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GROWTH OF SOBOLEV NORMS AND STRONG CONVERGENCE FOR THE
DISCRETE NONLINEAR SCHRÖDINGER EQUATION

QUENTIN CHAULEUR

Abstract. We show the strong convergence in arbitrary Sobolev norms of solutions of the dis-
crete nonlinear Schrödinger on an infinite lattice towards those of the nonlinear Schrödinger
equation on the whole space. We restrict our attention to the one and two-dimensional case, with
a set of parameters which implies global well-posedness for the continuous equation. Our proof
relies on the use of bilinear estimates for the Shannon interpolation as well as the control of the
growth of discrete Sobolev norms that we both prove.

1. Introduction

We consider the discrete nonlinear Schrödinger equation

(DNLS) i∂tu+∆hu = λ|u|p−1u,

where u : R× hZd → C with u(0, ·) = u0. Here h > 0 denotes the stepsize of the lattice hZd and

∆hu(a) =

d∑
j=1

u(a+ hej) + u(a− hej)− 2u(a)

h2

denotes the discrete Laplace operator for a ∈ hZd with the canonical basis (ej)1≤j≤d on Rd. We
also take p = 2n+ 1 with n ∈ N∗ as an odd integer. For a positive coefficient λ > 0 the equation is
called defocusing, and focusing for λ < 0.

Equation (DNLS) has been extensively studied over the past few years, especially in the context
of a fixed stepsize h = 1. A first original result concerning its dynamical properties was obtained
by Stefanov and Kevrekidis in [28], and reflects weaker dispersion estimates than in the continuous
case. In fact, this pathological behavior is induced by resonances of the discrete geometrical setting,
or more precisely by the fact that the symbol of the discrete operator ∆h has critical points and
display a lack of convexity, which both appears to be key ingredients for the proof of standard
dispersive estimates (we refer to [18] for a complete and detailed proof of this feature). Results
concerning the existence of standing waves in the focusing case [2, 20] has naturally followed, and
the question of the non-existence of traveling waves, despite long time stability [5], is still an open
question related to a complex phenomenon called the Peierls-Nabarro barrier [22].

From the physical point of view, equation (DNLS) has been a relevant model both in nonlinear
optics, particularly in the context of optical waveguides [13, 23], or for the modelization of Bose-
Einstein condensates trapped in optical lattices formed by laser beams [9, 10]. On the other hand,
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2 QUENTIN CHAULEUR

from a mathematical perspective, equation (DNLS) can also be seen as a first spatial discretization
step into the rigorous numerical analysis of the well-known nonlinear Schrödinger equation

(NLS) i∂tu+∆u = λ|u|p−1u

on the whole space Rd. In this work, we will in particular be interested by the limit h→ 0 of equation
(DNLS) towards equation (NLS), which is usually referred in the literature as the continuum limit.
This limit has first been investigated in the seminal work of Kirkpatrick, Lenzmann and Staffilani
[21], where the authors show the L2 weak convergence of solutions of equation (DNLS) towards
those of (NLS) using the Banach-Alaoglu theorem as well as discrete Sobolev embedding. The L2

strong convergence of such solutions were then recently achieved by Hong and Yang in [15] alongside
precise convergence rates in h, where the proof is based on uniform discrete Strichartz estimates
that the authors had previously shown in [16] and the use of Gronwall lemma.

Here, we will be interested in the strong convergence in Sobolev spaces Hs for an arbitrary
regularity s ≥ 0. Note that up to the author’s knowledge, the only other work dealing with
strong Sobolev convergence for continuum limit of such systems is [14] and for the special case
s = 1

2 −
1

2(p−1) with d = 1, in the context of long-range spatial interactions and time memory effect.
Also note that weak and strong L2 convergence for long-range interactions in the one dimensional
case are tackle in respectively [21] and [15], and has only been generalized very recently to the two
dimensional case [12].

Our approach will follow the strategy of [15], with two main different features. First, we will use
the Shannon interpolation (introduced in [4]) of pointwise discrete function rather than the finite
volume type discretization used in [15] in order to compare our discrete solution with the continuous
one, as it is naturally better suited for Sobolev spaces Hs. Secondly, the usual conservation of the
L2 norm of the solution of both the discrete equation (DNLS) and the continuous one (NLS), which
is broadly used in [15], will be replaced along the proof by the evolution of the Sobolev norms of
the solution, which are far from being conserved in the nonlinear setting. In fact, our analysis will
require estimates on the growth of Sobolev norms for solutions of both equation (DNLS) and (NLS).

On the continuous level, control on the growth of high Sobolev norms of nonlinear dispersive
PDEs has been an intensive and still ongoing topic of research, motivated by the study of a nonlinear
phenomenon called weak turbulence, which basically expects a transfer from low frequencies to
high ones (sometimes also referred as forward cascade). The literature on this area of research is
large, and we should mention, without unrealistically trying to be exhaustive, the seminal works
of Bourgain [7] and Staffilani [27] continued by Sohinger [25, 26] on both periodic and whole space
settings, as well as the recent work of Planchon, Tzvetkov and Visciglia [24] which treats the case
of compact manifolds. Note that these results typically provide polynomial or exponential bounds,
and are only available in low space dimension 1 ≤ d ≤ 3 for specific restrictive values of the
nonlinearity p as well as its sign λ. One should also mention the particular integrable case of the
cubic Schrödinger equation (with p = 3 in equation (NLS)) in dimension d = 1, which yields uniform
in time estimates for each Sobolev norm Hm with m ∈ N.

On the other hand, in the discrete framework, only the recent paper of Bernier [4] actually
tackles this problem, in the particular case of a cubic nonlinearity in one dimension. Note that
the particular discretization (DNLS) do not preserves the complete integrability of its continuous
counterpart (NLS) in this setting, at contrary to the usual Ablowitz-Ladik model [1].
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Our analysis will be performed on a particular set of parameters for p, d and λ that we state
here:

(1)
®
p = 2n+ 1, n ∈ N∗ for λ = 1 and d = 1, 2,

p = 3 for λ = −1 and d = 1.

In particular, we limit our attention to the one and the two-dimensional case for the defocusing
case, and only to the cubic nonlinearity in one dimension for the focusing case, where the result of
[4] is available. We also restrict ourselves to odd nonlinearity powers due to technical reasons. Note
that the cubic three dimensional case, which was covered in the analysis of [15], will not be handled
in our context because of the weak dispersion estimates available in the discrete setting. Some
further comments on the three dimensional case will be made in Section 2. On the other hand, we
emphasize that for d = 1, 2 in the defocusing case, we cover the full range of parameters for global
well-posedness on the continuous equation (NLS). In particular, the global existence of solutions
of both (DNLS) and (NLS) are guaranteed under the set of parameters (1) (see for instance the
classical reference [11]).

This paper is organized as follows. In Section 2, we will recall some notations and properties
of functional analysis on discrete spaces in order to state our main results Theorems 1 and 2.
In Section 3, we show some fundamental properties of the Shannon interpolation with respect to
discrete Sobobev spaces, with a direct application to the interpolated flow of the discrete linear
Schrödinger equation (DNLS) taking λ = 0. We then adapt the strategy of the modified energies
of [24] to the case of discrete spaces in Section 4 in order to prove Theorem 1. Gathering all these
results, we then conclude by proving Theorem 2 in Section 5. We recall some important functional
inequalities in both continuous and discrete spaces in Appendix A which will be used throughout
all this paper.

2. Algebraic context and main results

2.1. Discrete Lebesgue and Sobolev spaces. We consider a function g : hZd → C with d ≥ 1.
Following [17], we denote respectively by Lp(hZd), for 1 ≤ p < ∞, and L∞(hZd) (or sometimes
more compactly Lp

h and L∞
h ) the discrete Lebesgue spaces of integrable functions induced by the

norms
∥g∥p

Lp(hZd)
= hd

∑
a∈hZd

|g(a)|p and ∥g∥L∞(hZd) = sup
a∈hZd

|g(a)|.

Contrary to the continuous case, these spaces are embedded, namely L1(hZd) ⊂ L2(hZd) ⊂ . . . ⊂
L∞(hZd), but obviously not uniformly in h. In particular, L2(hZd) is a Hilbert space induced by
the scalar product

⟨f, g⟩h = hd
∑

a∈hZd

f(a)g(a)

for f , g : hZd → C. Denoting respectively the forward and backward difference operators in the
direction ej for 1 ≤ j ≤ d by

∇+
h,jg(a) =

g(a+ hej)− g(a)

h
and ∇−

h,jg(a) =
g(a)− g(a− hej)

h

for a ∈ hZd, one can define the discrete Sobolev spaces W 1,p(hZd) or W 1,p
h for all 1 ≤ p <∞ by

∥g∥p
W 1,p(hZd)

= ∥g∥Lp(hZd) +

d∑
j=1

∥∇+
h,jg∥Lp(hZd).
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We also naturally define the forward and backward discrete gradients

∇+
h =

Ä
∇+

h,1, . . . ,∇
+
h,d

ä⊤
and ∇−

h =
Ä
∇−

h,1, . . . ,∇
−
h,d

ä⊤
.

Using the definition of the discrete Laplace operator ∆h given in our introduction, we can also
define for all m ∈ N the discrete homogeneous and inhomogeneous Sobolev norm

∥g∥2
Ḣm(hZd)

= ⟨(−∆h)
mg, g⟩h and ∥g∥2Hm(hZd) =

m∑
k=0

∥g∥2
Ḣk(hZd)

.

We obviously have equivalence between the norms ∥·∥W 1,2
h

and ∥·∥H1
h
, uniformly in h. Furthermore,

note that all the above norms are in fact equivalent, and in particular we get that for all g ∈ L2(hZd),

∥g∥Ḣm(hZd) ≤
Å
2
√
m

h

ãd

∥g∥L2(hZd)

for all m ≥ 1, as a direct consequence of the triangle inequality. However, these bounds are not
uniform in h, and become trivial at the limit h→ 0.

