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GROWTH OF SOBOLEV NORMS AND STRONG CONVERGENCE FOR THE
DISCRETE NONLINEAR SCHRODINGER EQUATION

QUENTIN CHAULEUR

ABsTrRACT. We show the strong convergence in arbitrary Sobolev norms of solutions of the dis-
crete nonlinear Schrédinger on an infinite lattice towards those of the nonlinear Schrédinger
equation on the whole space. We restrict our attention to the one and two-dimensional case, with
a set of parameters which implies global well-posedness for the continuous equation. Our proof
relies on the use of bilinear estimates for the Shannon interpolation as well as the control of the
growth of discrete Sobolev norms that we both prove.

1. INTRODUCTION
We consider the discrete nonlinear Schrodinger equation
(DNLS) i0u + Apu = NuP~u,

where u : R x hZ? — C with u(0,-) = ug. Here h > 0 denotes the stepsize of the lattice hZ? and

Anula) = Z u(a + hej) + u(ha2 he;) — 2u(a)
j=1
denotes the discrete Laplace operator for a € hZ¢ with the canonical basis (ej)1<j<4 on R%. We
also take p = 2n 4+ 1 with n € N* as an odd integer. For a positive coefficient A > 0 the equation is
called defocusing, and focusing for A < 0.

Equation (DNLS) has been extensively studied over the past few years, especially in the context
of a fixed stepsize h = 1. A first original result concerning its dynamical properties was obtained
by Stefanov and Kevrekidis in [28], and reflects weaker dispersion estimates than in the continuous
case. In fact, this pathological behavior is induced by resonances of the discrete geometrical setting,
or more precisely by the fact that the symbol of the discrete operator Aj, has critical points and
display a lack of convexity, which both appears to be key ingredients for the proof of standard
dispersive estimates (we refer to [18] for a complete and detailed proof of this feature). Results
concerning the existence of standing waves in the focusing case [2, 20] has naturally followed, and
the question of the non-existence of traveling waves, despite long time stability [5], is still an open
question related to a complex phenomenon called the Peierls-Nabarro barrier [22].

From the physical point of view, equation (DNLS) has been a relevant model both in nonlinear
optics, particularly in the context of optical waveguides [13, 23], or for the modelization of Bose-
Einstein condensates trapped in optical lattices formed by laser beams [9, 10]. On the other hand,
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2 QUENTIN CHAULEUR

from a mathematical perspective, equation (DNLS) can also be seen as a first spatial discretization
step into the rigorous numerical analysis of the well-known nonlinear Schrédinger equation

(NLS) i0u + Au = AulP~tu

on the whole space R%. In this work, we will in particular be interested by the limit h — 0 of equation
(DNLS) towards equation (NLS), which is usually referred in the literature as the continuum limit.
This limit has first been investigated in the seminal work of Kirkpatrick, Lenzmann and Staffilani
[21], where the authors show the L? weak convergence of solutions of equation (DNLS) towards
those of (NLS) using the Banach-Alaoglu theorem as well as discrete Sobolev embedding. The L?
strong convergence of such solutions were then recently achieved by Hong and Yang in [15] alongside
precise convergence rates in h, where the proof is based on uniform discrete Strichartz estimates
that the authors had previously shown in [16] and the use of Gronwall lemma.

Here, we will be interested in the strong convergence in Sobolev spaces H® for an arbitrary
regularity s > 0. Note that up to the author’s knowledge, the only other work dealing with
strong Sobolev convergence for continuum limit of such systems is [14] and for the special case
s = % — ﬁ with d = 1, in the context of long-range spatial interactions and time memory effect.
Also note that weak and strong L? convergence for long-range interactions in the one dimensional
case are tackle in respectively [21] and [15], and has only been generalized very recently to the two
dimensional case [12].

Our approach will follow the strategy of [15], with two main different features. First, we will use
the Shannon interpolation (introduced in [4]) of pointwise discrete function rather than the finite
volume type discretization used in [15] in order to compare our discrete solution with the continuous
one, as it is naturally better suited for Sobolev spaces H*. Secondly, the usual conservation of the
L? norm of the solution of both the discrete equation (DNLS) and the continuous one (NLS), which
is broadly used in [15], will be replaced along the proof by the evolution of the Sobolev norms of
the solution, which are far from being conserved in the nonlinear setting. In fact, our analysis will
require estimates on the growth of Sobolev norms for solutions of both equation (DNLS) and (NLS).

On the continuous level, control on the growth of high Sobolev norms of nonlinear dispersive
PDEs has been an intensive and still ongoing topic of research, motivated by the study of a nonlinear
phenomenon called weak turbulence, which basically expects a transfer from low frequencies to
high ones (sometimes also referred as forward cascade). The literature on this area of research is
large, and we should mention, without unrealistically trying to be exhaustive, the seminal works
of Bourgain [7] and Staffilani [27] continued by Sohinger [25, 26] on both periodic and whole space
settings, as well as the recent work of Planchon, Tzvetkov and Visciglia [24] which treats the case
of compact manifolds. Note that these results typically provide polynomial or exponential bounds,
and are only available in low space dimension 1 < d < 3 for specific restrictive values of the
nonlinearity p as well as its sign A. One should also mention the particular integrable case of the
cubic Schréodinger equation (with p = 3 in equation (NLS)) in dimension d = 1, which yields uniform
in time estimates for each Sobolev norm H™ with m € N.

On the other hand, in the discrete framework, only the recent paper of Bernier [4] actually
tackles this problem, in the particular case of a cubic nonlinearity in one dimension. Note that
the particular discretization (DNLS) do not preserves the complete integrability of its continuous
counterpart (NLS) in this setting, at contrary to the usual Ablowitz-Ladik model [1].



GROWTH OF SOBOLEV NORMS AND STRONG CONVERGENCE FOR DNLS 3

Our analysis will be performed on a particular set of parameters for p, d and A that we state
here:

(1)

In particular, we limit our attention to the one and the two-dimensional case for the defocusing
case, and only to the cubic nonlinearity in one dimension for the focusing case, where the result of
[4] is available. We also restrict ourselves to odd nonlinearity powers due to technical reasons. Note
that the cubic three dimensional case, which was covered in the analysis of [15], will not be handled
in our context because of the weak dispersion estimates available in the discrete setting. Some
further comments on the three dimensional case will be made in Section 2. On the other hand, we
emphasize that for d = 1,2 in the defocusing case, we cover the full range of parameters for global
well-posedness on the continuous equation (NLS). In particular, the global existence of solutions
of both (DNLS) and (NLS) are guaranteed under the set of parameters (1) (see for instance the
classical reference [11]).

This paper is organized as follows. In Section 2, we will recall some notations and properties
of functional analysis on discrete spaces in order to state our main results Theorems 1 and 2.
In Section 3, we show some fundamental properties of the Shannon interpolation with respect to
discrete Sobobev spaces, with a direct application to the interpolated flow of the discrete linear
Schrodinger equation (DNLS) taking A = 0. We then adapt the strategy of the modified energies
of [24] to the case of discrete spaces in Section 4 in order to prove Theorem 1. Gathering all these
results, we then conclude by proving Theorem 2 in Section 5. We recall some important functional
inequalities in both continuous and discrete spaces in Appendix A which will be used throughout
all this paper.

p=2n+1, neN* for \=1and d=1,2,
p=3 for A\ =—1and d =1.

