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Abstract
We develop the idea that a natural link between Boltzmann schemes and finite volumes
exists naturally: the conserved mass and momentun during the collision phase of the
Boltzmann scheme induces general expressions for mass and momentum fluxes. We treat
a unidimensional case and focus our development in two dimensions on possible flux
boundary conditions. Several test cases show that a high level of accuracy can be achieved
with this scheme.
Keywords : lattice Boltzmann scheme, boundary conditions, finite volume method.

1 Introduction
• The lattice Boltzmann scheme is a popular numerical method based
on a kinetic approach for fluid dynamics ([HPP76] [DLF86] [FHP86] [MZ88]
[HSB89] [DH92] [KR95] [LL00]). An exact propagation step in a lattice is
followed by a local relaxation process. It has been very early recognized (see
e.g. [BSV92]) that the lattice Boltzmann scheme is compatible with mass
and momentum conservation. Similarly, classical conservation laws that lead
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to finite volume methods (see e.g. [Pa80], [GR96] or [DD05]) incorporate ex-
plicitly the evaluation of numerical fluxes associated with conserved physical
quantities. In order to extend the lattice Boltzmann scheme to unstructured
meshes, several authors [Ch98] [PXDC99] [UBS03] [USB04] start from the
kinetic equations for the particle distribution and use control volumes “à la
INRIA” [ADLV83] [Vi86], that is control volumes around the vertices of the
triangulation.

• On the other hand, the treatment of boundary conditions with the help of
boundary fluxes is natural with the so-called cell centered version of the finite
volume method (see e.g. the classical monograph of Roache [Ro72] and our
contributions [DL89] [Du01] in the strong nonlinear case). The incorporation
of mass conservation via a zero mass flux on a solid boundary of the domain
has been studied by D’Humières [DH01] and also developed in [vdS06] and
[HHC06].

• In what follows, we start from a very general lattice Boltzmann scheme
and propose to incorporate the fundamental conservations of mass and mo-
mentum in the framework of finite volumes. Then we propose to develop
boundary conditions based on mass flux for the one-dimensional lattice Boltz-
mann scheme with three velocities. We extend the previous ideas for the
so-called D2Q9 two-dimensional model. We extend also these ideas to the
treatment of boundary conditions where the geometry of the control vol-
umes has to be modified in order to take into account the physical geometry.
Numerical simulations show the interest of our approach.

2 About the property of conservation
• We denote by L a lattice, ∆x a typical scale associated with this
lattice, ∆t a time step,

(1) λ ≡ ∆x

∆t

a typical speed of the problem, x a vertex of this lattice,

(2) xj ≡ x + ∆t vj , 0 ≤ j ≤ J ,
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the set of neighbouring nodes around the vertex x. Note that the node
defined by the relation (2) is a vertex of the lattice. We suppose that the
family (vj)0≤j≤J of speeds is symmetric relative to the origin, as an example
is shown in Figure 1.

(3) ∀j ∈ {0, · · · , J}, ∃ !σ(j) ∈ {0, · · · , J}, vj + vσ(j) = 0 .

We remark the clear property of involution:

(4) σ
(
σ(j)

)
= j , 0 ≤ j ≤ J .

Figure 1. Central symmetry hypothesis

• Let fj(x, t) be a distribution of particles on the lattice L at the vertex
x and discrete time t. We recall [FHHLPR87] (see also [CD98] or [LL00])
that the discrete dynamics of this distribution on the lattice L is given by a
collision step followed by a free advection displacement between two nodes.
We assume that the density

(5) ρ ≡
∑
j

fj

and the momentum

(6) q ≡
∑
j

vj fj
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are conserved during the collision step and we denote by f ∗j (x, t) the distri-
bution after this step:

(7) ρ ≡
∑
j

fj =
∑
j

f ∗j ≡ ρ∗,

(8) q ≡
∑
j

vj fj =
∑
j

vj f
∗
j ≡ q∗.

Then the dynamics of the lattice Boltzmann scheme takes the simple form
[Du08]

(9) fj(x, t+ ∆t) = f ∗j (x − vj ∆t, t) , x ∈ L, 0 ≤ j ≤ J .

We restrict in what follows to numerical physics that conserve mass and
momentum. The incorporation of conservation of energy is also possible
and we refer to [LL03] which discusses various attempts to include energy
conservation. Note that the state of the art concerning the collision step
f −→ f ∗ is due to [DH92] with the so-called “multiple relaxation time”
Boltzmann scheme. Remark that in all this contribution the choice of the
relaxation model has no influence on our methodology.
• Proposition 1. Conservation property.
We have the following relations concerning the temporal evolution of con-
served momenta

(10) ρ(x, t+ ∆t)− ρ(x, t) +
∑
j

(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= 0

(11) q(x, t+ ∆t)− q(x, t) +
∑
j

vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
= 0.

Proof of Proposition 1.
We have from the dynamics (9) by summation over the index j
ρ(x, t+ ∆t) =

∑
j

f ∗j (x − vj ∆t, t) =
∑
j

f ∗σ(j)(x − vσ(j) ∆t, t) =

=
∑
j

f ∗σ(j)(x + vj ∆t, t) =
∑
j

f ∗σ(j)(xj, t)



On lattice Boltzmann scheme, finite volumes and boundary conditions 5

and the relation (10) is established due to (7). In an analogous way, we have
for the momentum:
q(x, t+ ∆t) =

∑
j

vj f
∗
j (x − vj ∆t, t) =

∑
j

vσ(j) f
∗
σ(j)(x − vσ(j) ∆t, t) =

= −
∑
j

vj f
∗
σ(j)(x + vj ∆t, t) = −

∑
j

vj f
∗
σ(j)(xj, t)

and the relation (11) follows from (8).

