heads-up. This is
neither pre-processing since the variables are not altered, nor data mining since we are not
dealing with large swaths of data. Yet, this step cannot be ignored. Obviously, a major concern
is the potential for dimension reduction in the considered data.

We start by evaluating whether we can realistically expect dimension reduction to succeed
in this particular case. We present two such methods.

Figure 9: Heatmap of the empirical covariance matrix Ĉ

Pre-processing’s main objective, other than to condition the data set as best as possible in
order to limit numerical problems, is feature selection. Well known in data science, feature
selection consists in qualitative analysis of the input parameters, as a first step before any ex-
ploitation. In our case, it serves a dual purpose: quickly determine the parameters with the
most influence on our objective function, and get appreciate the magnitude of dimension reduc-
tion for the considered dataset. Methods like the correlation matrix heatmap (figure 9) clearly
display the strength of correlation between certain design parameters, which usually indicates
some linear combination of these parameters will produce a strongly active component, result-
ing not only in successful dimension reduction, but also a relevant direction with regards to the
objective function.
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Figure 10: Coefficients of a Ridge regression determined through cross validation (green), and
diagonal of the covariance matrix (red)

These results are confirmed by performing a Ridge regression [19] on the data. This is in
essence a linear regression with regularisation, whose coefficients give a direct indication of the
prominence of each design parameter. We see in figure 10 that parameters 7 through 12 seem
to be the most influent. For reference, we have added the scaled values of the diagonal of the
empirical covariance matrix Ĉ, which provides very similar results. Because some parameters
seem to be more influent than others, we can expect dimension reduction to succeed.

5.1.5 Classifier accuracy

Increasing the training sets increases accuracy by reducing the the need for the response
surfaces to extrapolate. This is beneficial to any recombination method. However, since we
are using a smooth recombination which is a linear combination of the neighbouring experts,
the weight attributed to each expert is instrumental to the accuracy of the recombined surrogate
model. Since we have shown in section 2.3 that we do not use exactly the same functions for the
clustering and the recombination, it is legitimate to wonder if some of the recombination error
isn’t due to this estimation. Since the marginal PoM classifier is based on the same principle as
the joint PoM classifier (j∗ = arg maxj∈[1,K] PoMj), our reasoning is that misclassified points
indicate inaccuracies in the βk functions for these particular locations. Identifying misclassified
points can help accuracy, since these functions are used to weigh the contributions of each local
expert to the global surrogate model (see eq.23). A useful tool to evualuate the accuracy of
a classifier is the confusion matrix. A confusion matrix compares the percentage of correctly
classified points from each cluster. A perfect classifier has a diagonal matrix: for each cluster,
100% of the points have been correctly classified. In all cases considered (Branin, NACA, M6
ing), the matrix is very diagonal for a host of cluster numbers; the βks are deemed pertinent.
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Figure 11: Confusion matrix of the marginal probability of membership classifier, in the 5
cluster case

We now contrast this with the confusion matrix between of the support vector classifier. We
repeat the procedure with two widely used kernel options, a linear separator and an RBF-based
kernel. The blue outlines are the probable locations of the cluster boundaries, as computed by
the Gaussian Mixture model, while the shaded contours determine the boundaries as computed
by SVM.

Figure 12: Comparing the cluster boundaries calculated by the marginal probability of mem-
bership (blue lines) with boundaries obtained by the linear kernel support vector classifier. Also
featured is the confusion matrix of the linear kernel support vector classifier in the 5 cluster case
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Figure 13: Comparing the cluster boundaries calculated by the marginal probability of mem-
bership (blue lines) with boundaries obtained by the RBF kernel support vector classifier. Also
featured is the confusion matrix of the RBF kernel support vector classifier in the 5 cluster case

Since our dataset is not linearly separable, the RBF kernel allows for more accurate classi-
fication than its linear counterpart. The confusion matrix is an indication of the learning error
of classifiers. While this is an important metric, we are more interested by the generalisation
error: how do the classifiers perform on points that have not been used to train them?

To this end, we generate a wider training set, perform an 80-20 train/test split, and ask the
classifiers to predict the label of unseen points. We then compare these predictions to their
actual classification as computed by the joint law of membership. Table 1 concerns the 2D
Branin test case, and table 2 focuses on the NACA dataset.

