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Abstract. To manufacture high-quality products with low manufacturing costs and optimal performance,
better design concepts are required. The initial design concept can lead to inefficient structural design and higher
manufacturing costs if the topology is not optimal. Topology optimization enables designers to reach their design
goals faster, more accurately, and cost-effectively. However, the geometry obtained through topology
optimization is not manufacturing-ready due to non-smooth boundaries and gray level images, which require
post-processing design implementation by engineers. Various researchers have used different image processing
techniques to convert the gray image into a binary map to address this issue. This paper focuses on using image
processing to evaluate the differences in optimal designs induced by meshing. This study aims to aid in the
parametric understanding of different designs targeting the same application by introducing two new
parameters: similarity ratio and conformity ratio. The results compare an optimal geometry obtained using
structured and unstructuredmeshes. Topological optimization algorithms applied tomechanical problems allow
for reducing a structure’s mass while ensuring its rigidity. However, the final structures may differ for the same
problem depending on whether they were meshed regularly or irregularly. This article characterizes the
differences between the two final structures using an image processing approach.

Keywords: 2D topological optimization / regular mesh / irregular mesh /
image treatment for mechanical application
1 Introduction

Due to the complexity of its calculations, topological
optimization and meshes are closely linked. Most of the
studies reported in the literature have been carried out
using a regular mesh on simple mechanical problems such
as embedded beams and double-supported beams [1,2].
Although the number of elements strongly influences the
final design of the optimized structure, and the complexity
of the structure evolves with it, very few studies deal with
the influence of this parameter. Sigmund et al. [2] discuss
this in their paper but leave the question open: “should the
refinement of the mesh model the same optimal structure
with a better description of the boundary conditions and
not give a different structure with more detail and
quality?”

To our knowledge, there is very little research dealing
with topological optimization from an irregular mesh, even
though this type of mesh is better suited to complex
geometries. Thore et al. [3] conducted a study to compare
the results of topological optimization of a regularly and
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irregularly meshed double-supported beam. The primary
goal of the paper was to evaluate the influence of the
penalty factor on additive fabrication stresses. However,
the authors conducted this study without any penalty filter
and thus obtained topological optimization results from the
two meshes discussed previously. Despite some local
dissimilarities, the two structures presented fairly similar
designs.

Therefore, the present article aims to explore whether
there is a fixed topological optimization profile obtained
after convergence of compliance.
2 Principle

2.1 Positioning the problem

The study was conducted on a 20� 10mm beam, fixed at
one end and subjected to a 100N force at the other end. The
dimensions were chosen to satisfy the small disturbance
hypothesis. The material parameters considered are:
E=200GPa and n=0.3.

The topological optimization was carried out using the
in-house developed ELiOT software [4], which allows
calculations from a model created by FreeCAD finite
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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Fig. 1. Regular mesh with an internodal distance of 1mm.

Fig. 2. Irregular mesh with an internodal distance of 1mm.

Table 1. Size and number of elements according to the
type of mesh.

Internodal
distance (mm)

Number of
elements in the
regular mesh

Number of
elements in the
irregular mesh

0.08 31250 39424
0.1 20000 24688
0.2 5000 6246
0.25 3200 3950
0.5 800 1024
1 200 298
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element calculation codes and meshed with GMSH [5,6].
The constraint applied to the ELiOT code consisted of
halving the mass of the initial object (volume fraction,
fv=0.5), and the optimization algorithm used was the OC
(optimal criteria) method.

The beam was meshed in two different ways: regularly
(Fig. 1) and irregularly (Fig. 2) with quadrangular
elements. As the number of elements was not the same
for both meshes, the inter-node distance was considered as
the parameter to be varied (Tab. 1).

The coordinate table contains the coordinates of each
node in the mesh. It is represented by a matrix that has as
many columns as the number of dimensions in the problem
and as many rows as the number of nodes in the mesh. The
connectivity table is used to define the connections between
the nodes in the mesh. The number of rows in the table
corresponds to the number of elements in the mesh, and the
number of columns corresponds to the number of edges in
the element being considered.

A mesh is considered regular (Fig. 1) when all its edges
have the same connectivity. It is created by replicating an
elementary mesh shape multiple times, and each element
can be defined from another one.

A mesh is said to be irregular when its elements are
arranged in a disorderly manner (Fig. 2). As the numbering
of nodes and elements is often random, only the coordinate
and connectivity tables can be used to navigate this type of
mesh [7].

