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Are the Collatz and abc conjectures related?

Olivier Rozier

Abstract

The Collatz and abc conjectures, both well known and thoroughly studied, appear
to be largely unrelated at first sight. We show that assuming the abc conjecture true
is helpful to improve the lower bound of integers initiating a particular type of Collatz
sequences, namely finite sequences of a given length where all terms but one are odd
with the usual “shortcut” form. To obtain sharper bounds in this context, we are led
to consider a small subset of the abc-hits. Then, it turns out that Collatz iterations
as well as Wieferich primes may be used to find large triples in this subset.

1 Introduction

The Collatz conjecture deals with positive integer sequences arising when repeatedly ap-
plying the function

T (n) =

{
3n+1

2 , if n is odd,
n
2 , otherwise.

(1)

Originally, Lothar Collatz introduced those sequences with the transformation n 7→ 3n+1
for odd n, without dividing by 2 in the same step [9]. We say that T has a shortcut, since
the number of steps is smaller for the same final result. It is expected that whatever the
first term of the sequence, it always ends up reaching the trivial cycle (1, 2). The latter
assumption, called Collatz conjecture, is very popular under various names like the 3x+ 1
or Syracuse problem, even outside the mathematical community.

On the other hand, the abc conjecture of J. Oesterlé and D. Masser is considered as
particularly important for its numerous implications in number theory [13, 21]. It poses a
limitation on the presence of high powers of primes in Diophantine equations over three
terms. There are various ways, more or less equivalent, to formulate this conjecture, which
can be stated as follows:

Conjecture 1.1. (abc conjecture) For every ε > 0, there exist only finitely many triples
(a, b, c) of coprime positive integers satisfying a+ b = c and such that

c > rad(abc)1+ε (2)

where rad(abc) denotes the radical of abc, that is the product of its distinct prime factors.
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The purpose of the present article is to highlight a possible relationship between the abc
and Collatz conjectures. Apparently, no direct relationship is mentioned in the literature,
despite a previous attempt1 by M. Kaneda briefly related at the end of [8]. Let us recall
that the abc conjecture originates in the theory of elliptic curves, an active field of research
in number theory far from the Collatz conjecture [13].

Both conjectures are nevertheless connected to linear forms in logarithms and, thus, to
Baker theorem [2]. This number theoretic result is central when studying the existence of
non-trivial Collatz cycles [18, 19] and has a clear relationship with numerous Diophantine
equations linked to the abc conjecture, e.g., Fermat last theorem [7, 13, 21]. Let us also
point out that the set of Wieferich primes (namely, primes p such that 2p−1−1 is a multiple
of p2) is another example of a topic that is somehow connected to both conjectures. On
the one hand, the existence of infinitely many non-Wieferich primes, a question which
is still open despite numerical evidence, is implied by the abc conjecture [17]. On the
other hand, the set of Wieferich numbers, a natural extension of the aforementioned set
of primes, is at the heart of a partial solution to several variants of the Collatz conjecture
[6]. Specifically, the existence of sequences not leading to 1 is established in the so-called
“qx+1” variants for q a Wieferich number, whereas the existence of sequences that diverge
to infinity remains elusive for every odd q > 3.

We start our study with a lower bound hypothesis (LBH) regarding the first term of
Collatz sequences of finite length having a given number of odd and even terms. If proved
true, such a statement is strong enough to settle the Collatz conjecture (Lemma 3.1 in
[16]). Therefore, any progress regarding its validity might be of interest.

Hypothesis 1.2. (Lower Bound Hypothesis - LBH) There is a real constant C ≥ 0 such
that for all positive integers j and n not both equal to 1, we have

n ≥ j−C 2

(
1−H

(
q
j

))
j

(3)

where q is the number of odd integers in the vector
(
n, T (n), . . . , T j−1(n)

)
of the first j

iterates starting from n, and H is the binary entropy function H(x) = −x log2(x)− (1−
x) log2(1− x) for 0 < x < 1, with H(0) = H(1) = 0.