2.2. Discrete Fourier Transform. We now recall the definition of the discrete Fourier transform
of a function g ∈ L2(hZd), namely

ĝ(ξ) = hd
∑

a∈hZd

g(a)e−ia·ξ,

for ξ ∈ Td
h = Rd/

(
2π
h Zd

)
. In particular we see that the discrete Fourier defines an isometry from

L2(hZd) to L2(Td
h), and that we have an inversion formula: for all a ∈ hZd,

g(a) =
1

(2π)d

∫
Td
h

ĝ(ξ)eia·ξdξ.

As proved in [29], by the Hilbert scale property, the definition of discrete Sobolev spaces Hs(hZd)
can be extended to any real s ∈ R through the norm

∥g∥2Hs(hZd) =
1

(2π)d

∫
Td
h

Ñ
1 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2
és

|ĝ(ξ)|2 dξ,

which is equivalent to the definition of discrete Sobolev spaces given previously when s ∈ N. With
our choice of convention, note that we have for the discrete convolution product the property◊�(f ∗h g)(ξ) = f̂(ξ)ĝ(ξ) where (f ∗h g)(a) = hd

∑
b∈hZd

f(b)g(a− b).

2.3. Main results. As L2(hZd) is a Banach algebra (which is not the case in the continuous
setting), Cauchy Lipschitz Theorem can be applied to get the local well-posedness of equation
(DNLS), and the L2(hZd) norm is a constant of motion, namely for any u solution of equation
(DNLS) with initial condition u(0) = u0, we have

(2) ∥u(t)∥L2(hZd) = ∥u0∥L2(hZd)
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for all times t ∈ R, which implies global well-posedness in L2(hZd), and so in all discrete Sobolev
spaces Hs(hZd) for s ∈ R by norm equivalence. By standard arguments, we can also show that the
energy

(3) E(u) :=
1

2
∥u(t)∥2

Ḣ1(hZd)
+

λ

p+ 1
∥u(t)∥p+1

Lp+1(hZd)

is conserved for all times. In view of our set of parameters for (d, p) and by discrete Gagliardo-
Nirenberg inequality (see equation (27) in Appendix A), this implies an a priori estimates on u in
H1(hZd), both uniform in time and with respect to the stepsize h. We now state one of the main
results of this paper, which gives some polynomial bounds on the growth of discrete Sobolev norms
of u:

Theorem 1. Let ε > 0 and m ∈ N∗. Let u ∈ C(R;Hm(hZd)) be the unique solution of (DNLS)
with initial condition u0 ∈ Hm(hZd) and the set of parameters (λ, d, p) satisfying (1), then

(4) ∥u(t)∥Hm(hZd) ≤ C
Ä
1 + t2(m−1)+ε

ä
,

with C = C(ε,m, ∥u0∥Hm(hZd)).

This deserves some comments:

• This result is a generalization of [4, Theorem 1.1] for both higher nonlinearity powers and
to the two-dimensional case, in the defocusing setting. However, the time estimate in [4]
is substantially better (t

m−1
2 instead of t2(m−1)+ε), and the factor C only depends there

on the H1(hZd) norm of the initial condition u0, instead of the ∥u0∥Hm(hZd) needed here
in equation (4). These features are mainly due to the algebraic structure of the cubic
nonlinearity along with the use of better Sobolev embeddings in the one-dimensional case.

• As announced above, our proof relies on the use of suitable modified energies, a strategy that
has proved useful in a variety of contexts. In the framework of growth of Sobolev norms,
few results are available both for generic nonlinearities (typically higher than cubic) and for
dimensions higher than one. The only general result we are aware of is the recent work [24]
on continuous compact manifolds, where only weak dispersive estimates are available [8].
This situation is of course reminiscent of our discrete setting, and it is natural to adapt
their strategy. However, in the three-dimensional case, for the cubic nonlinearity, their proof
relies on a particular Strichartz-type estimate which allows to only bound the L6/5 norm
of the nonlinearity, enabling the use of Hölder inequalities with low regularity requirement.
This estimate, proven in [6, Proposition 5.4], relies on semi-classical time estimates which
are at best unclear in our discrete setting, and whose proof is out of scope of the present
paper. We left here open the question of higher dimensions for future works, especially in
the three-dimensional case where discrete Strichartz estimates are still available (see [16] or
Lemma 19 in Appendix A).

We now focus on our strong convergence result in the continuum limit h → 0. In order to
compare sequences of L2(hZd) with integrable functions defined on the whole space, one needs an
interpolation method. As introduced in [4, 5], we rely on the Shannon interpolation Sh : L2(hZd) →
L2(Rd) defined by

Shu = F−1
Ä
1Td

h
û
ä
,
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which allows to extend a sequence into a real function whose Fourier transform is supported in Td
h,

and where F denotes the usual Fourier transform on Rd defined by

Ff(ξ) =
∫
Rd

f(x)e−ix·ξdx,

for all ξ ∈ Rd and f ∈ L2(Rd). We also adopt the following convention for the convolution product

f ∗ g(x) = 1

(2π)d

∫
Rd

f(y)g(x− y)dy so that F(fg) = Ff ∗ Fg.

Of course, we also need an operator of projection for continuous integrable functions on discrete
functions on the lattice hZd. We naturally choose the pointwise projection Πh from Hs(Rd) to
L2(hZd), which is defined for any function f ∈ Hs(Rd) with s > d/2, by

Πh : Hs(Rd) → L2(hZd)

f 7→ hZd → C
a 7→ f(a)

.

In fact, any function f ∈ Hs(Rd) with s > d/2 admits a unique continuous representative f̃ ∈ C(Rd),
which will still be denoted by f for conciseness purposes. We now state:

Theorem 2. Let δ > d/2, m = ⌈δ⌉ and α > m + d
2 with the set of parameters (λ, d, p) satisfying

(1). Let ψ ∈ C(R;Hα(Rd)) be the unique solution of (NLS) with initial condition ψ0 ∈ Hα(Rd), and
let u be the unique solution of (DNLS) with initial condition u0 = Πhψ0. Let 0 ≤ s < δ − d/2 and
ε > 0, then there exists constants B = B(d, p, s, δ, λ, ∥ψ0∥Hα(Rd)) > 0 and C = C(d, p, s, δ, λ, ε) > 0
independent of h such that for all t ≥ 0,

(5) ∥Shu(t)− ψ(t)∥Hs(Rd) ≤ Ch
δ−s
2 − d

4

(
1 + ∥ψ0∥Hα(Rd)

)p
eBt2(p−1)(m−1)+1+ε

.

One has to compare this result with [15, Theorem 1.1]. In particular, we observe in our case
a slight loss of regularity for the initial data, due to our pointwise projection compared to the
finite type volume projection adopted in both works [21] and [15]. We also have an ε-loss in
the exponential bound for time, which is a direct consequence of our estimate for the evolution of
discrete Sobolev norms of the solution (4). However, our result covers the case of strong convergence
for arbitrary Sobolev norm Hs, providing enough regularity on the initial data ψ0. Secondly, one
can improve the rate of convergence in the stepsize h by assuming more regularity on ψ0, a feature
which was not covered in previous works concerning the continuum limit of the discrete nonlinear
Schrödinger equation (DNLS), and which is usually referred as being a compatible estimate in the
finite differences literature [3].

We expect our strategy of proof to be quite general, and we plan to apply it to other dispersive
discrete nonlinear equations in future works. In particular, some properties concerning the Shannon
interpolation in the context of Sobolev spaces, although it might be considered being fairly standard,
may not be explicitly written in the literature to the best of the author’s knowledge, and a small
part of this paper is devoted to the rigorous proof of these properties.

Throughout all these notes, C will denote a generic positive constant independent of the under-
lying parameters, especially with respect to the stepsize parameter h. We will specifically denote
by C = C(α) > 0 a constant depending on the parameter α.
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3. Shannon interpolation

Only for this section, d ≥ 1 is an arbitrary integer. We recall some classical properties of the
pointwise projection of a regular enough continuous function on the grid hZd, mostly for complete-
ness purposes. We then introduce and prove some useful properties of the Shannon interpolation
with respect to both continuous and discrete Sobolev spaces, especially the bilinear estimate of
Proposition 6 that will be fundamental in the proof of Theorem 2 in Section 5.

3.1. Pointwise projection. We first state a property concerning the discrete Fourier transform
of the pointwise projection Πh, sometimes referred as the Poisson summation formula, that will be
important in the following, and that we briefly prove in our particular setting for self-completeness:

Lemma 3. Let f ∈ Hs(Rd) with s > d/2, then, for all ξ ∈ Td
h,‘Πhf(ξ) =

∑
k∈Zd

Ff
Å
ξ +

2kπ

h

ã
.

Proof. First, let’s note that for all x ∈ Rd, we have

Πhf(a) =
1

(2π)d

∫
Rd

eia·ξFf(ξ)dξ = 1

(2π)d

∑
k∈Zd

∫
Td
h(k)

eia·ξFf(ξ)dξ

=
1

(2π)d

∑
k∈Zd

∫
Td
h

e
ia·
(
ξ+��

2kπ
h

)
Ff
Å
ξ +

2kπ

h

ã
dξ

by linear change of variables and periodicity, where a ∈ hZd and for k = (k1, . . . , kd) ∈ Zd,

Td
h(k) =

ß
x = (x1, . . . , xd) ∈ Rd

∣∣∣∣ (2kj − 1)π

h
≤ xj ≤

(2kj + 1)π

h
for all 1 ≤ j ≤ d

™
,

with the convention Td
h(0) = Td

h. On the other hand, as Πhf ∈ L2(hZd), we know that for all
a ∈ hZd,

Πhf(a) =
1

(2π)d

∫
Td
h

eia·ξ‘Πhf(ξ)dξ,

hence we get the result by the inverse discrete Fourier formula. □

We now show the continuity of the pointwise projection with respect to Sobolev spaces:

Lemma 4. Let f ∈ Hδ(Rd) with δ > d/2, then for all s ≥ 0 such that δ − s > d
2 , we have

∥Πhf∥Hs(hZd) ≤ ∥f∥Hs(Rd) + Chδ−s∥f∥Hδ(Rd),

where C = C(d, s, σ).

