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Abstract

Drop coalescence in viscoplastic materials is present in various industrial ap-

plications and the environment. The plasticity of the surrounding material

affects drop rise, collision, and film drainage dynamics, and knowledge about

these is essential for designing and operating industrial mixer and separator

units. Despite its importance, the coalescence of drops in yield stress materi-

als is not entirely understood. In this work, we investigate the effects of the

surrounding material plasticity on the rise and interfacial coalescence initia-

tion of Newtonian drops using direct numerical simulations. Plastic effects

contribute to the formation of smaller and spherical films, which facilitate

the film drainage process on the one hand, but also to an increase in the re-

sistance of the film to flow, which makes the drainage process more difficult

on the other hand. The fluids’ interfaces are less deformable for high sur-

face tension regimes, and the flow resistance effects become more significant

than the film shape change effects. As a result, the drainage time tends to
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increase with the level of plasticity. For low surface tension regimes, the fluid

interface is more deformable, and film drainage time tends to decrease with

an increase in the level of plasticity.

Keywords: Drop coalescence, Drop rise, Film drainage, Viscoplastic

materials, Yield stress.

1. Introduction

Drop coalescence in viscous liquids is a fundamental problem in fluid me-

chanics, and it is relevant in the environment and many industrial mixing and

separation processes. In many cases, the surrounding fluid is a yield stress

material, such as in processing food, cosmetics, medicines, waste, slurries,

inks, and crude oil, to name a few (Dubash and Frigaard, 2004, 2007; Goel

and Ramachandran, 2017; Tripathi et al., 2015; de Souza Mendes, 2011). De-

pending on the application, phase separations (rise and coalescence) may be

desirable or undesirable. Drop rise and coalescence are desirable in treating

crude oil and liquid–liquid extraction to recover the added value component

and discard treated residues. On the other hand, bubbles and drops en-

trapped are desirable in food processing, such as chocolate, ketchup, and

mayonnaise, to improve their taste. Their entrapment is also desirable in the

processing of cosmetic lotions and medicine. This work uses the term drop

as the general case regardless of the density and viscosity ratios. In contrast,

the term bubble is reserved for the case where the internal phase is a gas

(small density and viscosity ratios).

Understanding the basic mechanisms of coalescence is fundamental to the

scale-up of industrial processes (Charin et al., 2019). For instance, the con-
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ception of coalescence models based on single-drop systems may be used as

an input for predicting particle size distribution in industrial oil/water sep-

arators using the Population Balance Equation approach (Deoclecio et al.,

2020). Coalescence may take place between two drops, or between a drop

and a fluid-fluid interface. The coalescence process is similar in both, and in

some cases theoretical solutions may even become the same via the equiv-

alent radius principle (Chesters, 1991; Oldenziel et al., 2012). It may be

divided into four sequential steps: collision, film drainage, film rupture, and

merging (Goel and Ramachandran, 2017; Liao and Lucas, 2010; Mohamed-

Kassim and Longmire, 2003; Chesters, 1991). The collision step results from

the action of external forces (e.g., hydrodynamics, and gravity). For interfa-

cial coalescence, the collision is a function of the drop rise dynamics, which

depends on the density and rheological properties of the phases, drop size,

surface tension, and interface mobility (Balla et al., 2020; Charin et al., 2019;

Chhabra, 2006; Clift et al., 2005; Zenit and Magnaudet, 2008). The drop col-

lision is a highly dynamic process, and it sets the initial condition for the

film drainage step, thus playing a crucial role in the coalescence phenomenon

(Zawala et al., 2020; Zawala and Malysa, 2011). During the collision step, a

thin film of the surrounding materials is trapped between the drop and the

interface (or between two drops). This film must be drained out, so the fluid

interfaces may come nearby for coalescence. The drainage process usually

is the coalescence controlling rate step (Chesters, 1991; Kamp et al., 2017;

Henschke et al., 2002). Film rupture happens when the film thickness is small

enough that non-hydrodynamic forces (e.g. van der Waals) destabilize and

break the film. After film rupture, the last step, merging the fluid bodies
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driven by surface tension, takes place.

During the drainage process, the external squeezing forces give rise to a

radial pressure gradient within the draining film that deforms the fluid inter-

faces and acts against viscous forces to drain out the surrounding phase (Chan

et al., 2011). The viscosity ratio between the phases (µr = µd/µs << 1, where

µd is the viscosity of the drop and µs is the viscosity of the surrounding)

controls (for contaminant-free systems) the fluid interface mobility. Exper-

imental results of Aarts and Lekkerkerker (2008) of gas bubbles and liquid

drops coalescence with an interface indicate that the film rupture tends to

occur at the film center for the former and on one of the film sides for the

latter. For mobile interface systems (low viscosity ratio), as in the case of

bubbles, the pressure gradient in the film is weak and the film tends to

have a spherical shape (minimum thickness at the film center and increasing

monotonically with film radius). For immobile or partially mobile interfaces

(high viscosity ratio), as in the case of liquid drops, the pressure gradient

in the film is more substantial and the film tends to form a dimple, where

the minimum film thickness is at the film periphery (Chi and Leal, 1989;

Oldenziel et al., 2012; Liu et al., 2019). The surface tension coefficient and

drop collision dynamics also influence the film shape. Kočárková et al. (2013)

experimentally investigated the effect of the Bond number (the ratio of buoy-

ancy to surface tension forces) on drop coalescence. The authors found that

an increase in the Bond number tends to increase the film surface area and

reduce the average pressure in the film. This increased the drainage time.

Zawala and Malysa (2011) assessed the effect of the drop impact velocity on

the film length and drainage time. An increase in the impact velocity led to
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more significant drop width and film length increase due to the conversion

of kinetic to surface tension energy. This, consequently, led to an increase in

the drainage time. Also, experimental results of (Doubliez, 1991) show that

collisions of tiny bubbles with small impact velocities increase the probability

of coalescence to happen.

It is common practice to hinder or facilitate coalescence by adding or

removing surfactants on the interface, respectively. Besides changing the

boundary conditions for the flow in the film by rendering the interfaces im-

mobile, the contamination of the interfaces also affects the resultant short-

range non-hydrodynamic forces that govern the film rupture. Surfactants

adsorbed on the interface generally stabilize the film by strengthening the

non-hydrodynamic repulsive forces (Zawala et al., 2020; Goel and Ramachan-

dran, 2017). Thus, for Newtonian films, which most studies focus on, inter-

facial coalescence may be inhibited by adding a surfactant to the interface

to prevent the film’s rupture. However, if the surrounding material presents

a viscoplastic behavior, coalescence may be prevented before the short-range

non-hydrodynamic forces come to play. The first concept of viscoplastic fluid

was proposed by Bingham (1922) who states that viscoplastic materials be-

have like a solid when the applied stress is below the limit called yield stress,

and behave like a fluid when the applied stress is higher than the yield stress.

Therefore, drops and bubbles may become entrapped if the buoyancy force

is insufficient to overcome the surrounding phase yield stress (Dubash and

Frigaard, 2007; Deoclecio et al., 2021), preventing the collision step from

happening. Coalescence can also be inhibited in the case of mobile drops

if the stress in the draining film becomes less than the surrounding mate-
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rial yield stress. Even if coalescence is not prevented, the yield stress alters

the collision and film drainage dynamics, which influences the coalescence

rate (Hartland and Jeelani, 1986, 1987; Goel and Ramachandran, 2017).

Thus, understanding the drainage dynamics of viscoplastic films may aid

in selecting appropriate strategies to stabilize or destabilize a dispersed sys-

tem; for instance, avoiding a waste of emulsifiers and demulsifiers (Tchoukov

et al., 2014). Hartland and Jeelani (1986, 1987) obtained expressions for

the freezing thickness (when the drainage process come to a halt due to the

yield stress) of dimpled and planar films of Bingham materials, respectively.

Nevertheless, these studies suffer from ad-hoc assumptions about the drop

impact condition and the film shape. Goel and Ramachandran (2017) ar-

gued these ad-hoc assumptions lead to incorrect predictions of the level of

plasticity required to inhibit coalescence. The authors used scaling analysis

and lubrication theory to model the drainage dynamics of films of Bingham

materials. According to the authors’ results, the yield stress cannot arrest

spherical films. Only dimpled films can be frozen before a thickness at which

intermolecular forces assist the drainage process. Sanjay et al. (2021) numer-

ically studied the bursting of bubbles at a fluid-fluid interface in Bingham

materials. The authors model the last step of the coalescence process, the

merging of the fluid bodies after film rupture. The bubbles were spherical

and the dynamics of bubble collision and film drainage were not assessed.