Number of clusters Method Learning error Generalisation error

4 clusters
Marginal PoM 8.00 % 12.28 %

Linear SVC 10.22 % 12.28 %
RBF SVC 2.22 % 8.77 %

5 clusters
Marginal PoM 5.33 % 8.77 %

Linear SVC 10.22 % 14.04 %
RBF SVC 2.22 % 12.28 %

10 clusters
Marginal PoM 4.44 % 10.52 %

Linear SVC 14.22 % 26.32 %
RBF SVC 7.99 % 15.78 %

20 clusters
Marginal PoM 3.11 % 28.07 %

Linear SVC 30.66 % 38.59 %
RBF SVC 7.99 % 22.81 %

Table 1: Comparing classifier accuracy on the Branin dataset, 80-20 split
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Number of clusters Method Learning error Generalisation error

3 clusters
Marginal PoM 9.76 % 14.77 %

Linear SVC 26.86 % 33.52 %
RBF SVC 4.20 % 17.89 %

5 clusters
Marginal PoM 9.47 % 22.15 %

Linear SVC 31.27 % 40.06 %
RBF SVC 4.84 % 28.69 %

10 clusters
Marginal PoM 9.47 % 18.18 %

Linear SVC 25.28 % 40.06 %
RBF SVC 4.42 % 34.66 %

20 clusters
Marginal PoM 2.06 % 23.58 %

Linear SVC 9.18 % 49.72 %
RBF SVC 3.06 % 46.6 %

Table 2: Comparing classifier accuracy on the NACA dataset, 80-20 split

This confirms that the marginal probability of membership classifier, j∗ = argmaxj∈[1,K] βj

is robust to different cases.
Nonetheless, we propose two areas of development.

βk switching for misclassified points Firstly, points are misclassified by the marginal PoM
classifier because of inaccuracies of the marginal probabilities of membership, βk. This is prob-
lematic since these βk(x) are used to weigh the Kriging models, so these errors will be prop-
agated in the reconstruction. We correct the weighting attributed to each expert by attributing
the highest marginal probability of membership to the location’s actual cluster. This changes
only the values of the two βks, for the sites which have been misclassified. While this little
trick cannot help predictive performance of the model at new locations, it should improve the
learning error, leading to a more accurate surrogate model.

Weighted SVC The SVC formalism enables a extension to reduce the number of misclassi-
fications. The SVC allows for a weighting of the locations, to ensure certain samples deemed
more important are correctly classified. The weighting comes from the true (joint law of (X, Y ))
probability of membership:

pi,j =
π
(
(X, Y ) = (xi, yi) | κ = j

)
∑K

k=1 π
(
(X, Y ) = (xi, yi) | κ = k

) (36)

We can also use the probability of generating a point, knowing that it belongs to the current
cluster. The weighting would then be:

pi = π(X = xi | κ = k), π(X = x | κ = k) = N (µk,Σk) (37)

In doing so, we are in essence trying to force the correct classification of points with the lowest
probabilities of membership. In all rigor, the weighting we use is 1 − pi,j , since were are
shifting importance towards uncertain points. This extension deserves more time to be correctly
analysed, and will therefore be presented in a future publication.
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5.2 Accuracy gains through probability of membership based overlapping

Consider first the NACA dataset, from a purely clustering point of view. At 1404 points for
18 dimensions, it is still tractable for standard responses such as Kriging. As such, a single
global Kriging model over the entire design space will serve as the benchmark (blue curves).
To this benchmark we compare both recombination strategies (hard, in red, and smooth, in
green) implemented in the SMT surrogate modelling toolbox [21]. Finally, the orange curves
correspond to the overlapped Kriging method detailed in section 3. We successively apply these
three methods for an increasing number of clusters, and use the generalisation error

RMSE =
1

Ntest

√√√√Ntest∑
i=1

(
yi − ŷi

)2 (38)

as our performance metric, with yi and ŷi respectively denoting the true function value and the
model’s prediction at xi.

Figure 14: Generalisation error of standard and improved methods for local expert recombina-
tion. The orange curve shows the benefit of overlapping over standard recombination methods.