• We suppose now that we can introduce a cell K(x) around the vertex
x such that its boundary ∂K(x) is composed by J edges aj(x) separating
the nodes x and xj :

(12) ∂K(x) =
⋃
j>0

aj(x),

with edges aj(x) such that

(13) aj(x) = ∂K(x) ∩ ∂K(xj) = aσ(j)(xj).

We denote by |K(x)| and |aj(x)| the measures of K(x) and aj(x) re-
spectively. Then the conservation of mass and momentum takes the discrete
form

(14)
1

∆t

[
ρ(x, t+ ∆t) − ρ(x, t)

]
+

1

|K(x)|
∑
j

|aj(x)|ψj(x) = 0 ,

(15)
1

∆t

[
q(x, t+ ∆t) − q(x, t)

]
+

1

|K(x)|
∑
j

|aj(x)| ζj(x) = 0 .

• Proposition 2. An algebraic expression for general fluxes.
We suppose that the lattice Boltzmann scheme (7) (8) (9) satisfies the above
hypotheses (12) and (13) and that the control volumes K(x) and K(xj)
have the same measure:

(16) |K(x)| = |K(xj)| , 1 ≤ j ≤ J .

We define the mass flux ψj and the momentum flux ζj with the following
expressions:

(17) ψj(x) =
|K(x)|

∆t |aj(x)|
(
f ∗j (x)− f ∗σ(j)(xj)

)
,



6 François Dubois and Pierre Lallemand

(18) ζj(x) =
|K(x)|

∆t |aj(x)|
vj
(
f ∗j (x) + f ∗σ(j)(xj)

)
.

Then the quantities defined in (17) and (18) are so-called “conservative fluxes”
in the following sense:

(19) ψj(x) + ψσ(j)(xj) = 0

(20) ζj(x) + ζσ(j)(xj) = 0.

with the vertex xj defined in (2).
Proof of Proposition 2.
The first part of the proposition is simply obtained by considering that (10)
[respectively (11)] and (14) [respectively (15)] define identically the same
evolution equation. Then we have for the conservation property of mass:
ψj(x) + ψσ(j)(xj) =

=
|K(x)|

∆t |aj(x)|
(
f ∗j (x)−f ∗σ(j)(xj)

)
+

|K(xj)|
∆t |aσ(j)(xj)|

(
f ∗σ(j)(xj)−f ∗σ(σ(j))(x)

)
=
|K(x)|

∆t |aj(x)|
(
f ∗j (x)− f ∗σ(j)(xj)

)
+
|K(x)|

∆t |aj(x)|
(
f ∗σ(j)(xj)− f ∗j (x)

)
due to (13), (16) and (4).

= 0.

Analogously for the momentum:

ζj(x) + ζσ(j)(xj) =
|K(x)|

∆t |aj(x)|
vj
(
f ∗j (x) + f ∗σ(j)(xj)

)
+

+
|K(xj)|

∆t |aσ(j)(xj)|
vσ(j)

(
f ∗σ(j)(xj) + f ∗σ(σ(j))(x)

)
=
|K(x)|

∆t |aj(x)|
vj
(
f ∗j (x)+f ∗σ(j)(xj)

)
− |K(xj)|

∆t |aσ(j)(xj)|
vj
(
f ∗σ(j)(xj)+f ∗j (x)

)
due to (3) and the previous arguments

= 0

and the property is established.
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• This remark makes a clear link between the lattice Boltzmann scheme
and the finite volume method [Pa80]. Note that the hypothesis (16) can be
not satisfied for the boundary cells as we will see in the following. In that
case, we adapt the definition of the flux in order to enforce the conservation
conditions (19) and (20).

3 Flux boundary condition for the D1Q3 model
• In the particular case of D1Q3 model [QHL92] (see also all algebraic
details in [Du07]), each vertex x of the lattice has two neighbours x− ≡
x−∆x and x+ ≡ x+∆x. Then the number of particles with velocity equal
to −λ [respectively 0, +λ] is denoted by f− [respectively f 0 and f+]. The
bijection σ introduced in (3) is given simply according to

(21) σ(0) = 0 , σ(+) = − , σ(−) = + .

Moreover, there is a geometrical and topological evidence that a cell K(x)
can be constructed around the vertex x:

(22) K(x) =
]
x− ∆x

2
, x+

∆x

2

[
.

as illustrated in Figure 2.

Figure 2. Uni-dimensional cell K(x) around the vertex x.

We observe that

(23) |K(x)| = ∆x .

The boundary ∂K(x) is composed by 2 “point-like edges” a−(x) and a+(x)
such that

(24) |a±(x)| = 1 .
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• Proposition 3. Fluxes for the D1Q3 model.
In one space dimension (D1Q3 model) the lattice Boltzmann scheme is ex-
actly a finite volume method. The mass flux ψ and momentum flux ζ are
given by the expressions (17) and (18) that take in this particular case the
form:

(25) ψj(x) = λ
(
f ∗j (x)− f ∗σ(j)(xj)

)
, j = − , 0 , + .

(26) ζj(x) = λ vj
(
f ∗j (x) + f ∗σ(j)(xj)

)
, j = − , 0 , + .

Proof of Proposition 3.
We have simply the relations (10) and (11) that can be re-written introducing
(1) and (23):

1

∆t

(
ρ(x, t+ ∆t)− ρ(x, t)

)
+

1

∆x

∑
j

λ
(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
q(x, t+ ∆t)− q(x, t)

)
+

1

∆x

∑
j

λ vj
(
f ∗j (x, t) +f ∗σ(j)(xj, t)

)
= 0

id est a vectorial discrete conservation law of the form
1

∆t

[
W (x, t+ ∆t) − W (x, t)

]
+

1

|K(x)|

∫
∂K

Φ •n dγ = 0

with a vector W composed by density ρ and momentum q. Then the
relations (25) and (26) are clear.
• We remark also that we generalize in what follows the terminology “finite
volume method”. According e.g. to the classical reference [GR96], the defi-
nition of a flux requires a priori fluxes to be functions of just the conserved
variables. Here mass flux and momentum flux cannot be expressed in terms
of the only conserved variables (mass and momentum densities) but are in
contrary functions of all particle distributions f .
• We study now the problem of defining a boundary condition for our D1Q3
Boltzmann model [GA94], [GH03]. We focus on the particular case of the
presence of a wall at one of the extremities. We suppose that x is a vertex of
the lattice internal to the domain under study and that its right neighbour x+

is external to the computational domain. Moreover, the geometric position
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xw of the wall is not supposed to be exactly between x and x+ but at a
certain fraction ξ:

(27) xw = x+ ξ∆x , 0 < ξ < 1 .