They showed that the free surface converges to a non-flat final equilibrium

shape which depends on the balance between the surrounding material yield

stress and surface tension. They also showed that the yield stress damps the

capillary waves and slows down the flow during the merging step.
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Studies on the drop coalescence process in viscoplastic materials, espe-

cially the collision and film drainage steps, are still rare in the literature.

Consequently, the effects of the yield stress on drop collision and film drainage

dynamics are not entirely understood. By using time-dependent numerical

simulations, we attempt to deepen the understanding of the role played by

the yield stress of the surrounding fluid on the coalescence process, taking

into account the drop rise dynamics before the collision. We focus our study

on the collision and the initial stage of film drainage, which may be seen as an

indicator of the coalescence rate. The Bingham model is used to mimic the

yield stress characteristics of the viscoplastic material. The rest of the pa-

per is organized as follows. Section 2 describes the problem formulation and

presents the computational domain, boundary conditions, governing equa-

tions, and dimensionless numbers. Next, Sec. 3 shows validation tests to

verify the solver accuracy and grid dependency. Then, Sec. 4 presents the

results and discussion. Finally, Sec. 5 summarizes the main conclusions.

2. Problem Formulation

We investigate the rise and interfacial coalescence of Newtonian drops in

Bingham materials using direct numerical simulations in an axisymmetric ge-

ometry. In this section, we first present the computational domain along with

the boundary and initial conditions. Then, we give the governing equations

and the important dimensionless parameters.

2.1. Computational domain

Fig. 1(a) shows a representative diagram of the computational domain.

The simulations are performed in a square domain of height H = 25D, where
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D is the diameter of the initially spherical drop. Axisymmetric simulations

are performed in a cylindrical coordinate system (r, z) where the axis of sym-

metry lies along the z-axis (the right boundary). The origin of the coordinate

system lies at the crossing of the interface rest position with the axis of sym-

metry, as shown in Fig. 1(a). The interface depth, zi = 5D, is sufficient to

avoid boundary effects. The rising distance, zr, corresponds to the distance

between the initial drop position, zo, and the interface rest position, z = 0.

zr varies as a function of the distance needed for the drop to reach its ter-

minal velocity before interacting with the interface to reduce the processing

time. The surrounding viscoplastic fluid (represented as Fluid 1) is modeled

using the Bingham constitutive equations while the drop and the interface

(represented as Fluid 2) are composed of the same Newtonian fluid. Gravity

acts in the negative z-direction. Initially, both fluids are at rest. We apply

free-slip boundary conditions without mass penetration for the velocity field

at the bottom, left, and top boundaries. In addition, the Neumann boundary

condition for the pressure field is applied at these boundaries. The size of

the computational domain H and top layer interface depth zi are sufficiently

large to avoid boundary effects. Doubling H and reducing zi by half changed

the drop terminal velocity and computational drainage time (defined in the

sequence) in less than 1% and 0.15%, respectively.

Fig. 1(b) presents a scheme of a drop impacting an interface and subse-

quently trapping and draining a film of the surrounding fluid (Fluid 1). To

study the flow in the film, we define a new non-orthogonal coordinate sys-

tem (s, h) with a moving origin located at the drop’s ”tip.” The coordinate

s follows the drop surface, and the coordinate h is in the direction of the
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Figure 1: A representative diagram of the computational domain. The numerical sim-

ulations are performed in (a) square domain of side length H = 25D, where D is the

diameter of the drop. The axisymmetric simulations are performed in a cylindrical co-

ordinate system (r, z) where r and z are the radial and axial coordinates, respectively.

Gravity acts in the negative z-direction. The surrounding is a viscoplastic fluid (Fluid 1),

and the drop and the interface are composed of the same Newtonian fluid (Fluid 2). (b)

A scheme representing the drop impact on the top layer interface and trapping of a film

of the surrounding viscoplastic material. The film shape is studied in a non-orthogonal

coordinate system (s, h), where s follows the drop surface and h points to the direction of

the closest point on the interface from the drop surface.
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closest point on the upper fluid surface (the top layer) from the point (s, 0)

on the lower fluid surface (the drop). Hence, the h-direction is generally not

normal to the drop surface. Due to the computational cost of performing

numerical simulations up to the film rupture thickness (in the range of the

non-hydrodynamic forces), we infer the effect of the yield stress on the coa-

lescence time based on the computational drainage time, ∆t, defined as the

time elapsed between the minimum distance between the drop and the top

layer interface thins from hmin = 0.1D to 0.01D (note that the film rupture

thickness is generally less than 0.01D).

2.2. Governing equations

In the present simulations, the fluids are considered incompressible, and

the governing mass and momentum conservation equations are as follows

∇ · u = 0, (1)

ρ

[
∂u

∂t
+ u · ∇u

]
= −∇p+∇ ·

[
µ
(
∇u+∇uT

)]
+ fσ − ρg. (2)

Here, u (ur, uz) is the velocity field, where ur and uz are the velocity compo-

nents in the radial (r) and axial (z) directions, respectively; p is the pressure

field; g = gez where g is the acceleration due to gravity and ez is the unit

vector in the negative z-direction; ρ is the density field; µ is the viscosity

field; t is time; fσ is the local density of capillary force per unit volume and

is equal to fσ = σκnδs, where σ is the surface tension coefficient, κ is the
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mean curvature of the interface, δs is the Dirac delta function, which is zero

everywhere except at the interface, and n is the unit normal to the interface.

The bulk fluid is viscoplastic (Fluid 1), while the drop and the interface

are Newtonian fluids (Fluid 2). The respective densities of the two liquids, ρ1

and ρ2, are constants. The viscosity µ2 of the Newtonian phase is constant

while the viscosity of the bulk viscoplastic phase, µ1, is modeled using a

regularized version of the Bingham constitutive law given by (Bingham, 1922;

Frigaard and Nouar, 2005; Allouche et al., 2000; Balmforth et al., 2014)

µ1 = µp +
τy

∥γ̇∥+ ϵ
. (3)

Here, µp is the plastic viscosity of the Bingham model; τy is the yield stress;

∥γ̇∥ =
√
(1/2)γ̇ : γ̇ is the Frobenius norm of the strain rate tensor γ̇. The

regularization parameter ϵ is calculated as

ϵ =
τy
Nµc

, (4)

where µc = µp + τy/γ̇c is the characteristic viscosity based on the character-

istic strain rate γ̇c (defined later) and N is the dimensionless regularization

parameter whose value is large. We conduct a convergence test to optimize

the value of N , presented in Sec. 3. The yielded (unyielded) regions are

separated based on the von Mises criterion given as ∥τ∥ > τy (∥τ∥ ≤ τy),

where ∥τ∥ is the magnitude of the deviatoric stress tensor.

The advection equation for the volume fraction field α is solved to track

the interfaces separating the fluids,

∂α

∂t
+ u · ∇α = 0. (5)
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α is taken as 0 and 1 for Fluid 1 and Fluid 2, respectively. The density ρ

and viscosity µ fields are then calculated based on volume fractions in each

grid cell as

ρ = ρ1(1− α) + ρ2(α) (6)

µ =
1

1−α
µ1

+ α
µ2

. (7)

2.3. Non-dimensional parameters

The following scalings are used to non-dimensionalize the governing equa-

tions and boundary conditions:

(r̄, z̄) = (r/D, z/D), (s̄, h̄) = (s/D, h/D), ū = u/U, t̄ = t/tc, P̄ = P/ρ1U
2,

µ̄ = µ/µc, ρ̄ = ρ/ρ1, ¯̇γ = γ̇/γ̇c
(8)

The characteristic time tc is defined as tc = D/U and the characteristic

strain rate γ̇c is defined as γ̇c = 1/tc = U/D. The characteristics velocity

U is defined by balancing the buoyancy (τb = |∆ρ|gD) and viscous (τv =

τy + µpU/D) stresses as

U =
|∆ρ|gD2

µp

− τyD

µp

, (9)

which includes a contribution of the yield stress. The characteristic viscosity

µc is defined as µc = µp + τy/γ̇c. It is worth noting that µc includes the

contribution of the yield stress, as recommended by Thompson and Soares

(2016). Using this scaling we get the following dimensionless parameters that
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describe the problem of interest.

Bo =
|∆ρ|gD2

σ
,

Fr =
ρ1U

2

|∆ρ|gD
=

ρ1U
2

τy + µpγ̇c
,

P l =
τy

τy + µpγ̇c
=

τy
|∆ρ|gD

,

µr =
µ2

µc

,

ρr =
ρ2

ρ1
.

