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Abstract

In physical sciences, dynamic systems are modeled using their parameters
within governing equations that often form a system of ordinary dif-
ferential equations (SODE). This system consists of multiple equations,
each of which relates the time derivative of a single parameter to sev-
eral parameters. A parameter can appear in multiple equations, and this
parameter potentially links the equations to each other. Although in
certain cases the SODE can be written by domain experts, it is often
unknown. With advances in sensor technology, large quantities of data
can be sampled from dynamic systems, thus enabling the data-driven
discovery of closed-form SODEs. State-of-the-art approaches are based
on sparse single-task learning, which means that each equation from
the SODE is learned independently. Omitting the coupling features of
equations leads to SODEs that weakly identify the dynamic system.
Furthermore, the convexity of the sparse penalty included in the learn-
ing criterion gives an SODE that is biased with respect to the true
SODE. To reduce such a bias, we propose a multitask learning (MTL)
based penalty which can learn the closed-form SODE with unbiasedness.
The purpose of each task is to discover a single equation. But discov-
ering an SODE is nontrivial, as dynamic systems are often nonlinear
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and the available data are noisy. Our proposal improves SODE iden-
tification by harnessing a nonconvex sparse matrix-structured penalty
which takes into account the coupling feature as well as addresses
the bias issue. Experimental results, based on noisy data simulated
from known SODEs, confirm that, compared to single-task learning,
MTL is more effective for recovering the closed-form SODE, and the
proposed nonconvexity ensures that it can be estimated with unbi-
asedness. We also show the benefits of our approach on a real-world
public dataset sampled from a laboratory-based ecological experiment.

Keywords: sparse estimator, unbiased sparsity, multitask learning,
data-driven identification of dynamics, multivariate time series

1 Introduction

Governing equations are mathematical models, such as partial differential
equations (e.g. Navier-Stokes equation for fluid dynamic modeling) or systems
of ordinary differential equations (SODEs), which are widely used in science
and engineering to model dynamic systems [1, 2]. A governing equation mod-
els the dependency relationships between several parameters like velocity or
chemical concentration, known as state variables, in a dynamic system. The
solution to a governing equation is a function depicting the temporal and/or
spatial evolution of the state variables that correspond to physical quantities
(e.g. current-voltage, motion). Traditionally, governing equations are derived
from principles that have been formalized from general empirical observations
consistent with certain hypotheses, for instance Newton’s laws are based on
the constant-mass hypothesis [3]. However, in practice it is hard to derive gov-
erning equations from the existing rules, because either the practitioners do
not have sufficient knowledge or they do not have sufficient time.

In line with the development of sensor technology, data can be sampled from
dynamic systems. This provides new opportunities to extract knowledge about
the physical behavior underlying a dynamic system. Consequently, there has
been a growing interest over recent years in developing data-driven methods
for the discovery of governing equations [4–8].

Indeed, gaining access to the model that governs an unknown dynamic
from data samples can improve our understanding of a physical system and
is a challenging task of scientific interest. There is also the practical challenge
of obtaining a surrogate model to simulate the system of interest in various
conditions e.g. for prototype design in engineering [2].

In this paper, we focus on the case where state variables are sampled from
a dynamic system throughout a scalar variable t ∈ R, that without loss of gen-
erality refers to time. Thus, the sampled state variable forms a multivariate
time series. If we are to discover the dynamic relationship between the state
variables, we have to assume that the resulting data represent the solution of
an unknown SODE as proposed by [4]. In an SODE, each equation models the



Springer Nature 2021 LATEX template

Data-Driven Discovery of SODE Using Nonconvex Multitask Learning 3

dependency relationship between several scalar-dependent state variables and
their first-order time derivatives. Famous SODEs include the Lorenz attrac-
tor in turbulence atmospheric modeling and the Lotka-Voltera in population
dynamics, see [9] for other examples.

Let us recall how an SODE is formalized. Let f =
[
f1, . . . , fp

]T
: Rp → Rp

be a continuous map which defines the evolution of a state variable x(t) ∈ Rp

assumed first-order differentiable, then the SODE is expressed as dx(t)
dt :=

ẋ(t) = f(x
(
t)
)
, or equivalently:

ẋ1(t) = f1
(
x1(t), . . . , xp(t)

)
· · ·
ẋp(t) = fp

(
x1(t), . . . , xp(t)

) (1)

Learning an SODE from data samples can be seen as predicting the time
derivative of the state variables from a combination (often nonlinear) of the
state variables. Hence, discovering an SODE signifies learning f in closed form
from samples of ẋ and x. An SODE comprises multiple equations (as many as
state variables) that relate the variables equations to others. In other words,
the equations are coupled (See Fig 1, where the occurrence of x3

1 and x3
2 within

both equations makes the SODE coupled). Our idea is that using multitask
learning (MTL) to harness this coupling can improve the data-driven discovery
of an SODE. That is why we hypothesize that in this context, MTL can be
better than single-task learning.