Note that the particular case ξ = 1
2 corresponds to a position of the wall

at equal distance between the “last” vertex inside the domain and the “first”
vertex outside the computational domain.

f ∗−(x)

f ∗+(x−)

x−∆x x x+ ∆x

x+ ξ∆x

Φ−(x)

f ∗+(x)

Figure 3. Numerical boundary condition for the D1Q3 model.

• Assuming the computational domain has nontrivial extent, we suppose
that both vertices x and x− are located inside the computational domain.
At a certain discrete time t, we have at our disposal the particle transfer
f ∗0 (x) of null velocity at the vertex x, the particle transfer f ∗−(x) of speed
−λ from vertex x to the point x−, the particle transfer f ∗+(x−) of speed λ
from point x− towards vertex x. We denote by Φ−(x) (instead of f ∗−(x+))
the unknown particle transfer of speed −λ coming from the “ghost” vertex
x+ towards the vertex x. This quantity has to be determined by the so-
called “numerical boundary scheme”. All the above notations are illustrated
in Figure 3.
• At a boundary vertex x, we modify the construction of the control vol-
ume K(x) and introduce a natural finite volume defined at the left by the
intermediate vertex x−∆x

2 and on the right by the boundary vertex xw. Such
a control volume satisfies

(28) |K(x)| =
(
ξ +

1

2

)
∆x.

We observe that |K(x)| is equal to ∆x only when ξ = 1
2 .
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• At a boundary, a good numerical methodology is to impose a flux (see
e.g. [DL89]). This approach is natural with a finite volume methodology. At
the solid boundary located at x = xw, the physical impermeability condition
leads to a zero mass flux ψ+(x) :

(29) ψ+(x) = 0 .

If we evaluate this mass flux according to the relation (25), we obtain in this
particular case: ψ+(x) = λ

(
f ∗+(x) − Φ−(x)

)
and due to (29), we obtain in

this manner the so-called “bounce-back” boundary condition:

(30) Φ−(x) = f ∗+(x) .

Other interpolation schemes have been proposed by several authors, for ex-
ample [MLS99] [BFL01].
• Scheme 1. Flux boundary condition for the D1Q3 model.
Our finite volume boundary condition consists in considering Figure 3 as a
finite control box K(x) around vertex x with a particular shape imposed by
the geometry of the problem. The boundary is located at a distance ξ∆x
from the vertex x. We propose to use the following formula for the unknown
input particle number:

(31) Φ−(x) = f ∗+(x) +
ξ − 1

2

ξ + 1
2

(
f ∗−(x)− f ∗+(x−)

)
.

Construction of Scheme 1.
We make a mass balance in a mesh K(x) of measure given by (28) that takes
into account the boundary. In order to enforce the conservation property,
the left mass flux ψ−(x) in the direction x → x−∆x is a priori still given
according to the relation (25)

(32) ψ−(x) = λ
(
f ∗−(x)− f ∗+(x−∆x)

)
and the right mass flux ψ+(x) is null (see (29)). We then write the time
evolution of the scheme in two ways. First, we have the general mass conser-
vation (10) of a Boltzmann scheme that takes here the form:

(33) ρ(x, t+∆t)−ρ(x, t)+
(
f ∗+(x)−Φ−(x)

)
+
(
f ∗−(x)−f ∗+(x−∆x)

)
= 0 .
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Second, we have the mass conservation (19) inside the volume K(x):

(34)
1

∆t

(
ρ(x, t+ ∆t)− ρ(x, t)

)
+

1

|K(x)|

[
ψ+(x) + ψ−(x)

]
= 0 .

We use (28), (32) and the physical condition (29) in order to eliminate the
term

(
ρ(x, t+∆t)−ρ(x, t)

)
between the relations (33) and (34). We obtain:(

f ∗+(x)− Φ−(x)
)

+
(
f ∗−(x)− f ∗+(x−∆x)

)
=

1

ξ + 1
2

(
f ∗−(x)− f ∗+(x−∆x)

)
and we extract Φ−(x) from the above expression. Then relation (31) is
established and the scheme is constructed.
• The numerical boundary scheme (31) has been derived as a conse-
quence of the mass conservation and a precise treatment of the no-penetration
boundary condition (29). This constraint of mass conservation at the bound-
ary has been studied by [NCGB95]. Note that with their own treatment
[GH03] of the boundary condition, Ginzburg and D’Humières have proposed
a boundary scheme very close to (31) that conserves mass in one space di-
mension [DH01] [DH06].
• Proposition 4. Linearity of the mass flux.
The relation (31) is what is obtained if we suppose that the mass flux defined
in the x direction by the relations

(35) ψ
(
− ∆x

2

)
= λ

(
f ∗+(x−∆x)− f ∗−(x)

)
(36) ψ

(∆x

2

)
= λ

(
f ∗+(x)− Φ−(x)

)
(37) ψ

(
ξ∆x

)
= 0

at respective positions −∆x
2 , ∆x

2 and ξ∆x at the boundary is linear.
Proof of Proposition 4.
We remark first that ψ(−∆x

2 ) = −ψ−(x) (defined in (32)) due to the choice
of the direction to measure this mass flux. The condition of linearity for the
function defined by the relations (35), (36) and (37) can be expressed under
the form

0− λ
(
f ∗+(x−∆x)− f ∗−(x)

)
ξ∆x− (−∆x

2 )
=

0− λ
(
f ∗+(x)− Φ−(x)

)
ξ∆x− ∆x

2
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that is
f ∗+(x−∆x)− f ∗−(x)

ξ + 1
2

=
f ∗+(x)− Φ−(x)

ξ − 1
2

and the last relation corresponds exactly to (31).