The Bond number, Bo, represents the relative importance of the buoyancy

force to the capillary force, while the Froude number, Fr, represents the

relative importance of inertial forces to the buoyancy force. It is worth noting

that the characteristic velocity may also be written as U =
√

Fr|∆ρ|gD/ρ.

Finally, the plastic number, Pl, indicates the plastic nature of the fluid, and

its value ranges from 0 to 1. Pl = 0 means that the yield stress is zero

(Newtonian fluid). In contrast, Pl = 1 implies that the liquid is entirely

plastic and remains undeformed. Here, Pl = Yg/3, where Yg is the yield

stress parameters, first defined by Beris et al. (1985). Deoclecio et al. (2021)

calculated that bubbles are entrapped in yield stress materials if Yg > 0.20±

0.02. Since the viscosity of Fluid 1 is not constant, we define the viscosity

ratio, µr, as the viscosity of Fluid 2 over the characteristic viscosity, µc. The

density ratio ρr = ρ2/ρ1 is fixed (= 0.1) in all the simulations.

The momentum equation can be represented in terms of these dimension-

less parameters as
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ρ̄

[
∂ū

∂t̄
+ ū · ∇ū

]
= −∇P̄+

1

Fr
∇·

[
µ̄
(
∇ū+∇ūT

)]
+

1

FrBo
κ̄nδs−

1

Fr

ρ̄

|1− ρr|
ez.

(10)

In Eq. 10, the plastic number is hidden inside the term µ̄ = 1/((1− α)/µ̄1 +

α/µ̄2) where the µ̄1 is given as

µ̄1 =
µ1

µc

= (1− Pl)

[
1 +

Pl

(1− Pl)(¯̇γ + Pl
N
)

]
. (11)

3. Code Validation

The numerical simulations are performed using the open-source solver

Basilisk (Basilisk; Popinet, 2009, 2015; Lagrée et al., 2011). The viscoplastic

model of Basilisk solver has been successfully used for complex flows by

different researchers (Lagrée et al., 2011; Deka et al., 2019, 2020; Deoclecio

et al., 2021).

The mesh dynamically adapts as a function of the volume fraction (toler-

ance threshold: 10−3)1, the velocity field (tolerance threshold: 10−3), the

yield surface (tolerance threshold: 10−2), and the film region (tolerance

threshold: 10−1)2. The film region is defined as the region in Fluid 1 located

at a distance up to three times the current minimum film thickness, hmin,

from both interfaces and above z = 0. Figure 2 exemplifies mesh adjustment

for a drop colliding with an interface, where the image has been mirrored

1For details about the mesh refinement algorithm, see Popinet (2015)
2For the film region, the Basilisk adaptation algorithm is ”tricked” to refine the mesh

at the maximum refinement level, and any tolerance threshold smaller than 1 is enough.
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on the z-axis. Red lines represent the interfaces. The left side exhibits the

mesh, while the right side exhibits the yielded/unyielded (white/black) re-

gions, and the film region (orange) for Fr = 200, Bo = 20, Pl = 0.025, and

µr = 1.0. Readers see that the mesh is refined at fluid interfaces, on the yield

surface, film region, and the areas with a velocity gradient. All simulations

start with a uniform mesh of refinement level3 6 across the entire domain,

with local refinement around the bubble at the initial maximum level, defined

after a convergence test. The maximum refinement level is increased during

the film drainage process to reduce the computational cost while still solving

the film’s flow. The mesh in the film is always at the current maximum level

of refinement. The film region is identified by a method based on the signa-

ture method of Chirco et al. (2022) to detect thin structures. The software

Basilisk automatically sets the time step to obey the CFL < 0.5 condition

for simulations with the Volume-of-Fluid model. The maximum timestep

is also restricted by the oscillation period T of the smallest capillary wave

T =
√

ρmD3
min/(πσ), where ρm = (ρ1+ρ2)/2 is the average density and Dmin

is the size of the smallest grid element.

Validation tests were carried out to check the solver accuracy, depen-

dency on the grid, and the regularization parameter. They are divided into

two parts: first for the rising phenomenon and then for the coalescence phe-

nomenon. For the rising part, we reproduce the steady-state numerical solu-

3The number of cells per dimension is given by 2n, where n is the level of refinement.

For example, if a 2D square domain is discretized with a refinement level 8, each direction

will contain 256 cells. The whole domain will have 65,536 cells.
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Figure 2: A view of the (left) mesh and (right) yielded/unyielded (black/white) regions

and the film (orange) region of a drop impacting on an interface (Obs.: the viscoplastic

material inside the film is yielded). The red lines represent the fluid interfaces. The

dimensionless parameters are Fr = 200, Bo = 20, Pl = 0.025, µr = 1.0, ρr = 0.1, and

N = 105 with maximum and minimum levels of refinement equal to 12 and 4, respectively.

tion of Dimakopoulos et al. (2013), who simulated rising bubbles using the

Augmented Lagrangian Method (ALM) in a Bingham fluid. The dimension-

less parameters are Bo = 200, Fr = 38025, Pl = 0.025, µr = 0.01, and

ρr = 0.01. Our definition of Bo differs from that of Dimakopoulos et al.

(2013) since we use the bubble diameter instead of its radius as the char-

acteristic length. Also, µr and ρr which are equal to zero in Dimakopoulos

et al. (2013) (the viscosity and density of the gas phase in the bubble were

neglected), but are both equivalent to 0.01 in our simulations. The coa-

lescence part itself is also divided into two parts. First, we reproduce the

experimental result of Mohamed-Kassim and Longmire (2003) for the drop

impact on a liquid-liquid interface using Newtonian fluids without resolving

the flow in the film. The dimensionless parameters are Bo = 6.40, Fr = 5044,
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Pl = 0.00, µr = 0.33, and ρr = 1.189. Second, we check the grid dependency

to solve the flow in the film and then reproduce the experimental results of

Vakarelski et al. (2022) for the shape of the film formed during the impact of

a bubble on a solid interface. The dimensionless parameters are Bo = 0.228,

Fr = 5184, Pl = 0.00, µr = 0.0181 and ρr = 0.0012.

Fig. 3(a) shows the dimensionless rising velocity of a bubble versus the

dimensionless time. The simulation was carried out using the same physical

condition used by Dimakopoulos et al. (2013). The maximum mesh refine-

ment levels were 10, 11, 12, and 13 with N = 105. The minimum level for

dynamic mesh adaption is kept constant at level 6. Although the velocity

profile does not change much while changing the maximum level of refine-

ment from 12 to 13, the computational time increases significantly. Hence,

a maximum refinement level of 12 is chosen to perform the rising part of

the numerical simulations, which corresponds to a cell size of approximately

6.10× 10−3D. Next, we check the value of N to optimize the computational

time without compromising the accuracy or producing numerical instabili-

ties. Figure 3(b) presents the dimensionless velocity profile of the bubble

versus the dimensionless time for N = 102, 103, 104, 105, and 106, and maxi-

mum level of refinement 12. Since the result with N = 105 does not change

much from the result with N = 106, but the computational time is higher in

the latter, we perform the simulations with N = 105. Figure 4 compares our

results (right) with N = 105 and maximum level of refinement 12 with the

numerical solution of Dimakopoulos et al. (2013) (left) for the bubble and

yield surface shape. The agreement with the ALM is reasonable for both
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Figure 3: Dimensionless rise velocity, ū, with dimensionless time, t̄, for (a) different mesh

maximum refinement levels, Lmax, (b) and dimensionless regularization parameters, N .

The minimum refinement level in all cases is 6, while Lmax is (a) changed from 10 to

13 in (a) and equal to 12 in (b). N = 105 in (a) and changed from 102 to 106 in (b).

The dimensionless parameters are Fr = 38025, Bo = 200, Pl = 0.025, µr = 0.01, and

ρr = 0.01.

yielded region and the bubble shape.