In other words, it is stated that integers n whose parity vector(
n mod 2, . . . , T j−1(n) mod 2

)
has low binary entropy are unlikely to be found below a certain lower bound. This con-
jecture is known to hold true when 2q ≤ j and when q = j.

1In fact, Kaneda tried to apply the n-conjecture, which is a generalization of abc with n terms, first
introduced in [3].
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Like the abc conjecture, LBH is derived from heuristic considerations and supported
by empirical data. In fact, both are linked to a particular representation of positive
integers, their prime factorization for abc and their parity sequence for LBH [15]. Those
representations may be viewed as a kind of information whose entropy is measurable and
can be translated into probabilistic terms, then enabling accurate predictions.

First, we show in section 2 that the abc conjecture implies a lower bound reasonably
close to (3) in the particular case of sequences where all terms but one are odd (that is
q = j − 1). Then, in section 3, we take a closer look at the abc conjecture and study the
set Hµ of triples (a, b, c) of coprime positive integers such that a+b = c and log c > µ(abc)
where

µ (p1
n1 . . . pk

nk) = log(p1 . . . pk) + log(n1 . . . nk)

for distinct primes p1, . . . , pk and positive integers n1, . . . , nk. It turns out that Hµ is a
very sparse subset of the abc-hits. In section 4, we prove that the lower bound (3) holds
with C = 1 for the same Collatz sequences as in §2, unless maybe if we encounter an
element of Hµ. Finally, in section 5, we show that the question of whether Hµ is infinite
has a close connection with the number of Wieferich primes.

2 A particular type of Collatz sequences

For any integer j ≥ 2, let us consider Collatz sequences of length j for which all terms
but one are odd. Let N (j) denote the set of positive integers lower than 2j initiating such
sequences. The set N (j) contains exactly j elements. This is a simple consequence of the
one-to-one correspondence, discovered by C. J. Everett [5] and by R. Terras [20], between
the congruence classes modulo 2j and the set of parity vectors of length j. E.g., one has

N (10) = {159, 239, 447, 511, 639, 681, 767, 795, 871, 1 022}.

We have shown in Lemma 6.1 of [16] that

n ≥ 2j/(1+ρ) − 2 for any n ∈ N (j) (4)

with ρ = log2 3 = 1.585 . . .. Unfortunately, this result is far from the desired lower bound
given by LBH in the particular case q = j − 1, which asserts that

n ≥ j−C 2(1−H(1−1/j))j for any n ∈ N (j) (5)

where the right-hand side grows asymptotically as j−(C+1) 2j up to a multiplicative con-
stant.

As long as LBH remains unsolved for this particular case, it only serves to specify the
best lower bound we should expect to hold. However, it is so far unclear which value of
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Figure 1: Log plot of the number of misses of Hypothesis 1.2 (LBH) with respect to the
constant C arbitrarily fixed between 0 and 1, in the particular case of Collatz sequences
of length j having exactly one even term (q = j − 1) for j up to 1000, 3000, 10000 and
30000.

C should be considered. Figure 1 shows that, for each 2 ≤ j ≤ 3 · 104, the inequality
(5) is satisfied with C = 1 whereas it is increasingly falsified when C decreases below 0.9,
suggesting that it is sharp with C ≈ 1.

If we assume the abc conjecture true, we obtain a lower bound which is much better
than (4) and comes close to (5).

Theorem 2.1. Assume that the abc conjecture is true. Then, for every ε > 0, there exists
a constant K(ε) > 0 such that

n ≥ K(ε) 2(1−ε)j for all j ≥ 2 and n ∈ N (j). (6)

Let us recall that the elements of N (j) are easy to compute by using, for each 0 ≤ k ≤
j − 1, the congruence

n ≡ −1−
(

2

3

)k
(mod 2j) (7)

given in [15, p4], where n is the element of N (j) such that T k(n) is even. Indeed, we have
the congruences implied by (7)

• T i(n) ≡ −1−
(
2
3

)k−i
(mod 2j−i) for any 0 ≤ i ≤ k,
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• T i(n) ≡ −1 (mod 2j−i) as long as k < i < j,

so that all iterates T i(n), i < j, are odd except when i = k.
It is not difficult to see that Theorem 2.1 follows directly from the next lemma.