Given these considerations, it is challenging to make a
direct comparison between these two meshes. To address
this issue, a comparison by image processing has been
proposed.
2.2 Mechanics and image treatment

In the literature, image processing is predominantly
utilized in mechanical problems with experimental set-
tings, to measure the displacement of a point during
manipulation. For this, a speckle is applied to the studied
piece and photographs are taken at different instances
during the test. Image correlation software is then utilized
to track the path followed by the point of interest, to
determine its displacement and subsequently, its deforma-
tion field Chu et al. [8]. A less significant, yet equally
interesting objective for industry, is to determine the
spatial distribution of the material parameters character-
izing the studied sample Beliis et al. [9]. Image correlation
also allows for tracing the history of a crack and identifying
its origin [10,11].
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To establish a connection between image processing and
digital simulation, it is essential to define a mathematical
model before conducting this study. As the optimized beam
has intermediate densities specific to the OC method, it is
considered heterogeneous. Thus, it is possible to construct a
Representative Elementary Volume (REV) to homogenize
the heterogeneities. This requires defining different scales,
each with a characteristic size, including one for the
structure, one for the pixel, and one for the element. The
pixel serves as theREVand its size influences theaccuracyof
the final results. In brief, this method involves drawing a
regular grid, with a tile size that adheres to certain
conditions, on the optimized structures obtained. This step
allows for the regularization of any mesh, and each tile
becomes a pixel in the final image with a single value.

In the case of the OC method, the topological
optimisation algorithm follows the following objective
function:

{minr:c(r)=UeT⋅Ke⋅Uesubjectto:{V(r)
V0=fvK⋅U=F10�3<r<1(1)

Where:

–
 c is the compliance

–
 Ue is the displacement of the considered element.

–
 V is the volume of the optimized structure.

–
 V0 is the initial volume of the structure.

–
 r is the intermediate density.

For the following, two writing will be used:

–
 Np is the number of pixels of the image.

–
 Ne is the number of elements of the structure.

The volume of the structure after optimisation is, by
definition:

V rð Þ ¼ V 0

Ne

XNe

1

re: ð2Þ

with re the intermediate density of the considered element.
To link the three scales presented above, the homoge-

nisation method will be used here. It consists in averaging
the effects of heterogeneities within a REV in order to
determine the macroscopic effects of the studied structure.
To be able to apply this method, the following two
conditions must be respected:

–
 The pixel size must be very small in front of that of the
structure in order for the structure to be considered as a
continuous environment, thus Np≫ 1.
–
 The pixel size must be very large in front of the element
size in order to neglect the fluctuation in behaviour
between a point and its neighbour. The material is then
considered to be macroscopically homogeneous. Thus, it
is necessary that Ne≫Np.

The intermediate density of a pixel is then equal to the
average of the intermediate densities of the elements
contained in that pixel:

rp ¼
Np

Ne

X
Ne=Np

1

re: ð3Þ
Depending on the intermediate pixel density, the
volume of the structure after optimisation is therefore:

V rð Þ ¼ V 0

Np

XNp

1

rp: ð4Þ

Finally:

V rð Þ ¼ V 0

Ne

XNp

1

X
Ne=Np

1

re: ð5Þ

Remark:
In practice, it is the contrast of the Cp (between 0 and

255) that will be measured, so the intermediate density of a
pixel is:

rp ¼
Cp

255
: ð6Þ

2.3 Image creation from the optimized structure

The files generated by the topological optimization code
contain the element number and the assigned intermediate
density. Using equation (6), these intermediate densities
can be converted into contrasts. In both mesh cases, the
files are sorted in ascending order based on the elements,
and the images are constructed in rows. However, for the
irregular mesh, the first element of the mesh may not
correspond to the first pixel of the image, and therefore, the
elements need to be ordered to obtain an accurate image.
An algorithm is used to calculate the center of gravity of
each element and sort them in ascending order of rows and
columns.

One of the main assumptions of this study is that the
number of elements in the structure is much greater than
the number of pixels in the image. Therefore, it is necessary
to average the intermediate densities of the elements within
a pixel using equation (3). This step is accomplished by a
pooling operation, which is commonly used in convolu-
tional neural network algorithms Sosnovik et al. [12]. This
operation groups elements together and creates a sub-
sampled image.

2.4 Calculation of the image dissimilarity

Each pixel of a greyscale image has a value between 0 and
255 and corresponds to the average of the intermediate
densities of the elements contained in that pixel. Let’s
consider two images resulting from topological optimisa-
tion. One obtained from a regular mesh Ireg and the other
from an irregular mesh Iirreg. The dissimilarity between two
images is defined by Ardeshir et al. [13]:

D ¼
Xn

i¼1

jIreg;i � Iirreg;ij: ð7Þ
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It has to be noted that equation (7) is a variation of the
Manhattan distance.

Remark 1:
For further calculations, equation (7) will be used.