Drag coefficient is not expected to feature any discontinuities, which is why the hard recom-
bination presents the most error. Smooth recombination improves upon these performances, but
Kriging struggles with extrapolation, and boundaries between clusters are mis-modelled. For
the overlapping, we chose the cardinal criterion, which requires the addition of 50% of points to
each cluster. As hoped, overlapping is beneficial to accuracy, while not impacting training time
all that much. Even more impressively, for 4 and 5 clusters, overlapped Kriging is as accurate
as the single global Kriging model.
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Figure 15: Generalisation error and computation time of standard and improved methods for
local expert recombination, using PoM threshold criterion

The cardinal criterion can be problematic since it forces the addition of points, regardless of
whether the new points are actually beneficial. To circumvent this, we implement a probability
threshold criterion. All points more likely than a certain threshold γ to belong to the current
cluster are added to the local response surface’s training set. This is more flexible: if no pertinent
points are found, none are added. If a lot of points could benefit the response surface, they are
all added.

Similarly to when using the cardinal criterion, using the probability threshold criterion leads
to improved accuracy over the other clustered methods. However, while accuracy is good, it
does not intersect the blue curve. Judging by the computation time, we believe this is because
few points are actually added to the training sets, since very few points are likely enough to
belong to other clusters than their own. Excessively lowering the threshold will lead to increased
computation times, and adding points which may not be beneficial to accuracy. This leads to an
important set of questions: which criterion to choose, and what value needs to be set?

5.3 Active Subspace dimension selection criterion

In the absence of a dimension selection criterion, the only option is to train a Kriging model
in every possible subspace size, then compare accuracy and computation time to determine the
optimal subspace size. Figure 16 below shows the generalisation error of the Kriging models
as a function of the size of the active subspace for drag coefficient around the NACA aerofoil.
The training was done on 80% of the sample, which yields a training set of 1404 points and a
test set of 352 points.
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Figure 16: Generalisation error and computation time for Kriging for different active subspace
sizes. Predictably, larger active subspaces lead to more accurate Kriging models, no matter the
trend type.

This is the benchmark to which we will compare the criteria presented in section 4. Three
common thresholds for the energy criterion are also included in the comparison.

Method Suggested Dimension Criterion time Generalisation error Total time
95% cut-off 4 ∅ 2.45× 10−3 161s
99% cut-off 6 ∅ 1.78× 10−3 246s

99.9% cut-off 11 ∅ 1.47× 10−3 472s
Single Ridge 3 10−2s 4.4× 10−3 119s
LOO-Ridge 4 17s 2.45× 10−3 178s

RBF 4 56s 2.45× 10−3 217s
Virtual LOO 4 400s 2.45× 10−3 561s

Kriging 6 787s 1.78× 10−3 787s

Table 3: Comparing dimension selection criteria on the global 18-dimensional NACA dataset

The regression criterions (Ridge and RBF) are capable of identifying pertinent active sub-
space sizes affordably, confirming our idea has merit. In the presented case, the dataset is very
large, which means the discovery of the eigenvalues is very precise (see bootstrap interval in
figure 5), enabling the energy criterion to perform well, but this may not always be the case.

5.4 Putting it all together: the clustered active subspaces method

We now put to use the developments presented in the two previous subsections. Decision
on the number of clusters for now still requires user input, so we iterate over the number of
clusters. For each run, after the number of clusters has been set, the local active subspaces are
discovered and the clustered dataset is projected into these reduced spaces. Pertinent nearby
points are then added to the training sets using the overlapping procedure detailed in section
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3. The Kriging models are trained, then recombined. The train/test split is the same as in
section 5.2. To our clustered active subspaces method, we compare the performance of using a
single global active subspace and corresponding surrogate model. Performance metrics are the
learning error (RMSE on the training set), generalisation error (RMSE on the unseen test set)
and computation time.

We first present the behaviour of the different surrogate model methods as a function of the
number of clusters used to partition the design space. We compare the CAS method (in blue)
with a single Kriging model trained on the entire design space (red cross), a Kriging model
trained in a single global active subspace (cyan cross), a mixture of Kriging models trained in
the initial space (green), and a mixture of experts trained on the local active subspaces (orange).
The benchmarks are the single Kriging model and the global AS + Kriging, both correspond-
ing to the one cluster case. The CAS method features clustering, dimension reduction, and
overlapping. No other method considered here features all three.

(a) Generalisation error (b) Computation time

Figure 17: Generalisation error and computation time of the surrogate models on the NACA
case.