Lemma 2.2. Assume that the abc conjecture is true. Then, for every ε > 0 and every
integer j sufficiently large (i.e., for any j ≥ jε with jε depending only on ε), we have the
lower bound

n ≥ 1

6
2(1−ρ ε)j − 1 for any n ∈ N (j) (8)

with ρ = log2 3.

Proof. Let j ≥ 2 and let n ∈ N (j) for which T k(n) is even with 0 ≤ k ≤ j−1. Multiplying
(7) by 3k, we obtain

2k + 3k(n+ 1) = 2jB

with B a positive integer. It turns out than n + 1 is divisible by 2k. Thus, we can write
n+ 1 = 2kA, which leads us to the equation

1 + 3kA = 2j−kB

with 3kA and 2j−kB relatively prime. Then, we apply the abc conjecture, assumed to be
true, to the above triple for an arbitrary ε > 0. This gives the lower bound

2j−kB ≤ rad
(

2j−k 3k AB
)1+ε

,

except maybe for finitely many cases that can be ruled out if we assume j sufficiently
large, that is j ≥ jε for a suitable jε. Since rad

(
2j−k 3k AB

)
≤ rad(6AB) ≤ 6AB, we get

2j−k ≤ (6A)1+εBε

or, by taking the logarithm in base 2,

j − k ≤ (1 + ε) log2(6A) + ε log2B,

so that

log2 6(n+ 1) = k + log2(6A) ≥ k +
j − k − ε log2B

1 + ε
.

Note that n ≤ 2j − 2, as 2j and 2j − 1 are not in N (j). Hence,

B =
3k

2j
(n+ 1) + 2k−j ≤ 3k

2j
(
2j − 1

)
+ 2k−j

= 3k − 3k − 2k

2j

≤ 3k.
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Putting together all inequalities yields

log2 6(n+ 1) ≥ k +
j − k − ερk

1 + ε

=
j − ε(ρ− 1)k

1 + ε

>

(
1− ε(ρ− 1)

1 + ε

)
j

> (1− ε) (1− ε(ρ− 1)) j

> (1− ερ)j.

Proof of Theorem 2.1. Let us fix ε > 0. We can further assume that ε < 1, otherwise (6)
is trivially satisfied for K(ε) = 1. Lemma 2.2 applied to ε

ρ > 0 gives, for some j0 taken
sufficiently large,

n ≥ 1

6
2(1−ε)j − 1 for any j ≥ j0 and n ∈ N (j).

Now, we choose a positive integer j1 such that

2−(1−ε)j1 ≤ 1

6
−K1 for some 0 < K1 <

1

6
.

If we set j2 = max(j0, j1), then we have

n ≥ K1 2(1−ε)j for any j ≥ j2 and n ∈ N (j).

Next, choose a constant K2 > 0 such that

n ≥ K2 2(1−ε)j for any 1 < j < j2 and n ∈ N (j).

This is always possible due to the finiteness of N (j). We obtain the lower bound (6) for
the suitable constant K(ε) = min(K1,K2).

One may object that the lower bound (6) derived from the abc conjecture is still weaker
than the lower bound (5) derived from LBH. To help resolve this discrepancy, we propose
in the next section to dive deeper into the abc conjecture and refine the notion of abc-hit.
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3 A rare type of abc-hits

There exist infinitely many triples (a, b, c) of coprime positive integers such that a+ b = c
and c > rad(abc), which are called abc-hits or abc triples. To quantify how much rad(abc)
differs from c, one generally refers to the notion of quality defined by

q(a, b, c) =
log c

log rad(abc)
,

which is a real number greater than 1 for any abc-hit. The abc conjecture asserts that,
for every ε > 0, there exist only finitely many abc-hits with q > 1 + ε. For instance, the
abc-hits of quality q > 1.4, assumed to be finite in number, are often called “good” abc
triples. Their list is maintained on [1] and contains 241 good abc triples so far. Several
algorithms have been proposed to search for triples of high quality, e.g., by using the
continuous fraction expansion of algebraic numbers [3, 12].