In the experiment of Mohamed-Kassim and Longmire (2003), the drop

is heavier than the surrounding fluid for the coalescence part, and thus the

drop falls instead of rising. We inverted the gravity vector’s direction (ez

is in the positive z-direction) to account for this in the simulations. As the

authors did not assess the inner flow in the draining film, we compare only

the position of the fluid-fluid interfaces (outer flow). Here, the mesh is refined

only as a function of the volume fraction and velocity fields. We test only
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Figure 4: Comparison of our simulation results (right half) with the steady-state solution

of Dimakopoulos et al. (2013) using the ALM (left half). The simulations are performed

using N = 105, Lmax = 12, Fr = 38025, Bo = 200, Pl = 0.025, µr = 0.01, and ρr = 0.01.

the solution dependency on the grid to reproduce the outer flow (the drop

collision dynamics). Figure 5 presents the displacement in the z-direction of a

point on the interface initially located at (r̄, z̄) = (0, 0) (see the yellow square

in the insert of Fig. 6) for different mesh maximum refinement levels (Lmax =

10, 11, 12, 13, and 14). Here, t̄ = 0.0 designates the time at which the drop

nose reaches the interface rest position (z̄ = 0.0). As can be seen in the

figure, the interface position until the first part of the drop rebound (t̄ ⪅ 200)

does not vary much for the different values of Lmax. For t̄ ⪆ 400, the later

stage of the drop rebound, the solution does not vary much when changing

the maximum level of refinement from 13 to 14. Figure 6 compares the

results of Mohamed-Kassim and Longmire (2003) (symbols) for the position
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of the drop back (blue circles), drop front (red crosses), and interface (yellow

squares) (all at r = 0.0) with our simulations (lines) for Lmax = 13. Again,

there is good agreement between the experimental and numerical results.

Hence, a maximum refinement level of at least 13 (cell size of approximately

3.05× 10−3D) is required to reproduce the drop impact dynamics.
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Figure 5: Change of the interface dimensionless position, z̄, due to a drop impact versus

dimensionless time, t̄, for Lmax = 10, 11, 12, 13, and 14. The dimensionless parameters

are Fr = 5044, Bo = 6.40, Pl = 0.00, µr = 0.33 and ρr = 1.189.

Although Lmax = 13 is enough to model the interfaces’ positions during

the collision step, a higher level of refinement is required to solve the inner

flow in the film as the drop approaches the interface, and the thickness of

the film decreases. To reduce the computational cost, we perform the drop

rising part of the simulations with Lmax = 12, and during the drop impact

on the top layer interface, we progressively increase Lmax to increase the
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Figure 6: Experimental results of Mohamed-Kassim and Longmire (2003) (symbols) and

our simulation (lines) for the drop back (blue) and front (red), and interface (yellow)

positions with time. The dimensionless parameters are Fr = 5044, Bo = 6.40, Pl = 0.00,

µr = 0.33 and ρr = 1.189, and Lmax = 13.

mesh resolution. The maximum level of refinement after the drop impact is

taken as a function of the film’s minimum thickness, hmin, and the minimum

number of cells in the film, C, according to Eq. 12,

Lmax = ⌊
log

(
CH
hmin

)
log 2

⌋. (12)

Here, H = 25D is the domain height. We take only the floor integer part of

Lmax. Figure 7(a) shows the dimensionless minimum film thickness (h̄min =

hmin/D) with dimensionless time (t̄) for a drop impacting on a liquid-liquid

interface for C = 5, 10, and 15. The dimensionless parameters are Fr = 200,

Bo = 20, Pl = 0.00 (the surrounding is Newtonian), µr = 1.0, and ρr = 0.1.

Figure 7(b) exhibits the dimensionless film thickness shape (h̄ = h/D) as
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a function of the dimensionless surface length (s̄ = s/D) at the moment

h̄min = 0.01. As can be seen, the interface is not well represented by C = 5,

in which Lmax(hmin) = 13. The film shape does change much, varying C

from 10 to 15, with Lmax = 14 and 15, respectively, but the computational

time increases significantly. Here, the interface has a wimple-shaped (Chan

et al., 2011), with two minimums, one at the film center and one on the film

periphery. The drop and top layer interface shape can be seen in Fig. 8 in

the (r, z) coordinate system (made dimensionless).

We employed C = 10 to numerically produce the film shape (h̄× r̄b) and

bubble center of mass position, z̄cm, experimental results of Vakarelski et al.

(2022). The results are shown in Fig. 9(a) and (b), respectively. There is

good agreement between the experimental and numerical results. Therefore,

we select C = 10 for our simulations, which requires a maximum refinement

level of 14 at h̄min = 0.01.

In summary, we chose N = 105, Lmax = 12 for the rising part, and

Lmax increasing gradually from 12 up to 14 as a function of hmin after the

drop impact. Thus, the film’s minimum number of cells, C, is equal to 10.

Due to the high computational cost of performing systematic simulations

for h̄min < 0.01, the computational drainage time, ∆t, is taken as the time

elapsed between h̄min thins from 0.1 to 0.01.

4. Results and discussion

This section discusses drop coalescence dynamics in viscoplastic materials

and compares them to the Newtonian case. The drop rise and collision
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Figure 7: (a) Dimensionless minimum film thickness, h̄min, versus Dimensionless time, t̄,

and (b) dimensionless film thickness h̄ versus dimensionless surface length s̄ for C =5, 10,

and 15 at the moment h̄min = 0.01. Results for Fr = 200, Bo = 20, Pl = 0.00, µr = 1.0,

and ρr = 0.1.

dynamics are taken taking into account, and the dimensionless computational

drainage time, ∆t̄, is used to give a measure (an indication) of how the yield

stress affects the coalescence time. We begin our discussion by assessing the

effects of the governing dimensionless numbers (Fr, µr, Bo, and Pl) on drop

rise (Sec. 4.1). Then, in the sequence, we investigate their effect on drop

collision and on ∆t̄, first for Newtonian surroundings (Sec. 4.2) and then

introducing plasticity (Sec. 4.3).
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Drop

Interface

Figure 8: Drop collision on the top layer interface and the entrapped film in the (r, z)

coordinate system with for C = 10 at the moment h̄min = 0.01. Results for Fr = 200,

Bo = 20, Pl = 0.00, µr = 1.0, and ρr = 0.1.

4.1. Drop rise

The drop velocity and shape during the rise stage are among the main

parameters influencing the coalescence process. The collision of a drop with

a larger width and a higher impact velocity (which causes a more consider-

able width increase during the collision stage) leads to a draining film with a

more significant length, which tends to slow down the film drainage process

(Zawala and Malysa, 2011; Kočárková et al., 2013). The interdependence

between the drop velocity and shape and the different effects of the inter-

playing forces make drop rise a complex phenomenon. The drop deformation

depends on the balance between the surface tension force, which tends to

preserve the drop’s spherical shape and the distorting forces (e.g., inertial
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Figure 9: (a) Dimensionless film thickness, h̄, with dimensionless film radius, r̄b, at different

times for an air bubble impacting on a solid surface experimental results of Vakarelski et al.

(2022) (open circles) and our numerical results (solid lines). (b) Bubble center of mass

dimensionless position, z̄cm, with dimensionless time, t̄, experimental (open circles) and

numerical (solid lines) results. The dimensionless parameters are Fr = 5184, Bo = 0.089,

Pl = 0.00, µr = 0.0181 and ρr = 0.0012, and Lmax = 14.

and plastic forces) compete with each other to deform the drop in different

ways. In this section, we first discuss the general effects of Fr, µr, and Pl,

on drop rise velocity and shape since these express the relative importance

of the distorting forces only. Then, the effect of Bo, which includes the

shape-persevering surface tension force, is discussed for flows dominated by

buoyancy (low values of Pl) and plastic (high values of Pl) effects. Since Bo

give a measure of the drop deformability (the ease with which the distorting

forces deform the drop), its effect on the drop velocity and shape depends on
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the dominating distorting force.

Figure 10(a) and (b) exhibit drop dimensionless terminal velocity (multi-

plied by Fr1/2 to remove the dependency of U on Fr), ūt, and drop dimen-

sionless terminal width (which gives a measure of the drop deformation),

D̄tW = DtW/D, respectively, as a function of Pl, for different values of Fr,

µr, and Bo. We take the purple line with squares (Fr = 200, µr = 0.1, and

Bo = 2) in Fig. 10 as the base scenario. Then, we change Fr, µr, and Bo one

at a time to evaluate their effects on drop rise velocity and shape. To assist in

the discussion about drop deformation in the rise stage, Fig. 11 exhibits the

drop shape at steady-state rise for some combinations of the dimensionless

parameters in Fig. 10. Figure 10(a) indicates that an increase in the Froude

number from 200 (purple line) to 2000 (yellow line) increases the drop ter-

minal velocity. Such a fact is explained by increased inertial forces relative

to viscous forces. In the dimensional analyses, viscous forces scale with the

buoyant force. Thus, an increase in Fr also increases inertial forces relative to

viscous forces. As a consequence, the drop width also increases with Fr (see

Fig. 10(b)) since the higher dynamic pressure in front of the drop tends to

distort it to an oblate shape (D̄tW > 1). The increase of the drop width can

be observed by comparing Fig 11(a) purple and yellow lines for Pl = 0.00,

µr = 0.1, Bo = 2, and Fr = 200 and 2000, respectively. The viscosity ratio

has the opposite effect of that of the Froude number. It enhances viscous

dissipation and tends to reduce drop terminal velocity, as indicated by the

blue line (compared to the purple line) in Fig. 10(a) for µr = 10. As a result,

the drop width slightly reduces, as shown in Fig. 10(b) and as can be seen by

comparing Fig 11(a) purple and blue lines, for Pl = 0.00, Bo = 2, Fr = 200,
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and µr = 0.1 and 10, respectively.
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Figure 10: (a) Drop dimensionless terminal velocity, ūt (×Fr1/2) and (b) drop dimension-

less terminal width, D̄tW , versus the plastic number, Pl.