In Fig 1 we illustrate the core of the discovery of nonlinear dynamics frame-
work with x(t) ∈ R2 and f polynomial in x(t): (top) based on data (Ẋn

and ΘXn) sampled from a dynamic system. We solve the minimization prob-
lem involving a data fidelity term ℓ(Ẋn,ΘXnβ) and a sparse penalty term
R(β) (bottom center) leading to the identification of an SODE (bottom left).
This optimization instantiates the problem with R := ∥·∥1,1, which is con-

vex. Then, the learned SODE is identified through the minimizer β̂ whose
entries and sparsity heavily rely on the chosen penalty. Thus, when the penalty
is convex (e.g. LASSO) the nonzero values are statistically biased w.r.t the
true unknown values. This means that the SODE is not estimated accurately.
There exist nonconvex sparse penalties (e.g. smoothly clipped sbsolute devia-
tion [10]) to remedy the bias issue but they cannot consider the MTL feature.
Existing MTL penalties (group-LASSO [11], sparse-group-lasso [12]) are con-
vex and thus result in a biased SODE. We propose a specific nonconvex sparse
penalty as a mean for learning the matrix coefficient that both reduces its bias
and takes into account the multitask feature of the SODE. As a result, when
there is a coupling within the true SODE, its closed-form SODE can be better
recovered using our penalty.

Our contributions in this paper are as follows:
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Fig. 1: (From top to center to bottom left) Generic workflow of the data-driven
discovery of an SODE (here two-dimensional) with linear regression. Top:
based on samples of estimated state variable time derivatives (Ẋn’s columns),
and resulting from nonlinear transformations of the state variable samples
(columns of the dictionary ΘXn

), a linear model is assumed for the two sets
of samples. Center: the SODE is discovered by minimizing a learning criterion
inducing sparsity in the minimizer. Bottom left: the SODE is identified using
the learned coefficient matrix β̂.

• We recast the discovery of a closed-form SODE as a multitask problem. We
also formalize the learning as an optimization problem involving a matrix-
structured, sparse and nonconvex regularizer to account for task relatedness,
sparsity and unbiasedness.

• We highlight the bias of the learned coefficients, induced by the convexity
of state-of-the-art regularizers, on the resulting SODE.

• Using experiments on reference SODEs, we show that learning via our mul-
titask penalty rather than a convex single-task penalty leads to a better
recovery of the equations. We also demonstrate the benefit of our recasting
on a real dataset involving two adversarial biological quantities, and provide
an interpretation of the SODE that was discovered.

The paper is organized as follows: We start by defining our notation in
Table 1. in Section 2 we introduce the data-driven discovery of an SODE as
a sparse regression problem (single-task and multitask) and then highlight
the drawbacks of the state-of-the-art regularizers. In Section 3, we introduce
our contribution, a regularizer that is multitask-based and involves unbiased-
ness. Then, we present a generic algorithm from the literature which solves
the regression problem and can be used for all the regularizers introduced in
the paper. Through numerical experiments on synthetic and real datasets, in
Section 4 we show the benefit of learning an SODE with such a regularizer.
We conclude and propose some perspectives in Section 5.

2 Related work

Extracting information from noisy data resulting from physical experiments
with standard machine learning algorithms can lead to irrelevant, or at worst,
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Notation Description
Rn Set of n-vectors with real number elements
[a; b] Closed subset of R
Rn×p Set of n× p matrices with real number elements

w :=
[
w1, . . . , wn

]T
An element of Rn (lowercase bold letter)

W :=
[
w•1, . . . ,w•p

]
An element of Rn×p (uppercase letter)

w•j j-th column of matrix W
wi• i-th row of matrix W

x(t) :=
[
x1(t), . . . , xp(t)

]T
p dimensional state variable x at time t

x•k :=
[
xk(t1), . . . , xk(tn)