However, for visual results, equation (7) will become:

Dinv ¼ 255�D ð8Þ
The value 255 in this formula will invert the contrast so

that the result is more visual (black on white instead of
white on black). When subtracting, the algorithm will
remove the identical material between the two images,
symbolised by white in the final image, and will finally
display only the excess material.

Remark 2:
In order for the calculation to be carried out, the images

must have the same dimensions.
Considering (6), equation (7) becomes:

D ¼ 255 �
Xn

i¼1

jrreg;i � rirreg;ij: ð9Þ

However, if only one image is taken into account, the
equation becomes:

D1 ¼ 255 �
Xn

i¼1

jrreg;ij ¼ V final ð10Þ

For an image, the dissimilarity corresponds to the final
volume of the structure after optimisation. Thus, the
measurement of dissimilarities between two images
corresponds to the difference in final volume between the
two optimised structures. The equation thus becomes:

D ¼ 255 �
Xn

i¼1

jrreg;i � rirreg;ij ¼ DV final: ð11Þ

Given the definition of the volume fraction in equation
(1) and equation (11), it will be possible to retrieve the
volume fraction (Eq. (12)) and the difference in volume
fraction (Eq. (13)) between two structures via an image
processing method:

fv ¼
V final

V initial
¼ D1

V initial
; ð12Þ

and:

Dfv ¼
D

V initial
: ð13Þ

Two coefficients will be defined for the continuation of
the:

–
 The compliance ratio, which ideally should be 1. This
calculation can be done on each image to be studied and
will determine whether the image of the optimised
structure complies with the desired final volume. It is
defined by :
tc ¼ D1

V f;th
: ð14Þ

The dissimilarity rate, which ideally should be 0. This
calculation can only be performed to compare two images
and will determine whether the two images are similar. It is
defined by:

td ¼ D

V f;th
: ð15Þ

In these two expressions (Eqs. (14) and (15)), Vf,th
corresponds to the theoretical final volume of the optimised
structure, i.e. the one imposed by the user at the beginning
of the topological optimisation code.

It should be noted that the results of equations (10) and
(11) will be a number of pixels and not a volume as
conventionally defined.

An important remark is also to be taken into
consideration for the compliance rate and the dissimilarity
rate: these are coefficients defined in a global way. This
means that they perform calculations on the entire image
without determining where the differences will be most
marked.

3 Results

3.1 Study of mechanical properties

The parameter that takes into account mechanical
properties in the available topological optimization code
is compliance. This parameter will be examined by varying
the characteristic length of the different meshes (Fig. 3).
Other parameters, such as volume fraction, could have
been considered. However, the quality of the result will be
influencedmore by the accuracy of themachine used for the
calculations rather than the mesh size.

Figure 3 clearly shows that the smaller the size of the
element, i.e. the more elements in the mesh, the lower the
compliance. A convergence step can be observed from an
element size of 0.25mm upwards.

Note that the relative deviation between the compli-
ance values obtained from a regular mesh and an irregular
mesh is less than 2% for an element size of 0.5mm, and
finally decreases to 0.3% for an element size of 0.08mm.
Thus, the mechanical properties after topological optimi-
zation of a regularly or irregularly meshed structure are
similar. The two meshes are therefore equivalent.

3.2 Influence of the REV size on the volume fraction

In the mechanics and image processing section, it was
observed that the Representative Elementary Volume
(REV) is equivalent to a pixel and represents the average of
intermediate densities of the elements composing that
pixel. A study was conducted on the number and shape of
elements that constitute the REV. The regular structure
with 80,000 elements was used for comparison. Various



Fig. 3. Compliance vs element size for a regular mesh (in blue) and irregular mesh (in red).
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sizes and shapes of REV were applied to this structure to
determine their potential effects on the structure’s volume
fraction. The results are summarized in Table 2, which
includes the facies of the images obtained after applying the
REV to the initial image (measuring 200� 400), the size of
the REV, the size of the final image, and the number of
elements per REV.

3.3 Study of dissimilarity between regular and
irregular meshes

For this study, the code allowing the elements to be
arranged in a certain order is only functional for the regular
mesh. For irregular meshing, since the number of elements
per column is not fixed according to the number of rows, it
is difficult to construct an image from this data. The images
required for this study were therefore cut directly from
Paraview using the capture tool.

The results are summarised in Table 3. It contains the
facies of regular and irregular structures, the volume
fraction calculated with the image processing code, the
compliance rate and the dissimilarity rate.