Figure 10 also shows that an increase in the plastic number tends to reduce

both ūt and D̄tW . Whenever inside a viscoplastic material, drops rise inside

an envelope of yielded material that decreases in size with an increment in

plasticity (Deoclecio et al., 2021; Tsamopoulos et al., 2008). Therefore, the

drop movement becomes more restricted with an increase in Pl. It is to be

noted that Pl = 0.06 gives Yg = 0.18 (Deoclecio et al., 2021), which is close

to the drop entrapment condition. The yield stress has a dual nature, plastic

and viscous (Thompson and Soares, 2016), and a change in Pl only changes

the contribution of the yield stress to the total stress (e.g., τc = τy + µpγ̇c),
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Figure 11: Drop shape at steady-state rise for different sets of dimensionless parameters.

but not the total stress itself. Hence, for a fixed Fr, this velocity reduction

and movement restriction should predominantly be due to plastic effects and

not an increase in viscous effects. The drop width reduction with Pl does

not occur only because of the drop velocity reduction (which reduces the

dynamic pressure in front of the drop). Plastic effects act against the surface

tension force to form prolate drops (D̄tW < 1). Such prolate drops may be

explained by the viscosity field of the surrounding Bingham material, which

is shear thinning (e.g., µ1 = µp + τy/∥γ̇∥ and an increase in ∥γ̇∥ causes

a decrease in µ1). Figure 12 exhibits the yielded/unyielded (white/black)

regions around a rising drop (left) and the surrounding Bingham material

viscosity field (right) for Pl = 0.06, Fr = 200, Bo = 20, and µr = 0.1.

The viscoplastic material viscosity is smaller on the drop poles than on the
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drop equator. As a result, drops tend to acquire a more prolate shape to

penetrate the viscoplastic material through the lower viscosity region. This

is in agreement with the numerical results of Tsamopoulos et al. (2008). The

authors simulated steady-state rising bubbles in viscoplastic materials using

the Papanastasiou model (i.e., a regularized version of the Bingham model).

They calculated the strain rate near the bubble equator and the bubble poles

and found that the strain rate near the bubble equator was meager compared

to the strain rate near the bubble poles. Consequently, the bubble elongates

in the direction of its poles. The black line of Fig. 11(b) shows the drop

shape for the exact parameters of the drop in with purple line (which is the

same drop represented by the purple line in Fig. 11(a)), except for Pl = 0.04.

The shape of the former is close to a sphere (D̄tW ≈ 1), while the latter is

slightly oblate (D̄tW ⪆ 1).

An increasing Bo tends to enhance the deformation caused by the dom-

inating distorting force, and a reducing Bo tends to approximate the drop

shape to that of a sphere. Therefore, for low values of Pl, in which buoyancy

effects dominate over plastic effects, drops tend to acquire a more oblate

shape (an increase in D̄tW ) with an increase in Bo. This can be seen by

comparing the purple and green lines in Fig. 10(b) for Pl ≤ 0.02, Fr = 200,

µr = 0.1, and Bo = 2 and 20, respectively. The effect of an increase in

the Bond number on drop shape for low values of Pl can also be observed

by comparing Fig. 11(a) purple and green lines for Pl = 0.00, µr = 0.1,

Fr = 200, and Bo = 2 and 20, respectively. Since the drop width increases

with Bo, the drop velocity decreases due to its larger cross-sectional area, as

shown by the purple and green lines in Fig. 10(a).
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Yielded Region Viscosity Field

Figure 12: Yielded/unyielded (white/black) regions (left) and dimensionless viscosity field,

µ̄1, (right) for a drop at steady-state rise, Pl =0.06, Fr = 200, Bo = 20, and µr = 0.1

For high values of Pl, plastic effects are dominant, and the drop shape

becomes more prolate with an increase in Bo (a decrease in D̄tW ). This

is shown by the purple and green lines in Fig. 10(b) for Pl ≥ 0.04. The

drop shape change when increasing Bo for high values of Pl is depicted in

Fig. 11(b) black and red lines for Pl = 0.04, µr = 0.1, Fr = 200, and Bo = 2

and 20, respectively, where the latter is shown to be more prolate than the

former. As a result of the width reduction, the drop velocity increases when

increasing the Bond number, which can be seen by comparing the purple and

green lines in Fig. 10(a) for Pl ≥ 0.04.

30



4.2. Drop collision and ∆t̄ in Newtonian materials

Drop velocity and shape change during the impact on the top layer inter-

face, together with the rheological properties of the fluids, govern the coales-

cence process. This section evaluates the effects of Fr, µr, and Bo on drop

collision dynamics (velocity and shape change) and computational drainage

time in Newtonian surroundings. Figure 13(a) and (b) present the dimen-

sionless drop velocity (multiplied by Fr1/2), ū, and dimensionless width, D̄W ,

respectively, versus dimensionless time (divided by Fr1/2), t̄, for Pl = 0.00

and the same sets of the other of dimensionless parameters of Fig. 10. The

black dashed vertical line marks the time t̄ = 0.0 when the dimensionless

minimum distance between the drop and the interface is h̄min = 0.1, and the

colored dashed vertical lines mark the time t̄ at which h̄min = 0.01. We take

the purple line in Fig. 13 (for Fr = 200, µr = 0.1, and Bo = 2) as the base

case, and then change Fr, µr, and Bo one at a time. Moreover, two auxiliary

figures aid in the discussion, Fig. 14 and 15. Fig. 14 shows the drop and top

layer interface shape for h̄min = 0.1, 0.05, and 0.01 (the film thinnest part is

marked by a pair of black arrows), and Fig. 15 shows the draining film shape

for h̄min = 0.01.

In general, Fig. 13 shows that as the drop approaches the top layer in-

terface, its velocity decreases, and its width increases due to the conversion

of kinetic energy to surface energy. Then, the drop eventually retracts back

and rebounds. In the process, part of the kinetic energy is dissipated by

viscous effects. In the case of increasing the Froude number (purple line for

Fr = 200 and yellow line for Fr = 2000), the drop impact velocity increases,

and as a result, the drop width during the collision stage also increases. The
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Figure 13: Drop (a) dimensionless velocity, ū (×Fr1/2), and (b) dimensionless width,

D̄tW , versus dimensionless time, t̄ (/Fr1/2). The dimensionless parameters are Pl = 0.00,

(purple line) Fr = 200, µr = 0.1, Bo = 2, (yellow line) Fr = 2000, µr = 0.1, Bo = 2,

(blue line) Fr = 200, µr = 10, Bo = 2, and (green line) Fr = 200, µr = 0.1, Bo = 20.

higher impact energy leads to a more considerable pressure build-up in the

film and a more extensive deformation of the interfaces. As a result, the

film length is more prominent for Fr = 2000 than for Fr = 200. This can

be seen by comparing the drop and top layer interface shape in Fig. 14(a)

and (b) for Fr = 200 and 2000, respectively, and the film shape shown by

the purple and yellow lines in Fig. 15 for Fr = 200 and 2000, respectively.

For Fr = 200, the film is spherical, but for Fr = 2000, it is dimpled due

to the higher pressure build-up. Although a larger film length tends to slow

down the drainage process, a decrease in the computational drainage time is
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observed for an increase in the Froude number. As discussed in the previous

section, an increase in the Froude number increases the rising velocity due

to the reduction of viscous forces relative to inertial forces. Therefore, the

decrease in resistive viscous effects seems to overcompensate for the increase

in inertial effects (which tend to increase the film length) for the range of

parameters studied. In both cases, the simulation drainage time stopping

criterion (h̄min = 0.01) is reached while the drops are still colliding (bounc-

ing: the impact energy has not been fully dissipated by viscous effects) on

the interface. The occurrence of coalescence while bouncing on the interface

was observed experimentally by Zawala and Malysa (2011), and Vakarelski

et al. (2019) for bubbles in high-purity water.