]T
k-th dimension of x sampled at t1 < . . . < tn

Xn :=
[
x•1, . . . ,x•p

]
Input data matrix of (n× p): n samples (row concate-
nation) of the sampled state variable x•k

ẋ(t) :=
[dx1(t)

dt
, . . . ,

dxp(t)

dt

]T
First-order time derivative of x

Ẋn n samples (row concatenation) of ẋ at t1, . . . , tn
∥w∥q := (

∑
i|wi|q)1/q ℓq norm (q ≥ 1) of w

∥W ∥q,r :=
(∑n

i=1∥wi•∥q
)1/r

ℓq,r matrix norm (q, r ≥ 1) of W

Table 1: Notations.

incorrect conclusions. This is because the scientist does not consider the phys-
ical feature of the solution in the learning objective. Recently thare has been
increasing research on physics-informed methods to incorporate a physical
prior into the learning process [4, 13–16]. Generally, these methods formulate
a learning objective by leveraging a model from the physical sciences. In [13]
the authors proposed a method to predict a state variable with Gaussian pro-
cesses in which the covariance function derives from a known partial differential
equation (PDE). Another line of research is about dynamic mode decompo-
sition in which the goal is to learn both a linear operator and the associated
eigenspace from time series and/or spatial data [17]. Several dynamic mode
decomposition variants have been proposed, but the most popular and recent
variants rely on the Koopman operator, which provides information on the
growth rates and the frequencies of the long-term dynamics [18–20]. In [21],
the authors assumed that a closed-form PDE can be recovered as a sparse
plus low-rank combination of nonlinear terms of precomputed dictionary. Their
approach relies on the robust principal component analysis of Candès et al.
[22]. Our work is similar to the one of [21] in the sense that we attempt to
discover a closed-form model, but here an SODE is based on a dictionary
computed from noisy data.

Learning an SODE from data samples can be traced back to the seminal
work of [23]. Schmidt and Lipson proposed a combinatorial approach based on
genetic programming to select the parsimonious model that best recovers the
data from among a large set of candidate models. As mentioned in [4], genetic
programming methods do not scale to large datasets and tend to overfit. To
remedy this, in [4] Brunton et al. recast learning an SODE as a sparse regres-
sion problem, referred to as the sparse identification of nonlinear dynamics in
the literature. Our proposal is formalized according to this framework, which
we introduce in the next section.
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2.1 Sparse single-task learning of an SODE

State-of-the-art methods for discovering an SODE, [4, 24], implicitly assume
that each of ẋ1, . . . , ẋp in Equation (1) are uncorrelated targets which can be
predicted by a sparse combination of elements included in a given dictionary of
candidate functions. An example of a dictionary ΘXn

and a two-dimensional
SODE is given in Fig 1. The dictionary is built by the user with linear and non-
linear candidate functions from the samples Xn of x. This dictionary reflects
the prior knowledge of the observed phenomenon and is possibly overcomplete.
In [4, 7, 24], f is assumed to be linear with respect to the dictionary elements.
The linear assumption on f with respect to the dictionary elements makes
it easy to learn and interpret. Next f1, . . . , fp are learned separately with a
sparsity-promoting algorithm e.g. LASSO [25] or elastic-net [26].

2.1.1 Discovering an SODE using sparse linear regression

Starting from n noisy samples of a p-dimensional state variable stored as
Xn and the associated time derivative samples Ẋn (often estimated from
Xn, e.g. with finite-difference, spline-based methods), we first build a dic-
tionary of m arbitrary candidate functions, for instance one chooses to

include linear and quadratic monomials, and one cosine term, then, ΘXn

e.g.
=[

x•1,x•2, . . . ,x
2
•1,x

2
•2, . . . , cosx•1, . . .

]
∈ Rn×m. Then from the linear assump-

tion on f , i.e. Ẋn = f
(
Xn

)
= ΘXnβ with β ∈ Rm×p wherein the q-th row

refers to the coefficient vector associated with the candidate functions of the
q-th SODE component, we can find a sparse estimate β̂ by minimizing a data
fidelity plus a sparsity term:

β̂ := arg min
β∈Rm×p

{
ℓ(Ẋn,ΘXnβ) + λR(β)

}
(2)

where λ > 0 is the sparsity amount. We learning of β in Fig 1 with a two-
dimensional SODE. We present Algorithm.1 to solve Equation (2) when the
loss is quadratic and when R is convex or nonconvex with a specific property
in Section 3.