2. ALGEBRAIC CONTEXT AND MAIN RESULTS

2.1. Discrete Lebesgue and Sobolev spaces. We consider a function ¢ : hZ% — C with d > 1.
Following [17], we denote respectively by LP(hZ%), for 1 < p < oo, and L>(hZ%) (or sometimes
more compactly L} and L7°) the discrete Lebesgue spaces of integrable functions induced by the
norms
19170 ey = B D~ 1g(@)l” and  lgllL(nzey = sup |g(a)l-
a€hzd achzZ?
Contrary to the continuous case, these spaces are embedded, namely L'(hZ%) c L?(hZ?) C ... C
L>=(hZ?), but obviously not uniformly in h. In particular, L?(hZ?) is a Hilbert space induced by
the scalar product
(f,9)n =h" )" fla)g(a)
a€hZ4
for f, g : hZ¢ — C. Denoting respectively the forward and backward difference operators in the
direction e; for 1 < j < d by

Vi ola) = 20— 9@ s0)=gla ;)

for a € hZ?, one can define the discrete Sobolev spaces WP (hZ?) or W,i’p for all 1 < p < oo by
d

||9||€V1,p(hzd) = ||9||Lp(hzd) + Z ||VZJ'9||LP(th)~
j=1

and  V; g(a) =
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We also naturally define the forward and backward discrete gradients
T B B T
Vi=(Viy. Vi, and Vy=(Vi,....V,)

Using the definition of the discrete Laplace operator Ay given in our introduction, we can also
define for all m € N the discrete homogeneous and inhomogeneous Sobolev norm

1903 m ey = (D). 0hn and (gl guzey = S 9030 e
k=0

We obviously have equivalence between the norms || |[y1.2 and || || 2, uniformly in . Furthermore,
h
note that all the above norms are in fact equivalent, and in particular we get that for all g € L?(hZ%),

d
2./
lollimzey < (247) Nolzzuze

for all m > 1, as a direct consequence of the triangle inequality. However, these bounds are not
uniform in A, and become trivial at the limit h — 0.

2.2. Discrete Fourier Transform. We now recall the definition of the discrete Fourier transform
of a function g € L?(hZ?), namely

g =ht > gla)e ™,

achZd

for £ € T¢ = R?/ (3£Z%). In particular we see that the discrete Fourier defines an isometry from
L%(hZ%) to L*(T¢), and that we have an inversion formula: for all a € hZ<,

ol0) = gz | O

As proved in [29], by the Hilbert scale property, the definition of discrete Sobolev spaces H*(hZ?)
can be extended to any real s € R through the norm

d 2 8
1 4 . [ h&; ~
19117+ (zay = @) /Td 443 > sin (#) G(&)I° dg,
h Jj=1

which is equivalent to the definition of discrete Sobolev spaces given previously when s € N. With
our choice of convention, note that we have for the discrete convolution product the property
(f #r9)(&) = F(€)3(€) where (fxng)(a)=h" Y f(b)gla—b).

behZ

2.3. Main results. As L?(hZ?) is a Banach algebra (which is not the case in the continuous
setting), Cauchy Lipschitz Theorem can be applied to get the local well-posedness of equation
(DNLS), and the L?(hZ%) norm is a constant of motion, namely for any u solution of equation
(DNLS) with initial condition u(0) = ug, we have

(2) w22 (hzay = lluoll L2 (hzey
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for all times ¢ € R, which implies global well-posedness in L?(hZ?), and so in all discrete Sobolev
spaces H*(hZ?) for s € R by norm equivalence. By standard arguments, we can also show that the
energy

1 A
3) B(w) = 5Ol + 55715

is conserved for all times. In view of our set of parameters for (d,p) and by discrete Gagliardo-
Nirenberg inequality (see equation (27) in Appendix A), this implies an a priori estimates on u in
H'(hZ%), both uniform in time and with respect to the stepsize h. We now state one of the main
results of this paper, which gives some polynomial bounds on the growth of discrete Sobolev norms
of u:

Theorem 1. Let ¢ > 0 and m € N*. Let u € C(R; H™(hZ%)) be the unique solution of (DNLS)
with initial condition ug € H™(hZ®) and the set of parameters (\,d,p) satisfying (1), then

4) w(t) || grm (nzay < C (1 + t2(m71)+5> 7
with C = C(e,m, |[uol| gm (nz4))-

This deserves some comments:

e This result is a generalization of [4, Theorem 1.1] for both higher nonlinearity powers and
to the two-dimensional case, in the defocusing setting. However, the time estimate in [4]
is substantially better (£ instead of t2m=1+) and the factor C' only depends there
on the H'(hZ?) norm of the initial condition wg, instead of the [Jugl| grm (z4) needed here
in equation (4). These features are mainly due to the algebraic structure of the cubic
nonlinearity along with the use of better Sobolev embeddings in the one-dimensional case.

e As announced above, our proof relies on the use of suitable modified energies, a strategy that
has proved useful in a variety of contexts. In the framework of growth of Sobolev norms,
few results are available both for generic nonlinearities (typically higher than cubic) and for
dimensions higher than one. The only general result we are aware of is the recent work [24]
on continuous compact manifolds, where only weak dispersive estimates are available [§].
This situation is of course reminiscent of our discrete setting, and it is natural to adapt
their strategy. However, in the three-dimensional case, for the cubic nonlinearity, their proof
relies on a particular Strichartz-type estimate which allows to only bound the L%/ norm
of the nonlinearity, enabling the use of Holder inequalities with low regularity requirement.
This estimate, proven in [6, Proposition 5.4], relies on semi-classical time estimates which
are at best unclear in our discrete setting, and whose proof is out of scope of the present
paper. We left here open the question of higher dimensions for future works, especially in
the three-dimensional case where discrete Strichartz estimates are still available (see [16] or
Lemma 19 in Appendix A).

We now focus on our strong convergence result in the continuum limit A~ — 0. In order to
compare sequences of L%(hZ<) with integrable functions defined on the whole space, one needs an
interpolation method. As introduced in [4, 5], we rely on the Shannon interpolation Sy, : L?(hZ%) —
L?(RY) defined by

Spu=F"1! (1T%ﬂ) ,
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which allows to extend a sequence into a real function whose Fourier transform is supported in wa
and where F denotes the usual Fourier transform on R¢ defined by

Ff() = y f(z)e ™ ¢da,

for all ¢ € R? and f € L?(R%). We also adopt the following convention for the convolution product

fro@) =5 [ Swlee—u)dy sothat F(fg) = Ff+ Fy

(2m)? Jg
Of course, we also need an operator of projection for continuous integrable functions on discrete
functions on the lattice hZ?. We naturally choose the pointwise projection II;, from H*(R?) to
L?(hZ%), which is defined for any function f € H*(R%) with s > d/2, by

M,: HRY) — L2(hz)
Wzt — C
Foom s fa

In fact, any function f € H*(R%) with s > d/2 admits a unique continuous representative f € C(R%),
which will still be denoted by f for conciseness purposes. We now state:

Theorem 2. Let 6 > d/2, m = [§] and o > m + % with the set of parameters (\,d,p) satisfying
(1). Let € C(R; H*(RY)) be the unique solution of (NLS) with initial condition 1y € H*(R?), and
let u be the unique solution of (DNLS) with initial condition ug = Iptpg. Let 0 < s < 6 —d/2 and
€ >0, then there exists constants B = B(d,p, 5,0, A, Vol gre(ray) > 0 and C = C(d,p,s,9,\,€) >0
independent of h such that for all t > 0,

p p2p—1(m—-1)+14e

(5) [Shu(t) — YO o may < ChF (1+ 1Yol o rey)” e

One has to compare this result with [15, Theorem 1.1]. In particular, we observe in our case
a slight loss of regularity for the initial data, due to our pointwise projection compared to the
finite type volume projection adopted in both works [21] and [15]. We also have an e-loss in
the exponential bound for time, which is a direct consequence of our estimate for the evolution of
discrete Sobolev norms of the solution (4). However, our result covers the case of strong convergence
for arbitrary Sobolev norm H?, providing enough regularity on the initial data 9. Secondly, one
can improve the rate of convergence in the stepsize h by assuming more regularity on 1, a feature
which was not covered in previous works concerning the continuum limit of the discrete nonlinear
Schrodinger equation (DNLS), and which is usually referred as being a compatible estimate in the
finite differences literature [3].

We expect our strategy of proof to be quite general, and we plan to apply it to other dispersive
discrete nonlinear equations in future works. In particular, some properties concerning the Shannon
interpolation in the context of Sobolev spaces, although it might be considered being fairly standard,
may not be explicitly written in the literature to the best of the author’s knowledge, and a small
part of this paper is devoted to the rigorous proof of these properties.

Throughout all these notes, C' will denote a generic positive constant independent of the under-
lying parameters, especially with respect to the stepsize parameter h. We will specifically denote
by C = C(a) > 0 a constant depending on the parameter a.
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3. SHANNON INTERPOLATION

Only for this section, d > 1 is an arbitrary integer. We recall some classical properties of the
pointwise projection of a regular enough continuous function on the grid hZ%, mostly for complete-
ness purposes. We then introduce and prove some useful properties of the Shannon interpolation
with respect to both continuous and discrete Sobolev spaces, especially the bilinear estimate of
Proposition 6 that will be fundamental in the proof of Theorem 2 in Section 5.

3.1. Pointwise projection. We first state a property concerning the discrete Fourier transform
of the pointwise projection II;, sometimes referred as the Poisson summation formula, that will be
important in the following, and that we briefly prove in our particular setting for self-completeness:

Lemma 3. Let f € H*(RY) with s > d/2, then, for all ¢ € T,
2km
mr© = Y 7r(e+27).
kezd
Proof. First, let’s note that for all z € R?, we have

th<a>—(2717)d/w R (CLE e Sl R (GL

kezd (k)
£+%) ( %J)
7 2 /T d Fre+ 27) ag
kezd
by linear change of variables and periodicity, where a € hZ? and for k = (ky,...,kq) € Z4,

(2k; — D) (2k; +1)
h

TZ(k)z{x:(xl,...,xd)eRd ijg%foralllgjgd},

with the convention T¢(0) = Tf. On the other hand, as I, f € L%*(hZ%), we know that for all
a € hZ4,

1 (0) = g [ e Tl
hence we get the result by the inverse discrete Fourler formula. O
We now show the continuity of the pointwise projection with respect to Sobolev spaces:
Lemma 4. Let f € H(RY) with § > d/2, then for all s > 0 such that § — s > £, we have
T £l 2= nzety < 1 |z ey + CBO | £l 113 o)
where C = C(d, s,0).
Proof. Defining g (&) := Ff (€ + %T’T) for all ¢ € T¢ and k € Z4, from Lemma 3 we infer

1
s 3

1 4 he;\2
Ik fll ers (nzay = Z (27T)d/1rd 1+ ﬁzsm (%) 9k ()7 d¢
h Jj=1

keza

The term for k = 0 is easily bounded by || f| z=(ga), as for all £ € Ty,

d 2
(6) S s (M) <ap e
j=1
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On the other hand, for k # 0, we need to estimate the following integral

d T e+ )

— 4 h¢
Ik(t)./Tﬁ 1+ Zsm( ]> (1+|§+22ﬁ|2)5_5|

for § > s yet to be fixed, in particular we need to get a lower bound of |£ + 2!’4:7r/h|2 for ¢ € T. As
k # 0, there exists jo such that

kjo = 1I£1aX ‘k]| >0, hence 2‘/63'0‘ -1= |kj0| + |kj0‘ -1> |kj0|'
<j<d ——

gr(&)I d¢

>0
We can then write that
2k |? Zk: o 2 o _ k|
i —_— = — (2lk; | = 1)° >
gnel%r% &+ h | = ¢oel- 7r/h7r/h] So + h2( [ksol = 1) = h2d ’

and making the change of variable £ — £ — 2kw/h in the integral I, from the periodicity of the
sine function alongside the bound (6) we infer the estimate

I ( ) ~d,s,6 R0 Z |]€‘2(6 ) ”leQ‘I‘S(]Rd)’
k0

where the infinite sum in the right hand-side of this inequality is finite as soon as 6 —s > d/2, which
gives the result. ([l

3.2. Shannon interpolation. We now focus on properties of the Shannon interpolation Sy, defined
in Section 2. Note that the Shannon interpolation can also be defined by the finite-element type
formula

u € L*(hZ%) v Spu(x) = EZth sinc (m ; a) u(a),

sm(a:)

where sinc denotes the cardinal sine function sinc(x) = . Also note that II, 0 Spg = g, so Spg

is the only function in L?(R?) with Fourier transform support included in T¢ and whose values on
hZ® are those of g. We first state a continuity property:

Lemma 5. Let u € H*(hZ?) with s > 0, then

ol iy < ISl sreaay < (5) el uy

Proof. We recall that

1 s R 1 S~
ISl ey = Ty / (1) 1o P (1) (9P de = g / (1 IgP)" ate) P,

hence this property is a direct consequence of the following sharp inequality,

Yw € [f sin(w) <w < gsin(w),

3]
27217
and the fact that %2 ~ 247 > 1. O

Let now state and prove the following bilinear estimate, as well as a direct corollary, which will
be useful in Section 5
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Proposition 6. Let f, g € H°(hZ%) with § > d/2, and let 0 < s < 6. Then
ISk (f9) = (Snf)(Sug)ll rrs way < Ch°~*|Sh £l s ey | Sngll mrs (et -
Proof. Let’s first note that

Flyg * Glyg = / FG(E —n)1pg (€ = m)dn
= ( / F(&=mg(n)1zg (n)) Ing
E+T¢ ' g
where T} , = R?/ (3z7%) = [-2, %’T}d. We now write that

1Sk (f9) = (Shf)(Shg) Iz ey = /Rd(l +1€1%)° |F 0 Sn(f9)(€) = F (SnfSng) (€)* d¢

= [ asigny
R4

:Il +IQ7

—~ —~ 2
Fo(€)12g () = (Flog +1ry ) ()] ag

where

dg

:

ni= [ (a+iePy

F9(€) = (Fipg = G1pe) (6)
and

T, = / (14 [€)° |7 (Sn fSng) ()] de.
T§ ) \T§

We first estimate Z;. Let’s note that

Fo(€) = F o130 = g [, Fomate = man.
and )
A]. d *A]. d = £ q(€& — d s
(Flps G100 ) (6) 57} [{new}m{gnﬂm\m fmg(§ —mn)dn
so as £ € TY,