Regarding the viscosity ratio effect, Fig. 13 shows that in the case of in-

creasing µr from 0.1 (purple line) to 10 (blue line), the drop velocity and

width change during the collision stage occurs more slowly. Due to the

higher viscous dissipation, the kinetic to surface energy transfer rate is re-

duced, and Fig. 13(b) shows that the drop width increase is less for µr = 10

than for µr = 0.1. Viscous dissipation dampens (smooths and slows down)

the collision process, and as a result, the drop does not redound (its veloc-

ity monotonically decreases to zero). Despite the smaller width and impact

velocity, the drainage time increases significantly with the viscosity ratio in-

crease. The drop stays mostly after the collision virtually static (ū ≈ 0),

resting on the interface, while the draining of the film proceeds. Vakarel-

ski et al. (2019) observed a similar behavior experimentally. The authors

assessed the effects of interface mobility on the interfacial coalescence of
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Figure 14: Drop and top layer interface shape for h̄min = 0.10 (third row), h̄min = 0.05

(second row), and h̄min = 0.01 (first row) for Pl = 0.00 and (a) Fr = 200, Bo = 2, and

µr = 0.1, (b) Fr = 2000, Bo = 2, and µr = 0.1, (c) Fr = 200, Bo = 2, and µr = 10, and

(d) Fr = 200, Bo = 20, and µr = 0.1. The film thinnest part is marked by a pair of black

arrows.
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Figure 15: Film dimensionless thickness, h̄, versus dimensionless surface length, s̄, at

h̄min = 0.01. The dimensionless parameters are Pl = 0.00, (purple line) Fr = 200,

µr = 0.1, Bo = 2, (yellow line) Fr = 2000, µr = 0.1, Bo = 2, (blue line) Fr = 200,

µr = 10, Bo = 2, and (green line) Fr = 200, µr = 0.1, Bo = 20.

bubbles. The coalescence time of mobile-surface bubbles was much less than

that of immobile-surface bubbles; however, the bouncing amplitude of the

former was more significant than the latter. For mobile-surface bubbles, a

substantial drop rebound was followed by rapid coalescence. Similar behav-

ior was observed for the lower viscosity ratio cases (purple and yellow lines),

where the film hydrodynamics boundary condition is closer to the bubble

with an mobile surface. h̄min = 0.01 is reached while the drops are still

bouncing on the interface. For the immobile-surface bubbles, the bouncing

was weaker, but the bubble stood on the interface for a longer time before

coalescing. This behavior is similar to our higher viscosity ratio case, where
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the film hydrodynamics boundary condition is closer to the bubble with an

immobile surface. Vakarelski et al. (2019) argue that these behaviors are due

to the more negligible viscous dissipation of the mobile-surface case, which

allows for a more extensive conversion of kinetic to surface energy (stronger

rebounding) but also faster drainage. Therefore, the film quickly reaches

small thicknesses for the lower viscosity ratio while the drop bounces (col-

lides) on the interface. Conversely, for the higher viscosity ratio, the film

thinning during the collision stage is small. As a result, a more significant

portion of the drainage process occurs during the resting stage, while the

drop is virtually static. Furthermore, the larger drop and top layer viscosity

lead to a stronger pressure gradient in the film. Such a mechanism forms a

dimple-shaped film, making the drainage process even more difficult due to

the restricted flow passage on the film periphery. The formation of dimpled

films due to the coupling of hydrodynamics forces and interface deformation

is also predicted by the lubrication theory (Chan et al., 2011). Figure 14(c)

and the blue line in 15 show that for µr = 10 the film becomes dimpled,

while for µr = 0.1 (Fig. 14(a) and purple line in Fig. 15) the film is spherical.

Such behavior agrees with the results of Aarts and Lekkerkerker (2008) and

Chi and Leal (1989). The former observed experimentally that film rupture

tended to occur at the film center (spherical-shaped film) and film periphery

(dimple-shaped film) during the interfacial coalescence of bubbles (low levels

of viscosity ratios) and drops (high levels of viscosity ratios), respectively.

The numerical results of Chi and Leal (1989) also indicate that increasing

the viscosity ratio tends to slow down the drainage process and make the

film acquire a dimpled-shape. Therefore, an increase in µr increases the
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drainage time due to an increasing viscous dissipation and the change in the

film boundary condition by the rheological properties of the inner phase.

Lastly, in the case of an increase in the Bond number from 2 (purple line)

to 20 (green line), the drop width increases in both the rise and collision

stages. Here, the viscosity of both phases is kept constant. As a result,

the film length increases, as depicted in Fig. 14(d) and by the green line in

Fig. 15. Since the buoyancy force acting on the drop is distributed over a

more significant film area, the pressure in the film decreases, and the drainage

process slows down. For Bo = 20, the drop has time to nearly complete

one rebound before h̄min = 0.01, while for Bo = 2, it does not. For small

values of the Bond number, surface tension is dominant, and the drop is

less deformed by the distorting forces. As a result, a smaller film is formed,

facilitating the film-thinning process. The results agree with the experimental

results Kočárková et al. (2013), who experimentally measured the thinning

rate of thin films created during the interfacial coalescence of gas bubbles in

Newtonian liquids. Furthermore, the authors verified that the drainage time

is a function of the film length (or film area), a function of the Bond number.

In summary, for Newtonian surroundings, an increase in Fr tends to

reduce the drainage time due to the reduction of viscous effects relative to

inertial effects, despite the drop’s larger width and higher impact velocity.

An increase in µr has the opposite effect. It increases the drainage time,

despite the reduction in drop width and impact velocity. In addition, it

contributes to the formation of dimpled films, which are harder to drain. A

higher drop and top layer viscosity also smooth the collision process, causing

the drainage process occurring during the drop collision and resting stages
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to lose and gain significance, respectively. Lastly, an increase in Bo tends to

enlarge the film length, which increases the drop rebound amplitude and the

drainage time.

4.3. Drop collision and ∆t̄ in Bingham materials

Plastic effects add extra complexity to the already complex coalescence

phenomenon. Therefore, this section is divided into two parts to facilitate

the discussion. First, we assess the influence of plastic effects on the drop

collision dynamics (drop velocity and shape) in Sec. 4.3.1, and second, we

discuss the impact of Pl on ∆t̄ in Sec. 4.3.2.

4.3.1. Drop collision in Bingham materials

In this section, we discuss plastic effects on drop collision dynamics. First,

we vary the plastic number while the other parameters are kept constant.

Then, we investigate how changes in Fr, µr, and Bo affect drop collision for

flows dominated by plastic effects.

Figure 16(a) and (b) present the dimensionless drop velocity (multiplied

by Fr1/2), ū, and dimensionless width, D̄W , respectively, versus dimension-

less time (divided by Fr1/2), t̄, for Fr = 200, Bo = 20, µr = 0.1, and Pl =

0.00, 0.02, 0.04, and 0.06. The black dashed line marks the time t̄ = 0.0

at which h̄min = 0.1, and the colored dashed lines mark the time at which

h̄min = 0.01 (we leave the discussion about ∆t̄ to the next section). Fur-

thermore, auxiliary Fig. 17 and 18 (described in the sequence), assist in the

assessment of plastic effects on drop collision dynamics. For the Newtonian

surrounding (purple line in Fig. 16), the drop velocity and width mono-

tonically decrease and increase, respectively, as it approaches the top layer
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interface. However, a different behavior is observed for the viscoplastic cases

(yellow, blue, and green lines). The drop velocity and width increase and

decrease, respectively, while approaching the interface. This behavior may

be explained by the interaction between the drop and the interface before

the collision moment. To exemplify this, Fig. 17 presents snapshots of a drop

and the yield surface around it during the rise, collision, and resting stages

for Pl = 0.04, Fr = 200, Bo = 20, and µr = 0.1 (blue line in Fig. 16). Figure

17(a) shows the drop rising at steady-state and surrounded by an envelope

of yielded material. As the drop approaches the top layer fluid (Fig. 17(b)

and (c)), the latter starts to deform, aiding in the yielding of the surrounding

material in front of the drop. With the increase of the yielded region in this

area, the drop rise velocity increases, and its width reduces as it approaches

the interface. Eventually, as the drop collision proceeds, kinetic energy is

converted to surface energy, and the drop width increases, as depicted by

Fig. 17(d), (e), and (f). In Fig. 17(f), the drop is approaching the resting

stage (ū ≈ 0.0), in which it rests on the interface (almost static) as the

drainage process goes on and the size of the yield envelope decreases. Be-

sides the kinetic and surface energy conversion, the buoyancy force pressing

the drop against the interface also contributes to this increase in the drop

width.

