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Drop coalescence in viscoplastic materials is present in various industrial applications and the environment. The plasticity of the surrounding material affects drop rise, collision, and film drainage dynamics, and knowledge about these is essential for designing and operating industrial mixer and separator units. Despite its importance, the coalescence of drops in yield stress materials is not entirely understood. In this work, we investigate the effects of the surrounding material plasticity on the rise and interfacial coalescence initiation of Newtonian drops using direct numerical simulations. Plastic effects contribute to the formation of smaller and spherical films, which facilitate the film drainage process on the one hand, but also to an increase in the resistance of the film to flow, which makes the drainage process more difficult on the other hand. The fluids' interfaces are less deformable for high surface tension regimes, and the flow resistance effects become more significant than the film shape change effects. As a result, the drainage time tends to

Introduction

Drop coalescence in viscous liquids is a fundamental problem in fluid mechanics, and it is relevant in the environment and many industrial mixing and separation processes. In many cases, the surrounding fluid is a yield stress material, such as in processing food, cosmetics, medicines, waste, slurries, inks, and crude oil, to name a few (Dubash andFrigaard, 2004, 2007;[START_REF] Goel | The suppression of droplet-droplet coalescence in a sheared yield stress fluid[END_REF][START_REF] Tripathi | Bubble rise dynamics in a viscoplastic material[END_REF][START_REF] De Souza Mendes | Thixotropic elasto-viscoplastic model for structured fluids[END_REF]. Depending on the application, phase separations (rise and coalescence) may be desirable or undesirable. Drop rise and coalescence are desirable in treating crude oil and liquid-liquid extraction to recover the added value component and discard treated residues. On the other hand, bubbles and drops entrapped are desirable in food processing, such as chocolate, ketchup, and mayonnaise, to improve their taste. Their entrapment is also desirable in the processing of cosmetic lotions and medicine. This work uses the term drop as the general case regardless of the density and viscosity ratios. In contrast, the term bubble is reserved for the case where the internal phase is a gas (small density and viscosity ratios).

Understanding the basic mechanisms of coalescence is fundamental to the scale-up of industrial processes [START_REF] Charin | On the dynamic behavior of rising droplets[END_REF]. For instance, the con-ception of coalescence models based on single-drop systems may be used as an input for predicting particle size distribution in industrial oil/water separators using the Population Balance Equation approach [START_REF] Deoclecio | Cfd modeling of the creaming zone of batch gravity separation with coalescence[END_REF]. Coalescence may take place between two drops, or between a drop and a fluid-fluid interface. The coalescence process is similar in both, and in some cases theoretical solutions may even become the same via the equivalent radius principle [START_REF] Chesters | Modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding[END_REF][START_REF] Oldenziel | Measurements of liquid film thickness for a droplet at a two-fluid interface[END_REF]. It may be divided into four sequential steps: collision, film drainage, film rupture, and merging [START_REF] Goel | The suppression of droplet-droplet coalescence in a sheared yield stress fluid[END_REF][START_REF] Liao | A literature review on mechanisms and models for the coalescence process of fluid particles[END_REF][START_REF] Mohamed-Kassim | Drop impact on a liquid-liquid interface[END_REF][START_REF] Chesters | Modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding[END_REF]. The collision step results from the action of external forces (e.g., hydrodynamics, and gravity). For interfacial coalescence, the collision is a function of the drop rise dynamics, which depends on the density and rheological properties of the phases, drop size, surface tension, and interface mobility [START_REF] Balla | Effect of viscosity and density ratios on two drops rising side by side[END_REF][START_REF] Charin | On the dynamic behavior of rising droplets[END_REF][START_REF] Chhabra | Bubbles, drops, and particles in non-Newtonian fluids[END_REF][START_REF] Clift | Retraction of a viscoplastic liquid sheet[END_REF][START_REF] Zenit | Path instability of rising spheroidal air bubbles: a shape-controlled process[END_REF]. The drop collision is a highly dynamic process, and it sets the initial condition for the film drainage step, thus playing a crucial role in the coalescence phenomenon [START_REF] Zawala | On importance of external conditions and properties of the interacting phases in formation and stability of symmetrical and unsymmetrical liquid films[END_REF][START_REF] Zawala | Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[END_REF]. During the collision step, a thin film of the surrounding materials is trapped between the drop and the interface (or between two drops). This film must be drained out, so the fluid interfaces may come nearby for coalescence. The drainage process usually is the coalescence controlling rate step [START_REF] Chesters | Modelling of coalescence processes in fluid-liquid dispersions: a review of current understanding[END_REF][START_REF] Kamp | Drop coalescence in technical liquid/liquid applications: A review on experimental techniques and modeling approaches[END_REF][START_REF] Henschke | Determination of a coales-cence parameter from batch-settling experiments[END_REF]. Film rupture happens when the film thickness is small enough that non-hydrodynamic forces (e.g. van der Waals) destabilize and break the film. After film rupture, the last step, merging the fluid bodies driven by surface tension, takes place.

During the drainage process, the external squeezing forces give rise to a radial pressure gradient within the draining film that deforms the fluid interfaces and acts against viscous forces to drain out the surrounding phase [START_REF] Chan | Film drainage and coalescence between deformable drops and bubbles[END_REF]. The viscosity ratio between the phases (µ r = µ d /µ s << 1, where µ d is the viscosity of the drop and µ s is the viscosity of the surrounding) controls (for contaminant-free systems) the fluid interface mobility. Experimental results of [START_REF] Aarts | Droplet coalescence: drainage, film rupture and neck growth in ultralow interfacial tension systems[END_REF] of gas bubbles and liquid drops coalescence with an interface indicate that the film rupture tends to occur at the film center for the former and on one of the film sides for the latter. For mobile interface systems (low viscosity ratio), as in the case of bubbles, the pressure gradient in the film is weak and the film tends to have a spherical shape (minimum thickness at the film center and increasing monotonically with film radius). For immobile or partially mobile interfaces (high viscosity ratio), as in the case of liquid drops, the pressure gradient in the film is more substantial and the film tends to form a dimple, where the minimum film thickness is at the film periphery [START_REF] Chi | A theoretical study of the motion of a viscous drop toward a fluid interface at low reynolds number[END_REF][START_REF] Oldenziel | Measurements of liquid film thickness for a droplet at a two-fluid interface[END_REF][START_REF] Liu | Coalescence of bubbles with mobile interfaces in water[END_REF]. The surface tension coefficient and drop collision dynamics also influence the film shape. [START_REF] Kočárková | Film drainage of viscous liquid on top of bare bubble: Influence of the bond number[END_REF] experimentally investigated the effect of the Bond number (the ratio of buoyancy to surface tension forces) on drop coalescence. The authors found that an increase in the Bond number tends to increase the film surface area and reduce the average pressure in the film. This increased the drainage time. [START_REF] Zawala | Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[END_REF] assessed the effect of the drop impact velocity on the film length and drainage time. An increase in the impact velocity led to more significant drop width and film length increase due to the conversion of kinetic to surface tension energy. This, consequently, led to an increase in the drainage time. Also, experimental results of [START_REF] Doubliez | The drainage and rupture of a non-foaming liquid film formed upon bubble impact with a free surface[END_REF] show that collisions of tiny bubbles with small impact velocities increase the probability of coalescence to happen.