Somehow, the quality q is not a metric well-suited to treat equations of the form

1 + 3kA = 2lB,

which are at the heart of the proof of Theorem 2.1. Indeed, the quality takes into account
the size of the radicals, but the size of the exponents is poorly constrained.

We suggest replacing the radical by a different function where the size of the exponents
also comes into play. Thus, let us introduce the function µ : Z≥1 → R≥0 uniquely defined
by two properties:

(i) µ(pn) = log p+ log n, for prime p and positive integer n;

(ii) µ(mn) = µ(m) + µ(n), for coprime positive integers m,n.

It follows from (ii) that µ(1) = 0. The function µ is a crude measure of the number
of digits (i.e., the amount of information) that are necessary to write the prime factor-
ization of a positive integer, independently of the base of a given numeral system. One
may apply a multiplicative constant to adjust this measure to a particular base. Recall
that the amount of information of the leading digit should be weighted non-uniformly,
according to Benford’s law. To this respect, the measure µ is consistent with Benford’s
law. Furthermore, it satisfies the inequalities

log rad(n) ≤ µ(n) ≤ log n, (9)

and
max(µ(m), µ(n)) ≤ µ(mn) ≤ µ(m) + µ(n) (10)

for all positive integers m,n. The properties (9) and (10) result from the well-known
inequalities a + b ≤ ab ≤ ab for a, b ≥ 2. If n is square-free, a double equality holds in
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(9). One may interpret these properties in terms of the data compression that occurs
occasionally when performing the prime factorization of integers. This compression is
lossless and reversible, whereas taking the radical is not.

By analogy with the abc-hits, we define the set

Hµ =
{

(a, b, c) ∈ Z3
≥1 : a+ b = c, gcd(a, b) = 1 and log c > µ(abc)

}
and call µ-hits the elements of Hµ. As a result of the first inequality in (9), the set
Hµ is trivially a subset of the abc-hits. It is also not empty as it contains the triple(
1, 2392, 2 · 134

)
, which is the only µ-hit below one million.

To estimate the size of Hµ, we analysed the exhaustive list of all the abc-hits below 1018

from the project ABC@home [1]. Among these 14 482 065 triples, we found only 464 µ-
hits2, of which 56 are also good abc triples. Additionally, we found 175 µ-hits among about
9 million abc-hits with c between 1018 and 263 ≈ 9.22 · 1018 also identified by ABC@home.

In view of Figure 2, it appears that Hµ contains an increasingly small proportion of
the abc-hits as their size increases, and only a fraction of the good abc triples. Empirically,
the number of µ-hits below x tends to follow a power law of the form (x/x0)

α with α ≈ 2
11

and x0 ≈ 103, unlike the good abc triples whose number is expected to be upper bounded
according to the abc conjecture.

a b c digits q g

1 2392 2 · 134 5 1.2540 0.139

2 310 · 109 235 7 1.6299 2.147

11 73 · 1672 2 · 314 7 1.4283 0.389

1 3 · 55 · 472 218 · 79 8 1.4497 0.032

22 315 · 5 174 · 859 8 1.3925 0.311

Table 1: List of the five smallest µ-hits (a, b, c), number of digits of c, quality q and gain
g.