Proof. Defining gk(ξ) := Ff
(
ξ + 2kπ

h

)
for all ξ ∈ Td

h and k ∈ Zd, from Lemma 3 we infer

∥Πhf∥Hs(hZd) =
∑
k∈Zd

Ñ
1

(2π)d

∫
Td
h

Ñ
1 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2
és

|gk(ξ)|2 dξ

é 1
2

.

The term for k = 0 is easily bounded by ∥f∥Hs(Rd), as for all ξ ∈ Td
h,

(6)
4

h2

d∑
j=1

sin

Å
hξj
2

ã2

≤ 1 + |ξ|2.



8 QUENTIN CHAULEUR

On the other hand, for k ̸= 0, we need to estimate the following integral

Ik(t) :=

∫
Td
h

Ñ
1 +

4

h2

d∑
j=1

sin

Å
hξj
2

ã2
és Ä

1 +
∣∣ξ + 2kπ

h

∣∣2äδ−sÄ
1 +

∣∣ξ + 2kπ
h

∣∣2äδ−s
|gk(ξ)|2 dξ

for δ ≥ s yet to be fixed, in particular we need to get a lower bound of |ξ + 2kπ/h|2 for ξ ∈ Td
h. As

k ̸= 0, there exists j0 such that

kj0 = max
1≤j≤d

|kj | > 0, hence 2|kj0 | − 1 = |kj0 |+ |kj0 | − 1︸ ︷︷ ︸
≥0

≥ |kj0 |.

We can then write that

min
ξ∈Td

h

∣∣∣∣ξ + 2kπ

h

∣∣∣∣2 ≥ min
ξj0∈[−π/h,π/h]

∣∣∣∣ξj0 + 2kj0π

h

∣∣∣∣2 =
π2

h2
(2|kj0 | − 1)

2 ≥ π2|k|2

h2d
,

and making the change of variable ξ 7→ ξ − 2kπ/h in the integral Ik, from the periodicity of the
sine function alongside the bound (6) we infer the estimate

Ik(t) ≲d,s,δ h
2(δ−s)

Ñ∑
k ̸=0

1

|k|2(δ−s)

é
∥f∥2Hδ(Rd),

where the infinite sum in the right hand-side of this inequality is finite as soon as δ−s > d/2, which
gives the result. □

3.2. Shannon interpolation. We now focus on properties of the Shannon interpolation Sh defined
in Section 2. Note that the Shannon interpolation can also be defined by the finite-element type
formula

u ∈ L2(hZd) 7→ Shu(x) =
∑

a∈hZd

sinc
(x− a

h

)
u(a),

where sinc denotes the cardinal sine function sinc(x) = sin(x)
x . Also note that Πh ◦ Shg = g, so Shg

is the only function in L2(Rd) with Fourier transform support included in Td
h and whose values on

hZd are those of g. We first state a continuity property:

Lemma 5. Let u ∈ Hs(hZd) with s ≥ 0, then

∥u∥Hs(hZd) ≤ ∥Shu∥Hs(Rd) ≤
(π
2

)s
∥u∥Hs(hZd).

Proof. We recall that

∥Shu∥2Hs(Rd) =
1

(2π)d

∫
Rd

(
1 + |ξ|2

)s |F ◦ F−1
Ä
1Td

h
û
ä
(ξ)|2dξ = 1

(2π)d

∫
Td
h

(
1 + |ξ|2

)s |û(ξ)|2dξ,
hence this property is a direct consequence of the following sharp inequality,

∀ω ∈
[
−π
2
,
π

2

]
, sin(ω) ≤ ω ≤ π

2
sin(ω),

and the fact that π2

4 ≃ 2, 47 > 1. □

Let now state and prove the following bilinear estimate, as well as a direct corollary, which will
be useful in Section 5.
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Proposition 6. Let f , g ∈ Hδ(hZd) with δ > d/2, and let 0 ≤ s ≤ δ. Then

∥Sh(fg)− (Shf)(Shg)∥Hs(Rd) ≤ Chδ−s∥Shf∥Hδ(Rd)∥Shg∥Hδ(Rd).

Proof. Let’s first note that

f̂1Td
h
∗ ĝ1Td

h
=

∫
Td
h

f̂(η)ĝ(ξ − η)1Td
h
(ξ − η)dη

=

Ç∫
ξ+Td

h

f̂(ξ − η)ĝ(η)1Td
h
(η)

å
1Td

h/2
,

where Td
h/2 = Rd/

(
4π
h Zd

)
=
[
− 2π

h ,
2π
h

]d. We now write that

∥Sh(fg)− (Shf)(Shg)∥2Hs(Rd) =

∫
Rd

(1 + |ξ|2)s |F ◦ Sh(fg)(ξ)−F (ShfShg) (ξ)|2 dξ

=

∫
Rd

(1 + |ξ|2)s
∣∣∣f̂g(ξ)1Td

h
(ξ)−

Ä
f̂1Td

h
∗ ĝ1Td

h

ä
(ξ)
∣∣∣2 dξ

= I1 + I2,

where
I1 :=

∫
Td
h

(1 + |ξ|2)s
∣∣∣f̂g(ξ)− Äf̂1Td

h
∗ ĝ1Td

h

ä
(ξ)
∣∣∣2 dξ

and
I2 :=

∫
Td
h/2

\Td
h

(1 + |ξ|2)s |F (ShfShg) (ξ)|2 dξ.

We first estimate I1. Let’s note that

f̂g(ξ) = f̂ ∗h ĝ(ξ) =
1

(2π)d

∫
Td
h

f̂(η)ĝ(ξ − η)dη,

and Ä
f̂1Td

h
∗ ĝ1Td

h

ä
(ξ) =

1

(2π)d

∫
{η∈Td

h}∩
¶
ξ−η∈Td

h/2
\Td

h

© f̂(η)ĝ(ξ − η)dη,

so as ξ ∈ Td
h,

f̂g(ξ)−
Ä
f̂1Td

h
∗ ĝ1Td

h

ä
(ξ) =

1

(2π)d

∫
Td
h

f̂(η)ĝ(ξ − η)1Td
h/2

\Td
h
(ξ − η)dη.

We now decompose Td
h as a disjoint union of intervals (d = 1), squares (d = 2) or cubes (d = 3) of

length π/h (or so on for d ≥ 4), namely

Td
h =

⊔
l∈{0,1}d

Kl with Kl =
{
x ∈ Td

h

∣∣∣ (lj − 1)
π

h
< xj ≤ lj

π

h
, 1 ≤ j ≤ d

}
.

We fix l ∈ {0, 1}d. Let ξ ∈ Kl and η ∈ Td
h, and note that

η ∈ Kl ⇔ ξ − η ∈ Td
h ⇔ 1ξ−η∈Td

h/2
\Td

h
(η) = 0.

From this remark, we define the set

Nl :=
¶
l′ ∈ {0, 1}d

∣∣∣ ξ − η ∈ Td
h/2\T

d
h, ξ ∈ Kl, η ∈ Kl′

©
= {0, 1}d \l.
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We now also fix l′ ∈ Nl, and we assume η ∈ Kl′ . Then there exists a unique κ(l, l′) ∈ {−1, 1}d such
that

ξ − η − κ(l, l′)
2π

h
∈ Td

h.

Using these notations, we can rewrite I1 and get the bound

(7) I1 ≤ C(d)
∑

l∈{0,1}d

∑
l′∈Nl

∫
Kl

(1 + |ξ|2)s
∣∣∣∣∣
∫
Kl′

f̂(η)ĝ(ξ − η)1Td
h/2

\Td
h
(ξ − η)dη

∣∣∣∣∣
2

dξ︸ ︷︷ ︸
=:Il,l′

.

By the linear change of variables ξ′ = ξ + 2κ(l, l′)π/h, and as the function ĝ is 2π
h -periodic, we get

(dropping the ′ on ξ′) that

Il,l′ =
∫
Kl+

2κ(l,l′)π
h

Ç
1 +

∣∣∣∣ξ − 2κ(l, l′)π

h

∣∣∣∣2
ås ∣∣∣∣∣

∫
Kl′

f̂(η)ĝ(ξ − η)1Td
h
(ξ − η)dη

∣∣∣∣∣
2

dξ.

We now write thatÇ
1 +

∣∣∣∣ξ − 2κ(l, l′)π

h

∣∣∣∣2
ås

=

Å
1 +

∣∣∣ξ − 2κ(l,l′)π
h

∣∣∣2ãs

(1 + |ξ|2)s
(1 + |ξ|2)s

(1 + |ξ|2)δ
(1 + |ξ|2)δ.

As |κ(l, l′)| ≥ 1, and Kl ⊂ Td
h, for every ξ ∈ Kl + 2κ(l, l′)π/h, we have |ξ| ≥ π/h so

1

(1 + |ξ|2)δ−s
≤ C(s, d)h2(δ−s).

On the other hand, as ξ − 2κ(l, l′)π/h ∈ Td
h, we get that

∣∣∣∣ξ − 2κ(l, l′)π

h

∣∣∣∣ ≤ |ξ| so

Å
1 +

∣∣∣ξ − 2κ(l,l′)π
h

∣∣∣2ãs

(1 + |ξ|2)s
≤ 1.

Combining these inequalities with rough upper bounds on the integration variables ξ and η, we get
the estimate

Il,l′ ≤ Ch2(δ−s)

∫
Rd

(1 + |ξ|2)δ
Å∫

Rd

|f̂(η)|1Td
h
(η)|ĝ(ξ − η)|1Td

h
(ξ − η)dη

ã2

dξ.

We now conclude by classical arguments. From the classical estimate

(1 + |ξ|2)δ ≤ C
(
(1 + |ξ − η|2)δ + (1 + |η|2)δ

)
for δ > 0 and C = C(δ) > 0, we infer that∫
Rd

(1+ |ξ|2) δ
2 |f̂(η)|1Td

h
(η)ĝ(ξ−η)1Td

h
(ξ−η)dη ≲ |(1+| ·|2) δ

2 ĝ1Td
h
|∗|f̂1Td

h
|+ |ĝ1Td

h
|∗|(1+| ·|2) δ

2 f̂1Td
h
|.