It is common practice to hinder or facilitate coalescence by adding or removing surfactants on the interface, respectively. Besides changing the boundary conditions for the flow in the film by rendering the interfaces immobile, the contamination of the interfaces also affects the resultant shortrange non-hydrodynamic forces that govern the film rupture. Surfactants adsorbed on the interface generally stabilize the film by strengthening the non-hydrodynamic repulsive forces [START_REF] Zawala | On importance of external conditions and properties of the interacting phases in formation and stability of symmetrical and unsymmetrical liquid films[END_REF][START_REF] Goel | The suppression of droplet-droplet coalescence in a sheared yield stress fluid[END_REF]. Thus, for Newtonian films, which most studies focus on, interfacial coalescence may be inhibited by adding a surfactant to the interface to prevent the film's rupture. However, if the surrounding material presents a viscoplastic behavior, coalescence may be prevented before the short-range non-hydrodynamic forces come to play. The first concept of viscoplastic fluid was proposed by [START_REF] Bingham | Fluidity and Plasticity[END_REF] who states that viscoplastic materials behave like a solid when the applied stress is below the limit called yield stress, and behave like a fluid when the applied stress is higher than the yield stress.

Therefore, drops and bubbles may become entrapped if the buoyancy force is insufficient to overcome the surrounding phase yield stress [START_REF] Dubash | Propagation and stopping of air bubbles in carbopol solutions[END_REF][START_REF] Deoclecio | Bubble entrapment condition in bingham materials[END_REF], preventing the collision step from happening. Coalescence can also be inhibited in the case of mobile drops if the stress in the draining film becomes less than the surrounding mate-rial yield stress. Even if coalescence is not prevented, the yield stress alters the collision and film drainage dynamics, which influences the coalescence rate (Hartland andJeelani, 1986, 1987;[START_REF] Goel | The suppression of droplet-droplet coalescence in a sheared yield stress fluid[END_REF].

Thus, understanding the drainage dynamics of viscoplastic films may aid in selecting appropriate strategies to stabilize or destabilize a dispersed system; for instance, avoiding a waste of emulsifiers and demulsifiers [START_REF] Tchoukov | Role of asphaltenes in stabilizing thin liquid emulsion films[END_REF]. Hartland andJeelani (1986, 1987) obtained expressions for the freezing thickness (when the drainage process come to a halt due to the yield stress) of dimpled and planar films of Bingham materials, respectively.

Nevertheless, these studies suffer from ad-hoc assumptions about the drop impact condition and the film shape. [START_REF] Goel | The suppression of droplet-droplet coalescence in a sheared yield stress fluid[END_REF] argued these ad-hoc assumptions lead to incorrect predictions of the level of plasticity required to inhibit coalescence. The authors used scaling analysis and lubrication theory to model the drainage dynamics of films of Bingham materials. According to the authors' results, the yield stress cannot arrest spherical films. Only dimpled films can be frozen before a thickness at which intermolecular forces assist the drainage process. [START_REF] Sanjay | Bursting bubble in a viscoplastic medium[END_REF] numerically studied the bursting of bubbles at a fluid-fluid interface in Bingham materials. The authors model the last step of the coalescence process, the merging of the fluid bodies after film rupture. The bubbles were spherical and the dynamics of bubble collision and film drainage were not assessed.

They showed that the free surface converges to a non-flat final equilibrium shape which depends on the balance between the surrounding material yield stress and surface tension. They also showed that the yield stress damps the capillary waves and slows down the flow during the merging step.

Studies on the drop coalescence process in viscoplastic materials, especially the collision and film drainage steps, are still rare in the literature.

Consequently, the effects of the yield stress on drop collision and film drainage dynamics are not entirely understood. By using time-dependent numerical simulations, we attempt to deepen the understanding of the role played by the yield stress of the surrounding fluid on the coalescence process, taking into account the drop rise dynamics before the collision. We focus our study on the collision and the initial stage of film drainage, which may be seen as an indicator of the coalescence rate. The Bingham model is used to mimic the yield stress characteristics of the viscoplastic material. The rest of the paper is organized as follows. Section 2 describes the problem formulation and presents the computational domain, boundary conditions, governing equations, and dimensionless numbers. Next, Sec. 3 shows validation tests to verify the solver accuracy and grid dependency. Then, Sec. 4 presents the results and discussion. Finally, Sec. 5 summarizes the main conclusions.

Problem Formulation

We investigate the rise and interfacial coalescence of Newtonian drops in Bingham materials using direct numerical simulations in an axisymmetric geometry. In this section, we first present the computational domain along with the boundary and initial conditions. Then, we give the governing equations and the important dimensionless parameters. Gravity acts in the negative z-direction. The surrounding is a viscoplastic fluid (Fluid 1), and the drop and the interface are composed of the same Newtonian fluid (Fluid 2). (b) A scheme representing the drop impact on the top layer interface and trapping of a film of the surrounding viscoplastic material. The film shape is studied in a non-orthogonal coordinate system (s, h), where s follows the drop surface and h points to the direction of the closest point on the interface from the drop surface.

Computational domain

closest point on the upper fluid surface (the top layer) from the point (s, 0) on the lower fluid surface (the drop). Hence, the h-direction is generally not normal to the drop surface. Due to the computational cost of performing numerical simulations up to the film rupture thickness (in the range of the non-hydrodynamic forces), we infer the effect of the yield stress on the coalescence time based on the computational drainage time, ∆t, defined as the time elapsed between the minimum distance between the drop and the top layer interface thins from h min = 0.1 D to 0.01 D (note that the film rupture thickness is generally less than 0.01 D).

Governing equations

In the present simulations, the fluids are considered incompressible, and the governing mass and momentum conservation equations are as follows

∇ • u = 0, (1) 
ρ ∂u ∂t + u • ∇u = -∇p + ∇ • µ ∇u + ∇u T + f σ -ρg. (2) 
Here, u (u r , u z ) is the velocity field, where u r and u z are the velocity components in the radial (r) and axial (z) directions, respectively; p is the pressure field; g = ge z where g is the acceleration due to gravity and e z is the unit vector in the negative z-direction; ρ is the density field; µ is the viscosity field; t is time; f σ is the local density of capillary force per unit volume and is equal to f σ = σκnδ s , where σ is the surface tension coefficient, κ is the mean curvature of the interface, δ s is the Dirac delta function, which is zero everywhere except at the interface, and n is the unit normal to the interface.

The bulk fluid is viscoplastic (Fluid 1), while the drop and the interface are Newtonian fluids (Fluid 2). The respective densities of the two liquids, ρ 1 and ρ 2 , are constants. The viscosity µ 2 of the Newtonian phase is constant while the viscosity of the bulk viscoplastic phase, µ 1 , is modeled using a regularized version of the Bingham constitutive law given by [START_REF] Bingham | Fluidity and Plasticity[END_REF][START_REF] Frigaard | On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[END_REF][START_REF] Allouche | Static wall layers in the displacement of two visco-plastic fluids in a plane channel[END_REF][START_REF] Balmforth | Yielding to stress: recent developments in viscoplastic fluid mechanics[END_REF])

µ 1 = µ p + τ y ∥ γ∥ + ϵ . (3) 
Here, µ p is the plastic viscosity of the Bingham model; τ y is the yield stress;

∥ γ∥ = (1/2) γ : γ is the Frobenius norm of the strain rate tensor γ. The regularization parameter ϵ is calculated as

ϵ = τ y N µ c , (4) 
where µ c = µ p + τ y / γc is the characteristic viscosity based on the characteristic strain rate γc (defined later) and N is the dimensionless regularization parameter whose value is large. We conduct a convergence test to optimize the value of N , presented in Sec. 3. The yielded (unyielded) regions are separated based on the von Mises criterion given as ∥τ ∥ > τ y (∥τ ∥ ≤ τ y ),

where ∥τ ∥ is the magnitude of the deviatoric stress tensor.