• Uni-dimensional acoustic wave.

Figure 4. Uni-dimensional acoustic wave.

Figure 5. Relative sound velocity with D1Q3 lattice Boltzmann scheme for
various schemes and a mesh of 100 points.

• We have tested the above idea in the case of an acoustic wave in a tube
closed at the two extremities. We are able to produce a variation of the
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boundary condition location by a fraction ξ of the mesh ∆x (see Figure 4).
We determine the eigenvalues of the operator that corresponds to one time
step of the LB algorithm, using the ARPACK [LSY96] software package. For
the lowest mode with effective wave vector

(38) k =
π

(N − 1 + 2ξ)∆x

this leads to −γr + iγi from which we determine an effective speed of sound

(39) crel =
γi
cs k

if there are N lattice points between the boundaries. We introduce similarly
the effective relative attenuation

(40) arel =
γr

1
2 ν` k

2

with ν` the longitudinal kinematic viscosity [LL59]. The relative value of
sound velocity is displayed in Figure 5 and Table 1. The results of our
scheme are comparable with those of Bouzidi al. [BFL01] when using linear
extrapolation. After a simple exploitation of Table 1 with least squares,
the error for sound velocity with bounce-back scheme is proportional to 1

N

whereas it is proportional to 1
N2 for both versions of the Bouzidi scheme and

our scheme.

100 points 200 points 300 points
bounce-back 9.97231× 10−3 4.99309× 10−3 3.33025× 10−3

BFL1 2.797× 10−5 6.94× 10−6 3.09× 10−6

BFL2 3.645× 10−5 8.02× 10−6 3.41× 10−6

DL 2.803× 10−5 6.95× 10−6 3.09× 10−6

Table 1. Largest discrepancy of the relative sound velocity with D1Q3
lattice Boltzmann scheme for various boundary schemes and meshes.

• We give in Figure 6 and Table 2 various results for the effective atten-
uation arel. Our method is spectacularly better than the linear extrapola-
tion case (“BFL1”) and comparable with the quadratic interpolation scheme
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(“BFL2”) of the previous authors [BFL01] when the boundary is not located
exactly half-way between two mesh points and equivalent to the previous one
in this particular geometric case. After an elementary exploitation of Table
2, bounce-back and linear extrapolation version of Bouzidi scheme give an
error for attenuation of the first eigenmode proportional to 1

N . This error
for attenuation is proportional to 1

N2 with quadratic extrapolation version
of Bouzidi scheme and proportional to 1

N3 with the present scheme.

Figure 6. Relative attenuation of an acoustic wave for various numerical
boundary Boltzmann schemes and a mesh of 100 points.

100 points 200 points 300 points
bounce-back 2.009999× 10−2 1.002496× 10−2 6.67772× 10−3

BFL1 0.77150864 0.38796054 0.25910648
BFL2 1.10138× 10−3 1.3972× 10−4 4.157× 10−5

DL 9.57× 10−6 1.17× 10−6 3.1× 10−7

Table 2. Largest discrepancy of the relative attenuation of an acoustic wave
for various numerical boundary Boltzmann schemes and meshes.
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4 Finite volumes for the D2Q9 model
• We have two formulae for the time evolution of the conserved momenta:
the evolution of mass (10) and momentum (11) that comes from the general
properties of a lattice Boltzmann scheme and the finite volumes framework
(14) (15). For the case of the two dimensional model D2Q9 (defined e.g. in
[QHL92]), we set two natural questions: (i) Where is (geometrically !!) the
finite volume K(x) ? (ii) What are the possible formulae for the mass flux
ψj and the momentum flux ζj ? To our knowledge, there is no satisfying
answer to the above questions ! We suggest here to use two different control
finite volumes K‖ and K× defined in Figure 7 and essentially to neglect
the internal dynamics between the two control volumes during the relaxation
step.

Figure 7. Control finite volumes K‖ and K× for the two-dimensional
D2Q9 lattice Boltzmann scheme.

• We look carefully at Figure 7 and we observe that

(41) |K‖| = ∆x2 , |K×| = 2 ∆x2 .

Moreover the boundary ∂K‖ [respectively ∂K×] is composed by the four
edges aj for j = 1 to 4 [respectively j = 5 to 8] and we have

(42) |aj| = ∆x , j = 1, 2, 3, 4 , |aj| =
√

2 ∆x , j = 5, 6, 7, 8 .
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• We introduce the partial densities ρ‖(x, t), ρ×(x, t) and the partial
momenta q‖(x, t), q×(x, t) according to

(43) ρ‖(x, t) =
4∑
j=0

fj(x, t) , ρ×(x, t) =
8∑
j=5

fj(x, t)

(44) q‖(x, t) =
4∑
j=0

vj fj(x, t) , q×(x, t) =
8∑
j=5

vj fj(x, t)

and the analogous quantities ρ∗‖(x, t), ρ∗×(x, t) q∗‖(x, t), q∗×(x, t) by re-
placing f by f ∗ after collisions in the relations (43) and (44). We introduce
also the defect of conservation of the partial momenta:

(45) ∆ρ ≡ ρ∗‖(x, t)− ρ‖(x, t) , ∆q ≡ q∗‖(x, t)− q‖(x, t) .

• Proposition 5. Internal defect of conservation.
With the above definitions, we have

(46) ρ‖(x, t+ ∆t)− ρ‖(x, t) +
4∑
j=0

(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= ∆ρ

(47) ρ×(x, t+ ∆t)− ρ×(x, t) +
8∑
j=5

(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= −∆ρ

(48) q‖(x, t+ ∆t)− q‖(x, t) +
4∑
j=0

vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
= ∆q

(49) q×(x, t+ ∆t)− q×(x, t) +
8∑
j=5

vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
= −∆q .