E(f) - (J?lrg *alrd 27r / f g€ —n 1Td/2\1rd (€ —mn)dn

We now decompose T¢ as a disjoint union of intervals (d = 1), squares (d = 2) or cubes (d = 3) of

length 7/h (or so on for d > 4), namely

|| K with Kl:{xeﬂrz’(zj—l)%<xjglj%,1§jgd}.
1€{0,1}¢

We fix [ € {0,1}%. Let £ € K; and n € T¢, and note that
From this remark, we define the set

Ni= {1 e {0,1)° ‘ £—neT\Tf e Kipe Kb =1{0,1}"\L.
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We now also fix I’ € NV}, and we assume 7 € K. Then there exists a unique x(I,1') € {—1,1}" such

that )
—n— w1
E 7] K:( i ) h

Using these notations, we can rewrite Z; and get the bound

M  n<ca Y /K (1+ (¢

1€{0,1}¢ VEN

d
e Th.

2

de.

| Fopate — ntag ege - midn
Kl/

::Il,l’

27 _

By the linear change of variables &’ = £ + 2k(l,1")7/h, and as the function g is 5*-periodic, we get
(dropping the ’ on &) that
2) s

2r(1, 1
Il,l’:/ , (14—‘5_”
Kl+2m(z};z ) h
, 2\ ¢
s 1 ’ _2k(L1D)m >
) :< T ) atepy

We now write that
26(1, 1
e
< h (1+ (5P (1+1€2)°
As |(1,1)] > 1, and K; C T, for every & € K; + 2k(1,1")7/h, we have |¢| > 7/h so

1 —s
g < G

On the other hand, as £ — 2x(,I')m/h € T¢, we get that

~

F)@(€ — m) g (€ — m)dn

Ky

2
de.

(1+ I*)°

N2\ f
_2k(LI)w

_2(L 1) <ig| so (1—'—‘5 h ) <1
h |~ (1 + 1€ T

Combining these inequalities with rough upper bounds on the integration variables £ and 7, we get
the estimate

2
T <0120 [ 1629 ([ 170 ag I3~ )Ly (€~ m)n) dc
Rd Rd
We now conclude by classical arguments. From the classical estimate
L+’ <O ((L+1€ =)’ + 1L+ [0*)°)
for 6 > 0 and C = C(d) > 0, we infer that

€

/R (LI F ) g (m)G(E — 1) Lrg (€=m)dn S |(L+]- )2y [ ] FLpg [+ [y || (1] [*) % Fog].
Then, integrating over ¢ € R? and using Young’s convolution inequality, we get that
T < OO (G0 s gty 1L |21 oy + 1900 12 gy | Pt s gy
We recall that J?lﬂr;f = F oSy, f and we observe that
IF o Sufllprway < ISk fll s may
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from classical Fourier transform properties as § > d/2. As we have finite sums in equation (7), we
finally get that

1, < ChQ(‘;‘S)HSthf{g(Rd)\|Shg||§15(Rd).
On the other hand, we have
I, = (L4 161%)° |F (SnfSng) () A€ < Ch*O=)||S f[115 gy | Snll7
2 R\ hJong > rJ s ra)IOhG e (ra)-

h

as H?(R?) is an algebra providing that ¢ > d/2, which ends the proof. O
Corollary 7. Let g € H%(hZ?) with § > d/2 and n € N*. Then
81 (9" ) s may < ClIShgllFrs ray-
where C = C(8,d,n). In particular, for ny + ne = n € N*, we have
(8) 180 (9™ ") 115 ey < ClShgllrs (may-

Proof. We prove the result, which is obvious for n = 1, by induction. Assuming that (8) holds for
n € N*, we compute using Proposition 6 and the fact that H°(R9) is an algebra that

IS (g™ )11 ey < ISn(g™ 1) — Sn(9™)Sngll 1wy + ISk (9™ )Shll s ey
< CSn(9")l s mey ISl 15 (R
< C”SthHé(Rd)

by assumption, which gives the result. Equation (8) then naturally follows from the fact that for
all z € RY,

Sugle) = Y glasine(n(z - a)) = Sug(x).

a€hZ?
O

3.3. Interpolation of the linear flow. The next estimate deals with the error made by conse-
quently projecting then interpolating a continuous function f in terms of Sobolev spaces.

Lemma 8. Let f € HO(R?) and s > 0 such that § — s > d/2. Then
ISh o U f — fll s may < Ch&s”f”Hé(Rd)a

where C' = C(d,s,0) >0

Proof. We write

s |l 2 s
1Sn 0 TIaf = I ga) = /T () M) - Frio)| de+ /R (1+1¢P?) 17 £(©) de,

d\']r;lL

as the sum of two functions of disjoint supports. For the first integral, we get from Lemma 3 that

for all ¢ € TY,
2k
7 (6) =S A (e BT e
k#0 k0
Mimicking the proof of Lemma 4, the first integral is handle by the estimate

s | = 2 1
[ +16R)" [Tuf©) = F@)] de Sang 126 2. e ) W lns e
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which is finite as soon as § — s > 2. For the second integral, as 1 + [¢|? > dn?/h? for £ € RA\TY,
we easily get that

/Rd\w (1+[€17)° [FF(©)1? dg < Ch2= | £113s gay-
O

As a first consequence, we can get an error estimate between the interpolation of the discrete
linear flow and the continuous one:

Proposition 9. Let g € H(R?) with § > d/2, and let’s denote ug = Iptpg. Let s > 0 such
that § — s > d/2, then for all t > 0 we have

; ; S5 _d
[Sne™rug — B4 | rogay < Ch™ZF 5 (1 4 ) ||to0]| o ma),
where C = C(d, s,0) > 0.
Proof. We decompose our analysis on the two following integrals

||Sh€itAhuO - eitA'l/}()HHs(Rd) < HShe“Ahuo - 6itAShu0||Hs(Rd) + HeitA(ShuO - wO)HHs(Rd)
(L) + In(t).