Figure 18 shows the drop and top layer interface shape for each condition

in Fig. 16 at the moment h̄min = 0.10, 0.05, and 0.01 (the film thinnest part is

marked by a pair of black arrows). As can be seen, the drop width reduction

is enhanced by an increase in the plastic number, resulting in a shortening of
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Figure 16: Drop (a) dimensionless velocity, ū (×Fr1/2), and (b) dimensionless width,

D̄tW , versus dimensionless time, t̄ (/Fr1/2). The dimensionless parameters are Fr = 200,

Bo = 20, µr = 0.1, and Pl = 0.00 (purple line), 0.02 (yellow line), 0.04 (blue line), and

0.06 (green line).

the film’s length. Figure 18 also conveys that plasticity makes the film more

spherical. The tendency to form spherical-shaped films with an increase in

the level of plasticity may be caused by two plastic effects present in the rise

stage. The first effect is the reduction of the drop rising velocity with Pl.

The second effect is the drop width reduction caused by the viscosity field

of the Bingham material. Figure 19(a) and (b) exhibit the dimensionless

viscosity field, µ̄1, in the film (in the (s, h) coordinate system) and around

the drop outside the film (in the (r, z) coordinate system), respectively, at

the moment h̄min = 0.01 for Pl = 0.04, Fr = 200, Bo = 2, and µr = 10.

40



(c) (f)

(b) (e)

(a) (d)

Figure 17: Yield surface around a drop rising and impacting on the top layer interface for

Pl = 0.04, Fr = 200, Bo = 20, µr = 0.1 at steady-state rise (a), approaching the interface

at t̄(/Fr1/2) = -6.35 (b) and -1.60 (c), colliding on the interface at t̄(/Fr1/2) = 0.30 (d)

and 1.25 (e), and resting on the interface at t̄(/Fr1/2) = 2.75 (f).
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Pl = 0.00 Pl = 0.02 Pl = 0.04 Pl = 0.06

h̄min = 0.01

h̄min = 0.05

h̄min = 0.10

Figure 18: Drop and top layer interface shape for h̄min = 0.10 (third row), h̄min = 0.05

(second row), and h̄min = 0.01 (first row) for Fr = 200, Bo = 20, µr = 0.1, and (a)

Pl = 0.00, (b) Pl = 0.02, (c) Pl = 0.04, and (d) Pl = 0.06. The film thinnest part is

marked by a pair of black arrows.
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As shown in Fig. 19(a), the viscosity in the film increases with s̄. Hence, the

film thins more quickly in the film center region than in the film periphery

region. Moreover, Fig. 19(b) shows that the viscosity of the surrounding

material close to the drop equator is higher than that close to the drop poles

(as in the rise stage). Therefore, the drop width increase that eventually takes

place during the collision stage seems to be hampered by plastic effects of the

surrounding material. Sanjay et al. (2021) studied the merging of bubbles

with a top layer gas in Bingham materials. They also observed a hampering of

capillary waves and the shape change of the cavity formed after film rupture

due to the yield stress of the surrounding. The impact of plasticity and

surface tension on the interface deflection can be observed in Fig. 20, which

illustrates the dimensionless position z̄ of the interface during the collision

for various Pl and Bo values. The curves terminate at h̄min = 0.01. The

outcomes signify that plasticity has a damping effect on drop collision, leading

to a reduction in the amplitude and rate of interface deflection, irrespective

of the Bond number value. Furthermore, a decrease in the Bond number

also leads to a decrease in the maximum interface deformation due to the

interface’s lower deformability. Thus, our results suggest that an increase in

plasticity and/or surface tension results in a decrease in drop rebound, which

is observed only for Bo = 20 and Pl = 0.00 in Fig. 20.

Fig. 21(a) and (b) exhibit the dimensionless drop velocity (multiplied by

Fr1/2), ū, and dimensionless width, D̄W , respectively, versus dimensionless

time (divided by Fr1/2), t̄, for Pl = 0.04 and the same sets of Fr, µr,

and Bo of Fig. 13 for Pl = 0.00. We take the purple line (Pl = 0.04,
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(a) (b)

Figure 19: Dimensionless viscosity field (a) in the film in the (s, h) coordinate system

and (b) around the drop in the (r, z) coordinate system at the moment h̄min = 0.01 for

Pl = 0.04, Fr = 200, Bo = 2, and µr = 10. Gray areas correspond to Fluid 2 (drop and

top layer).

Fr = 200, µr = 0.1, and Bo = 2) as the base scenario, and then change Fr,

µr, and Bo one at a time. The black dashed line marks the time t̄ = 0.0

at which h̄min = 0.1, and the colored dashed lines mark the time at which

h̄min = 0.01. Additionally, Fig. 22 presents the film shape for h̄min = 0.01

(except for Pl = 0.04, the other dimensionless parameters are the same

as Fig. 15). The changes in ū and D̄W for different values of Fr (purple

line for Fr = 200 and yellow line for Fr = 2000) are similar to those in

the Newtonian case. The drop impact velocity and width increase with an

increase in the Froude number. The purple and yellow lines in Fig. 22, for

Fr = 200 and 2000, respectively, also depict that, as in the Newtonian case,

the film length increases with the Froude number. Nevertheless, both films
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Figure 20: Interface dimensionless position, z̄, with dimensionless time, t̄, for Fr = 200,

µr = 0.1, Bo = 20 (solid lines) and 2 (dashed lines), and Pl = 0.00 (purple lines), 0.02

(yellow line), 0.04 (blue line), and 0.06 (green line).

have a spherical shape, while for the Newtonian case, the film for Fr = 2000

forms a dimple. A similar behavior for an increase in the viscosity ratio as

in the Newtonian case is also observed: the drop velocity and width change

during the impact on the interface is smoother over a more extended period.

Additionally, Deoclecio et al. (2021) have shown that the critical plastic

number for drop entrapment reduces with an increase in µr. Therefore, for

the higher viscosity ratio (blue line in Fig. 21), the drop is closer to the

entrapment condition than for the lower viscosity ratio. Hence, the velocity

reduction with µr is more significant than for the Newtonian scenario. The

drop rise velocity is close to zero for Pl = 0.04 and µr = 10. The blue line

in Fig. 22 for µr = 10 illustrates that the film remains spherical even for the
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higher viscosity ratio case.
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Figure 21: Drop (a) dimensionless velocity, ū (×Fr1/2), and (b) dimensionless width,

D̄tW , versus dimensionless time, t̄ (/Fr1/2). The dimensionless parameters are Pl = 0.04,

(purple line) Fr = 200, µr = 0.1, Bo = 2, (yellow line) Fr = 2000, µr = 0.1, Bo = 2,

(blue line) Fr = 200, µr = 10, Bo = 2, and (green line) Fr = 200, µr = 0.1, Bo = 20.

For an increase in the Bond number (purple and green lines for Bo = 2

and 20, respectively, in Fig. 21), the drop rise and impact velocities (t̄ ⪅ 0.0)

increase, differently from the Pl = 0.00 case. This effect is due to the drop

width reduction with Pl, which is more pronounced for higher values of Bo.

However, as the drop collision proceeds and kinetic energy is converted to

surface energy, the drop width for Bo = 20 becomes larger than for Bo = 2.

As a result, the film length for Bo = 20 eventually becomes more prominent
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Figure 22: Film dimensionless thickness, h̄, versus dimensionless surface length, s̄, at

h̄min = 0.01. The dimensionless parameters are Pl = 0.04, (purple line) Fr = 200,

µr = 0.1, Bo = 2, (yellow line) Fr = 2000, µr = 0.1, Bo = 2, (blue line) Fr = 200,

µr = 10, Bo = 2, and (green line) Fr = 200, µr = 0.1, Bo = 20.

than for Bo = 2, as shown by the green line in Fig. 22.

4.3.2. The effect of Pl on ∆t̄

In this section, we discuss the influence of plasticity on the initial stage of

the film drainage process. The computational drainage time, ∆t, is used to

give a measure, or an indication, of how plasticity influences the coalescence

time. Figure 23 presents the dimensionless computational drainage time

(divided by Fr1/2), ∆t̄, as a function of Pl for the same sets of Fr, µr, and

Bo of Fig. 10. In the base scenario (purple line for Fr = 200, µr = 0.1, and

Bo = 2), the computational drainage time increases with Pl. The same trend
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is observed for the higher Froude number scenario (yellow line for Fr = 2000)

and the higher viscosity ratio scenario (blue line for µr = 10). The changes

in ∆t̄ with Fr and µr are the same for all values of Pl. That is, ∆t̄ decreases

and increases with an increase in Fr and µr, respectively. For the higher

Bond number scenario (green line for Bo = 20), an inverse trend is observed,

and ∆t̄ decreases with Pl.

