

Transcriptomic data to support in vitro semimechanistic PK/PD modelling of Polymyxin B against Acinetobacter baumannii

Mathilde Lacroix, Andrej Trauner, Claudia Zampaloni, Caterina Bissantz, Hamasseh Shirvani, Sandrine Marchand, William Couet, Alexia Chauzy

Institut Roche Inserm U1070 – University of Poitiers

Work supported in part by F. Hoffmann-La Roche Ltd

PK/PD modelling

In vitro & in vivo studies PK/PD modelling

Prediction of human dosing regimens

PK/PD modelling

In vitro & in vivo studies

3

··· +- ·· Control ---- q24h ••• <u>A</u>•••• q12h

— q8h

Time (d)

PK/PD model types

Hetero-resistance

Mouton *et al.*, 1997 Antimicrobial Agents Chemotherapy Meagher *et al.*, 2004 Antimicrobial Agents Chemotherapy

PK/PD model types

Hetero-resistance

Mouton *et al.*, 1997 Antimicrobial Agents Chemotherapy Meagher *et al.*, 2004 Antimicrobial Agents Chemotherapy

Mouton et al., 1997 Antimicrobial Agents Chemotherapy Tam et al., 2005 Journal of Antimicrobial Chemotherapy

PK/PD model types

Hetero-resistance

Mouton et al., 1997 Antimicrobial Agents Chemotherapy Meagher et al., 2004 Antimicrobial Agents Chemotherapy

⇒ Population analysis profiles (PAPs)
⇒ Sequencing

Mouton et al., 1997 Antimicrobial Agents Chemotherapy Tam et al., 2005 Journal of Antimicrobial Chemotherapy

⇒ RT-qPCR
⇒ Transcriptomics

Bacteria and Compound

→ Acinetobacter baumannii: ESKAPE pathogen

→ Polymyxin B : last resort antibiotic for MDR Gram-bacteria

Gemma C. Langridge,^{1,11} James Hadfield,¹ Nguyen Van Vinh Chau,¹⁰ Guy E. Thwaites,^{2,3} Julian Parkhill,¹ Nicholas R. Thomson,^{1,12} Kathryn E. Holl^{5,6} and Stephen Baker^{2,3,13,*}

Bacteria and Compound

→ Acinetobacter baumannii: ESKAPE pathogen

→ Polymyxin B : last resort antibiotic for MDR Gram- bacteria

Objective: Integrate transcriptomics data into *in vitro* PK/PD models

Strains

Two clinical MDR Acinetobacter baumannii isolates obtained before and after colistin treatment 1

- o AB121 pmbS (MIC = 0.5 mg/L)
- o AB122 pmbR (MIC = 64 mg/L)

Mat. & Med.

Strains

- Two clinical MDR Acinetobacter baumannii isolates obtained before and after colistin treatment 1
 - o AB121 pmbS (MIC = 0.5 mg/L)
 - o AB122 pmbR (MIC = 64 mg/L)

AB122 carries a 10 AA insertion into pmrB, absent in AB121

	1	10	20	30	40	50
C AB121	VHYSLKK		I	- F S V I L G C I L	I F S A Y K V A L Q E N	DEILD
C🗣 AB122	VHYSLKK		IFSVILGCIL	IFSVILGCIL	I F S A Y K V A L Q E V	DEILD

Strains

- Two clinical MDR Acinetobacter baumannii isolates obtained before and after colistin treatment ¹
 - AB121 pmbS (MIC = 0.5 mg/L)
 - AB122 pmbR (MIC = 64 mg/L)
- AB122 carries a 10 AA insertion into pmrB, absent in AB121

Bacterial samples preparation

Time-kill curves for transcriptomics

AB121 pmbS

 \rightarrow Transcriptomics study for both strains on T0, T1h, T2h and T4h samples

Example for AB121

WGCNA

Weighted Gene Correlation Networks for Analysis 1,2

Dataset preparation (with DESeq2 3)

Normalization and thresholding by variance (>90% quantile to reduce noise) - from 3799 to 363 genes -

¹ Zhang *et al.*, 2005 Statistical applications in genetics and molecular biology
 ² Langfelder *et al.*, 2008 BMC bioinformatics
 ³ Love *et al.*, 2014 Genome Biology

Example for AB121

WGCNA

Weighted Gene Correlation Networks for Analysis 1,2

Dataset preparation (with DESeq2 3) Normalization and thresholding by variance (>90% quantile to reduce noise) - from 3799 to 363 genes -

Construction of a gene co-expression network

Use of interaction patterns among genes

¹ Zhang *et al.*, 2005 Statistical applications in genetics and molecular biology ² Langfelder *et al.*, 2008 BMC bioinformatics ³ Love *et al.*, 2014 Genome Biology

WGCNA

Weighted Gene Correlation Networks for Analysis 1,2

Dataset preparation (with DESeq2 3) Normalization and thresholding by variance (>90% quantile to reduce noise) - from 3799 to 363 genes-

Construction of a gene co-expression network

Use of interaction patterns among genes

Identification of modules

¹ Zhang *et al.*, 2005 Statistical applications in genetics and molecular biology ² Langfelder *et al.*, 2008 BMC bioinformatics ³ Love *et al.*, 2014 Genome Biology

15

Mat. & Med.

Results

AB121 pmbS

Introduction

Modules expression profiles

Controlwith PMB

Mat. & Med.

Results

AB121 *pmbS Modules expression profiles*

Introduction

Controlwith PMB

 Introduction
 Mat. & Med.
 Results

 AB121 ppbS
 \$91 genes allocated to this module

 Gene expressions per pathway
 Image: Comparison of the state of the

Amino-acids metabolism

- <u>35 genes associated with general metabolisms</u>
- <u>21 hypothetical proteins</u>

Control
 with PMF

Mat. & Med.