We first note that
2

Re? = [+l |e it Eam ) G - T ) ae.

h

Using the fact that for all £ € ']I“,?L, we have

‘e—it(;‘a Sin(S) =) | th?(¢],

(see for instance [19, Section 3.2] or [15, Lemma 5.7]), we infer that, for 8 > 0 yet to be fixed,

T2 < th2 1 2ys 114 ()12 d (L+[EP)5F 24
st [ iyt meracs [ S R mes
h? _ —
<t [ QR wE v (1+ IEP)+ @ () de

Tin{lel> 2}
so we get that
8 8 e
Li(t) < C(L+ t)h 2 |ul grersnzay < CA+ )R (||l grossmay + B 7P|tbo]l s (ma))
by Lemma 4, providing that 6 — s — 8 > d/2. On the other hand, from Lemma 8 we get that
Ix(t) = [|Shuo — Yol s (may < Chg_sH?/)O”Hé(Rdy

as we have assume that § — s > d/2. Taking 8 = § — s — d/2 and combining both estimates, we get
the result. |
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4. BOUNDS ON THE GROWTH OF DISCRETE SOBOLEV NORMS

This section is devoted to the proof of Theorem 1, which strongly relies on the use of modified
energies. For clearness purposes, we briefly give the general ideas behind this method and its main
ingredients. In the context of Schrédinger equations, the idea is to generalize Kato’s trick (which
basically allows to read the H? regularity of the solution from an estimation of ||0;ul|z2 using the
expression of the equation) to higher orders : rather than deriving 2k times in space equation
(DNLS) in order to get an H?* bound, we derive k times in time to infer a bound on ||8§u||L;zl7
which is equivalent to [[u|| 2« up to a rest term due to nonlinear effects. The idea is then to identify
(using the expression of equation (DNLS)) a quantity o called higher-order energy whose leading
term is essentially ||u/[?.... The technical part is then to finely bound o by a combination of
discrete Sobolev inequali}‘lcies and discrete dispersive estimates, in an attempt to get an estimate of
the form

) e — ol < g
with o < 2, which will implies the polynomial growth of [[u(t)[| g2+ by an iterative argument.
Note that our proof closely follows the one given in [24] in the context of growth of Sobolev
norms for the nonlinear Schrodinger equation (NLS) on compact manifolds. The main difficulties
here come from both weak dispersion estimates in the discrete setting (see (29) and (30) in Appendix

A) and the fact that discrete integration by parts, which stands as an essential part of the proofs
involving modified energies, are unsymmetrical, namely

Y Vifla)gla) =— > f(a)V,g(a).
a€hZ? a€hZ?

We begin our analysis by estimating even discrete Sobolev norms, which is the natural way to
proceed in view of the above paragraph. Comments on the generalization to the case of odd
Sobolev norms will also follow, as its essentially relies on the same arguments as for the even case,
but applied to a different modified energy Eop 1.

Note that in this section we will extensively use the fact that every solution u of (DNLS) satisfies
the estimate

9) lulle®; mr (hzayy < C,

with C' = C(p, [|[uol| g1 (nz4), Which holds uniformly with respect to % in view of the energy conser-
vation (3), the discrete Sobolev embeddings (27) and from our set of parameters (), d,p) defined
by (1). We will also systematically denote discrete spaces H*®(hZ?) by the more compact notation
Hj in equation mode for conciseness purposes, as there is no ambiguity with continuous spaces in
this section. The same way, the uniform norm on a time interval [0, 7' will be denoted || - || 5.

4.1. Even Sobolev norms. We first suppose that m = 2k with & € N. In the spirit of [24], we
define

(10) Ean(ult) = [OFu()2; — 3 |05 (ult )P u(t,a))|

a€hZ?
d p=1
! k=1 NERs 120 202
2 Z Z‘at V;j(|u(t,a)| )‘ Z|u(t,a)|p |u(t,a + hej)|* 2.
a€hZd j=1 —

We then differentiate sy, with respect to time, which gives the following proposition:
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Proposition 10. Let u be a solution to (DNLS) with ug € H?*(hZ?) and parameters (X, d,p)
satisfying (1), then

&l
|
-

M

(11) 75% =3 Ly Z‘ak Wi (lult,a)l )‘

aehzd j=1

O (|u(t7 a)|p_1_2€|u(t, a+ hej)|2€_2)

Nl s
=l
—

P

+ch > Za"vgj u(t,a))oF 1V (Ju(t, a) Zak ™ (Ju(t, @) [Pt a + hey) 22)

= achzd j=1 =1
H(OF (luP=), 08 (V3 ul®))n + (OF (lulP~1), 88|V, ul®))n
k—1
+Re D e (O (lulP~1)oF ", 0F T (fufP~ )

n=0

k—2 k-1

+Re Y e (0F (lulP)oF " u, Op Apu)n +Tm Y e (07 (JulP~ )0 "u, Of u)n
n=0 n=1

= Ji(t) + Jo(t) + T3(t) + Ta(t) + Ts(t) + Ts(t) + T (2).
where (cn)n denotes explicit complex numbers which may change from line to line.

Proof. We compute, using equation (DNLS) as well as discrete integration by parts,
(||ak 132 ) = 2Re(@ ™ u, Ofu), = 2Re(0F (—Apu + [ul”~ w), i0f u),

=2Im ) (afv;u(a)‘ + 2Re(@F ([ufP~ w), i0Fu)n,

a€hZd

so the imaginary part simplifies, leading by Leibniz rule to

d
3 (I9Fulz; )
=1y
= 2Re(0F (|ulP~V)u,id0Fu), 4+ 2 Re(|u|P~ 0k u, idFu);, + Rez (n) (O (|ulP~H)oE ", i0Fu),,
n=1

so using again equation (DNLS), and by simplification,

d _ _ _ _
(12) L (19kull2; ) = 2Re(@k (jul?~yu, —An0F ) + 2 Re(Dk (jul? ), O~ (ful? )

k—1
+Re > e (OF(JulP~)OF "u, idf u)y,
n=1
= 2Re(@k (P, ~ A0 M+ 5 S [ (utt )t a))|
aEhZ'i
k—1 k—1

+ Re Z e (O (JuP~ 1) 0F ", OF 7 (|uP ), + Re Z e (O (|uP~HYOF " u, idFu) .

n=0 n=1
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Focusing on the first term on the right hand side, as

2Re(0f (Jul"~)u, —AR0F Mupy = D O (julP™t) (—TAR0F T u — ud,Of )

a€hZ?
and noticing that
k—2
—aAROF T — uA RO = OF T (—uA L u — uALT) 4 Re Z cnOF Apu OF 17,
n=0

we get from the identity
An(luf?) = uApa +aApu + | Vi + |V u)?
and integration by parts that

(13)  2Re(@f (Jul” " yu, —An0f uyn = D> OFVy (julP™) - F IV (Jul?)
achZd
+ ) (P o (V) + Y aF(luPhar T (V5 ul?)
a€hZ4 a€hZ4
k—2
+Red cn Y OF(lulP)0; Apu 0F L

n=0  aechZd

We then infer that from elementary computations, for all a € hZ?,

p—1 T
2
Vi (fut, @)’ ) = | Vi (ju(t,@)*) D fult,a)P~ > u(t,a + he;) [ ,
=t 1<j<d
so the first term in the right hand side of (13) can be written
> Vi (ult, )P - F IV (Jult, a)|?)
achZd
p*l
= > Za’f V(e ) S fut, P fult, a-+ hep) 2 | 08~ (W lult, o))
a€hZ? j=1 =1
= Z Zaf‘ak W (lult,a)? ‘ Z|uta P12y (1, a + he;) |2
aeth] 1
+ch > Zanv;] u(t, a)[)of ' Vi ([ult, a)|? Zak " (Jult, a)P~ = u(t, a + he;)[*72),
n=0 a€hZd j=1 =1

so we conclude by combining this last equatity with equations (12) and (13) and using the expression

of &y (u(t)). O

We then prove that the norms ||0Ful| £z and ||ul|gzr are comparable, so that the leading term in
the modified energy &3x(u) is equivalent to the Sobolev norm [[u[z2x:
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Proposition 11. Let u be a solution to (DNLS) with ug € H?*(hZ?) and parameters (X, d,p)
satisfying (1), then