Table 1 gives the list of the five smallest µ-hits, where the second one is the abc-hit
with the highest known quality discovered by E. Reyssat [1, 3]. Much like the quality for
abc-hits, it may be relevant to define a specific metric for µ-hits. We propose to use

g(a, b, c) = log c− µ(abc)

which measures the gain of, say, “digital information” when expressing the prime factor-
ization of abc relatively to the standard writing of c. It is interesting to observe that about

2The list of µ-hits below 1018 is available at https://www.ipgp.fr/~rozier/abc/mu_hits_1018.txt.
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Figure 2: Log-log plot of the number N of µ-hits (blue), abc-hits (red) and good abc
triples (green) below x. The dashed line corresponds to the power law N = (x/x0)

α with
α = 2/11 and x0 = 1000.

75% of the µ-hits below 1018 have a gain g < 1. The largest gain in this range is

g
(
19 · 1307, 7 · 292 · 318, 28 · 322 · 54

)
≈ 4.55

from a triple originally discovered by J. Browkin and J. Brzeziński [3], ranked third by
quality in [1]. Moreover, when considering the list of 241 good abc triples from [1], we find
only 128 positive gains of which the largest is

g
(
22 · 11, 32 · 1310 · 17 · 151 · 4423, 59 · 1396

)
≈ 6.87

from a triple ranked 15 by quality and discovered by A. Nitaj [12].
First, one may ask if there exists a formula or an algorithm that gives infinitely many

µ-hits, as is the case for abc-hits. Indeed, we know formulas like(
1, n2

k − 1, n2
k
)

where n < 2k+1 is odd, (11)

given in [10] with n = 3 and for which every triple is a abc-hit. According to our com-
putations, those formulas rarely generate µ-hits. In other words, the gain of the resulting
triples is most often negative, but not by far in the case of (11) because n2

k−1 is divisible
by 2k+2. In fact, there seems to be no µ-hit of this form for n < 239. However, when
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setting n = 239, we obtain a sequence of thirteen µ-hits for k = 2, . . . , 14 due to the
divisibility of n2

k − 1 by 2k+4 and by n2 + 1 = 2 · 134 which turns out to be the smallest
µ-hit, as shown in Table 1. The gain g is hard to compute with certainty for k ≥ 7, but is
fairly easy to estimate, assuming that no power of a large prime appears when factorizing
the second term of the triple. Hence, for k ≥ 2, we predict that the gain is close to the
lower bound

log

(
2 · 133

239

)
− log(k + 4)

which is steadily decreasing and becomes negative for k ≥ 15. It yields that there exist
very large µ-hits with as much as 38968 digits when setting k = 14.

Next, we investigated this issue with other methods (e.g., the transfer method [11])
known to generate infinite sequences of abc-hits. But we found very little µ-hits by using
these methods.

As a result of the above observations, one must keep in mind that µ-hits are far more
difficult to generate than abc-hits.

4 From Collatz sequences to µ-hits

In this section, we show how the notion of µ-hit arises in the context of Collatz sequences.
According to the following result, indeed, a lower bound stronger and more accurate than
that of Theorem 2.1 should hold true unless maybe if a µ-hit of a given form is encountered.

Theorem 4.1. Let T denote the Collatz function. For all j ≥ 2, if n is a positive integer
such that the sequence n, T (n), . . ., T j−1(n) contains exactly one even term, at least one
of the following holds true:

1. We have the lower bound

n ≥ 2j+1

3 j2
− 1. (12)

2. There is a µ-hit of the form (1, b, b+ 1) with odd b = T k(n) + 1 and k < j.

Proof. Let n be an element of N (j) as defined in §2, and let k be the smallest integer for
which T k(n) is even.

The case k = 0 gives n = 2j − 2 by using (7) and statement 1 is satisfied. Hereafter,
we assume that 1 ≤ k ≤ j − 1.