The advection equation for the volume fraction field α is solved to track the interfaces separating the fluids,

∂α ∂t + u • ∇α = 0. (5) 
α is taken as 0 and 1 for Fluid 1 and Fluid 2, respectively. The density ρ and viscosity µ fields are then calculated based on volume fractions in each grid cell as

ρ = ρ 1 (1 -α) + ρ 2 (α) (6) µ = 1 1-α µ 1 + α µ 2 . ( 7 
)

Non-dimensional parameters

The following scalings are used to non-dimensionalize the governing equations and boundary conditions:

(r, z) = (r/D, z/D), (s, h) = (s/D, h/D), ū = u/U, t = t/t c , P = P/ρ 1 U 2 , μ = µ/µ c , ρ = ρ/ρ 1 , γ = γ/ γc (8) 
The characteristic time t c is defined as t c = D/U and the characteristic strain rate γc is defined as γc = 1/t c = U/D. The characteristics velocity U is defined by balancing the buoyancy (τ b = |∆ρ|gD) and viscous (τ v = τ y + µ p U/D) stresses as

U = |∆ρ|gD 2 µ p - τ y D µ p , (9) 
which includes a contribution of the yield stress. The characteristic viscosity µ c is defined as µ c = µ p + τ y / γc . It is worth noting that µ c includes the contribution of the yield stress, as recommended by [START_REF] Thompson | Viscoplastic dimensionless numbers[END_REF]. Using this scaling we get the following dimensionless parameters that describe the problem of interest.

Bo = |∆ρ|gD 2 σ , F r = ρ 1 U 2 |∆ρ|gD = ρ 1 U 2 τ y + µ p γc , P l = τ y τ y + µ p γc = τ y |∆ρ|gD , µ r = µ 2 µ c , ρ r = ρ 2 ρ 1 .
The Bond number, Bo, represents the relative importance of the buoyancy force to the capillary force, while the Froude number, F r, represents the relative importance of inertial forces to the buoyancy force. It is worth noting that the characteristic velocity may also be written as U = F r|∆ρ|gD/ρ.

Finally, the plastic number, P l, indicates the plastic nature of the fluid, and its value ranges from 0 to 1. P l = 0 means that the yield stress is zero (Newtonian fluid). In contrast, P l = 1 implies that the liquid is entirely plastic and remains undeformed. Here, P l = Y g /3, where Y g is the yield stress parameters, first defined by [START_REF] Beris | Creeping motion of a sphere through a bingham plastic[END_REF]. [START_REF] Deoclecio | Bubble entrapment condition in bingham materials[END_REF] calculated that bubbles are entrapped in yield stress materials if Y g > 0.20 ± 0.02. Since the viscosity of Fluid 1 is not constant, we define the viscosity ratio, µ r , as the viscosity of Fluid 2 over the characteristic viscosity, µ c . The density ratio ρ r = ρ 2 /ρ 1 is fixed (= 0.1) in all the simulations.

The momentum equation can be represented in terms of these dimensionless parameters as ρ

∂ ū ∂ t + ū • ∇ū = -∇ P + 1 F r ∇• μ ∇ū + ∇ū T + 1 F rBo κnδ s - 1 F r ρ |1 -ρ r | e z . (10) 
In Eq. 10, the plastic number is hidden inside the term μ = 1/((1 -α)/μ 1 + α/μ 2 ) where the μ1 is given as

μ1 = µ 1 µ c = (1 -P l) 1 + P l (1 -P l)( γ + P l N )
.

(11)

Code Validation

The numerical simulations are performed using the open-source solver Basilisk (Basilisk; [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF][START_REF] Popinet | A quadtree-adaptive multigrid solver for the serre-greennaghdi equations[END_REF][START_REF] Lagrée | The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a [mu](i)-rheology[END_REF]. The viscoplastic model of Basilisk solver has been successfully used for complex flows by different researchers [START_REF] Lagrée | The granular column collapse as a continuum: validity of a two-dimensional navier-stokes model with a [mu](i)-rheology[END_REF][START_REF] Clift | Retraction of a viscoplastic liquid sheet[END_REF][START_REF] Deka | Retraction criteria of viscoplastic drops and sheets: Long-wave approximations[END_REF][START_REF] Deoclecio | Bubble entrapment condition in bingham materials[END_REF].

The mesh dynamically adapts as a function of the volume fraction (tolerance threshold: 10 -3 )1 , the velocity field (tolerance threshold: 10 -3 ), the yield surface (tolerance threshold: 10 -2 ), and the film region (tolerance threshold: 10 -1 ) 2 . The film region is defined as the region in Fluid 1 located at a distance up to three times the current minimum film thickness, h min , from both interfaces and above z = 0. 

T = ρ m D 3 min /(πσ)
, where ρ m = (ρ 1 +ρ 2 )/2 is the average density and D min is the size of the smallest grid element.

Validation tests were carried out to check the solver accuracy, dependency on the grid, and the regularization parameter. They are divided into two parts: first for the rising phenomenon and then for the coalescence phenomenon. For the rising part, we reproduce the steady-state numerical solu- 2013) (the viscosity and density of the gas phase in the bubble were neglected), but are both equivalent to 0.01 in our simulations. The coalescence part itself is also divided into two parts. First, we reproduce the experimental result of [START_REF] Mohamed-Kassim | Drop impact on a liquid-liquid interface[END_REF] for the drop impact on a liquid-liquid interface using Newtonian fluids without resolving the flow in the film. The dimensionless parameters are Bo = 6.40, F r = 5044, P l = 0.00, µ r = 0.33, and ρ r = 1.189. Second, we check the grid dependency to solve the flow in the film and then reproduce the experimental results of [START_REF] Vakarelski | Interfer-ometry and simulation of the thin liquid film between a free-rising bubble and a glass substrate[END_REF] for the shape of the film formed during the impact of a bubble on a solid interface. The dimensionless parameters are Bo = 0.228, F r = 5184, P l = 0.00, µ r = 0.0181 and ρ r = 0.0012. Fig. 3(a) shows the dimensionless rising velocity of a bubble versus the dimensionless time. The simulation was carried out using the same physical condition used by [START_REF] Dimakopoulos | Steady bubble rise in herschel-bulkley fluids and comparison of predictions via the augmented lagrangian method with those via the papanastasiou model[END_REF]. The maximum mesh refinement levels were 10, 11, 12, and 13 with N = 10 5 . The minimum level for dynamic mesh adaption is kept constant at level 6. Although the velocity profile does not change much while changing the maximum level of refinement from 12 to 13, the computational time increases significantly. Hence, a maximum refinement level of 12 is chosen to perform the rising part of the numerical simulations, which corresponds to a cell size of approximately 6.10 × 10 -3 D. Next, we check the value of N to optimize the computational time without compromising the accuracy or producing numerical instabilities. Figure 3(b) presents the dimensionless velocity profile of the bubble versus the dimensionless time for N = 10 2 , 10 3 , 10 4 , 10 5 , and 10 6 , and maximum level of refinement 12. Since the result with N = 10 5 does not change much from the result with N = 10 6 , but the computational time is higher in the latter, we perform the simulations with N = 10 5 . Figure 4 yielded region and the bubble shape.