(14) |0fu — i* Al g < Clullyeeon—s,

for any s > 0, where C = C (k, s, HUHH}) > 0 is independent of h.
Proof. We prove the result by induction on k. The case k = 0 is obvious. Using the expression of
equation (DNLS), we easily show that for all & € N,
a—1
ofu =i“Aju + Z cn 0P AN (JulP )
n=0
for suitable constants ¢, € C, so we get that

k
10t — i AT g S 107 ([l )| g2z
n=0

Expanding time and spaces derivatives, and using the fact that

> IU(t7a)\IU(t7a+5h)\S% Yo )P+ Y fultat BR)P ) < lu(®)Fs

a€hZd a€hZd a€hZd
for all B € Z%, we get by Holder inequality that for all 0 < n < k,
107 ([P~ )| esar-an S 11 105 ullyyesan - 107l oo
ni+...+np=j :

s1+...+sp=2k—2n+s

Then using discrete Sobolev injections H'(hZ?) C L?P(hZ?) as well as the induction hypothesis,
we get that for all 1 < /¢ < p,

107 ullyzer S 107 ul geess < Nullgrpsrsane,

and from interpolation for 0y(s + 2k) = 2ny + sp with 0 < 8, < 1 we conclude that

l[ull greeran, < Hu||?;s+2k+1 ||UH}LI_10£~
h h
———
<c
As the above sum on n and the products on (ni,...,n,) and (s1,...,s,) are finite, we get the
result. |

We now prove the following a priori bound:

Proposition 12. Let u be a solution to (DNLS) with ug € H**(hZ?) and parameters (\,d,p)
satisfying (1) and s € {0,1}, then for all0 < T <1 and all e > 0,

1 e(p—1)
u||L’jo_9Hij+5+1 ||u||L%onLj+2-

3
(15) 0 ullgwes Sime Il o
Proof. Using discrete Strichartz estimates from Lemma 19 on the equation satisfied by 0j'u for any
n € N, we infer that

10 ull L s S ||3fU(0)IIHZ+% + TIIW(IHI’”U)HL?H:%

3 1 _ 3 n _ 1
S 107w 7 107 w(O) | Frosr + TNOF (el )| 50 g1 107 ([l ) | Fe e

1
I
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Using equation (14), we easily handle the first term in the right hand side of the previous inequality,
namely

107 w(0)]| g < 107 u(0) —i" Aju(0)]|my + [ ARu(0)][m; < lluoll frz+2n
as well as
107 w(O) | < Nuoll gs+2mr-
On the other hand, expanding the time derivative on the second term of the right hand side, as
well as using the discrete bilinear estimate

(16) [ follrse Se ||f||}ff||f||%g
which stands for all e > 0 as d < 2, we get that

o (P e S D 107 wllm 1072wl npe - - [10] 7 ] oo
ni+...+np=n
S lorule; 07 ull 1107 ullzz - - 107 ull 1y 107 ull 2,
ni+...+np=n
which gives using equation (14) that
107 (fulP )l S > IIU\IHml+s|IUII12n2+1 [ullGyznasa - ull 5,1 [ullGgzn 2
h

ni+t...+np=n

Denoting
012n+s)+(1—601)=2n1+s and 6,(2n+s)+(1—6;)=2n; +1
for all 2 <[ < p, we get by interpolation that

_ P 04 (1— 1-05)(1— 0,(1—¢) 0,)(1—¢) -1
105t~ )ty S Nl el 5 Nl o Nl 520l i Nl g ™ a2
so we get the result noticing that lel 0; =1 and using the uniform H' bound on w. O

We can now state and prove the main result of this section, which is the following:

Proposition 13. Let u be a solution to (DNLS) with ug € H**(hZ?) and parameters (\,d,p)
satisfying (1), then for all0 <T <1 and & > 0 arbitrary small, we have

+ +
|Eak (w(T))| S €2k (uo) |+T||U|\2’io}qaf + T3 ||UHL2<’LI§2:-
Proof. Let’s first remark that as
T
d
|Ear (u(T))] < |52k(uO)|+/0 T Een(u(®)|dt,

we are brought back to estimate the time integral of the terms J; for £ = 1,...,7 in the right hand
side of equation (11). From now on we will denote by € > 0 an arbitrary small constant which may
change from line to line, and we will extensively used the estimate

o1
(17) lull g mry S Ilull Lo g

for any 1 < s < 2k, which immediately follows from an interpolation inequality with the uniform
H! bound (9). From norm equivalence and Holder inequality, we infer

/Ijl()ldt< > /||5'“u||214||5k2u||LooII(9tUIIL2IIU\Iiofdt

ki+ko=k—1
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For k1 + k2 = k — 1, beyond the uniform bound Hu||1£§94L;,o < C, we easily get that
||atu||L;°Li S ||U||L;°Hg

from (14) as well as

koo 112 ko 12(1—=€) 1 qka, |2 2(1—¢) 2
1982l e S N0k ulE N0l F S Nl s 2 o

using classical interpolation. We use estimate (15) in order to bound the last remaining term,
namely

k 20k 2 3 1
10; luHQLzTWiA <7539, 1“”%‘3TW,1’4 STs HUHE;OH?”“ ”qu&.S,H’z;lirz ”UHEL%CH}?MH-

Combining these bounds with (17) we get that

1k—5
2F—1 1€

T
2
(13) | 1ol s Tz
0 T h
The same way, from discrete norm equivalence and Holder inequality, we get that
T k—1 T p—3
k k
[ 1010 < S 1eal 3 [ 107wl 107 uly 0wl |08 ull 0wl TT 107wl
0 n=0  A,,”0 =2
where the set A, j is defined for every n € {0,...,k — 1} by
An,k = {(nl,ng,k1,k2,m1,...,mp_g) | ny +mng =n, ki +ko=k— 1, my + .o +mp_3= k—n}

As for J;, we can estimate each term separately, using the bilinear estimate (16) to handle L>(hZ?)
norms uniformly in time, and the nonlinear Strichartz estimate (15) for W4 (hZ?) norms combined
with Holder inequality for the time integrability, which gives

T
2 _ 3 1 _ 3
/0 |j2(t)| dt ST3 Hu”l N 2nq+1 Hu”z%oHianrl Hu”z%oHiW”HUHIL;:HZ’”“ ”uHE%OH%zH

Ly H, h h
1 p=3 1
= —€
(19) X ‘|u||i%oH§k2+2||u‘|L7°?H,2Lml ZZI_IQ HUHL;OHZM’ZH H’U’Hng‘S’H}ZL’c
2 ﬁqu
S T8 |ull 75 o

where we have used the estimate (17) on each separate term in the last step. Focusing on [J3 (or
by obvious symmetry on Jy), we infer by Holder inequality that

T T p—1
k k
JRRECCIEED SR e (g ||affu||Lzo> 108 ully 982l

k1+ko=k—1
ni+...4np_1=k
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so that estimating each term as above we get that

T p—1
2 3 1
/0 NAGIE o [ e (Hn |;;H2w+1> (e ] L.
(=2
20 i i
(20) o [P 7 P 7 e
5
2 —2 4+
STl 5y -

Arguing as above, we also get that

T
(21) / ()] dt

k—1 p
< lenl > ./ 107 ullz2 (IIHanﬁmLf>Kﬁ‘"uHLfﬂafWﬂh@ <II|5f“ML§>
n=0

ni+t...4+np_1=n =2
ki4...4kp=k—1
ni=max(ni,...,np—1)

T”””po]f"l <H ||uL0CH2nz+1> ||UH1L:TCEH’21«—%+1H“H ooHZkHu”LooHZkl (H [l LooH2kg+l>

5

+e
<Tﬂ\ﬁi§%.