We follow the proof of Lemma 2.2 which leads to an equation of the form

1 + 3kA = 2j−kB

with n = 2kA− 1 and A, B positive integers. The first k iterates are T i(n) = 3i2k−iA− 1
for i ≤ k, so that

T k(n) = 3kA− 1.
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Setting b = T k(n) + 1, we ask whether the triple (1, b, b + 1) is in Hµ. If it is in Hµ, we
are led to statement 2. Otherwise, we have the inequality

log(b+ 1) ≤ µ (b(b+ 1))

= µ(b) + µ(b+ 1)

= µ
(

3kA
)

+ µ
(

2j−kB
)

≤ µ
(

3k
)

+ µ
(

2j−k
)

+ µ(A) + µ(B), by using (10),

= log 3 + log k + log 2 + log(j − k) + µ(A) + µ(B)

≤ log 6 + log (k(j − k)) + logA+ logB, by using (9).

It yields that

logA ≥ log(b+ 1)− logB − log (k(j − k))− log 6

= log
(

2j−kB
)
− logB − log (k(j − k))− log 6

= (j − k) log 2− log (k(j − k))− log 6,

so that

n = 2kA− 1 ≥ 2j

6k(j − k)
− 1.

To show that statement 1 holds true, observe that k(j − k) ≤
( j
2

)2
.

Let us point out that Theorem 4.1 is of interest for two reasons. On the one hand, the
effective bound (12) in statement 1 fully agrees with the expected bound (5) derived from
Hypothesis 1.2 (LBH) when setting C = 1. One may further verify that (12) is slightly
stronger than (5) for C = 1. On the other hand, Theorem 4.1 also provides a method
based on the Collatz function for finding large µ-hits.

In Theorem 4.1, statement 2 seems unlikely to occur, except maybe on rare occasions
in view of the low density expectations regarding Hµ, so that statement 1 should hold
true in most cases. This prediction is straightforward to verify for Collatz sequences of
various lengths j by computing the j elements of N (j). In practice, we conducted a
systematic search for all j ≤ 5000. Due to the large size of the numbers considered,
we used trial division to obtain a partial factorization with a size limit of 106 on prime
factors. Therefore, we possibly missed µ-hits involving powers of large primes, although
the probability is low. For all 5000 < j ≤ 30000, we restricted the search to sequences
already associated to a “near miss” of LBH when setting C = 0 (see Figure 1). Such a
restriction should not affect the verification of statement 1, but we probably missed many
µ-hits for which equality holds in LBH with C < 0.

11



j k digits pow(A) pow(B) q g C

19 16 9 - 533 1.474 1.313 −1.285

85 56 32 - - 1.115 0.097 0.865

108 85 47 - 74 · 313 1.137 2.861 −0.783

160 26 53 78 - 1.110 1.825 −1.151

294 127 111 372 76 1.052 0.176 −0.987

626 382 251 - 172 1.023 0.588 0.659

783 677 354 - 133 · 434 1.022 3.566 −0.758

861 15 259 72 52 · 112 1.022 1.098 0.105

874 45 271 79 - 1.024 1.987 −1.009

1056 921 479 - 473 · 1092 1.013 0.858 −0.600

1094 2 329 72 · 132 · 10932 (B = 1) 1.016 2.145 −0.829

1357 1174 614 75 54 1.011 0.194 −0.494

1367 296 463 72 · 674 - 1.015 0.697 −0.768

1475 231 485 - 113 · 133 · 973 1.016 1.469 −1.130

2035 606 719 - 54 · 116 1.010 0.015 −0.890

2186 2 658 72 · 132 · 10932 (B = 1) 1.008 1.452 −0.844

3279 3 987 72 · 132 · 10932 (B = 1) 1.006 1.739 −0.716

3514 4 1057 35112 (B = 1) 1.004 0.524 −0.584

4370 2 1315 72 · 132 · 10932 (B = 1) 1.004 0.758 −0.857

4393 436 1396 - 134 · 232 1.005 0.519 −0.175

5461 488 1723 52 - 1.004 1.024 0.813

6962 396 2159 - - 1.003 0.063 0.766

13056 11808 6002 - 172 1.001 1.284 0.735

27466 13732 10678 - 172 1.001 1.874 0.916

28107 27795 13351 74 53 1.001 0.721 0.066

Table 2: For µ-hits of the form
(
1, 3kA, 2j−kB

)
related to Collatz, length j of the corre-

sponding sequence and index k of its unique even term, number of digits of 2j−kB, prime
powers in the factorization of A and B, quality q and gain g of the triple, value of C for
which the equality holds in LBH on j iterations.
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According to the computation results, inequality (12) is always satisfied in this range.
Unexpectedly, we found a number of cases where statements 1 and 2 hold together. These
cases are linked to a number of µ-hits detailed in Table 2. Remarkably, the smallest triple
referenced in this table is