 0.1

 1

 10

 100

0.00 0.02 0.04 0.06

D
im

en
si

o
n
le

ss
 c

o
m

p
u
ta

ti
o
n
al

 d
ra

in
ag

e 
ti

m
e,

 ∆
t−
 /

 F
r
1

/2

Plastic number, Pl

Fr = 200; Bo = 2; µr = 0.1
Fr = 2000; Bo = 2; µr = 0.1
Fr = 200; Bo = 2; µr = 10
Fr = 200; Bo = 20; µr = 0.1

Figure 23: Dimensionless computational drainage time, ∆t̄ (/Fr1/2), versus the plastic

number, Pl.

As discussed in the previous sections, the drainage time is a function of

the film geometry (film length and shape) and the rheological properties of

the phases (e.g., interface mobility and viscous resistance). Plastic effects

facilitate coalescence by forming prolate drops and spherical films on the one

hand but make it more difficult by imposing a more excellent resistance to
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the flow of the film on the other hand. To illustrate this, Fig. 24 shows the

dimensionless stress field in the film for Fr = 200, Bo = 2, µr = 10, and

different values of Pl at h̄min = 0.01. Here, we try to elucidate how the film

shape and how the magnitude (on average) of the stress in the film (which

is linked to the rheological properties of the materials) change with Pl. It

is worth noting that τ̄y = Pl. The gray area corresponds to the Newtonian

fluids of the drop and top layer interface, and the white area on the right

to the region of the surrounding material outside the film. For Pl = 0.00

(Fig. 24(a)), the film is dimpled, and a region of high stress is found on the

film throat, while the stress in the film center region is small. This agrees

with the theoretical results of Abid and Chesters (1994), who predicted that

for dimpled films with partially mobile interfaces the maximum shear stress

occurs close to the film rim. For Pl = 0.02 (Fig. 24(b)), a similar trend is

verified, but the film length and dimple size are smaller. The stress in the

central region of the film is slightly above the yield stress (||τ̄ || ⪆ τ̄y). For

Pl = 0.04 (Fig. 24(c)), the film length reduces, and it becomes spherical.

Due to the shorter film, the buoyancy force is distributed over a smaller

area, increasing the stress in the film, which is also slightly above the yield

stress. A similar behavior is verified for Pl = 0.06 (Fig. 24(d)). The film

is even shorter, and the stress in the film is slightly above the yield stress.

Therefore, increasing the plasticity of the surrounding materials makes the

film more spherical and shorter, which facilitates drainage. This mechanism

is more pronounced for higher values of the Bond number, which explains

why ∆t̄ decreases with Pl for Bo = 20. The minimum stress in the film

is slightly above the yield stress in all cases, meaning that the strain rate
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in the film is low (||τ̄ || = τy + µp||γ̇|| ⪆ τ̄y, so ∥γ̇∥ ≈ 0.0). Hence, the

average viscosity in the film (e.g., µ1 = µp + τy/∥γ̇∥) increases with Pl,

making the drainage process more difficult. For lower values of Bo, surface

tension is stronger, and the drop is less distorted by the distorting forces.

In this case, the imposed flow resistance by the plasticity of the surrounding

material overcomes the facilitation promoted by the film geometry and as a

consequence, ∆t̄ increases with Pl. Therefore, the flow-arresting property

of the yield stress is counterbalanced by the film geometry change induced

by it, which makes the determination of the arresting condition of the film

challenging.

Goel and Ramachandran (2017) conducted a study on the drainage of

Bingham materials films utilizing the lubrication theory and scaling analyses.

The interfaces were immobile and the drops approached each other at a

constant velocity (binary collision). The study focused on the drainage time

as a function of the capillary number Ca = F/(σR), where F is the force

pressing the drops together and R is the drops radius. While the interfaces’

deformation and film thickness in our work are larger than those studied with

the lubrication theory, and the constant force approach is more appropriate

for interfacial coalescence than the constant velocity used by the authors,

we attempt to make a qualitative comparison between their findings and our

own. In the authors’ study, the addition of a yield stress to the film materials

was found to increase the drainage time for all capillary numbers. However,

as pointed out by Thompson and Soares (2016), the yield stress has a dual

nature, viscous and plastic. This can be seen in the definition of viscosity

µ = ||τ ||/||γ̇|| = τy/||γ̇|| + µp, where an increase in τy (keeping µp constant)
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Figure 24: Dimensionless stress field ∥τ̄∥ at h̄min = 0.01 for Fr = 200, Bo = 2, µr = 10,

and Pl = τ̄y = (a) 0.00, (b) 0.02, (c) 0.04, and (d) 0.06. The gray areas correspond to

Fluid 2 (Newtonian) and the white area corresponds to the region in Fluid 1 (viscoplastic)

outside the film.
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results in an increase in viscous resistive forces. Therefore, we argue that

the increase in drainage time observed by the authors may be due to an

increase in the viscosity of the surrounding, which has a similar impact of

decreasing the Froude number in our study, and not necessarily of increasing

the level of plasticity. In fact, we have shown that for low surface tension

regimes, the drainage time may be reduced with an increase in Pl due to the

formation of a shorter and spherical film. The authors scale the film length

as
√
hR for spherical films. Therefore, for a constant force F , the pressure

gradient in the film increases because the film length decreases during the

drainage process. This caused the magnitude of the stress to increase as the

film thickness decreased, making these films not susceptible the be frozen

by the yield stress. In contrast, our simulations have revealed an opposite

trend, as illustrated in Fig. 25, which displays the dimensionless stress field

for Fr = 200, Bo = 2, µr = 10, and Pl = 0.04 at h̄min = 0.050, 0.025, and

0.010. Our findings suggest that, on average, the stress level in a spherical

film can decrease as the film thickness reduces. Therefore, our results imply

that the drainage of spherical films may be vulnerable to being arrested by

the yield stress as the drainage process progresses. Lastly, the authors argued

that plastic effects may freeze only dimpled films since these films present

a region of minor stress in the film center. However, considering the rise

and collision dynamics, dimpled films are formed for low levels of plasticity,

which may not be sufficient to arrest the drainage process. For higher levels

of plasticity, the film is spherical and shorter, making the drainage process

arresting by yield stress more difficult. Therefore, dimpled films observed for

high value of τy in their work may not be obtainable in our simulations.
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Figure 25: Dimensionless stress field ∥τ̄∥ for Fr = 200, Bo = 2, µr = 10, and Pl = τ̄y =

0.04 at h̄min = (a) 0.050, (b) 0.025, and (c) 0.010. The gray areas correspond to Fluid 2

(Newtonian) and the white area corresponds to the region in Fluid 1 (viscoplastic) outside

the film.
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5. Concluding remarks

We have investigated the effects of the surrounding material plasticity on

drop rise, collision with a liquid-liquid interface, and the initial stage of the

film drainage process. The coalescence process, assessed based on the com-

putational drainage time, depends on the film geometry (length and shape)

and the rheological properties of the fluids. The decrease in viscous effects

with an increase in the Froude number tends to overcompensate for the rise

in inertial effects, which increase the film length and facilitate the formation

of dimple-shaped films. As a result, the drainage time decreases with an

increase in the Froude number. An increase in the viscosity ratio has the op-

posite effect. It enhances viscous dissipation and reduces inertial effects. In

addition, the change in the film boundary condition with an increase in the

viscosity ratio contributes to the formation of dimpled films. Consequently,

an increase in the viscosity ratio tends to increase the drainage time. The

drop deformation caused by plastic effects tends to facilitate the film drainage

process by reducing the film length and forming spherical films. In contrast,

the changes in the rheological parameters of the surrounding material tend

to make the drainage process more difficult. The Bond number involves the

shape-preserving surface tension force. An increase in Bo facilitates the de-

formation induced by the dominating distorting force, which enhances the

influence of the film geometry on the beginning of the coalescence process.

For small values of Bo, the interfaces are less distorted and the importance of

the rheological properties of the phases, relative to the film geometry, on the

coalescence time increases. For low values of Bo, an increase in the resistive

force due to plasticity increases the drainage time with Pl. For high values of
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Bo, the influence of the film geometry becomes more critical, and an increase

in Pl facilitates the initial stage of the drainage process. The film arrest due

to plastic effects depends on the balance between the film geometry and the

level of plasticity of the surrounding material. Despite the low-stress region

in dimple-shaped films, these were observed only for low levels of plasticity,

in which the yield stress may not arrest the drainage process. An increase

in the level of plasticity changes the film geometry in a way that hinders its

arrest. Thus, the two opposing plastic effects make it difficult to determine

the film’s arresting condition.
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