Then, integrating over ξ ∈ Rd and using Young’s convolution inequality, we get that

Il,l′ ≤ Ch2(δ−s)
Ä
∥ĝ1Td

h
∥2Hδ(Rd)∥f̂1Td

h
∥2L1(Rd) + ∥ĝ1Td

h
∥2L1(Rd)∥f̂1Td

h
∥2Hδ(Rd)

ä
We recall that f̂1Td

h
= F ◦ Shf and we observe that

∥F ◦ Shf∥L1(Rd) ≤ ∥Shf∥Hδ(Rd)
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from classical Fourier transform properties as δ > d/2. As we have finite sums in equation (7), we
finally get that

I1 ≤ Ch2(δ−s)∥Shf∥2Hδ(Rd)∥Shg∥2Hδ(Rd).

On the other hand, we have

I2 =

∫
Rd\Td

h

(1 + |ξ|2)s |F (ShfShg) (ξ)|2 dξ ≤ Ch2(δ−s)∥Shf∥2Hδ(Rd)∥Shg∥2Hδ(Rd).

as Hδ(Rd) is an algebra providing that δ > d/2, which ends the proof. □

Corollary 7. Let g ∈ Hδ(hZd) with δ > d/2 and n ∈ N∗. Then

∥Sh(g
n)∥Hδ(Rd) ≤ C∥Shg∥nHδ(Rd).

where C = C(δ, d, n). In particular, for n1 + n2 = n ∈ N∗, we have

(8) ∥Sh(g
n1gn2)∥Hδ(Rd) ≤ C∥Shg∥nHδ(Rd).

Proof. We prove the result, which is obvious for n = 1, by induction. Assuming that (8) holds for
n ∈ N∗, we compute using Proposition 6 and the fact that Hδ(Rd) is an algebra that

∥Sh(g
n+1)∥Hδ(Rd) ≤ ∥Sh(g

n+1)− Sh(g
n)Shg∥Hδ(Rd) + ∥Sh(g

n)Shg∥Hδ(Rd)

≤ C∥Sh(g
n)∥Hδ(Rd)∥Shg∥Hδ(Rd)

≤ C∥Shg∥n+1
Hδ(Rd)

by assumption, which gives the result. Equation (8) then naturally follows from the fact that for
all x ∈ Rd,

Shg(x) =
∑

a∈hZd

g(a)sinc(π(x− a)) = Shg(x).

□

3.3. Interpolation of the linear flow. The next estimate deals with the error made by conse-
quently projecting then interpolating a continuous function f in terms of Sobolev spaces.

Lemma 8. Let f ∈ Hδ(Rd) and s ≥ 0 such that δ − s > d/2. Then

∥Sh ◦Πhf − f∥Hs(Rd) ≤ Chδ−s∥f∥Hδ(Rd),

where C = C(d, s, δ) > 0.

Proof. We write

∥Sh ◦Πhf − f∥2Hs(Rd) =

∫
Td
h

(
1 + |ξ|2

)s ∣∣∣‘Πhf(ξ)−Ff(ξ)
∣∣∣2 dξ + ∫

Rd\Td
h

(
1 + |ξ|2

)s |Ff(ξ)|2 dξ,
as the sum of two functions of disjoint supports. For the first integral, we get from Lemma 3 that
for all ξ ∈ Td

h, ‘Πhf(ξ)−Ff(ξ) =
∑
k ̸=0

Ff
Å
ξ +

2kπ

h

ã
=:
∑
k ̸=0

gk(ξ).

Mimicking the proof of Lemma 4, the first integral is handle by the estimate∫
Td
h

(
1 + |ξ|2

)s ∣∣∣‘Πhf(ξ)−Ff(ξ)
∣∣∣2 dξ ≲d,s,δ h

2(δ−s)

Ñ∑
k ̸=0

1

|k|2(δ−s)

é
∥f∥2Hδ(Rd),
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which is finite as soon as δ − s > d
2 . For the second integral, as 1 + |ξ|2 ≥ dπ2/h2 for ξ ∈ Rd\Td

h,
we easily get that ∫

Rd\Td
h

(
1 + |ξ|2

)s |Ff(ξ)|2 dξ ≤ Ch2(δ−s)∥f∥2Hδ(Rd).

□

As a first consequence, we can get an error estimate between the interpolation of the discrete
linear flow and the continuous one:

Proposition 9. Let ψ0 ∈ Hδ(Rd) with δ > d/2, and let’s denote u0 := Πhψ0. Let s ≥ 0 such
that δ − s > d/2, then for all t ≥ 0 we have

∥She
it∆hu0 − eit∆ψ0∥Hs(Rd) ≤ Ch

δ−s
2 − d

4 (1 + t)∥ψ0∥Hδ(Rd),

where C = C(d, s, δ) > 0.

Proof. We decompose our analysis on the two following integrals

∥She
it∆hu0 − eit∆ψ0∥Hs(Rd) ≤ ∥She

it∆hu0 − eit∆Shu0∥Hs(Rd) + ∥eit∆(Shu0 − ψ0)∥Hs(Rd)

=: I1(t) + I2(t).

We first note that

I1(t)
2 =

∫
Td
h

(1 + |ξ|2)s
∣∣∣∣e−it 4

h2

∑d
j=1 sin

(
ξjh

2

)2
û0(ξ)− e−it|ξ|2 û0(ξ)

∣∣∣∣2 dξ.
Using the fact that for all ξ ∈ Td

h, we have∣∣∣∣∣e−it

Å
4
h2

∑d
j=1 sin

(
ξjh

2

)2
−ξ2

ã
− 1

∣∣∣∣∣ ≤ th2|ξ|4,

(see for instance [19, Section 3.2] or [15, Lemma 5.7]), we infer that, for β > 0 yet to be fixed,

I1(t)
2 ≤ th2

∫
|ξ|≤ π√

h

(1 + |ξ|2)s|ξ|4 |û0(ξ)|2 dξ +
∫
Td
h∩
¶
|ξ|> π√

h

© (1 + |ξ|2)s+β

(1 + |ξ|2)β
|û0(ξ)|2 dξ

≤ t
h2

h2−β

∫
|ξ|≤ π√

h

(1 + |ξ|2)s+β |û0(ξ)|2 dξ + hβ
∫
Td
h∩
¶
|ξ|> π√

h

©(1 + |ξ|2)s+β |û0(ξ)|2 dξ

so we get that

I1(t) ≤ C(1 + t)h
β
2 ∥u0∥Hs+β(hZd) ≤ C(1 + t)h

β
2

(
∥ψ0∥Hs+β(Rd) + hδ−s−β∥ψ0∥Hδ(Rd)

)
by Lemma 4, providing that δ − s− β > d/2. On the other hand, from Lemma 8 we get that

I2(t) = ∥Shu0 − ψ0∥Hs(Rd) ≤ Chδ−s∥ψ0∥Hδ(Rd),

as we have assume that δ− s > d/2. Taking β = δ− s− d/2 and combining both estimates, we get
the result. □
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4. Bounds on the growth of discrete Sobolev norms

This section is devoted to the proof of Theorem 1, which strongly relies on the use of modified
energies. For clearness purposes, we briefly give the general ideas behind this method and its main
ingredients. In the context of Schrödinger equations, the idea is to generalize Kato’s trick (which
basically allows to read the H2 regularity of the solution from an estimation of ∥∂tu∥L2 using the
expression of the equation) to higher orders : rather than deriving 2k times in space equation
(DNLS) in order to get an H2k bound, we derive k times in time to infer a bound on ∥∂kt u∥L2

h
,

which is equivalent to ∥u∥H2k
h

up to a rest term due to nonlinear effects. The idea is then to identify
(using the expression of equation (DNLS)) a quantity E2k called higher-order energy whose leading
term is essentially ∥u∥2

H2k
h

. The technical part is then to finely bound E2k by a combination of
discrete Sobolev inequalities and discrete dispersive estimates, in an attempt to get an estimate of
the form

∥u(t)∥2H2k
h

− ∥u0∥2H2k
h

≲ ∥u(t)∥αL∞
T H2k

h

with α < 2, which will implies the polynomial growth of ∥u(t)∥H2k
h

by an iterative argument.
Note that our proof closely follows the one given in [24] in the context of growth of Sobolev

norms for the nonlinear Schrödinger equation (NLS) on compact manifolds. The main difficulties
here come from both weak dispersion estimates in the discrete setting (see (29) and (30) in Appendix
A) and the fact that discrete integration by parts, which stands as an essential part of the proofs
involving modified energies, are unsymmetrical, namely∑

a∈hZd

∇+
h f(a)g(a) = −

∑
a∈hZd

f(a)∇−
h g(a).

We begin our analysis by estimating even discrete Sobolev norms, which is the natural way to
proceed in view of the above paragraph. Comments on the generalization to the case of odd
Sobolev norms will also follow, as its essentially relies on the same arguments as for the even case,
but applied to a different modified energy E2k+1.

Note that in this section we will extensively use the fact that every solution u of (DNLS) satisfies
the estimate

(9) ∥u∥C(R;H1(hZd)) ≤ C,

with C = C(p, ∥u0∥H1(hZd)), which holds uniformly with respect to h in view of the energy conser-
vation (3), the discrete Sobolev embeddings (27) and from our set of parameters (λ, d, p) defined
by (1). We will also systematically denote discrete spaces Hs(hZd) by the more compact notation
Hs

h in equation mode for conciseness purposes, as there is no ambiguity with continuous spaces in
this section. The same way, the uniform norm on a time interval [0, T [ will be denoted ∥ · ∥L∞

T
.

4.1. Even Sobolev norms. We first suppose that m = 2k with k ∈ N. In the spirit of [24], we
define

(10) E2k(u(t)) = ∥∂kt u(t)∥2L2
h
−
∑

a∈hZd

∣∣∣∂k−1
t (|u(t, a)|p−1u(t, a))

∣∣∣2

− 1

2

∑
a∈hZd

d∑
j=1

∣∣∣∂k−1
t ∇+

h,j(|u(t, a)|
2)
∣∣∣2 p−1

2∑
ℓ=1

|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2.