(
1, 316 · 7, 23 · 11 · 23 · 533

)
, which is one of the abc-hit with the

highest known quality (rank 22 by quality to date) discovered by A. Nitaj [1, 3, 12].
Moreover, bound (12) is very sharp (by less than 1%) for the second µ-hit in Table 2.

One may distinguish two kinds of µ-hits in Table 2, those for which (12) is rather sharp
(that is, when the value C in the last column of Table 2 is close to 1), and those more
numerous for which high powers of primes occur in the factorization of A and B.

It is amazing to observe that five µ-hits (for which B = 1) referenced in Table 2 are
closely related to the known Wieferich primes, 1093 and 3511. They belong to a large
family of µ-hits of the form (1, b, b+ 1) with

b = 2m(p−1) − 1, m ≥ 1 and p a Wieferich prime.

The associated Collatz sequences, of length j = m(p− 1) + k with k the 3-adic valuation
of b, start from the integer n = (2j − 3k − 2k)/3k, which is generally well above the bound
(12), then leading to T k(n) = 2j−k − 2 and to T j(n) = 3j−k−1 − 1. In the next section,
we briefly analyse the family of µ-hits linked to Wieferich primes.

5 Further insights from Wieferich primes

According to the computations of the previous section, all µ-hits of the form (1, 2n − 1, 2n)
seem to occur when n is divisible by p− 1 for some Wieferich prime p. Conversely, if p is
a Wieferich prime, one may wonder how many µ-hits there are of the form (1, bm, bm + 1)
with bm = 2m(p−1)−1 and m a positive integer. Assuming that (1, b1, b1+1) is a µ-hit and
taking into account the divisibility of bm by b1 is not sufficient to ensure that the triple
(1, bm, bm + 1) is also a µ-hit for any m. Therefore, it is so far unclear if we can generate
infinitely many µ-hits of this form as m increases. By setting successively p = 1093 and
p = 3511, we find that the respective proportions of such µ-hits with m ≤ 1000 are at least
24% and 27%, by checking only the powers of small primes. Note that these proportions
tend to decrease when considering larger values of m. The next lemma shows that µ-hits
are far more likely to occur when combining several Wieferich primes.

Lemma 5.1. Let k ≥ 1 and let p1, . . . , pk be distinct Wieferich primes. If we put L =
lcm (p1 − 1, . . . , pk − 1), then we have

g
(
1, 2L − 1, 2L

)
> log

(p1 · · · pk
2k+1L

)
.
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Proof. Assuming that p1, . . . , pk are k distinct Wieferich primes, then, for any 1 ≤ i ≤ k,
2L − 1 is divisible by 2pi−1 − 1 and, consequently, by p2i . We infer that

µ
(
2L − 1

)
≤ µ

(
p21 · · · p2k

)
+ µ

(
2L − 1

p21 · · · p2k

)
, by using (10),

< µ
(
p21 · · · p2k

)
+ log

(
2L

p21 · · · p2k

)
, by using (9),

= (k + L) log 2− log (p1 · · · pk) ,

so that

g
(
1, 2L − 1, 2L

)
> log (p1 · · · pk)− k log 2− µ

(
2L

)
= log

(p1 · · · pk
2k+1L

)
.