The NACA case features a very large training set, for a reasonable amount of directions. A
single Kriging model performs well, and is the reference in terms of accuracy. Clustering and
the use of local active subspaces is, in most cases, beneficial to accuracy when compared to
the global Active Subspace + Kriging method. However, in the overlapped case, one must be
careful when deciding which points to add, as adding the wrong points can be detrimental to
predictive power. These results are consolidated in the following table.
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Method Learning Error Generalisation error Computation time
Single Kriging 9.00×10−15 2.06× 10−3 339s

MoE 9.60× 10−4 2.34× 10−3 252s
AS + Kriging 3.00×10−15 3.62× 10−3 73s

Clustered Active Subspaces 6.80× 10−4 3.72× 10−3 356s
Clustered AS + MoE 1.44× 10−3 1.82× 10−3 71s

Table 4: Comparing surrogate models for the drag coefficient on the 18-dimensional, 1400 point
NACA test case

ONERA M6 wing Taking these methods to the 50 dimensional ONERA M6 wing presents
some challenges. Firstly, the 50 dimensions should be more of a challenge for a single classic
surrogate model such as Kriging. The much lower number of points in the dataset is also a good
challenge.

Figure 18: Generalisation error and computation time of the different surrogate models on the
M6 case

Figures 18 and 19 compare the CAS method with the same surrogate models as in the NACA
test case above, but this time compares their learning error as well as their generalisation error.
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Figure 19: Learning and generalisation error of the different surrogate models on the M6 case

Three and five clusters offer the best predictive power for the CAS method, at reasonable
cost. Note how as opposed to the NACA case, the Kriging model has less predictive power in the
original domain than in the reduced space, due to the increase in dimension. The learning error
is larger for the methods which include dimension reduction. This is because when reducing
dimension, regressive Kriging must be used, whereas training the Kriging model in the original
domain enables the use of interpolation. Exact results are presented in the table below.

Method Learning Error Generalisation error Computation time
Single Kriging 6.0× 10−16 3.4× 10−3 32.7s

MoE 1.0× 10−4 3.7× 10−3 41.1s
AS + Kriging 1.4× 10−3 1.6× 10−3 1.71s

Clustered AS + MoE 4.0× 10−16 4.2× 10−3 3.84s
Clustered Active Subspaces 1.1× 10−3 1.6× 10−3 7.76s

Table 5: Comparing surrogate models for the drag coefficient on the 50-dimensional, 270 point
M6 test case

6 CONCLUSIONS

This paper presents a novel way to build a global surrogate model in high dimension. Clus-
tering the design space using the joint probability of inputs and outputs is beneficial on several
fronts. Firstly, it helps deal with multimodality by making decisions based on function topol-
ogy, even in cases where the design of experiments is non informative (space filling DoEs, for
example). Second, clustering benefits the Active Subspaces dimension reduction method by
applying it locally, where gradient information is most pertinent.

However, we found that clustering can lead to prediction errors at the boundaries between
clusters, where the local experts are asked to extrapolate. Therefore, one of the main objectives
of this work was to manage the inaccuracies borne of recombination. This was achieved by
extending the training sets of the local experts, leading to patches around cluster boundaries

27



Maxime Chapron, Christophe Blondeau, Michel Bergmann, Itham Salah el Din, and Denis Sipp

where two local experts overlap. This overlapping was shown to be beneficial to predictive
power, and, more importantly for us, we have shown that Clustered Active Subspaces can im-
prove upon existing methods of dimension reduction for surrogate modelling.

In particular, the CAS method exhibits improved predictive power for two benchmark aero-
dynamic test cases, while not impacting the computation time. We have built an accurate sur-
rogate model over a large design space, which we postulate is by construction more robust to
multimodality due to its clustered nature.

7 PERSPECTIVES

The work has highlighted new development perspectives. First of all, the Gaussian Mixture
Model has so far has been built on the joint law of inputs and outputs, π(x, f(x)), but we
could have considered the joint law of inputs and the output’s gradients (π(x,∇f)). We plan
to compare these two options, as this could lead to different cluster boundaries, and perhaps
improved accuracy. The latter has the added benefit of being coherent with our use of Active
Subspaces as a dimension reduction strategy.

Next, keeping with the trend of maximising the use of gradient information, we will test out
the performance gains to be had by using gradient information to build our response surface,
through the use of Gradient Enhanced Kriging.

Overlapping through SVM showed promise, but requires further work to fully exploit the
decision function and determine the size of the overlapping patches.
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