In the experiment of Mohamed-Kassim and Longmire ( 2003), the drop is heavier than the surrounding fluid for the coalescence part, and thus the drop falls instead of rising. We inverted the gravity vector's direction (e z is in the positive z-direction) to account for this in the simulations. As the authors did not assess the inner flow in the draining film, we compare only the position of the fluid-fluid interfaces (outer flow). Here, the mesh is refined only as a function of the volume fraction and velocity fields. We test only the solution dependency on the grid to reproduce the outer flow (the drop collision dynamics). Figure 5 presents the displacement in the z-direction of a point on the interface initially located at (r, z) = (0, 0) (see the yellow square in the insert of Fig. 6) for different mesh maximum refinement levels (L max = 10, 11, 12, 13, and 14). Here, t = 0.0 designates the time at which the drop nose reaches the interface rest position (z = 0.0). As can be seen in the figure, the interface position until the first part of the drop rebound ( t ⪅ 200) does not vary much for the different values of L max . For t ⪆ 400, the later stage of the drop rebound, the solution does not vary much when changing the maximum level of refinement from 13 to 14. Figure 6 Although L max = 13 is enough to model the interfaces' positions during the collision step, a higher level of refinement is required to solve the inner flow in the film as the drop approaches the interface, and the thickness of the film decreases. To reduce the computational cost, we perform the drop rising part of the simulations with L max = 12, and during the drop impact on the top layer interface, we progressively increase L max to increase the mesh resolution. The maximum level of refinement after the drop impact is taken as a function of the film's minimum thickness, h min , and the minimum number of cells in the film, C, according to Eq. 12,

L max = ⌊ log CH h min log 2 ⌋. (12) 
Here, H = 25 D is the domain height. We take only the floor integer part of from 10 to 15, with L max = 14 and 15, respectively, but the computational time increases significantly. Here, the interface has a wimple-shaped [START_REF] Chan | Film drainage and coalescence between deformable drops and bubbles[END_REF], with two minimums, one at the film center and one on the film periphery. The drop and top layer interface shape can be seen in Fig. 8 in the (r, z) coordinate system (made dimensionless).

L max .
We employed C = 10 to numerically produce the film shape ( h × rb ) and bubble center of mass position, zcm , experimental results of [START_REF] Vakarelski | Interfer-ometry and simulation of the thin liquid film between a free-rising bubble and a glass substrate[END_REF]. The results are shown in Fig. 9(a) and (b), respectively. There is good agreement between the experimental and numerical results. Therefore, we select C = 10 for our simulations, which requires a maximum refinement level of 14 at hmin = 0.01.

In summary, we chose N = 10 5 , L max = 12 for the rising part, and L max increasing gradually from 12 up to 14 as a function of h min after the drop impact. Thus, the film's minimum number of cells, C, is equal to 10.

Due to the high computational cost of performing systematic simulations for hmin < 0.01, the computational drainage time, ∆t, is taken as the time elapsed between hmin thins from 0.1 to 0.01.

Results and discussion

This section discusses drop coalescence dynamics in viscoplastic materials and compares them to the Newtonian case. The drop rise and collision dynamics are taken taking into account, and the dimensionless computational drainage time, ∆ t, is used to give a measure (an indication) of how the yield stress affects the coalescence time. We begin our discussion by assessing the effects of the governing dimensionless numbers (F r, µ r , Bo, and P l) on drop rise (Sec. 4.1). Then, in the sequence, we investigate their effect on drop collision and on ∆ t, first for Newtonian surroundings (Sec. 4.2) and then introducing plasticity (Sec. 4.3). 

Drop Interface

Drop rise

The drop velocity and shape during the rise stage are among the main parameters influencing the coalescence process. The collision of a drop with a larger width and a higher impact velocity (which causes a more considerable width increase during the collision stage) leads to a draining film with a more significant length, which tends to slow down the film drainage process [START_REF] Zawala | Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[END_REF][START_REF] Kočárková | Film drainage of viscous liquid on top of bare bubble: Influence of the bond number[END_REF]. The interdependence between the drop velocity and shape and the different effects of the interplaying forces make drop rise a complex phenomenon. The drop deformation depends on the balance between the surface tension force, which tends to preserve the drop's spherical shape and the distorting forces (e.g., inertial and plastic forces) compete with each other to deform the drop in different ways. In this section, we first discuss the general effects of F r, µ r , and P l, on drop rise velocity and shape since these express the relative importance of the distorting forces only. Then, the effect of Bo, which includes the shape-persevering surface tension force, is discussed for flows dominated by buoyancy (low values of P l) and plastic (high values of P l) effects. Since Bo give a measure of the drop deformability (the ease with which the distorting forces deform the drop), its effect on the drop velocity and shape depends on the dominating distorting force. Figure 10 also shows that an increase in the plastic number tends to reduce both ūt and DtW . Whenever inside a viscoplastic material, drops rise inside an envelope of yielded material that decreases in size with an increment in plasticity [START_REF] Deoclecio | Bubble entrapment condition in bingham materials[END_REF][START_REF] Tsamopoulos | Steady bubble rise and deformation in newtonian and viscoplastic fluids and conditions for bubble entrapment[END_REF]. Therefore, the drop movement becomes more restricted with an increase in P l. It is to be noted that P l = 0.06 gives Y g = 0.18 [START_REF] Deoclecio | Bubble entrapment condition in bingham materials[END_REF], which is close to the drop entrapment condition. The yield stress has a dual nature, plastic and viscous [START_REF] Thompson | Viscoplastic dimensionless numbers[END_REF], and a change in P l only changes the contribution of the yield stress to the total stress (e.g., τ c = τ y + µ p γc ), but not the total stress itself. Hence, for a fixed F r, this velocity reduction and movement restriction should predominantly be due to plastic effects and not an increase in viscous effects. The drop width reduction with P l does not occur only because of the drop velocity reduction (which reduces the dynamic pressure in front of the drop). Plastic effects act against the surface tension force to form prolate drops ( DtW < 1). Such prolate drops may be explained by the viscosity field of the surrounding Bingham material, which is shear thinning (e.g., µ 1 = µ p + τ y /∥ γ∥ and an increase in ∥ γ∥ causes a decrease in µ 1 ). Figure 12 exhibits the yielded/unyielded (white/black) regions around a rising drop (left) and the surrounding Bingham material viscosity field (right) for P l = 0.06, F r = 200, Bo = 20, and µ r = 0.1.

The viscoplastic material viscosity is smaller on the drop poles than on the drop equator. As a result, drops tend to acquire a more prolate shape to penetrate the viscoplastic material through the lower viscosity region. This is in agreement with the numerical results of [START_REF] Tsamopoulos | Steady bubble rise and deformation in newtonian and viscoplastic fluids and conditions for bubble entrapment[END_REF]. The authors simulated steady-state rising bubbles in viscoplastic materials using the Papanastasiou model (i.e., a regularized version of the Bingham model).

They calculated the strain rate near the bubble equator and the bubble poles and found that the strain rate near the bubble equator was meager compared to the strain rate near the bubble poles. Consequently, the bubble elongates in the direction of its poles. The black line of Fig. 11(b) shows the drop shape for the exact parameters of the drop in with purple line (which is the same drop represented by the purple line in Fig. 11(a)), except for P l = 0.04.

The shape of the former is close to a sphere ( DtW ≈ 1), while the latter is slightly oblate ( DtW ⪆ 1).