We then differentiate E2k with respect to time, which gives the following proposition:
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Proposition 10. Let u be a solution to (DNLS) with u0 ∈ H2k(hZd) and parameters (λ, d, p)
satisfying (1), then

(11)
d

dt
E2k(u(t)) = −1

2

∑
a∈hZd

d∑
j=1

∣∣∣∂k−1
t ∇+

h,j(|u(t, a)|
2)
∣∣∣2 p−1

2∑
ℓ=1

∂t
(
|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

)

+

k−1∑
n=0

cn
∑

a∈hZd

d∑
j=1

∂nt ∇+
h,j(|u(t, a)|

2)∂k−1
t ∇+

h,j(|u(t, a)|
2)

p−1
2∑

ℓ=1

∂k−n
t

(
|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

)
+ ⟨∂kt (|u|p−1), ∂k−1

t (|∇+
h u|

2)⟩h + ⟨∂kt (|u|p−1), ∂k−1
t (|∇−

h u|
2)⟩h

+Re

k−1∑
n=0

cn⟨∂nt (|u|p−1)∂k−n
t u, ∂k−1

t (|u|p−1u)⟩h

+Re

k−2∑
n=0

cn⟨∂kt (|u|p−1)∂k−n−1
t u, ∂nt ∆hu⟩h + Im

k−1∑
n=1

cn⟨∂nt (|u|p−1)∂k−n
t u, ∂kt u⟩h

=: J1(t) + J2(t) + J3(t) + J4(t) + J5(t) + J6(t) + J7(t).

where (cn)n denotes explicit complex numbers which may change from line to line.

Proof. We compute, using equation (DNLS) as well as discrete integration by parts,

d

dt

Ä
∥∂kt u∥2L2

h

ä
= 2Re⟨∂k+1

t u, ∂kt u⟩h = 2Re⟨∂kt (−∆hu+ |u|p−1u), i∂kt u⟩h

= 2 Im
∑

a∈hZd

∣∣∣∂kt ∇+
h u(a)

∣∣∣2 + 2Re⟨∂kt (|u|p−1u), i∂kt u⟩h,

so the imaginary part simplifies, leading by Leibniz rule to

d

dt

Ä
∥∂kt u∥2L2

h

ä
= 2Re⟨∂kt (|u|p−1)u, i∂kt u⟩h + 2Re⟨|u|p−1∂kt u, i∂

k
t u⟩h +Re

k−1∑
n=1

Ç
k

n

å
⟨∂nt (|u|p−1)∂k−n

t u, i∂kt u⟩h,

so using again equation (DNLS), and by simplification,

(12)
d

dt

Ä
∥∂kt u∥2L2

h

ä
= 2Re⟨∂kt (|u|p−1)u,−∆h∂

k−1
t u⟩h + 2Re⟨∂kt (|u|p−1)u, ∂k−1

t (|u|p−1u)⟩h

+Re

k−1∑
n=1

cn⟨∂nt (|u|p−1)∂k−n
t u, i∂kt u⟩h

= 2Re⟨∂kt (|u|p−1)u,−∆h∂
k−1
t u⟩h +

d

dt

∑
a∈hZd

∣∣∣∂k−1
t (|u(t, a)|p−1u(t, a))

∣∣∣2
+Re

k−1∑
n=0

cn⟨∂nt (|u|p−1)∂k−n
t u, ∂k−1

t (|u|p−1u)⟩h +Re

k−1∑
n=1

cn⟨∂nt (|u|p−1)∂k−n
t u, i∂kt u⟩h.
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Focusing on the first term on the right hand side, as

2Re⟨∂kt (|u|p−1)u,−∆h∂
k−1
t u⟩h =

∑
a∈hZd

∂kt (|u|p−1)
Ä
−u∆h∂

k−1
t u− u∆h∂

k−1
t u

ä
,

and noticing that

−u∆h∂
k−1
t u− u∆h∂

k−1
t u = ∂k−1

t (−u∆hu− u∆hu) + Re

k−2∑
n=0

cn∂
n
t ∆hu ∂

k−1−n
t u,

we get from the identity

∆h(|u|2) = u∆hu+ u∆hu+
∣∣∇+

h u
∣∣2 + ∣∣∇−

h u
∣∣2

and integration by parts that

(13) 2Re⟨∂kt (|u|p−1)u,−∆h∂
k−1
t u⟩h =

∑
a∈hZd

∂kt ∇+
h (|u|

p−1) · ∂k−1
t ∇+

h (|u|
2)

+
∑

a∈hZd

∂kt (|u|p−1)∂k−1
t (|∇+

h u|
2) +

∑
a∈hZd

∂kt (|u|p−1)∂k−1
t (|∇−

h u|
2)

+ Re

k−2∑
n=0

cn
∑

a∈hZd

∂kt (|u|p−1)∂nt ∆hu ∂
k−1−n
t u.

We then infer that from elementary computations, for all a ∈ hZd,

∇+
h (|u(t, a)|

p−1) =

Ñ
∇+

h,j(|u(t, a)|
2)

p−1
2∑

ℓ=1

|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

é⊤

1≤j≤d

,

so the first term in the right hand side of (13) can be written∑
a∈hZd

∂kt ∇+
h (|u(t, a)|

p−1) · ∂k−1
t ∇+

h (|u(t, a)|
2)

=
∑

a∈hZd

d∑
j=1

∂kt

Ñ
∇+

h,j(|u(t, a)|
2)

p−1
2∑

ℓ=1

|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

é
∂k−1
t

Ä
∇+

h,j |u(t, a)|
2
ä

=
1

2

∑
a∈hZd

d∑
j=1

∂t

∣∣∣∂k−1
t ∇+

h,j(|u(t, a)|
2)
∣∣∣2 p−1

2∑
ℓ=1

|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

+

k−1∑
n=0

cn
∑

a∈hZd

d∑
j=1

∂nt ∇+
h,j(|u(t, a)|

2)∂k−1
t ∇+

h,j(|u(t, a)|
2)

p−1
2∑

ℓ=1

∂k−n
t

(
|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

)
,

so we conclude by combining this last equatity with equations (12) and (13) and using the expression
of E2k(u(t)). □

We then prove that the norms ∥∂kt u∥L2
h

and ∥u∥H2k
h

are comparable, so that the leading term in
the modified energy E2k(u) is equivalent to the Sobolev norm ∥u∥H2k

h
:
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Proposition 11. Let u be a solution to (DNLS) with u0 ∈ H2k(hZd) and parameters (λ, d, p)
satisfying (1), then

(14) ∥∂kt u− ik∆k
hu∥Hs

h
≤ C∥u∥Hs+2k−1

h
,

for any s ≥ 0, where C = C
Ä
k, s, ∥u∥H1

h

ä
> 0 is independent of h.

Proof. We prove the result by induction on k. The case k = 0 is obvious. Using the expression of
equation (DNLS), we easily show that for all α ∈ N,

∂αt u = iα∆α
hu+

α−1∑
n=0

cn∂
n
t ∆

α−n−1
h (|u|p−1u)

for suitable constants cn ∈ C, so we get that

∥∂k+1
t u− ik+1∆k+1

h u∥Hs
h
≲

k∑
n=0

∥∂nt (|u|p−1u)∥H2k−2n+s
h

.

Expanding time and spaces derivatives, and using the fact that∑
a∈hZd

|u(t, a)||u(t, a+ βh)| ≤ 1

2

Ñ ∑
a∈hZd

|u(t, a)|2 +
∑

a∈hZd

|u(t, a+ βh)|2
é

≤ ∥u(t)∥2L2
h

for all β ∈ Zd, we get by Hölder inequality that for all 0 ≤ n ≤ k,

∥∂nt (|u|p−1u)∥Hs+2k−2n
h

≲
∏

n1+...+np=j
s1+...+sp=2k−2n+s

∥∂n1
t u∥

W
s1,2p

h
. . . ∥∂np

t u∥
W

sp,2p

h

.

Then using discrete Sobolev injections H1(hZd) ⊂ L2p(hZd) as well as the induction hypothesis,
we get that for all 1 ≤ ℓ ≤ p,

∥∂nℓ
t u∥

W
sℓ,2p

h

≲ ∥∂nℓ
t u∥

H
sℓ+1

h

≤ ∥u∥Hsℓ+1+2nℓ ,

and from interpolation for θℓ(s+ 2k) = 2nℓ + sℓ with 0 < θℓ < 1 we conclude that

∥u∥Hsℓ+1+2nℓ ≤ ∥u∥θℓ
Hs+2k+1

h

∥u∥1−θℓ
H1

h︸ ︷︷ ︸
≤C

.

As the above sum on n and the products on (n1, . . . , np) and (s1, . . . , sp) are finite, we get the
result. □

We now prove the following a priori bound:

Proposition 12. Let u be a solution to (DNLS) with u0 ∈ H2k(hZd) and parameters (λ, d, p)
satisfying (1) and s ∈ {0, 1}, then for all 0 < T ≤ 1 and all ε > 0,

(15) ∥∂nt u∥L6
TW s,4

h
≲d,p,ε ∥u∥

3
4

L∞
T H2n+s

h

∥u∥
1
4

L∞
T H2j+s+1

h

∥u∥ε(p−1)

L∞
T H2j+2

h

.

Proof. Using discrete Strichartz estimates from Lemma 19 on the equation satisfied by ∂nt u for any
n ∈ N, we infer that

∥∂nt u∥L6
TW s,4

h
≲ ∥∂nt u(0)∥

H
s+1

4
h

+ T∥∂nt (|u|p−1u)∥
L∞

T H
s+1

4
h

≲ ∥∂nt u(0)∥
3
4

Hs
h
∥∂nt u(0)∥

1
4

Hs+1
h

+ T∥∂nt (|u|p−1u)∥
3
4

L∞
T Hs

h
∥∂nt (|u|p−1u)∥

1
4

L∞
T Hs

h
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Using equation (14), we easily handle the first term in the right hand side of the previous inequality,
namely

∥∂nt u(0)∥Hs
h
≤ ∥∂nt u(0)− in∆n

hu(0)∥Hs
h
+ ∥∆n

hu(0)∥Hs
h
≲ ∥u0∥Hs+2n

h

as well as
∥∂nt u(0)∥Hs

h
≲ ∥u0∥Hs+2n+1

h
.