Proof of Proposition 5.
It is a direct consequence of the definitions (43), (44), (45) and of the mi-
croscopic iteration of the scheme (9). To fix the ideas, we detail the proof of
(46):

ρ‖(x, t+ ∆t)− ρ‖(x, t) =
4∑
j=0

f ∗j (x− vj∆t, t)− ρ∗‖(x, t) + ∆ρ
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=
4∑
j=0

f ∗σ(j)(x− vj∆t, t)−
4∑
j=0

f ∗j (x, t) + ∆ρ

= −
4∑
j=0

(
f ∗j (x, t)− f ∗σ(j)(x− vj∆t, t)

)
+ ∆ρ .

• In what follows, we neglect the difference between ρ‖(x, t+∆t)−ρ‖(x, t)
and ρ‖(x, t+ ∆t)− ρ∗‖(x, t) when we suppose that ∆ρ is equal to zero. In
other terms, the partial masses ρ‖ and ρ× are supposed to be conserved
during the collision process. Of course, we make the same hypothesis for
the momentum and the differences q‖(x, t + ∆t) − q‖(x, t) and q‖(x, t +
∆t) − q∗‖(x, t) are neglected when ∆q is supposed to be negligeable. We
have the following proposition that uses explicitly the less natural increment
ρ‖(x, t+ ∆t)− ρ∗‖(x, t) and associated.
• Proposition 6. Partial numerical fluxes.
We have the following expressions for the time evolution

(50)
1

∆t

[
ρ‖(x, t+ ∆t) − ρ∗‖(x, t)

]
+

1

|K‖|

4∑
j=0

|aj|ψj(x) = 0 ,

(51)
1

∆t

[
ρ×(x, t+ ∆t) − ρ∗×(x, t)

]
+

1

|K×|

8∑
j=5

|aj|ψj(x) = 0 ,

(52)
1

∆t

[
q‖(x, t+ ∆t) − q∗‖(x, t)

]
+

1

|K‖|

4∑
j=0

|aj| ζj(x) = 0 ,

(53)
1

∆t

[
q×(x, t+ ∆t) − q∗×(x, t)

]
+

1

|K×|

8∑
j=5

|aj| ζj(x) = 0 ,

with “mass fluxes” ψj(x) given by

(54) ψj(x) = λ
(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
, 0 ≤ j ≤ 4

(55) ψj(x) = λ
√

2
(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
, 5 ≤ j ≤ 8

and “momentum fluxes” ζj(x) by

(56) ζj(x) = λ vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
, 0 ≤ j ≤ 4
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(57) ζj = λ vj
√

2
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
, 5 ≤ j ≤ 8 .

Proof of Proposition 6.
We simply make the partial sums from the fundamental evolution relation
(9) and we get by introducing the space scale ∆x, the time scale ∆t, and
their ratio λ :

1

∆t

(
ρ‖(x, t+ ∆t)− ρ∗‖(x, t)

)
+

1

∆x

4∑
j=0

λ
(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
ρ×(x, t+ ∆t)− ρ∗×(x, t)

)
+

1

∆x

8∑
j=5

λ
(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
q‖(x, t+ ∆t)− q∗‖(x, t)

)
+

1

∆x

4∑
j=0

λ vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
q×(x, t+ ∆t)− q∗×(x, t)

)
+

1

∆x

8∑
j=5

λ vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
= 0 .

We replace in the above expressions the space scale ∆x, by the correct
expression as function of (41) and (42):

1

∆t

(
ρ‖(x, t+ ∆t)− ρ∗‖(x, t)

)
+

4∑
j=0

|aj|
|K‖|

λ
(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
ρ×(x, t+∆t)−ρ∗×(x, t)

)
+

8∑
j=5

|aj|
|K×|

λ
√

2
(
f ∗j (x, t)−f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
q‖(x, t+ ∆t)− q∗‖(x, t)

)
+

4∑
j=0

|aj|
|K‖|

λ vj
(
f ∗j (x, t) + f ∗σ(j)(xj, t)

)
= 0

1

∆t

(
q×(x, t+∆t)−q∗×(x, t)

)
+

8∑
j=5

|aj|
|K×|

λ
√

2 vj
(
f ∗j (x, t)+f ∗σ(j)(xj, t)

)
= 0 .

We have clearly an exact equivalence between the four above expressions
with the relations (50), (51), (52) and (53) if we make the choices (54), (55),
(56) and (57) for the fluxes.
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• We remark that we have proposed to cut the density (and the momen-
tum) into two parts ρ‖ and ρ× : ρ ≡ ρ‖+ρ× and we have also ρ∗ ≡ ρ∗‖+ρ

∗
×

but keep in memory that we do not have a conservation law for the partial
densities: ρ∗‖ 6= ρ‖ and ρ∗× 6= ρ× a priori even if ρ∗ ≡ ρ. We have a similar
remark for the momentum: q∗‖ 6= q‖ and q∗× 6= q× a priori. Therefore the
relations (50), (51), (52) and (53) are algebraically exact but are not a rig-
orous discretization of the conservation laws of mass and momentum. They
have to be seen as a first tentative to merge a Boltzmann scheme inside the
finite volume framework for a fundamental scheme in two space dimensions.

5 Numerical solid boundary condition

Figure 8. Control finite volumes K‖ and K× near the boundary.

• We study in this section the example of an horizontal impenetrable solid
boundary for regular geometry that is parallel to the axis of coordinates. We
denote by x ≡ (x1, x2) a vertex located near the boundary; the latter is in
this contribution supposed to be parallel to the x1 coordinate axis

(58) yw = x2 − ξ∆x .