An increasing Bo tends to enhance the deformation caused by the dominating distorting force, and a reducing Bo tends to approximate the drop shape to that of a sphere. Therefore, for low values of P l, in which buoyancy effects dominate over plastic effects, drops tend to acquire a more oblate shape (an increase in DtW ) with an increase in Bo. This can be seen by comparing the purple and green lines in Fig. 10(b) for P l ≤ 0.02, F r = 200, µ r = 0.1, and Bo = 2 and 20, respectively. The effect of an increase in the Bond number on drop shape for low values of P l can also be observed by comparing Fig. 11(a) purple and green lines for P l = 0.00, µ r = 0.1, F r = 200, and Bo = 2 and 20, respectively. Since the drop width increases with Bo, the drop velocity decreases due to its larger cross-sectional area, as shown by the purple and green lines in Fig. 10(a). and 20, respectively, where the latter is shown to be more prolate than the former. As a result of the width reduction, the drop velocity increases when increasing the Bond number, which can be seen by comparing the purple and green lines in Fig. 10(a) for P l ≥ 0.04.

Yielded Region Viscosity Field

Drop collision and ∆ t in Newtonian materials

Drop velocity and shape change during the impact on the top layer interface, together with the rheological properties of the fluids, govern the coalescence process. This section evaluates the effects of F r, µ r , and Bo on drop collision dynamics (velocity and shape change) and computational drainage time in Newtonian surroundings. Figure 13(a) and (b) present the dimensionless drop velocity (multiplied by F r 1/2 ), ū, and dimensionless width, DW , respectively, versus dimensionless time (divided by F r 1/2 ), t, for P l = 0.00 and the same sets of the other of dimensionless parameters of Fig. 10. The black dashed vertical line marks the time t = 0.0 when the dimensionless minimum distance between the drop and the interface is hmin = 0.1, and the colored dashed vertical lines mark the time t at which hmin = 0.01. We take the purple line in Fig. 13 (for F r = 200, µ r = 0.1, and Bo = 2) as the base case, and then change F r, µ r , and Bo one at a time. Moreover, two auxiliary figures aid in the discussion, Fig. 14 and15. Fig. 14 shows the drop and top layer interface shape for hmin = 0.1, 0.05, and 0.01 (the film thinnest part is marked by a pair of black arrows), and Fig. 15 shows the draining film shape for hmin = 0.01.

In general, Fig. 13 shows that as the drop approaches the top layer interface, its velocity decreases, and its width increases due to the conversion of kinetic energy to surface energy. Then, the drop eventually retracts back and rebounds. In the process, part of the kinetic energy is dissipated by viscous effects. In the case of increasing the Froude number (purple line for F r = 200 and yellow line for F r = 2000), the drop impact velocity increases, and as a result, the drop width during the collision stage also increases. The For F r = 200, the film is spherical, but for F r = 2000, it is dimpled due to the higher pressure build-up. Although a larger film length tends to slow down the drainage process, a decrease in the computational drainage time is observed for an increase in the Froude number. As discussed in the previous section, an increase in the Froude number increases the rising velocity due to the reduction of viscous forces relative to inertial forces. Therefore, the decrease in resistive viscous effects seems to overcompensate for the increase in inertial effects (which tend to increase the film length) for the range of parameters studied. In both cases, the simulation drainage time stopping criterion ( hmin = 0.01) is reached while the drops are still colliding (bouncing: the impact energy has not been fully dissipated by viscous effects) on the interface. The occurrence of coalescence while bouncing on the interface was observed experimentally by Zawala and[START_REF] Zawala | Influence of the impact velocity and size of the film formed on bubble coalescence time at water surface[END_REF][START_REF] Vakarelski | Mobile-surface bubbles and droplets coalesce faster but bounce stronger[END_REF] for bubbles in high-purity water.

Regarding the viscosity ratio effect, Fig. 13 shows that in the case of increasing µ r from 0. bubbles. The coalescence time of mobile-surface bubbles was much less than that of immobile-surface bubbles; however, the bouncing amplitude of the former was more significant than the latter. For mobile-surface bubbles, a substantial drop rebound was followed by rapid coalescence. Similar behavior was observed for the lower viscosity ratio cases (purple and yellow lines), where the film hydrodynamics boundary condition is closer to the bubble with an mobile surface. hmin = 0.01 is reached while the drops are still bouncing on the interface. For the immobile-surface bubbles, the bouncing was weaker, but the bubble stood on the interface for a longer time before coalescing. This behavior is similar to our higher viscosity ratio case, where the film hydrodynamics boundary condition is closer to the bubble with an immobile surface. [START_REF] Vakarelski | Mobile-surface bubbles and droplets coalesce faster but bounce stronger[END_REF] argue that these behaviors are due to the more negligible viscous dissipation of the mobile-surface case, which allows for a more extensive conversion of kinetic to surface energy (stronger rebounding) but also faster drainage. Therefore, the film quickly reaches small thicknesses for the lower viscosity ratio while the drop bounces (collides) on the interface. Conversely, for the higher viscosity ratio, the film thinning during the collision stage is small. As a result, a more significant portion of the drainage process occurs during the resting stage, while the drop is virtually static. Furthermore, the larger drop and top layer viscosity lead to a stronger pressure gradient in the film. Such a mechanism forms a dimple-shaped film, making the drainage process even more difficult due to the restricted flow passage on the film periphery. The formation of dimpled films due to the coupling of hydrodynamics forces and interface deformation is also predicted by the lubrication theory [START_REF] Chan | Film drainage and coalescence between deformable drops and bubbles[END_REF]. Figure 14(c) and the blue line in 15 show that for µ r = 10 the film becomes dimpled, while for µ r = 0.1 (Fig. 14(a) and purple line in Fig. 15) the film is spherical. Such behavior agrees with the results of [START_REF] Aarts | Droplet coalescence: drainage, film rupture and neck growth in ultralow interfacial tension systems[END_REF] and [START_REF] Chi | A theoretical study of the motion of a viscous drop toward a fluid interface at low reynolds number[END_REF]. The former observed experimentally that film rupture tended to occur at the film center (spherical-shaped film) and film periphery (dimple-shaped film) during the interfacial coalescence of bubbles (low levels of viscosity ratios) and drops (high levels of viscosity ratios), respectively.

The numerical results of [START_REF] Chi | A theoretical study of the motion of a viscous drop toward a fluid interface at low reynolds number[END_REF] also indicate that increasing the viscosity ratio tends to slow down the drainage process and make the film acquire a dimpled-shape. Therefore, an increase in µ r increases the drainage time due to an increasing viscous dissipation and the change in the film boundary condition by the rheological properties of the inner phase.

Lastly, in the case of an increase in the Bond number from 2 (purple line) to 20 (green line), the drop width increases in both the rise and collision stages. Here, the viscosity of both phases is kept constant. As a result, the film length increases, as depicted in Fig. 14(d) and by the green line in Fig. 15. Since the buoyancy force acting on the drop is distributed over a more significant film area, the pressure in the film decreases, and the drainage process slows down. For Bo = 20, the drop has time to nearly complete one rebound before hmin = 0.01, while for Bo = 2, it does not. For small values of the Bond number, surface tension is dominant, and the drop is less deformed by the distorting forces. As a result, a smaller film is formed, facilitating the film-thinning process. The results agree with the experimental results [START_REF] Kočárková | Film drainage of viscous liquid on top of bare bubble: Influence of the bond number[END_REF], who experimentally measured the thinning rate of thin films created during the interfacial coalescence of gas bubbles in Newtonian liquids. Furthermore, the authors verified that the drainage time is a function of the film length (or film area), a function of the Bond number.