On the other hand, expanding the time derivative on the second term of the right hand side, as
well as using the discrete bilinear estimate

(16) ∥fg∥L∞
h

≲ε ∥f∥1−ε
H1

h
∥f∥εH2

h

which stands for all ε > 0 as d ≤ 2, we get that

∥∂nt (|u|p−1u)∥Hs
h
≲

∑
n1+...+np=n

∥∂n1
t u∥Hs

h
∥∂n2

t u∥L∞
h
. . . ∥∂np

t u∥L∞
h

≲
∑

n1+...+np=n

∥∂n1
t u∥Hs

h
∥∂n2

t u∥1−ε
H1

h
∥∂n2

t u∥εH2
h
. . . ∥∂np

t u∥1−ε
H1

h
∥∂np

t u∥εH2
h
,

which gives using equation (14) that

∥∂nt (|u|p−1u)∥Hs
h
≲

∑
n1+...+np=n

∥u∥
H

2n1+s

h
∥u∥1−ε

H
2n2+1

h

∥u∥ε
H

2n2+2

h

. . . ∥u∥1−ε

H
2np+1

h

∥u∥ε
H

2np+2

h

.

Denoting

θ1(2n+ s) + (1− θ1) = 2n1 + s and θ1(2n+ s) + (1− θ1) = 2n1 + 1

for all 2 ≤ l ≤ p, we get by interpolation that

∥∂nt (|u|p−1u)∥Hs
h
≲ ∥u∥θ1

H2n+s
h

∥u∥1−θ1
H1

h
∥u∥θ2(1−ε)

H2n+s
h

∥u∥(1−θ2)(1−ε)

H1
h

. . . ∥u∥θp(1−ε)

H2n+s
h

∥u∥(1−θp)(1−ε)

H1
h

∥u∥ε(p−1)

H2n+2
h

so we get the result noticing that
∑p

l=1 θl = 1 and using the uniform H1 bound on u. □

We can now state and prove the main result of this section, which is the following:

Proposition 13. Let u be a solution to (DNLS) with u0 ∈ H2k(hZd) and parameters (λ, d, p)
satisfying (1), then for all 0 < T ≤ 1 and ε > 0 arbitrary small, we have

|E2k(u(T ))| ≲ |E2k(u0)|+ T∥u∥
4k−4
2k−1+ε

L∞
T H2k

h

+ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

.

Proof. Let’s first remark that as

|E2k(u(T ))| ≤ |E2k(u0)|+
∫ T

0

∣∣∣∣ ddtE2k(u(t))
∣∣∣∣ dt,

we are brought back to estimate the time integral of the terms Jℓ for ℓ = 1, . . . , 7 in the right hand
side of equation (11). From now on we will denote by ε > 0 an arbitrary small constant which may
change from line to line, and we will extensively used the estimate

(17) ∥u∥L∞
T Hs

h
≲ ∥u∥

s−1
2k−1

L∞
T H2k

h

for any 1 ≤ s ≤ 2k, which immediately follows from an interpolation inequality with the uniform
H1 bound (9). From norm equivalence and Hölder inequality, we infer∫ T

0

|J1(t)|dt ≤
∑

k1+k2=k−1

∫ T

0

∥∂k1
t u∥2

W 1,4
h

∥∂k2
t u∥2L∞

h
∥∂tu∥L2

h
∥u∥p−4

L∞
h
dt.
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For k1 + k2 = k − 1, beyond the uniform bound ∥u∥p−4
L∞

T L∞
h

≲ C, we easily get that

∥∂tu∥L∞
T L2

h
≲ ∥u∥L∞

T H2
h

from (14) as well as

∥∂k2
t u∥2L∞

T L∞
h

≲ ∥∂k2
t u∥2(1−ε)

L∞
T H1

h
∥∂k2

t u∥2εL∞
T H2

h
≲ ∥u∥2(1−ε)

L∞
T H

2k2+1

h

∥u∥2ε
L∞

T H
2k2+2

h

using classical interpolation. We use estimate (15) in order to bound the last remaining term,
namely

∥∂k1
t u∥2

L2
TW 1,4

h

≤ T
2
3 ∥∂k1

t u∥2
L6

TW 1,4
h

≲ T
2
3 ∥u∥

3
2

L∞
T H

2k1+1

h

∥u∥
1
2

L∞
T H

2k1+2

h

∥u∥ε
L∞

T H
2k1+2

h

.

Combining these bounds with (17) we get that

(18)
∫ T

0

|J1(t)|dt ≲ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

.

The same way, from discrete norm equivalence and Hölder inequality, we get that

∫ T

0

|J2(t)|dt ≤
k−1∑
n=0

|cn|
∑
An,k

∫ T

0

∥∂n1
t u∥L∞

h
∥∂n2

t u∥W 1,4
h

∥∂k1
t u∥L∞

h
∥∂k2

t u∥W 1,4
h

∥∂m1
t u∥L2

h

p−3∏
ℓ=2

∥∂mℓ
t u∥L∞

h

where the set An,k is defined for every n ∈ {0, . . . , k − 1} by

An,k = {(n1, n2, k1, k2,m1, . . . ,mp−3) | n1 + n2 = n, k1 + k2 = k − 1, m1 + . . .+mp−3 = k − n} .

As for J1, we can estimate each term separately, using the bilinear estimate (16) to handle L∞(hZd)
norms uniformly in time, and the nonlinear Strichartz estimate (15) for W 1,4(hZd) norms combined
with Hölder inequality for the time integrability, which gives

(19)

∫ T

0

|J2(t)|dt ≲ T
2
3 ∥u∥1−ε

L∞
T H

2n1+1

h

∥u∥
3
4

L∞
T H

2n2+1

h

∥u∥
1
4

L∞
T H

2n2+2

h

∥u∥1−ε

L∞
T H

2k1+1

h

∥u∥
3
4

L∞
T H

2k2+1

h

× ∥u∥
1
4

L∞
T H

2k2+2

h

∥u∥
L∞

T H
2m1
h

(
p−3∏
ℓ=2

∥u∥1−ε

L∞
T H

2mℓ+1

h

)
∥u∥εL∞

T H2k
h

≲ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

.

where we have used the estimate (17) on each separate term in the last step. Focusing on J3 (or
by obvious symmetry on J4), we infer by Hölder inequality that

∫ T

0

|J3(t)|dt ≤
∑

k1+k2=k−1
n1+...+np−1=k

∫ T

0

∥∂n1
t u∥L2

h

(
p−1∏
ℓ=2

∥∂nℓ
t u∥L∞

h

)
∥∂k1

t u∥W 1,4
h

∥∂k2
t u∥W 1,4

h
,
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so that estimating each term as above we get that

(20)

∫ T

0

|J3(t)|dt ≲ T
2
3 ∥u∥

L∞
T H

2n1
h

(
p−1∏
ℓ=2

∥u∥1−ε

L∞
T H

2nℓ+1

h

)
∥u∥

3
4

L∞
T H

2k1+1

h

∥u∥
1
4

L∞
T H

2k1+2

h

× ∥u∥
3
4

L∞
T H

2k2+1

h

∥u∥
1
4

L∞
T H

2k2+2

h

∥u∥εL∞
T H2k

h

≲ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

.

Arguing as above, we also get that

(21)
∫ T

0

|J5(t)|dt

≤
k−1∑
n=0

|cn|
∑

n1+...+np−1=n
k1+...+kp=k−1

n1=max(n1,...,np−1)

∫ T

0

∥∂n1
t u∥L2

h

(
p−1∏
ℓ=2

∥∂nℓ
t u∥L∞

h

)
∥∂k−n

t u∥L∞
h
∥∂k1

t u∥L2
h

(
p∏

ℓ=2

∥∂kℓ
t u∥L∞

h

)

≲ T∥u∥
L∞

T H
2n1
h

(
p−1∏
ℓ=2

∥u∥1−ε
L∞

T H2nℓ+1

)
∥u∥1−ε

L∞
T H2k−2n+1

h

∥u∥εL∞
T H2k

h
∥u∥

L∞
T H

2k1
h

(
p∏

ℓ=2

∥u∥1−ε
L∞

T H2kℓ+1

)

≲ T∥u∥
4k− 5

2
2k−1 +ε

L∞
T H2k

h

.

Note that as no W 1,4(hZd) is involved in the above estimate, we do not trade space regularity for
time integrability by Strichartz inequality (15), and we end up having a straight linear bound with
respect to T . We end up our analysis by estimating J6 and J7 similarly to J1, J2, J3 and J4,
namely
(22)∫ T

0

|J6(t)|dt ≤
k−2∑
n=0

|cn|
∑

k1+...+kp−1=k
k1=max(k1,...,kp−1)

∫ T

0

∥∂k1
t u∥L2

h

(
p−1∏
ℓ=2

∥∂kℓ
t u∥L∞

h

)
∥∂nt ∆hu∥L4

h
∥∂k−1−n

t u∥L4
h

≲ T
2
3 ∥u∥

L∞
T H

2k1
h

(
p−1∏
ℓ=2

∥u∥1−ε

L∞
T H

2kℓ+1

h

)
∥u∥

3
4

L∞
T H2n+2

h

∥u∥
1
4

L∞
T H2n+3

h

× ∥u∥
3
4

L∞
T H2k−2n−2

h

∥u∥
1
4

L∞
T H2k−2n−1

h

∥u∥εL∞
T H2k

h

≲ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h
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and

(23)
∫ T

0

|J7(t)|dt ≤
k−1∑
n=0

|cn|
∑

n1+...+np−1=n

∫ T

0

∥∂n1
t u∥L4

h

(
p−1∏
ℓ=2

∥∂nℓ
t u∥L∞

h

)
∥∂k−n

t u∥L4
h
∥∂kt u∥L2

h

≲ T
2
3 ∥u∥

3
4

L∞
T H

2n1
h

∥u∥
1
4

L∞
T H

2n1+1

h

(
p−1∏
ℓ=2

∥u∥1−ε

L∞
T H

2nℓ+1

h

)
∥u∥

3
4

L∞
T H2k−2n

h

∥u∥
1
4

L∞
T H2k−2n+1

h

∥u∥1+ε
L∞

T H2k
h

≲ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

.