A no-slip boundary condition is supposed to be given for the fluid at the
above boundary (58):

(59) u(• , yw) ≡ V (•) ,
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where V (•) is some velocity field tangential to the boundary. Then, as
illustrated in Figure 8, the number of “post-collision” particles f ∗2 (x−v2∆t),
f ∗5 (x− v5∆t) and f ∗6 (x− v6∆t) coming from the neighbours x4, x7 and x8

respectively of the node x are not given by the general scheme (9).
• We denote by |K‖| and |K×| the measures of the finite volumes around
the vertex x defined according to Figure 8. The boundary ∂K‖ is composed
by the four edges aj for j = 1 to 4 and ∂K× by the five edges aj for j = 5
to 9. Note in passing that the edge a9 is on the solid boundary. Instead of
the relations (41) and (42), we have

(60) |K‖| =
(1

2
+ ξ
)

∆x2 , |K×| =
(
1 + 2ξ − ξ2

)
∆x2 .

(61) |a1| = |a3| =
(1

2
+ ξ
)

∆x , |a2| = |a4| = ∆x ,

(62) |a5| = |a6| = ∆x
√

2 , |a7| = |a8| = ξ∆x
√

2 , |a9| = 2 (1−ξ) ∆x .

• Scheme 2. Flux boundary condition for the D2Q9 model.
We denote by Φ2 , Φ5 and Φ6 the unknown incoming particle numbers.
Recall that

(63) Φj = f ∗j (x− vj∆t) ≡ f ∗j (xσ(j)) , j = 2 , 5 , 6 .

We use this notation because the vertices x4, x7 and x8 are not defined as
nodes of the computational domain. When we write the approximate conser-
vation of mass (50) (51) in the volumes ∂K‖ and ∂K× and the conservation
of tangential momentum (52) (53) in the control volume ∂K×, it is possible
to define the three unknown particle distributions Φ2 , Φ5 , Φ6 according to

(64) Φ2 = f ∗4 −
1− 2 ξ

1 + 2 ξ

(
f ∗2 − f ∗4 (x2)

)
,

for the normal input particle number across the boundary and to

(65) Φ5 = f ∗8 +
1− ξ
1 + ξ

(
− f ∗5 + f ∗8 (x6)

)
− 1

ξ (1 + ξ)

1

R∆

δqw

λ

(66) Φ6 = f ∗7 +
1− ξ
1 + ξ

(
− f ∗6 + f ∗7 (x5)

)
+

1

ξ (1 + ξ)

1

R∆

δqw

λ



On lattice Boltzmann scheme, finite volumes and boundary conditions 21

for the transverse input particle numbers, with R∆ and δqw defined accord-
ing to

(67) δqw =
8∑
j=0

vxj fj(x)− ρ V

(68) R∆ ≡
ρ λ∆x

µ
.

and λ introduced in (1).
• Note that this kind of truly two-dimensional treatment is unusual in the
framework of lattice Boltzmann schemes, except for the pioneering work of
[MBG96]. We remark that the incoming particle distributions Φ2, Φ5, and
Φ6 are expressed as linear functions of the other internal particle distribu-
tions f ∗j (xk) and of the boundary data. This is due to the fact that our
methodology is essentially based on the conservation laws of mass and mo-
mentum that are linear in terms of conserved variables and fluxes. All the
nonlinearities are taken in consideration through the collision step f −→ f ∗.

Construction of Scheme 2.
We first explain the notations used in relations (65) and (66). First, ac-
cording to the classical form of the Navier Stokes equations [LL59] and to
the hypothesis of an inpenetrable boundary, the tangential flux τ across the
edge a9 is defined in terms of the viscosity µ and the normal derivative ∂ux

∂n

of the tangential velocity:

(69) τ = −µ ∂u
x

∂n
.

For the particular case we study in this contribution, the normal n is pointing
in the negative y direction. We approximate −∂ux

∂n by a two-point finite
difference scheme using the tangential momentum

∑8
j=0 v

x
j fj(x) and the

(supposed to be constant) reference density ρ at the vertex x. Then we have

τ = µ
ux(x)− V
ξ∆x

=
µ

ρ

1

ξ∆x

( 8∑
j=0

vxj fj(x)− ρ V
)
.

It is then natural to consider the difference of tangential momentum δqw

(defined in (67)) between the computed value at the vertex x and the given
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value on the (wall) boundary and the grid Reynolds number R∆ (defined in
(68)) associated with the mesh speed λ and the space increment ∆x. With
these notations, we have

(70) τ =
λ

ξR∆
δqw .

• We write now the conservation (50) of partial mass ρ‖. First due to the
Boltzmann scheme

(71) ρ‖(x, t+∆t)−ρ∗‖(x, t)+
3∑
j=1

(
f ∗j (x)−f ∗σ(j)(xj)

)
+
(
f ∗4 (x)−Φ2

)
= 0 .

Second due to the conservation (50) inside the volume K‖ :

(72)
1

∆t

(
ρ‖(x, t+ ∆t)−ρ∗‖(x, t)

)
+

3∑
j=1

|aj|
|K‖|

λ
(
f ∗j (x)−f ∗σ(j)(xj)

)
= 0 ,

making use of the fact that the mass flux across the boundary a4 is null. We
eliminate the quantity (ρ‖(x, t+ ∆t)− ρ∗‖(x, t)) between the relations (71)
and (72) with the help of the geometrical lemmas (60) and (61). Then the
relation (64) is straightforward to derive. We observe that in the “regular”
case when ξ = 1

2 , we recover the “bounce-back” boundary condition.
• In a similar way, we write the conservation (51) of partial mass ρ× first
due to the Boltzmann scheme

(73)


ρ×(x, t+ ∆t)− ρ∗×(x, t) +

6∑
j=5

(
f ∗j (x, t)− f ∗σ(j)(xj, t)

)
+

+
(
f ∗7 (x, t)− Φ5

)
+
(
f ∗8 (x, t)− Φ6

)
= 0

and second according to the mass conservation (51) inside the volume K× :