In summary, for Newtonian surroundings, an increase in F r tends to reduce the drainage time due to the reduction of viscous effects relative to inertial effects, despite the drop's larger width and higher impact velocity.

An increase in µ r has the opposite effect. It increases the drainage time, despite the reduction in drop width and impact velocity. In addition, it contributes to the formation of dimpled films, which are harder to drain. A higher drop and top layer viscosity also smooth the collision process, causing the drainage process occurring during the drop collision and resting stages to lose and gain significance, respectively. Lastly, an increase in Bo tends to enlarge the film length, which increases the drop rebound amplitude and the drainage time.

Drop collision and ∆ t in Bingham materials

Plastic effects add extra complexity to the already complex coalescence phenomenon. Therefore, this section is divided into two parts to facilitate the discussion. First, we assess the influence of plastic effects on the drop collision dynamics (drop velocity and shape) in Sec. 4.3.1, and second, we discuss the impact of P l on ∆ t in Sec. 4.3.2.

Drop collision in Bingham materials

In this section, we discuss plastic effects on drop collision dynamics. First, we vary the plastic number while the other parameters are kept constant.

Then, we investigate how changes in F r, µ r , and Bo affect drop collision for flows dominated by plastic effects.

Figure 16(a) and (b) present the dimensionless drop velocity (multiplied by F r 1/2 ), ū, and dimensionless width, DW , respectively, versus dimensionless time (divided by F r 1/2 ), t, for F r = 200, Bo = 20, µ r = 0.1, and P l = 0.00, 0.02, 0.04, and 0.06. The black dashed line marks the time t = 0.0 at which hmin = 0.1, and the colored dashed lines mark the time at which hmin = 0.01 (we leave the discussion about ∆ t to the next section). Furthermore, auxiliary Fig. 17 and 18 (described in the sequence), assist in the assessment of plastic effects on drop collision dynamics. For the Newtonian surrounding (purple line in Fig. 16), the drop velocity and width monotonically decrease and increase, respectively, as it approaches the top layer interface. However, a different behavior is observed for the viscoplastic cases (yellow, blue, and green lines). The drop velocity and width increase and decrease, respectively, while approaching the interface. This behavior may be explained by the interaction between the drop and the interface before the collision moment. To exemplify this, Fig. 17 presents snapshots of a drop and the yield surface around it during the rise, collision, and resting stages for P l = 0.04, F r = 200, Bo = 20, and µ r = 0.1 (blue line in Fig. 16). Figure 17(a) shows the drop rising at steady-state and surrounded by an envelope of yielded material. As the drop approaches the top layer fluid (Fig. 17(b) and (c)), the latter starts to deform, aiding in the yielding of the surrounding material in front of the drop. With the increase of the yielded region in this area, the drop rise velocity increases, and its width reduces as it approaches the interface. Eventually, as the drop collision proceeds, kinetic energy is converted to surface energy, and the drop width increases, as depicted by Fig. 17(d), (e), and (f). In Fig. 17(f), the drop is approaching the resting stage (ū ≈ 0.0), in which it rests on the interface (almost static) as the drainage process goes on and the size of the yield envelope decreases. Besides the kinetic and surface energy conversion, the buoyancy force pressing the drop against the interface also contributes to this increase in the drop width.

Figure 18 shows the drop and top layer interface shape for each condition in Fig. 16 at the moment hmin = 0.10, 0.05, and 0.01 (the film thinnest part is marked by a pair of black arrows). As can be seen, the drop width reduction is enhanced by an increase in the plastic number, resulting in a shortening of As shown in Fig. 19(a), the viscosity in the film increases with s. Hence, the film thins more quickly in the film center region than in the film periphery region. Moreover,Fig. 19(b) shows that the viscosity of the surrounding material close to the drop equator is higher than that close to the drop poles (as in the rise stage). Therefore, the drop width increase that eventually takes place during the collision stage seems to be hampered by plastic effects of the surrounding material. have a spherical shape, while for the Newtonian case, the film for F r = 2000 forms a dimple. A similar behavior for an increase in the viscosity ratio as in the Newtonian case is also observed: the drop velocity and width change during the impact on the interface is smoother over a more extended period.

Additionally, [START_REF] Deoclecio | Bubble entrapment condition in bingham materials[END_REF] have shown that the critical plastic number for drop entrapment reduces with an increase in µ r . Therefore, for the higher viscosity ratio (blue line in Fig. 21), the drop is closer to the entrapment condition than for the lower viscosity ratio. Hence, the velocity reduction with µ r is more significant than for the Newtonian scenario. The drop rise velocity is close to zero for P l = 0.04 and µ r = 10. The blue line in Fig. 22 for µ r = 10 illustrates that the film remains spherical even for the higher viscosity ratio case. For an increase in the Bond number (purple and green lines for Bo = 2 and 20, respectively, in Fig. 21), the drop rise and impact velocities ( t ⪅ 0.0) increase, differently from the P l = 0.00 case. This effect is due to the drop width reduction with P l, which is more pronounced for higher values of Bo.

However, as the drop collision proceeds and kinetic energy is converted to surface energy, the drop width for Bo = 20 becomes larger than for Bo = 2.

As a result, the film length for Bo = 20 eventually becomes more prominent is observed for the higher Froude number scenario (yellow line for F r = 2000)

and the higher viscosity ratio scenario (blue line for µ r = 10). The changes in ∆ t with F r and µ r are the same for all values of P l. That is, ∆ t decreases and increases with an increase in F r and µ r , respectively. For the higher Bond number scenario (green line for Bo = 20), an inverse trend is observed, and ∆ t decreases with P l. As discussed in the previous sections, the drainage time is a function of the film geometry (film length and shape) and the rheological properties of the phases (e.g., interface mobility and viscous resistance). Plastic effects facilitate coalescence by forming prolate drops and spherical films on the one hand but make it more difficult by imposing a more excellent resistance to in the film is low (||τ || = τ y + µ p || γ|| ⪆ τy , so ∥ γ∥ ≈ 0.0). Hence, the average viscosity in the film (e.g., µ 1 = µ p + τ y /∥ γ∥) increases with P l, making the drainage process more difficult. For lower values of Bo, surface tension is stronger, and the drop is less distorted by the distorting forces.

In this case, the imposed flow resistance by the plasticity of the surrounding material overcomes the facilitation promoted by the film geometry and as a consequence, ∆ t increases with P l. Therefore, the flow-arresting property of the yield stress is counterbalanced by the film geometry change induced by it, which makes the determination of the arresting condition of the film challenging.

Goel and Ramachandran (2017) conducted a study on the drainage of Bingham materials films utilizing the lubrication theory and scaling analyses.