As a consequence of Lemma 5.1, the gain of a triple of the form
(
1, 2p−1 − 1, 2p−1

)
with

p a Wieferich prime is bounded from below by − log 4, which is not enough to conclude
that such a triple is a µ-hit. However, if we apply this lemma to the known Wieferich
primes p1 = 1093, p2 = 3511, and put L = lcm (p1 − 1, p2 − 1) = 49140, we obtain the
lower bound

g
(
1, 2L − 1, 2L

)
> log

(p1p2
8L

)
= 2.278 . . .

without taking into account the divisibility of 2L − 1 by the prime powers 34, 52, 72, and
132. By doing so, we get the much higher bound

g
(
1, 2L − 1, 2L

)
> 8.228 . . .

which is likely to be the actual gain of this triple whose second element has 14793 digits.
From this particular example, it is possible to generate thousands of large µ-hits of the
form

(
1, 2mL − 1, 2mL

)
by choosing adequate values of m. E.g., when setting m = qk with

q an odd prime such that q − 1 divides L (that is, q ∈ {3, 5, 7, 11, 13, 19, 29, . . . , 24571}),
we expect the gain of the resulting triples to decrease very slowly as k increases, due to
the fact that 2q

kL − 1 is divisible by 34 · 52 · 72 · 132 · 10932 · 35112 · qk, where qk can be
replaced by qk+1 whenever 2L − 1 is not divisible by q2. The proof by induction on k is
straightforward.

Regarding the question of whether there exist infinitely many µ-hits, we present a
heuristic argument directly related to the Wieferich primes. The main point is that this
set of primes is expected to be infinite although only two are known, according to simple
statistical considerations [4]. Indeed, one expects the number of primes p below x having
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presumably a given property with probability 1/p to grow like log log x, when applying
the prime number theorem. Such a reasoning, whose prediction can hardly be neglected,
was named the “log log Philosophy” by Jean-Pierre Serre (see [14, p413]).

Theorem 5.2. If the set of Wieferich primes is infinite, then so is the set Hµ of µ-hits.

Proof. First, we set p1 = 1093, p2 = 3511, and L2 = lcm (p1 − 1, p2 − 1) = 49140. If
we assume the set of Wieferich primes to be infinite, then there exist distinct Wieferich
primes p3, . . . , pk not equal to p1, p2 for any k ≥ 3. Setting Lk = lcm (p1 − 1, . . . , pk − 1),
we have

Lk = lcm (L2, p3 − 1, . . . , pk − 1)

≤ 22−k L2 (p3 − 1) (pk − 1), since all terms are even,

< 22−k L2 p3 · · · pk.

Applying Lemma 5.1, we get

g
(
1, 2Lk − 1, 2Lk

)
> log

(
p1 · · · pk
2k+1Lk

)
> log

(
p1p2
8L2

)
= 2.278 . . . .

Thus, we obtain an infinite sequence of µ-hits of the form
(
1, 2Lk − 1, 2Lk

)
for k = 2, 3, . . ..

However, the exponents Lk are not necessarily distinct and it can happen that Lk+1 = Lk
for some k. To show that we obtain infinitely many distinct triples, it suffices to observe
that Lk ≥ pk − 1, so that the sequence of powers 2Lk is unbounded.

Conjecture 5.3. There are infinitely many µ-hits.

Finally, we formulate the above conjecture that reflects the preceding arguments and
findings. Although our results need not assume its validity, it is important in view of
Theorem 4.1.

6 Conclusion

Somehow, the results presented so far show that the Collatz and abc conjectures are more
connected than previously thought and suggest that they may well be of comparable
hardness. Nevertheless, the validity of the abc conjecture is very unlikely to imply that
of the Collatz conjecture. Indeed, the general formulas linked to T iterations involve an
unbounded number of terms which are mostly sums of powers of 2 and 3. Therefore,
a generalization of the abc conjecture might be required to treat expressions with much
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more terms than just a, b, c. Various statements have been proposed (see [3, 11]), but they
are not well suited in this context. Further studies are necessary to strengthen the link
between these not-so-distant conjectures and investigate how far the notion of µ-hit can
contribute.
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E-mail: rozier@ipgp.fr

17