Finally, summing estimates (18), (19), (20), (21), (22) and (23) ends the proof. □

We then deduce the key estimate in order to prove Theorem 1:

Proposition 14. Let u be a solution to (DNLS) with u0 ∈ H2k(hZd) and parameters (λ, d, p)
satisfying (1), then for all 0 < T ≤ 1 and ε > 0 arbitrary small, we have

(24) ∥u(T )∥2H2k
h

− ∥u0∥2H2k
h

≲ ∥u∥
4k−4
2k−1+ε

L∞
T H2k

h

+ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

.

Proof. Writing R2k(u) := E2k(u)− ∥∂kt u∥L2
h

using equation (10), we first focus on estimating both
terms of R2k(u) in the same way than in the proof of Proposition 13: from norm equivalence and
equation (17), we get that

∑
a∈hZd

d∑
j=1

∣∣∣∂k−1
t ∇+

h,j(|u(t, a)|
2)
∣∣∣2 p−1

2∑
ℓ=1

|u(t, a)|p−1−2ℓ|u(t, a+ hej)|2ℓ−2

≲
∑

k1+k2=k−1

∥∂k1
t u∥2H1

h
∥∂k2

t u∥2L∞
h
∥u∥p−3

L∞
h

≲
∑

k1+k2=k−1

∥u∥2
H

2k1+1

h

∥u∥2
H

2k2+1

h

∥u∥εH2k
h

≲ ∥u∥
4k−4
2k−1+ε

H2k
h

and∑
a∈hZd

∣∣∣∂k−1
t (|u(t, a)|p−1u(t, a))

∣∣∣2 ≲
∑

k1+...+kp=k−1

∥∂n1
t u∥2L2

h

(
p∏

ℓ=2

∥∂nℓ
t u∥2L∞

h

)

≲
∑

n1+...+np=k−1

∥u∥2
H

2n1
h

(
p∏

ℓ=2

∥u∥2
H

2nℓ+1

h

)
∥u∥εH2k

h
≲ ∥u∥

4k−6
2k−1+ε

H2k
h

.

We then infer from equation (10) and Proposition 13 that

∥∂kt u(T )∥2L2
h
− ∥∂kt u(0)∥2L2

h
≲ ∥u∥

4k−4
2k−1+ε

L∞
T H2k

h

+ ∥u∥
4k−6
2k−1+ε

L∞
T H2k

h

+ ∥u∥
4k−4
2k−1+ε

L∞
T H2k

h

+ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

,

so using equations (14) and (17), we finally get that

∥u(t)∥2H2k
h

− ∥u(0)∥2H2k
h

≲ ∥∂kt u(t)∥2L2
h
+ ∥u∥2

H2k−1
h

≲ ∥u∥
4k−4
2k−1+ε

L∞
T H2k

h

+ T
2
3 ∥u∥

4k− 5
2

2k−1 +ε

L∞
T H2k

h

,

which gives the result. □
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4.2. Odd Sobolev norms. We now suppose that m = 2k + 1 with k ∈ N∗. The modified energy
E2k+1(u) is now defined for all t ≥ 0 by

(25)

E2k+1(u(t)) =
1

2
∥∂kt ∇+

h u∥
2
L2

h
+
1

2

∑
a∈hZd

|u(t, a)|p−1|∂kt u(t, a)|2+Re

k−1∑
n=1

cn⟨∂nt u ∂k−n
t (|u|p−1), ∂kt u⟩h

+
p− 1

8

≠
|u|p−3,

∣∣∣∂kt (|u|2)∣∣∣2∑
h

+

k−1∑
n=1

cn⟨∂k−n
t (|u|p−3)∂nt (|u|2), ∂kt (|u|2)⟩h

As in the even case, differentiating E2k+1(u(t)) with respect to time, we have the following result:

Proposition 15. Let u be a solution to (DNLS) with u0 ∈ H2k+1(hZd) and parameters (λ, d, p)
satisfying (1), then

d

dt
E2k+1(u(t)) = Re

k−1∑
n=1

cn⟨∂n+1
t u ∂k−n

t (|u|p−1), ∂kt u⟩h +Re

k−1∑
n=1

cn⟨∂nt u ∂k−n+1
t (|u|p−1), ∂kt u⟩h

+
1

2
⟨∂t(|u|p−1), |∂kt u|2⟩h +

p− 1

8

≠
∂t(|u|p−3),

∣∣∣∂kt (|u|2)∣∣∣2∑
h

+

k∑
n=1

cn⟨∂kt (|u|p−1)∂nt u, ∂
k+1−n
t u⟩h

+

k−1∑
n=1

cn⟨∂k−n+1
t (|u|p−3)∂nt (|u|2), ∂kt (|u|2)⟩h +

k−1∑
n=1

cn⟨∂k−n
t (|u|p−3)∂n+1

t (|u|2), ∂kt (|u|2)⟩h.

Proof. From integration by parts and using the expression of equation (DNLS) we get that

1

2

d

dt
∥∂kt ∇+

h u∥
2
L2

h
= −Re⟨∂k+1

t u, ∂kt (|u|p−1u)⟩h,

so that expanding the time derivatives we infer

1

2

d

dt
∥∂kt ∇+

h u∥
2
L2

h
= −Re⟨∂kt (|u|p−1)u, ∂k+1

t u⟩h − Re⟨|u|p−1∂kt u, ∂
k+1
t u⟩h

− Re

k−1∑
n=1

cn⟨∂nt u ∂k−n
t (|u|p−1), ∂k+1

t u⟩h

= −Re⟨∂kt (|u|p−1)u, ∂k+1
t u⟩h − 1

2

d

dt

Ñ ∑
a∈hZd

|u|p−1|∂kt u|2
é

+
1

2
⟨∂t(|u|p−1), |∂kt u|2⟩h

− d

dt

(
Re

k−1∑
n=1

cn⟨∂nt u ∂k−n
t (|u|p−1), ∂kt u⟩h

)
+Re

k−1∑
n=1

cn⟨∂n+1
t u ∂k−n

t (|u|p−1), ∂kt u⟩h

+Re

k−1∑
n=1

cn⟨∂nt u ∂k−n+1
t (|u|p−1), ∂kt u⟩h.
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We now focus on the first term in the right hand side of the above equation, noticing that as p is
odd we have ∂t(|u|p−1) = p−1

2 ∂t(|u|2)|u|p−3, so we can write that

− Re⟨∂kt (|u|p−1)u, ∂k+1
t u⟩h = −1

2
⟨∂kt (|u|p−1), ∂k+1

t (|u|2)⟩h −
k∑

n=1

cn⟨∂kt (|u|p−1)∂nt u, ∂
k+1−n
t u⟩h

= −p− 1

4
⟨|u|p−3∂kt (|u|2), ∂k+1

t (|u|2)⟩h −
k−1∑
n=1

cn⟨∂k−n
t (|u|p−3)∂nt (|u|2), ∂k+1

t (|u|2)⟩h

−
k∑

n=1

cn⟨∂kt (|u|p−1)∂nt u, ∂
k+1−n
t u⟩h

= −p− 1

8

d

dt

Å≠
|u|p−3,

∣∣∣∂kt (|u|2)∣∣∣2∑
h

ã
+
p− 1

8

≠
∂t(|u|p−3),

∣∣∣∂kt (|u|2)∣∣∣2∑
h

+
d

dt

(
k−1∑
n=1

cn⟨∂k−n
t (|u|p−3)∂nt (|u|2), ∂kt (|u|2)⟩h

)
+

k−1∑
n=1

cn⟨∂k−n+1
t (|u|p−3)∂nt (|u|2), ∂kt (|u|2)⟩h

+

k−1∑
n=1

cn⟨∂k−n
t (|u|p−3)∂n+1

t (|u|2), ∂kt (|u|2)⟩h +

k∑
n=1

cn⟨∂kt (|u|p−1)∂nt u, ∂
k+1−n
t u⟩h,

which ends the proof. □

The proof of the estimate

(26) ∥u(T )∥2
H2k+1

h

− ∥u(0)∥2
H2k+1

h

≤ ∥u∥
4k−2
2k +ε

L∞
T H2k+1

h

+ T
2
3 ∥u∥

4k− 1
2

2k +ε

L∞
T H2k+1

h

,

which stands as the exact analog of equation (24) in the odd case, follows the same lines as its even
counterpart: taking advantage of the estimate

∥∂kt ∇+
h u− ik∆k

h∇+
h u∥Hs

h
≤ C∥u∥Hs+2k

h
, s ≥ 0,

as well as the nonlinear Strichartz estimate (15), we can show that

|E2k+1(u(T ))| ≲ |E2k+1(u(0))|+ ∥u∥
4k−2
2k +ε

L∞
T H2k+1

h

+ T
2
3 ∥u∥

4k− 1
2

2k +ε

L∞
T H2k+1

h

the same way as for the proof of Proposition 13, which in turns implies equation (26) estimating
the remaining terms in equation (25) as in the proof of equation (24).

4.3. Proof of Theorem 1. Let m ∈ N∗ such that m ≥ 2, u0 ∈ Hm(hZd) and parameters (λ, d, p)
satisfying (1), and let u be the unique global solution of (DNLS) with u(0, ·) = u0. We then have
for all τ > 0 and ε > 0 arbitrary small that

∥u(τ)∥2Hm
h
− ∥u0∥2Hm

h
≲ ∥u∥

2m−4
m−1 +ε

L∞
τ Hm

h
+ τ

2
3 ∥u∥

2m− 5
2

m−1 +ε

L∞
τ Hm

h
.