Note that as no W4(hZ?) is involved in the above estimate, we do not trade space regularity for
time integrability by Strichartz inequality (15), and we end up having a straight linear bound with
respect to T. We end up our analysis by estimating Jg and [J7 similarly to J1, J2, J3 and Jy,
namely

(22)

T k—2
/0 T <S el S / 108 ) (H ||a’“u||m> 107 Anal g 185
n=0

ki+..4+kp_1=k
ki=max(k1,....,kp—1)

p—1
2 3 1
ST HUHL?H}?L’H (zl_l2 |u ||1LOO€H%@+1> ”u”z;?H}f"“”qugHi"H

3 1
||u||zooH2k—2"—2 ||U||2709sz—2n—1 ||UHEL%0H§1«

2k 1+s

2
T3 H ||L°°H2k
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and

(23) / Tt |dt<2\cn\ > / 107l s (Hna”fuum) 10—l 1 190 2
=0

nit...+np_1=n

T3 3 1
<T 3||u||zmHQ,L1 |uHLooH2"71+1 <H || |2;H2n[+1> ||U||2?H}2Lk72n UHz?szfznﬂ||U||2;5Hﬁk
73 2 te
T3 |u HLQI;I}% .
Finally, summing estimates (18), (19), (20), (21), (22) and (23) ends the proof. O

We then deduce the key estimate in order to prove Theorem 1:

Proposition 14. Let u be a solution to (DNLS) with ug € H?**(hZ?) and parameters (\,d,p)
satisfying (1), then for all0 <T <1 and & > 0 arbitrary small, we have

2htie 24
(24) IIU(T)H?{%k - ||U0||H2k S llull P pran + T u Hf’;;pk .

Proof. Writing Ray(u) := Eap(u) — ||8fu||Li using equation (10), we first focus on estimating both
terms of Rok(u) in the same way than in the proof of Proposition 13: from norm equivalence and
equation (17), we get that

3 Z‘a’f W (lult,a)? ] Z|uta P2 u(t, a + hej) 22

achZd j=1
k k p—3 2 2 e o1 te
S X bl lolulie e S Y Nl el el e S
h h v h
ki1+ko=k—1 ki+ko=k—1
and
9 p
k— —
> ot ol ap| s Y ol ( TT ol
a€hZd k14 4kp=k—-1 =2

2 5 2 ot te
—1
N Z ”u”H}f’ll g HUHHZ"Wrl HUHH% ~ Hu”Hka .

ni+..+np=k—-1

We then infer from equation (10) and Proposition 13 that

_5

ahtie ah=Cie B 2 4
R P [ PP o A i R 1

so using equations (14) and (17), we finally get that
5

s dte +e
lu() 1320 = w72 S NOFu®)Z + IIUIIH% v S llull e g + T lu IIj’:o;,% :

which gives the result. |
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4.2. Odd Sobolev norms. We now suppose that m = 2k 4+ 1 with k¥ € N*. The modified energy
Esk+1(u) is now defined for all ¢t > 0 by

(25)

k—1
Eopr1(u(t)) = *||akV+UHL2+ Z lu(t,a)[P~|0Fu(t,a \2—|—Rech (07w OF =" (lulP~1), OF u)p,

aEth n=1

k—1
+ 2 Q= ok )+ 3 el (=)0 (ul®), OF ("))

As in the even case, differentiating Eoxy1(u(t)) with respect to time, we have the following result:

Proposition 15. Let u be a solution to (DNLS) with uy € H***Y(hZ%) and parameters (X, d,p)
satisfying (1), then

k—1 k—1
d n —-n — n —-n —
Ern(u(®) = Re Y o (07 u oF " ([ufP™h), 0fu)n + Re D cn (0w 0F " (JulP™), of u)n

n=1 n=1

(@ullul? =), ok + 5 (a1,

w\»—‘

(|’U,| ‘ > +ch 6k |u|17 1)8n ak—H n >h

k—1 k—1

+ > enl0r T (ulP )0 (uf), 0 ([l + Y nlr ™ ([P0 (fuf*), 0F (fuf*))n-
n=1

n=1

Proof. From integration by parts and using the expression of equation (DNLS) we get that

S S I0EVullZ, =~ Relofu, of (ul~ ),

so that expanding the time derivatives we infer

SRVl = — Re(@k (i, 0y — Re(ful? o, )

k—1
“Re Y en(@u OF " (juPY), 05+ ),
n=1
=~ Re(@ (a0 — 23 (S Y okul? )+ L @), [0kl
2d 2
achZd
k— k—1
( Z w BF ™ (u |p1>,afu>h> +Re Y (07w 0F " (jufP L), O,
n=1 n=1

k-1
Re Z en (07 OF T (JulP~h), Ok )y,
n=1



22 QUENTIN CHAULEUR

We now focus on the first term in the right hand side of the above equation, noticing that as p is
odd we have 0;(|u|P~!) = %@(\uﬁﬂu\p—?’, so we can write that

k
— Re(Of (Jul? =y, 0wy = — 3 (D8 (), 0 (ul?)) = 3 enloF (a0 s
p—l k—1 -
= =l (ul?), 0 () = D en (0 ()07 (ful?), 057 (ful*)
n=1

k
=D caldf (05w O
n=1
__p_1£(< p—3 22>> p_1< p—3 k 22>
== g (ot Gu)f) )+ 5= (auttul =), ot Q)|

k—1
(ch (O (lulP=)07 (lul), 0 (|ul?) ) Z (OF " (|ulP=2)07 (Jul®), OF (lul*))

k‘

k-1 k
+ el (P )0 (uf®), O (luf*))n + Y a0 (lulP~)0F w, 05w,
n=1 n=1
which ends the proof. |

The proof of the estimate

+ +
(26) (D) 2w = (0 Gpansa < IIUIIL‘iszfH +1% IIUIILi’“Huiu

which stands as the exact analog of equation (24) in the odd case, follows the same lines as its even
counterpart: taking advantage of the estimate

108V — F ALV ulli; < Cllul e, s> 0,

as well as the nonlinear Strichartz estimate (15), we can show that

1
24e +e
&1 (w(T)] S [E2k41(u(0))] + HUHLiszkﬂ +T5 ”uHLikHQk“

the same way as for the proof of Proposition 13, which in turns implies equation (26) estimating
the remaining terms in equation (25) as in the proof of equation (24).