The interfaces were immobile and the drops approached each other at a constant velocity (binary collision). The study focused on the drainage time as a function of the capillary number Ca = F/(σR), where F is the force pressing the drops together and R is the drops radius. While the interfaces' deformation and film thickness in our work are larger than those studied with the lubrication theory, and the constant force approach is more appropriate for interfacial coalescence than the constant velocity used by the authors, we attempt to make a qualitative comparison between their findings and our own. In the authors' study, the addition of a yield stress to the film materials was found to increase the drainage time for all capillary numbers. However, as pointed out by [START_REF] Thompson | Viscoplastic dimensionless numbers[END_REF] results in an increase in viscous resistive forces. Therefore, we argue that the increase in drainage time observed by the authors may be due to an increase in the viscosity of the surrounding, which has a similar impact of decreasing the Froude number in our study, and not necessarily of increasing the level of plasticity. In fact, we have shown that for low surface tension regimes, the drainage time may be reduced with an increase in P l due to the formation of a shorter and spherical film. The authors scale the film length as √ hR for spherical films. Therefore, for a constant force F , the pressure gradient in the film increases because the film length decreases during the drainage process. This caused the magnitude of the stress to increase as the film thickness decreased, making these films not susceptible the be frozen by the yield stress. In contrast, our simulations have revealed an opposite trend, as illustrated in Fig. 25, which displays the dimensionless stress field for F r = 200, Bo = 2, µ r = 10, and P l = 0.04 at hmin = 0.050, 0.025, and 0.010. Our findings suggest that, on average, the stress level in a spherical film can decrease as the film thickness reduces. Therefore, our results imply that the drainage of spherical films may be vulnerable to being arrested by the yield stress as the drainage process progresses. Lastly, the authors argued that plastic effects may freeze only dimpled films since these films present a region of minor stress in the film center. However, considering the rise and collision dynamics, dimpled films are formed for low levels of plasticity, which may not be sufficient to arrest the drainage process. For higher levels of plasticity, the film is spherical and shorter, making the drainage process arresting by yield stress more difficult. Therefore, dimpled films observed for high value of τ y in their work may not be obtainable in our simulations. in which the yield stress may not arrest the drainage process. An increase in the level of plasticity changes the film geometry in a way that hinders its arrest. Thus, the two opposing plastic effects make it difficult to determine the film's arresting condition.

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -Brasil (CAPES) -Finance Code 001.

Fig. 1

 1 Fig. 1(a) shows a representative diagram of the computational domain. The simulations are performed in a square domain of height H = 25 D, where

Fig. 1 Figure 1 :

 11 Fig. 1(b) presents a scheme of a drop impacting an interface and subsequently trapping and draining a film of the surrounding fluid (Fluid 1). To study the flow in the film, we define a new non-orthogonal coordinate system (s, h) with a moving origin located at the drop's "tip." The coordinate s follows the drop surface, and the coordinate h is in the direction of the

  Figure2exemplifies mesh adjustment for a drop colliding with an interface, where the image has been mirrored on the z-axis. Red lines represent the interfaces. The left side exhibits the mesh, while the right side exhibits the yielded/unyielded (white/black) regions, and the film region (orange) for F r = 200, Bo = 20, P l = 0.025, and µ r = 1.0. Readers see that the mesh is refined at fluid interfaces, on the yield surface, film region, and the areas with a velocity gradient. All simulations start with a uniform mesh of refinement level 3 6 across the entire domain, with local refinement around the bubble at the initial maximum level, defined after a convergence test. The maximum refinement level is increased during the film drainage process to reduce the computational cost while still solving the film's flow. The mesh in the film is always at the current maximum level of refinement. The film region is identified by a method based on the signature method of[START_REF] Chirco | Manifold death: a volume of fluid implementation of controlled topological changes in thin sheets by the signature method[END_REF] to detect thin structures. The software Basilisk automatically sets the time step to obey the CF L < 0.5 condition for simulations with the Volume-of-Fluid model. The maximum timestep is also restricted by the oscillation period T of the smallest capillary wave

Figure 2 :

 2 Figure 2: A view of the (left) mesh and (right) yielded/unyielded (black/white) regions and the film (orange) region of a drop impacting on an interface (Obs.: the viscoplastic material inside the film is yielded). The red lines represent the fluid interfaces. The dimensionless parameters are F r = 200, Bo = 20, P l = 0.025, µ r = 1.0, ρ r = 0.1, and N = 10 5 with maximum and minimum levels of refinement equal to 12 and 4, respectively.

Figure 3 :

 3 Figure 3: Dimensionless rise velocity, ū, with dimensionless time, t, for (a) different mesh maximum refinement levels, L max , (b) and dimensionless regularization parameters, N . The minimum refinement level in all cases is 6, while L max is (a) changed from 10 to 13 in (a) and equal to 12 in (b). N = 10 5 in (a) and changed from 10 2 to 10 6 in (b). The dimensionless parameters are F r = 38025, Bo = 200, P l = 0.025, µ r = 0.01, and ρ r = 0.01.

Figure 4 :

 4 Figure 4: Comparison of our simulation results (right half) with the steady-state solution of Dimakopoulos et al. (2013) using the ALM (left half). The simulations are performed using N = 10 5 , L max = 12, F r = 38025, Bo = 200, P l = 0.025, µ r = 0.01, and ρ r = 0.01.

Figure 5 :

 5 Figure5: Change of the interface dimensionless position, z, due to a drop impact versus dimensionless time, t, for L max = 10, 11, 12, 13, and 14. The dimensionless parameters are F r = 5044, Bo = 6.40, P l = 0.00, µ r = 0.33 and ρ r = 1.189.

Figure 6 :

 6 Figure 6: Experimental results of Mohamed-Kassim and Longmire (2003) (symbols) and our simulation (lines) for the drop back (blue) and front (red), and interface (yellow) positions with time. The dimensionless parameters are F r = 5044, Bo = 6.40, P l = 0.00, µ r = 0.33 and ρ r = 1.189, and L max = 13.

  Figure 7(a) shows the dimensionless minimum film thickness ( hmin = h min /D) with dimensionless time ( t) for a drop impacting on a liquid-liquid interface for C = 5, 10, and 15. The dimensionless parameters are F r = 200, Bo = 20, P l = 0.00 (the surrounding is Newtonian), µ r = 1.0, and ρ r = 0.1.

Figure 7

 7 Figure 7(b) exhibits the dimensionless film thickness shape ( h = h/D) as

Figure 7 :

 7 Figure 7: (a) Dimensionless minimum film thickness, hmin , versus Dimensionless time, t, and (b) dimensionless film thickness h versus dimensionless surface length s for C =5, 10, and 15 at the moment hmin = 0.01. Results for F r = 200, Bo = 20, P l = 0.00, µ r = 1.0, and ρ r = 0.1.

Figure 8 :

 8 Figure 8: Drop collision on the top layer interface and the entrapped film in the (r, z) coordinate system with for C = 10 at the moment hmin = 0.01. Results for F r = 200, Bo = 20, P l = 0.00, µ r = 1.0, and ρ r = 0.1.

Figure 9 :

 9 Figure 9: (a) Dimensionless film thickness, h, with dimensionless film radius, rb , at different times for an air bubble impacting on a solid surface experimental results of Vakarelski et al. (2022) (open circles) and our numerical results (solid lines). (b) Bubble center of mass dimensionless position, zcm , with dimensionless time, t, experimental (open circles) and numerical (solid lines) results. The dimensionless parameters are F r = 5184, Bo = 0.089, P l = 0.00, µ r = 0.0181 and ρ r = 0.0012, and L max = 14.