\rightarrow 91 genes allocated to this module

<u>Efflux systems</u>

Results

AB121 pmbS →9 Gene expressions per pathway

- <u>35 genes associated with general metabolisms</u>
- <u>21 hypothetical proteins</u>

with PME

- <u>35 genes associated with general metabolisms</u>
- <u>21 hypothetical proteins</u>

Mat. & Med.

Results

AB121 *pmbS* \rightarrow 91 genes allocated to this module

Gene expressions per pathway

<u>Amino-acids metabolism</u>

<u>Efflux systems</u>

→ Compensation of PMB membrane disruption activity by a over-production of membrane components ?

Confirming literature results

Henry et al., 2012 Antimicrobial Agents and Chemotherapy Park et al., 2015 Clinical Microbiology and Infection Henry et al., 2015 Journal of Antimicrobial Chemotherapy Cheah et al., 2016 Scientific Reports Hua et al., 2017 Front. Cell. Infect. Microbiol. Boll et al., 2020 PNAS Chamoun et al., 2021 Int. Journal of Molecular Science

- <u>35 genes associated with general metabolisms</u>
- <u>21 hypothetical proteins</u>

Introduction Mat. & Med.

Results

AB122 pmbR

Modules expression profiles

Results

AB122 pmbR

Modules expression profiles

Mat. & M<u>ed.</u>

Results

AB122 pmbR \rightarrow 105 genes allocated to this moduleGene expressions per pathway

Efflux systems

- <u>21 genes associated with general metabolisms</u>
- <u>11 hypothetical proteins</u>

AB122 pmbR

Mat. <u>& Med.</u>

ightarrow 105 genes allocated to this module

Results

Gene expressions per pathway

<u>Efflux systems</u>

Oxidative phosphorylation

- <u>21 genes associated with general metabolisms</u>
- <u>11 hypothetical proteins</u>

AB122 pmbR

Mat. & Med.

ightarrow 105 genes allocated to this module

Results

Gene expressions per pathway

<u>Efflux systems</u>

Oxidative phosphorylation

Protein synthesis

- <u>21 genes associated with general metabolisms</u>
- <u>11 hypothetical proteins</u>

Mat. & Med.

Results

AB122 *pmbR Resistance genes*

No expression change of genes involved in resistance with PMB addition

27

Mat. & Med.

Results

AB122 pmbR Potential resistance mechanism

(n=55)

Protein synthesis w/ PMB Control PFEDJJEH 03362

Introduction

Increase of protein synthesis induced by PMB

Synthesis increase of eptA and arnT to change lipid A charge and prevent PMB binding?

Study of PMB fixation to bacterial membrane by confocal microscopy

No expression change with PMB addition of genes involved in resistance

Mat. & Med.

Results

Green -> Syto 9

AB121 & AB122 Confocal microcopy

All bacteria

AB121 pmbS

AB122 pmbR

T30min

29

Mat. & Med.

Results

PMB_R-fixing bacteria

AB121 & AB122 Confocal microcopy

Green -> Syto 9 PMB_R -> PMB-Rhodamine

All bacteria

AB122 pmbR

AB121 pmbS

T30min

Mat. & Med.

Results

AB121 & AB122 Confocal microcopy

Green -> Syto 9 PMB_R -> PMB-Rhodamine Blue -> Sytox Blue

AB121 pmbS

All bacteria

PMB_R-fixing bacteria

Dead bacteria

AB122 pmbR

T30min

Mat. & Med.

Results

AB121 & AB122 Confocal microcopy

All bacteria

Green -> Syto 9 *PMB_R* -> *PMB*-*Rhodamine* Blue -> Sytox Blue

Dead bacteria

 \rightarrow For AB121: all bacteria are labelled with PMB_R

Mat. & Med.

Results

AB121 & AB122 Confocal microcopy

Green -> Syto 9 PMB_R -> PMB-Rhodamine Blue -> Sytox Blue

Conclusion – Resistance mechanisms

Time-kill curves

AB121 pmbS

<u>Transcriptomic and confoncal</u> <u>microscopy results</u>

<u>Membrane remodeling</u>

Potential resistance mechanism

Over-production of membrane components to prevent PMB membrane disruption ?

Adaptation ?

Conclusion – Resistance mechanisms

<u>Time-kill curves</u>

AB121 *pmbS*

<u>Transcriptomic and confoncal</u> <u>microscopy results</u>

<u>Membrane remodeling</u>

Potential resistance mechanism

Over-production of membrane components to prevent PMB membrane disruption ?

Adaptation ?

AB122 pmbR

Protein synthesis

Synthesis increase of eptA to change lipid A charge and prevent PMB binding ?

Hetero-resistance + Adaptation ?

Introduction Mat. & Med. Results Conclusion **Conclusion** – Modelling Adaptation **K**_{net} В AB121 pmbS • PK/PD model choice AR_{off} AR_{on} \checkmark Transcriptomics may orient the \oplus С Θ selection of model structure *Hetero-resistance + Adaptation* ✓ Results need to be expanded (Proteomics) K_{net} S Knet R AR_{on} AR_{off} AB122 pmbR \oplus ⊖÷ С \oplus Θ

Thanks for your attention

INSERM U1070

Alexia Chauzy Jérémy Moreau Jonathan Clarhaut Luc Deroche Vincent Aranzana-Climent Sandrine Marchand William Couet

F. Hoffmann-La Roche

Andrej Trauner Caterina Bissantz Claudia Zampaloni Hamasseh Shirvani Kenneth Bradley