4 Discussion

4.1 Influence of REV size on the volume fraction

Figure 4 shows the influence of the size of the REV on the
volume fraction. First of all, it is useful to point out that,
despite a fairly marked distribution of points, the results
remain close to the imposed volume fraction, i.e. 0.5.
Thus, for Figure 4, the results, although close to reality,
seem to depend on the number of elements that make up
the REV: between 2 and 32 elements per REV, the volume
fraction does not vary greatly. However, from 64 elements
per REV, the volume fraction increases; this means that
the differences in intermediate densities between the
elements become too great not to influence the quality of
the REV.

Some REV have the same number of elements but not
the same volume fraction. Figures 5 and 6 are intended to
determine the influence of the REV dimensions on the
quality of the volume fraction.

Concerning Figure 5, the number of lines in the REV
does not appear to have a significant impact because a
convergence of the volume fraction can be observed for 1
and 2 lines. Figure 6 displays constant volume fractions for
1, 2, 4, and 8 columns. The REV composed of 4 rows and 8
columns seems to be the most suitable for this structure as
it will be closest to the value imposed in the topological
optimization code. The final image will correspond to the
dimensions (50� 50).

4.2 Study of the dissimilarity between regular and
irregular meshes

A first visual observation can be made regarding the facies
of regular and irregular meshes (Tab. 3): the smaller the
element size, the greater the number of internal branches in
the structure. However, it can be noted that for an element
size of 0.08mm, the facies of the regular structure appears
identical to that obtained for 0.1mm and the number of
internal branches decreases for the irregular one.

The volume fractions have, however, significantly
degraded compared to the values entered by the user in
the topological optimization code. This degradation is due
to the manual cutting of images. The compliance rate has
also been affected, not exceeding 80%. Nevertheless, given
the direct correlation between compliance rate and volume
fraction (Eqs. (12) and (14)), the volume fractions obtained
by image processing on the final regular and irregular
structures appear consistent with reality.



Table 2. REV size and facies obtained.
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Table 3. Facies, dissimilarity ratio vs element size.

Fig. 4. Volume fraction vs number of elements in the REV.
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Fig. 6. Volume fraction vs number of lines in the REV.

Fig. 5. Volume fraction vs number of columns in the REV.
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For the image subtraction, white areas correspond to
common material between regular and irregular meshes.
The shaded areas correspond to excess material in one
structure over the other. As the subtraction is absolute,
it is not possible to determine which structure the excess
comes from. Note that for visual purposes, each pixel has
been subtracted by 255 to obtain a lighter image (black
on white instead of white on black). However, this
subtraction is not performed for the calculation of the
dissimilarity rate.

The dissimilarity rate tends to decrease with the
element size, except for 0.2mmwhere it is highest. This can
be observed in the facies with numerous almost black
branches. The dissimilarity rate is minimal for 0.08mm,
with a 24%difference between the two regular and irregular
images. Further research could be conducted to reduce the
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element size to determine if there is convergence in the
dissimilarity rate.
5 Conclusion

Although the current results do not allow us to determine
whether there is a link between the facies of the structure
after topological optimization and its mechanical proper-
ties, they do highlight the potential applications that image
processing could have on mechanical topological optimi-
zation problems.

It would be useful to define a way of finding the
compliance using the image processing method, which
would allow us to determine if a link exists between the
structure’s features and its mechanical properties. Since
the application of the Representative Elementary Volume
(REV) and image reduction did not have a significant
influence on the volume fraction, if this result could be
repeated for compliance, it would show that for a given
mechanical problem, the result of the topology optimiza-
tion would be independent of the structure’s dimensions.
Coupling this method with artificial intelligence would
allow for a drastic reduction in the calculation times of the
algorithm.

To improve the accuracy of the dissimilarity ratio, an
image should be directly created from the unstructured
mesh to avoid manually cutting the images. Increasing the
conformity ratio could also have an impact on the
dissimilarity ratio.

Based on the two features of the topology optimization,
a manufacturability index could be characterized to
determine which of the two structures is the most
manufacturable.
6 Perspectives

It would be useful to define a way of calculating or finding
compliance using image processing to determine whether
there is a link between the mechanical properties of a
structure and its facies. Since the application of a REV, and
thus the reduction of an image, does not have a significant
influence on the volume fraction of the structure, if this
result were repeated for compliance, it would show that, for
a given mechanical problem, the result of the topological
optimization would be independent of the structure’s
dimensions. Coupling this method with artificial intelli-
gence, which is currently being developed for the
topological optimization code, would drastically reduce
the calculation times of the algorithm.

To improve the accuracy of the dissimilarity rate, it
would be wise to create an image directly from the
irregularly meshed structure to eliminate the need to cut
out the images manually. Increasing the compliance rate
could have a direct impact on the dissimilarity rate.

In view of the facies resulting from the topological
optimization of both regularly and irregularly meshed
structures, a manufacturability index could be character-
ized to determine which structure is more manufacturable.
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