Writing α =
2m− 5

2

m−1 + ε < 2 for ε > 0 small enough, and as 2m−4
m−1 + ε < α, for τ small enough we

get that for all t ≥ 0,

∥u(t+ τ)∥2Hm
h

≤ ∥u(t)∥2Hm
h
+ C

Ä
1 + ∥u∥αL∞([t,t+τ ];Hm(hZd))

ä
.
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From energy conservation we infer

∥u(t+ τ)∥2Hm
h

≤ ∥u(t)∥2Hm
h
+ C

Ä
1 + ∥u∥αHm

h

ä
,

so the sequence Un := 1 + ∥u(nτ)∥2Hm
h

satisfies Un+1 ≤ Un + CU
α
2
n . As α < 2, we get by induction

that Un ≲ n
4

4−α , which yields to the polynomial bound

∥u∥L∞
T Hm

h
≤ C(1 + T 2(m−1)+ε)

for all T > 0, ending the proof of Theorem 1.

5. Strong convergence in Sobolev spaces

We have now all the tools at hand in order to prove Theorem 2. Let δ > d/2, m = ⌈δ⌉ and
α > d

2 + m with the set of parameters (λ, d, p) satisfying (1). Let ψ0 ∈ Hα(Rd), so that for all
t ∈ R, there exists a unique solution ψ ∈ C(R;Hα(Rd)) of equation (NLS) such that ψ(0) = ψ0.
We denote u0 = Πhψ0, which induces a unique solution u of equation (DNLS). In particular

∥u0∥Hm(hZd) ≲ ∥ψ0∥Hα(Rd)

by Lemma 3, so ∥u0∥Hm(hZd) is uniformly bounded with respect to h . From Duhamel’s formula
we can write that

Shu(t) = She
it∆hu0 − iλ

∫ t

0

She
i(t−τ)∆h

(
|u|p−1u

)
(τ)dτ

and

ψ(t) = eit∆ψ0 − iλ

∫ t

0

ei(t−τ)∆
(
|ψ|p−1ψ

)
(τ)dτ.

We will then decompose our analysis on the following integrals

∥Shu(t)− ψ(t)∥Hs(Rd) ≤ ∥She
it∆hu0 − eit∆ψ0∥Hs(Rd)

+ |λ|
∫ t

0

∥∥∥ÄShe
i(t−τ)∆h − ei(t−τ)∆Sh

ä (
|u|p−1u

)
(τ)
∥∥∥
Hs(Rd)

dτ

+ |λ|
∫ t

0

∥∥∥Sh

(
|u|p−1u

)
(τ)−

Ä
|Shu|p−1 Shu

ä
(τ)
∥∥∥
Hs(Rd)

dτ

+ |λ|
∫ t

0

∥∥∥Ä|Shu|p−1 Shu
ä
(τ)−

(
|ψ|p−1ψ

)
(τ)
∥∥∥
Hs(Rd)

dτ

=: J1(t) + J2(t) + J3(t) + J4(t).

Note that the integral J1 is already handle by Proposition 9.

5.1. Linear flow on the nonlinearity. In order to estimate J2, as Πh ◦ Shg = g for any g ∈
L2(hZd), we write that

She
i(t−τ)∆h

(
|u|p−1u

)
− ei(t−τ)∆Sh

(
|u|p−1u

)
= She

i(t−τ)∆hΠh ◦Sh

(
|u|p−1u

)
− ei(t−τ)∆Sh

(
|u|p−1u

)
so applying Proposition 9 to Sh

(
|u|p−1u

)
, as

∥Sh

(
|u|p−1u

)
(τ)∥Hδ(Rd) ≲ ∥Shu(τ)∥pHδ(Rd)

≲ ∥u(τ)∥p
Hδ(hZd)

<∞
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from consecutively Corollary 7 and Lemma 5, we get that

J2(t) ≤ Ch
δ−s
2 − d

4

∫ t

0

(1 + t− τ)∥Sh

(
|u|p−1u

)
(τ)∥Hδ(Rd)dτ

≤ Ch
δ−s
2 − d

4 (1 + t)

∫ t

0

∥u(τ)∥p
Hδ(hZd)

dτ

≤ Ch
δ−s
2 − d

4 (1 + t2)(1 + t2(m−1)+ε)p(1 + ∥u0∥Hm(hZd))
p

≤ Ch
δ−s
2 − d

4 (1 + t2p(m−1)+2+ε)(1 + ∥ψ0∥Hα(Rd))
p

applying Theorem 1 for ε > 0 arbitrary small.

5.2. Aliasing of Shannon interpolation. We now focus on J3. We will use the following prop-
erty, which is a direct corollary of the bilinear estimate of Proposition 6:

Corollary 16. Let u ∈ Hδ(hZd) with δ > d/2, and let s ≤ δ. Let p = 2n+ 1, n ∈ N∗, then

∥Sh

(
|u|p−1u

)
− |Shu|p−1 Shu∥Hs(Rd) ≤ Chδ−s∥Shu∥pHδ(Rd)

,

where C = C(δ, s, d, p) > 0.

Proof. Let’s first recall that for all x ∈ Rd, Shu(x) = Shu(x). We then compute that

∥Sh

(
|u|p−1u

)
− |Shu|p−1 Shf∥Hs(Rd) ≤∥Sh

(
|u|p−1u

)
− Sh

(
|u|p−1

)
Shu∥Hs(Rd)

+ ∥Sh

(
|u|p−1

)
Shu− |Shu|p−1 Shu∥Hs(Rd)

For the first term, we use Proposition 6 so

∥Sh

(
|u|p−1u

)
− Sh

(
|u|p−1

)
Shu∥Hs(Rd) ≤ Chδ−s∥Shu∥Hδ(Rd)∥Sh

(
|u|p−1

)
∥Hδ(Rd)

≤ Chδ−s∥Shu∥pHδ(Rd)
,

using Corollary 7 and the fact that ∥Shu∥Hs(Rd) = ∥Shu∥Hs(Rd). On the other hand, as s < s+δ− d
2 ,

we can bound the second term

∥Sh

(
|u|p−1

)
Shu− |Shu|p−1 Shu∥Hs(Rd) ≤ C∥Shu∥Hδ(Rd)∥Sh

(
|u|p−1

)
− |Shu|p−1 ∥Hs(Rd),

using Lemma 17 from Appendix A, and we can conclude by induction as p = 2n+1 with n ∈ N∗. □

We then directly apply Corollary 16 to get that

J3(t) ≤ Chδ−s(1 + t) sup
τ∈[0,t]

∥u(τ)∥p
Hm(hZd)

≤ Chδ−s(1 + t2p(m−1)+1+ε)(1 + ∥ψ0∥Hα(Rd))
p

using Theorem 1.

5.3. Gronwall argument. In order to estimate J4, we notice that∣∣|f |p−1f − |g|p−1g
∣∣ ≤ C(|f |+ |g|)p−1|f − g|

from the fundamental theorem of calculus, so for 0 ≤ τ ≤ t,∥∥∥Ä|Shu|p−1 Shu
ä
(τ)−

(
|ψ|p−1ψ

)
(τ)
∥∥∥
Hs(Rd)

≲
∥∥∥(|Shu(τ)|+ |ψ(τ)|)p−1

∥∥∥
Hδ(Rd)

∥Shu(τ)− ψ(τ)∥Hs(Rd)

≲
Ä
∥Shu∥p−1

Hδ(Rd)
+ ∥ψ∥p−1

Hδ(Rd)

ä
∥Shu(τ)− ψ(τ)∥Hs(Rd)
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as s < s+ δ − d/2, hence

J4(t) ≤ C

∫ t

0

Ä
∥u(τ)∥p−1

Hδ(hZd)
+ ∥ψ(τ)∥p−1

Hδ(Rd)

ä
∥Shu(τ)− ψ(τ)∥Hs(Rd)dτ.

As before, we use Theorem 1 in order to bound the evolution of Sobolev norms, so that

J4(t) ≤ C(1 + ∥ψ0∥Hα(Rd))
p−1

∫ t

0

(1 + τ2(p−1)(m−1)+ε)∥Shu(τ)− ψ(τ)∥Hs(Rd)dτ.

Gathering all these inequalities, on respectively J1, J2, J3 and J4, we conclude by Gronwall lemma,
which direclty gives equation (5), ending the proof of Theorem 2.
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Appendix A. Useful estimates

A.1. Continuous inequalities. We first recall a classical bilinear estimate:

Lemma 17. Let f ∈ Hs1(Rd) and g ∈ Hs2(Rd). Let s ≥ 0 such that

s ≤ s1, s2 and s < s1 + s2 −
d

2
.

Then
∥fg∥Hs(Rd) ≤ C∥f∥Hs1 (Rd)∥g∥Hs2 (Rd).

A.2. Discrete inequalities. We now provide a discrete version of the Gagliardo-Nirenberg in-
equality, which holds for the same sets of parameters as for the continuous one. For a proof or a
more complete statement, we refer to [16].

Lemma 18. Let 0 < h ≤ 1, 2 ≤ q ≤ ∞ and 0 < θ < 1 such that
1

q
+
θs

d
=

1

2
,

then

(27) ∥u∥Lq(hZd) ≤ C∥u∥1−θ
L2(hZd)

∥u∥θ
Ḣs(hZd)

for any suitable function u.

We also give some Strichartz estimates for the linear discrete Schrödinger equation recently
proved in [16], which holds uniformly with respect to the parameter h > 0 of the discretization.

Lemma 19. Let 0 < h ≤ 1, and φ ∈ L2(hZd). We say that the pair (q, r) is discrete-Schrödinger-
admissible if the following conditions hold

(28)
3

q
+
d

r
=
d

2
, 2 ≤ q, r ≤ ∞, (q, r, d) ̸= (2,∞, 3).

Then for any discrete-Schrödinger-admissible pairs (q, r) and (q̃, r̃), we have the following homoge-
neous Strichartz estimate

(29) ∥eit∆hφ∥Lq(R;Lr(hZd)) ≤ C∥φ∥
H

1
q (hZd)
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and the inhomogeneous Strichartz estimate

(30)
∥∥∥∥∫ t

0

ei(t−s)∆hF (s)ds

∥∥∥∥
Lq(R;Lr(hZd))

≤ C∥F∥
C(R;H

1
q (hZd))

for any suitable function F .
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