In [4, 6, 24] Equation (2) is instantiated with R := Rℓ1,1 = ∥·∥1,1 i.e. β̂ is
a sparse estimate of the following problem:

β̂ = arg min
β∈Rm×p

{1
2
∥Ẋn −ΘXnβ∥22,2 + λ∥β∥1,1

}
(3)

which is a special case of Equation (2) with ℓ(·, ·) being the quadratic loss.
Since β =

[
β•1, · · · ,β•p

]
, and Rℓ1,1 acts independently on each entry of β,

solving Equation (3) reduces to p independent LASSO [25] subproblems where
each estimates β•k from

(
ẋ•k,x•k

)
, for k = 1 . . . p, with the ℓ1 penalty. Hence,

the SODE is discovered using a single-task learning approach.
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2.2 Background and limitations of sparse convex
single-task regularizers

In [6], the authors formalized the discovery of nonlinear dynamics using par-
tial differential equations, thus their dictionary is built differently from our
ΘXn

. The learning criterion used by the author is formalized similarly as in
Equation (3) for an SODE. Since Equation (3) is convex in β, it can be solved
by the Douglas-Rachford algorithm [27] which is a proximal-type algorithm
[28]. Proximal operators are at the core of sparse learning, hence our proposal.
In our context, we use these operators to solve Equation (2) (see Algorithm.1
in Section 3). We recall the general definition.

Definition 2.1. (proximal operator [28]) The proximal operator associated
with a closed, proper and convex function in a Hilbert space, h : H → R, is
defined for any y ∈ H, with λ > 0 as:

proxλh(y) := arg min
u∈H

{1
2
∥y − u∥2H + λh(u)

}
Remark 2.2.1. Here H reduces either to Rp or Rn×p. If h is strongly convex,
the minimizer in H is unique and proxλh(u) is single-valued [28]. If h is not
convex (but remains closed and proper), the proximal operator is still defined
well. In this case, since the minimizer set may not reduce to a singleton, the
proximal operator can be multivalued.

When h is also separable, that is for any vector or matrix W , h(W ) =∑
i,j hij(wij) with hij : R → R, computing proxλh(W ) reduces to com-

pute the proximal operator of hij for every i, j and then to concatenate{
proxλhij

(wij)
}
i≤n,j≤p

according to the dimensions of W . In the case of a

separable (i.e. single-task) vector or matrix regularize, evaluating the prox-
imal operator for a given element is equivalent to evaluating the proximal
operator for each of the separable parts. As the ℓ1,1 norm is separable, with
hij(wij) = |wij |, we have proxλ|·|(wij) = sign(wij)max (0, |wij | − λ), which is
known as the soft-thresholding operator [25].

2.2.1 Single-task limitation of a separable regularizer

The proximal operator of Rℓ1,1 serves as a shrinkage operator, assigning zero
to coefficients in β that do not sufficiently decrease the data fidelity. How-
ever, Rℓ1,1 is separable and hence does not account for any matrix structure.
Indeed, we can permute any element within the coefficient matrix β for the
purposes of learning, and the resulting Rℓ1,1 remains unchanged. Therefore,
for MTL, separability across tasks is not desirable. Consequently, the regular-
izer acts as if β were a vector in Rmp. More generally, if a vector structure is
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considered for β using a fully separable norm regularizer rather than a matrix-
structured regularizer, then the task relatedness i.e. correlations between
columns

[
β•1, · · · ,β•p

]
is omitted.

2.2.2 The bias induced by a convex regularizer

Definition 2.2. Let β̂ be an estimate of the ground-truth coefficient β, the
bias is the expectation over the distribution of β̂ of the estimation error thus
defined as bias(β̂) = E(|β̂ − β|). 1

Using triangle inequality, one can show that a regularizer inducing a
norm in Rm×p is convex and thus induces a bias toward zero in the learned
coefficients [29, p. 73], which in our context degrades the SODE identification.

Example 2.2.1. Let us consider the proximal operator of the ℓ1,1
norm. An estimate of a true coefficient βik is β̂n

ik = proxλ|·|(ŵ
n
ik) =

sign(ŵn
ik)max(0, |ŵn

ik| − λ), where ŵn
ik is an unregularized estimate of βik

(i.e. preceding the proximal step, see Algorithm.1) from n samples. Hence as
n→∞:

• for |βik| ∈ [0; λ], bias(β̂n
ik)→ βik,

• for |βik| ∈]λ; ∞], bias(β̂n
ik)→ λ.