4.3. Proof of Theorem 1. Let m € N* such that m > 2, ug € H™(hZ%) and parameters (), d, p)
satisfying (1), and let u be the unique global solution of (DNLS) with u(0,-) = ug. We then have
for all 7 > 0 and € > 0 arbitrary small that

2te Z+e
() e = llwollZrye S Tl IILrZoim + 73 u IIM}m

_s
Writing « = Zm + +¢& < 2 for ¢ > 0 small enough, and as
get that for all £ > 0,

lu(t + )3y < )13z + C (14 1l ()1 iz ) -

27:': 4 | ¢ < a, for 7 small enough we
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From energy conservation we infer
lut + )3 < )3 +C (14 [lull )
so the sequence U, := 1+ ||u(n7’)||fq} satisfies U, 41 < U, + CUZ. Asa <2, we get by induction
that U,, < nﬁ, which yields to the polynomial bound
lull L < C(14T2m=D+)

for all T > 0, ending the proof of Theorem 1.

5. STRONG CONVERGENCE IN SOBOLEV SPACES

We have now all the tools at hand in order to prove Theorem 2. Let 6 > d/2, m = [§] and
o > % + m with the set of parameters (), d,p) satisfying (1). Let 19 € H%(R?), so that for all
t € R, there exists a unique solution ¢ € C(R; H*(R?)) of equation (NLS) such that 1(0) = .
We denote ug = II;10, which induces a unique solution u of equation (DNLS). In particular

ol m nzay S %ol e ma)

by Lemma 3, 50 |[ugl| gm(nz4) is uniformly bounded with respect to h . From Duhamel’s formula
we can write that

Spu(t) = SpePrug — i\ /Ot Spelt=T)An (|u|p_1u) (r)dr
and
60 = g0 —ia [ 02 () (.
We will then decompose our analysis on the f(;)llowing integrals
IS u(t) = ¥ ()l e (ray < Sne™ > ug — ™S40l o may

t
iW(t—7)A i(t—7)A —
S [ J(setemse em2s,) (et @),

+ |A/0t Su (Jul"~ ) () = (1wl ™ Spu) (7)]| - ar

Hs(R4)

+ A

Hs(R4)

t
(sl Shas) (7) = (o) )
= Jl(t) + Jg(t) + Jg(t) + J4(t).

Note that the integral J; is already handle by Proposition 9.

5.1. Linear flow on the nonlinearity. In order to estimate Jo, as Il o Spg = ¢ for any g €
L?(hZ%), we write that

Shei(tf-r)Ah (|u‘p71u) _ei(tf‘r)ASh (|u‘p71u) _ Shei(tf-r)AhHh OSh (‘u|p71u) _ei(tf-r)ASh (‘u|p71u)
so applying Proposition 9 to Sp, (|ulP~'u), as

1 (1l =) (s gty S 1500 By gy S (T By iy < 00
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from consecutively Corollary 7 and Lemma 5, we get that

d

t
Jz(t)gChéT’4/(1+t—7')||8h(|u|p’1u) ()L ety dr
0

t
5§—s
<OWF A+ 0) [ 0 e ndr
< CRTH (14 62) (1 + 20 DF)P (14 [lug || g (nze) )P
< O 414 270429 (14 ol o P

applying Theorem 1 for € > 0 arbitrary small.

5.2. Aliasing of Shannon interpolation. We now focus on J;. We will use the following prop-

erty, which is a direct corollary of the bilinear estimate of Proposition 6:
Corollary 16. Let u € H®(hZ®) with § > d/2, and let s < 6. Let p=2n+ 1, n € N*, then
1S (JulP~ ) — [Shul" ™" Spul e (aey < ChO~* | Shullfys g

where C = C(4, s,d,p) > 0.

))

Proof. Let’s first recall that for all z € R, S,7(x) = Spu(z). We then compute that
1S ([ulP~ ) — ShulP~" Spfll e @ay <IISh (JulP~ ) — Sp ([ulP~?) Shul| e
+ 1Su (JulP~1) Spu — [SpulP ™" Spull e (ray
For the first term, we use Proposition 6 so
In (ful? = u) = S ([ulP™") Sl ey < O | Sptl s ey S ([l ™) 105 ety
< Ch&iS”Shu”Z]){é(Rd)a

using Corollary 7 and the fact that ||Spul| s ray = [|SpT|| s (rey- On the other hand, as s < s+d—

we can bound the second term
ISk (JulP~1) Shu — [Spul? ™" Shul| o may < ClShull s ray |Sn ([ulP ™) = ShulP ™" || o gy,
using Lemma 17 from Appendix A, and we can conclude by induction as p = 2n+1 with n € N*.
We then directly apply Corollary 16 to get that

J3(t) < ChO™5(1+1) s ()G ey < CRO™5 (1 4+ 2P DHE) (1t ||| o gy )P
T7€|0,

using Theorem 1.

5.3. Gronwall argument. In order to estimate J4, we notice that

LFP=2f = lalP = g| < CUFI+ g7 f = gl

from the fundamental theorem of calculus, so for 0 < 7 < ¢,

| (™" Ss) (7) = (1w ) (@), o < ]| (S0 + 1D

H(R4)

d
27

O

IShu(T) = % (7) || = (may

< (ISwullfstgn, + 1617t ) IShu(r) = () ey
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as s < s+ 09 —d/2, hence

t
I <C / (ha(m) B2ty + () B2y ) 1Su(7) = (7 e ey

As before, we use Theorem 1 in order to bound the evolution of Sobolev norms, so that

t
Ju(t) <C(1 + Hw0||Ha(Rd))p71/0 (1 4 72 DM=DFe) 1§, 4 (7) — Y(7) || e (maydT.

Gathering all these inequalities, on respectively Ji, Jo, J3 and Jy, we conclude by Gronwall lemma,
which direclty gives equation (5), ending the proof of Theorem 2.
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APPENDIX A. USEFUL ESTIMATES
A.1. Continuous inequalities. We first recall a classical bilinear estimate:

Lemma 17. Let f € H**(R?) and g € H**(R?). Let s > 0 such that

s < 81,8 and S<81+82—§.

Then
19l s ey < CNf s @ay |9l 752 ey

A.2. Discrete inequalities. We now provide a discrete version of the Gagliardo-Nirenberg in-
equality, which holds for the same sets of parameters as for the continuous one. For a proof or a
more complete statement, we refer to [16].

Lemma 18. Let 0 < h<1,2<g< o0 and 0 < 6 <1 such that

1 n Os 1
g d 2
then
(27) el agrze) < Cllullbz g Nl iz

for any suitable function u.

We also give some Strichartz estimates for the linear discrete Schrédinger equation recently
proved in [16], which holds uniformly with respect to the parameter A > 0 of the discretization.

Lemma 19. Let 0 < h < 1, and ¢ € L*(hZ?%). We say that the pair (q,r) is discrete-Schrodinger-
admissible if the following conditions hold

3 d d
(28) 5+;:§7 2§Q7TSOO7 (quvd)7é(270073)'
Then for any discrete-Schrodinger-admissible pairs (q,r) and (§,7), we have the following homoge-
neous Strichartz estimate

A
(29) e =" ol LaryLr (hzay) < OH@HHg(hzd)



26

and

(30)

QUENTIN CHAULEUR

the inhomogeneous Strichartz estimate

t
‘ / e t=3)2n P (5)ds
0

< C|F

C(R:H @ (hZY)

La(R;L7 (hZ4))

for any suitable function F.
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