(74)



1

∆t

(
ρ×(x, t+ ∆t)− ρ∗×(x, t)

)
+

+
6∑
j=5

|aj|λ
√

2

|K×|

(
f ∗j (x)− f ∗σ(j)(xj)

)
+

+
λ
√

2

|K×|

(
|a7|

(
f ∗7 (x, t)− Φ5

)
+ |a8|

(
f ∗8 (x, t)− Φ6

))
= 0 .
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Once again, the fact that there is no mass flux across the edge a9 expresses
the physical boundary condition. Then by elimination of

(
ρ×(x, t + ∆t) −

ρ∗×(x, t)
)
between the relations (73) and (74), we obtain:

6∑
j=5

(
1− |aj|λ

√
2 ∆t

|K×|

) (
f ∗j (x)− f ∗σ(j)(xj)

)
+
(

1− |a7|λ
√

2 ∆t

|K×|

) (
f ∗7 (x)−Φ5

)
+
(

1− |a8|λ
√

2 ∆t

|K×|

) (
f ∗8 (x)−Φ6

)
= 0

Due to (60) and (62), we have

(75) 1− |a5|λ
√

2 ∆t

|K×|
= 1− |a6|λ

√
2 ∆t

|K×|
= − (1− ξ)2

1 + 2 ξ − ξ2

(76) 1− |a7|λ
√

2 ∆t

|K×|
= 1− |a8|λ

√
2 ∆t

|K×|
=

(1− ξ2)

1 + 2 ξ − ξ2
.

Then
−(1− ξ)

(
f ∗5 + f ∗6 − f ∗7 (x5)− f ∗8 (x6)

)
+ (1 + ξ)

(
f ∗7 −Φ5 + f ∗8 −Φ6

)
= 0

We deduce an expression for the sum Φ5 + Φ6 :

(77) Φ5 + Φ6 = f ∗7 + f ∗8 −
1− ξ
1 + ξ

(
f ∗5 + f ∗6 − f ∗7 (x5)− f ∗8 (x6)

)
.

• We now carefully express the conservation of tangential momentum. As
in the previous cases, we first have the expression directly derived from the
scheme (53)

(78)


qx×(x, t+ ∆t)− q∗, x× (x, t) +

6∑
j=5

vxj
(
f ∗j (x) + f ∗σ(j)(xj)

)
+

+ vx7
(
f ∗7 (x, t) + Φ5

)
+ vx8

(
f ∗8 (x, t) + Φ6

)
= 0

and second we have the (approximate !) conservation (53) of tangential
momentum inside the volume K×

(79)
1

∆t

(
qx×(x, t+ ∆t)− q∗, x× (x, t)

)
+

1

|K×|

9∑
j=5

|aj| ζxj = 0 .
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Due to (57) and the expressions of tangential speeds for the D2Q9 model, id
est

(80) vx5 = λ , vx6 = −λ , vx7 = −λ , vx8 = λ ,

we have

(81)

 ζx5 = λ vx5
√

2
(
f ∗5 + f ∗7 (x5)

)
, ζx6 = λ vx6

√
2
(
f ∗6 + f ∗8 (x6)

)
,

ζx7 = λ vx7
√

2
(
f ∗7 + Φ5

)
, ζx8 = λ vx8

√
2
(
f ∗8 + Φ6

)
.

The last term ζx9 corresponds to the stress tensor along the (little) cut edge
a9 which is the fifth edge of control volume K× as presented in (62) (see
also Figure 8). Then we have simply

(82) ζx9 = τ .

We eliminate (qx×(x, t + ∆t) − q∗, x× (x, t)) between the relations (78) and
(79):

6∑
j=5

(
1− |aj|λ

√
2 ∆t

|K×|

)
vxj
(
f ∗j (x) + f ∗σ(j)(xj)

)
+

+
(

1− |a7|λ
√

2 ∆t

|K×|

)
vx7
(
f ∗7 (x) + Φ5

)
+

+
(

1− |a8|λ
√

2 ∆t

|K×|

)
vx8
(
f ∗8 (x) + Φ6

)
=
|a9|∆t
|K×|

τ

Due to (60), (75) and (76), we have

−(1− ξ)2
(
λ
(
f ∗5 + f ∗7 (x5)

)
− λ

(
f ∗6 + f ∗8 (x6)

))
+

+(1−ξ2)
(
−λ

(
f ∗7 +Φ5

)
+λ

(
f ∗8 +Φ6

))
= 2 (1−ξ)∆x ∆t

∆x2

λ

ξR∆
δqw .

We divide the previous expression by λ (1− ξ) and we deduce

(1 + ξ)
(

Φ5 − Φ6

)
= −(1− ξ)

(
f ∗5 − f ∗6 + f ∗7 (x5)− f ∗8 (x6)

)
−(1 + ξ)

(
f ∗7 − f ∗8

)
− 2

δqw

λ ξR∆
.
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In other terms:

(83)


Φ5 − Φ6 = −f ∗7 + f ∗8 −

1− ξ
1 + ξ

(
f ∗5 − f ∗6 + f ∗7 (x5)− f ∗8 (x6)

)
− 2

1 + ξ

1

ξ

δqw

R∆ λ
.

The relations (65) and (66) are obtained from (77) and (83) by the resolution
of a two by two linear system.

• Couette test case.

Figure 9. Typical Couette flow.