Figure 10 Figure 10 :

 1010 Figure 10(a) and (b) exhibit drop dimensionless terminal velocity (multiplied by F r 1/2 to remove the dependency of U on F r), ūt , and drop dimensionless terminal width (which gives a measure of the drop deformation), DtW = D tW /D, respectively, as a function of P l, for different values of F r, µ r , and Bo. We take the purple line with squares (F r = 200, µ r = 0.1, and Bo = 2) in Fig. 10 as the base scenario. Then, we change F r, µ r , and Bo one at a time to evaluate their effects on drop rise velocity and shape. To assist in the discussion about drop deformation in the rise stage, Fig. 11 exhibits the drop shape at steady-state rise for some combinations of the dimensionless parameters in Fig. 10. Figure 10(a) indicates that an increase in the Froude number from 200 (purple line) to 2000 (yellow line) increases the drop terminal velocity. Such a fact is explained by increased inertial forces relative to viscous forces. In the dimensional analyses, viscous forces scale with the buoyant force. Thus, an increase in F r also increases inertial forces relative to viscous forces. As a consequence, the drop width also increases with F r (see Fig. 10(b)) since the higher dynamic pressure in front of the drop tends to distort it to an oblate shape ( DtW > 1). The increase of the drop width can be observed by comparing Fig 11(a) purple and yellow lines for P l = 0.00, µ r = 0.1, Bo = 2, and F r = 200 and 2000, respectively. The viscosity ratio has the opposite effect of that of the Froude number. It enhances viscous dissipation and tends to reduce drop terminal velocity, as indicated by the blue line (compared to the purple line) in Fig. 10(a) for µ r = 10. As a result, the drop width slightly reduces, as shown in Fig. 10(b) and as can be seen by comparing Fig 11(a) purple and blue lines, for P l = 0.00, Bo = 2, F r = 200,

FrFigure 11 :

 11 Figure 11: Drop shape at steady-state rise for different sets of dimensionless parameters.

Figure 12 :

 12 Figure 12: Yielded/unyielded (white/black) regions (left) and dimensionless viscosity field, μ1 , (right) for a drop at steady-state rise, P l =0.06, F r = 200, Bo = 20, and µ r = 0.1

Figure 13 :

 13 Figure 13: Drop (a) dimensionless velocity, ū (×F r 1/2 ), and (b) dimensionless width, DtW , versus dimensionless time, t (/F r 1/2 ). The dimensionless parameters are P l = 0.00, (purple line) F r = 200, µ r = 0.1, Bo = 2, (yellow line) F r = 2000, µ r = 0.1, Bo = 2, (blue line) F r = 200, µ r = 10, Bo = 2, and (green line) F r = 200, µ r = 0.1, Bo = 20.

Figure 14 :Figure 15 :

 1415 Figure 14: Drop and top layer interface shape for hmin = 0.10 (third row), hmin = 0.05 (second row), and hmin = 0.01 (first row) for P l = 0.00 and (a) F r = 200, Bo = 2, and µ r = 0.1, (b) F r = 2000, Bo = 2, and µ r = 0.1, (c) F r = 200, Bo = 2, and µ r = 10, and (d) F r = 200, Bo = 20, and µ r = 0.1. The film thinnest part is marked by a pair of black arrows.

Figure 16 :

 16 Figure 16: Drop (a) dimensionless velocity, ū (×F r 1/2 ), and (b) dimensionless width, DtW , versus dimensionless time, t (/F r 1/2 ). The dimensionless parameters are F r = 200, Bo = 20, µ r = 0.1, and P l = 0.00 (purple line), 0.02 (yellow line), 0.04 (blue line), and 0.06 (green line).

Figure 17 :

 17 Figure 17: Yield surface around a drop rising and impacting on the top layer interface for P l = 0.04, F r = 200, Bo = 20, µ r = 0.1 at steady-state rise (a), approaching the interface at t(/F r 1/2 ) = -6.35 (b) and -1.60 (c), colliding on the interface at t(/F r 1/2 ) = 0.30 (d) and 1.25 (e), and resting on the interface at t(/F r 1/2 ) = 2.75 (f).

Figure 18 :

 18 Figure 18: Drop and top layer interface shape for hmin = 0.10 (third row), hmin = 0.05 (second row), and hmin = 0.01 (first row) for F r = 200, Bo = 20, µ r = 0.1, and (a) P l = 0.00, (b) P l = 0.02, (c) P l = 0.04, and (d) P l = 0.06. The film thinnest part is marked by a pair of black arrows.
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 20 Fig.21(a) and (b) exhibit the dimensionless drop velocity (multiplied by F r 1/2 ), ū, and dimensionless width, DW , respectively, versus dimensionless time (divided by F r 1/2 ), t, for P l = 0.04 and the same sets of F r, µ r , and Bo of Fig.13for P l = 0.00. We take the purple line (P l = 0.04,

Figure 21 :

 21 Figure 21: Drop (a) dimensionless velocity, ū (×F r 1/2 ), and (b) dimensionless width, DtW , versus dimensionless time, t (/F r 1/2 ). The dimensionless parameters are P l = 0.04, (purple line) F r = 200, µ r = 0.1, Bo = 2, (yellow line) F r = 2000, µ r = 0.1, Bo = 2, (blue line) F r = 200, µ r = 10, Bo = 2, and (green line) F r = 200, µ r = 0.1, Bo = 20.

Figure 23 :

 23 Figure23: Dimensionless computational drainage time, ∆ t (/F r 1/2 ), versus the plastic number, P l.

Figure 24 :

 24 Figure 24: Dimensionless stress field ∥τ ∥ at hmin = 0.01 for F r = 200, Bo = 2, µ r = 10, and P l = τy = (a) 0.00, (b) 0.02, (c) 0.04, and (d) 0.06. The gray areas correspond to Fluid 2 (Newtonian) and the white area corresponds to the region in Fluid 1 (viscoplastic) outside the film.

Figure 25 :

 25 Figure 25: Dimensionless stress field ∥τ ∥ for F r = 200, Bo = 2, µ r = 10, and P l = τy = 0.04 at hmin = (a) 0.050, (b) 0.025, and (c) 0.010. The gray areas correspond to Fluid 2 (Newtonian) and the white area corresponds to the region in Fluid 1 (viscoplastic) outside the film.

For details about the mesh refinement algorithm, see[START_REF] Popinet | A quadtree-adaptive multigrid solver for the serre-greennaghdi equations[END_REF] 

For the film region, the Basilisk adaptation algorithm is "tricked" to refine the mesh at the maximum refinement level, and any tolerance threshold smaller than 1 is enough.

The number of cells per dimension is given by 2 n , where n is the level of refinement.For example, if a 2D square domain is discretized with a refinement level 8, each direction will contain 256 cells. The whole domain will have 65,536 cells.

to the region of the surrounding material outside the film. For P l = 0.00 (Fig. 24(a)), the film is dimpled, and a region of high stress is found on the film throat, while the stress in the film center region is small. This agrees with the theoretical results of [START_REF] Abid | The drainage and rupture of partially-mobile films between colliding drops at constant approach velocity[END_REF], who predicted that for dimpled films with partially mobile interfaces the maximum shear stress occurs close to the film rim. For P l = 0.02 (Fig. 24 Due to the shorter film, the buoyancy force is distributed over a smaller area, increasing the stress in the film, which is also slightly above the yield stress. A similar behavior is verified for P l = 0.06 (Fig. 24(d)). The film is even shorter, and the stress in the film is slightly above the yield stress.

Therefore, increasing the plasticity of the surrounding materials makes the film more spherical and shorter, which facilitates drainage. This mechanism is more pronounced for higher values of the Bond number, which explains why ∆ t decreases with P l for Bo = 20. The minimum stress in the film is slightly above the yield stress in all cases, meaning that the strain rate