This classical flow is described in Figure 9. The boundary conditions are
simply +V on top and −V at the bottom of a channel. We have used sev-
eral schemes proposed by D. D’Humières [DH01], Bouzidi et al [BFL01],
Ginzburg and D’Humières [GH03] for a mesh composed by only 11 mesh
points in the direction transverse to the flow. We vary the location of the
physical boundary in some proportion ξ relatively to the mesh step ∆x. We
compute the stationary discrete solution of our lattice Boltzmann scheme.
Then with a linear regression fit we measure the location of the point as-
sociated with an extrapolated velocity exactly equal to +V or −V . Up to
seven decimals, all the boundary schemes give the desired result of +ξ∆x or
−ξ∆x.
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• Poiseuille test case.
To test the proposed formulae for boundary conditions, we have also consid-
ered the simple Poiseuille flow with two boundaries parallel to the Ox axis
located respectively at y1 = (1− ξ)∆x and y2 = (Ny + ξ)∆x as described in
Figure 10. The flow is driven by applying a uniform internal force δf , such
that the velocity distribution should be of parabolic form, with null values
for y1 and y2 and a maximum value vm = δf(Ny − 1 + 2ξ)2(∆x)2ρ/(8µ).

Figure 10. Typical Poiseuille profile
and quantities chosen to compare model and theory.

11 points 21 points 31 points
DH 2.75397× 10−2 8.1936× 10−3 3.8728× 10−3

BFL1 2.5873× 10−2 7.6978× 10−3 3.6384× 10−3

BFL2 7.9811× 10−3 2.1898× 10−3 1.0049× 10−3

IGDH 0 0 0
DL 0 0 0

Table 3. Largest discrepancy of the variation of the maximal velocity for a
Poiseuille profile for several boundary schemes and meshes.
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Figure 11 Variation of the maximal velocity for a Poiseuille profile.

• When steady state is reached in the simulation, the velocity profile is fit
to a parabolic distribution yielding the maximum velocity and the locations
of 0-velocity from which an effective channel width can be deduced. These
values are compared to the theoretical values indicated above. Note that
when a driving force is applied, we follow [GH03] and perform the parabolic
fitting with the quantity (

∑
vjfj)/ρ+1/2δf . Data presented here correspond

to the particular case Ny = 11. Figure 11 and Table 3 show results for the
comparison of the measured maximum velocity normalized by its theoretical
value for various boundary schemes. Similarly Figure 12 and Table 4 show
the difference between the location of the lower point of 0-velocity and its
imposed value vs ξ. Obviously the simple bounce-back scheme which gives
a constant location leads to an error linear in ξ. For comparison we show
the results for a simple boundary condition and indicate that an elaborate
scheme, like that of Ginzburg and D’Humières gives the theoretical velocity
profile to machine precision. We have also tested whether the proposed
scheme statisfies Galilean invariance. This is very well satisfied provided the
expression for the equilibrium value of the energy-squared moment includes



28 François Dubois and Pierre Lallemand

a non-linear term −6ρ (j2
x + j2

y) that differ by a factor of 2 from the term
provided by the simple BGK equilibrium values [QHL92].

11 points 21 points 31 points
DH 8.31958× 10−2 4.51576× 10−2 3.10122× 10−2

BFL1 7.81277× 10−2 4.24195× 10−2 2.91337× 10−2

BFL2 2.19920× 10−2 1.15029× 10−2 7.79× 10−3

IGDH 0 0 0
DL 0 0 0

Table 4. Largest discrepancy of the variation of the point of zero velocity
for a Poiseuille profile for several boundary schemes and meshes.

Figure 12 Location of the point of zero velocity for a Poiseuille flow.
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• Stokes eigenmode in a square domain

Figure 13. First eigenfunction of the Stokes problem in a square.

To perform a more significant test of the proposed boundary conditions, we
considered a simple but very well documented case, that of Stokes modes in
a square cavity with homogeneous Dirichlet boundary conditions for velocity
[LL04]. Inside the cavity, the fluid follows Stokes equations, for this we use
D2Q9 with no non linear term for the equilibrium values of the non-conserved
momenta and set the relaxation rates such that there is no fourth order term
in the equivalent equations. We use various boundary conditions to obtain
zero velocity for the horizontal and vertical boundaries of the square (for
x = 1 − ξ and x = N + ξ, and y = 1 − ξ and y = N + ξ, 0 < ξ < 1), so
that the size of the square is N − 1 + 2ξ, with N 2 lattice nodes. The values
of the Stokes eigenmodes should scale as

(84) Γ =
γ(j) ν

(N − 1 + 2ξ)2

where ν is the shear viscosity and γ(j) depends on the structure of the
corresponding eigenmode and is given for small values of j by Labrosse et al
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[LL04]. We present in Figure 13 the vector field corresponding to the first
eigenvalue of the Stokes problem. Using the Arnoldi procedure [Ar51], we
determine ΓLB for several values of N and plot in Figure 14 the relative error
ΓLB

Γ − 1 vs N 2 for a few ways to implement the boundary conditions. The
reader can appreciate the quality of the proposed boundary conditions. The
data given in the Figure 14 correspond to the lowest eigenmode, but similar
behaviour is observed for higher order modes (up to j = 30).

Figure 14. Discrepancies for the first eigenvalue of the Stokes problem with
D2Q9 lattice Boltzmann scheme and various boundary conditions.

6 Conclusion
• We have proposed a link between the lattice Boltzmann scheme and the
finite volume method. In particular we proposed general relations that define
mass and momentum fluxes between two grid points of the lattice Boltzmann
scheme. For the D2Q9 model, we have encountered geometrical difficulties
and we have proposed the introduction of two families of control volumes in
order to define general mass and momentum fluxes. This approach naturally
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induces a flux methodology for the treatment of boundary conditions when
the boundary flux has naturally a physical meaning. Satisfactory tests for
acoustic monodimensional wave, solid two-dimensional boundary for a Cou-
ette and Poiseuille flows, eigenmodes for the Stokes problem in a square have
been proposed. Our boundary scheme appears to be very precise and can be
conpared favorably with other high accurate boundary schemes. The next
step is to adapt the previous ideas for a geometrically general stable algo-
rithm for two-dimensional boundary conditions. An other extension concerns
a more precise treatment of the internal mass and momentum exchanges be-
tween the different control volumes. A link with the so-called “reservoir
method” [AVCL02] should be explored.
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