Consequently, if the i-th candidate function is relevant to the k-th equation
of the SODE, the estimate β̂n

ik is necessarily biased. In Fig 2 (right), it is clear
that the soft-thresholding operator never reaches the identity function and,
therefore, always returns a bias estimate of βik. Correcting the bias with λ is
equivalent to applying the hard-thresholding operator [30], which is the proxi-
mal operator of the ℓ0 penalty (the nonzero indicator), and thus is unbiased,
but makes the objective function of Equation (2) NP-hard since instantiating
R(βik) := I(βik ̸= 0) makes the objective function discontinuous.

2.3 A nonconvex separable regularizer

Here we introduce the single-task version of a nonconvex regularizer: the
smoothly clipped sbsolute deviation (SCAD) [10] which induces unbiasedness
for large coefficients and serves as a building block for our proposed regularizer
that we introduce in Section 3.

Definition 2.3. Let λ > 0 and θ > 2 be hyperparameters that operate as the
level of sparsity and unbiasedness, respectively; the SCAD is defined for w ∈ R
as:

rSCAD
λ,θ (w) =


λ|w| if |w| ≤ λ

−λ2−2θλ|w|+w2

2(θ−1) if λ < |w| ≤ θλ
(θ+1)λ2

2 if |w| > θλ

(4)

1This is not the conventional definition of estimation bias, which is E(β̂) − β, but note that
from Jensen inequality, our definition is an upper bound of the latter quantity.
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Fig. 2: Left: The (convex) LASSO (Rℓ1,1 , blue) and (nonconvex) SCAD
(RSCAD

λ,θ , red) regularizers, with λ = 1, θ = 2.01. Right: Their associated prox-
imal operator as a function of a coefficient βij . In the right plot, we can see
hat the soft-thresholding operator proxλRℓ1,1

(βij) (blue) induces a bias since

it thresholds βij toward zero and away from the identity (gray dotted lines),
which represents the best unbiasedness for a true nonzero coefficient. In con-
trast, proxrSCAD

λ,θ
(βij) (red), continuously reaches the identity as |βij | increases,

meaning that SCAD induces less bias than the LASSO, as a true coefficient is
high.

Remark 2.3.1. rSCAD
λ,θ is semiconcave (i.e. concave with respect to |w|).

• For |w| ≤ λ, the SCAD penalty behaves as ℓ1.
• For λ < |w| ≤ θλ, the SCAD interpolates quadratically between ℓ1 and ℓ0

and the transition between them is controlled by θ.
• For |w| > θλ, the penalty level is constant, thus the SCAD behaves as ℓ0.

SCAD is illustrated in Fig 2 (left).

Remark 2.3.2. limθ→∞ rSCAD
λ,θ (w) = λ|w|, thus the SCAD induces ℓ1 sparsity

as the upper limit with respect to θ.

Remark 2.3.3. limθ→2,|w|≤2λ r
SCAD
λ,θ (w) = λ|w| and

limθ→2,|w|>2λ r
SCAD
λ,θ (w) = λI(w ̸= 0), thus the SCAD induces ℓ1 sparsity for

small |w| and ℓ0 sparsity (unbiased but discontinuous) for large |w|, as the
lower limit with respect to θ.

For any w ∈ R, proxrSCAD
λ,θ

(w) is known analytically [10] (see the

Appendix.B) and, as plotted in Fig 2 (right), since it reaches the identity line,
induces less bias than proxλ|·|(w) for large coefficients, i.e. as |w| > 2λ.
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The matrix-extended version of the SCAD (4) is RSCAD
λ,θ (W ) =∑

i

∑
j r

SCAD
λ,θ (wij), which is also separable. Hence, proxRSCAD

λ,θ
(W ) is the con-

catenation of
{
proxrSCAD

λ,θ
(wij)

}
i≤n,j≤p

along the dimensions of W . However,

as a separable regularizer cannot account for task relatedness, the only benefit
of learning with RSCAD

λ,θ over Rℓ1,1 is unbiasedness. Indeed, the two summands

in RSCAD
λ,θ act similarly at the row and column levels of β, and therefore, do

not resolve the shortcomings mentioned in Section 2.1.

2.4 Building block for MTL in linear regressions

MTL consists of learning p functions
[
f1, · · · , fp

]
jointly by assuming that they

share a common set of features [31]. For the k-th task, a dataset {yik; zik}i≤nk

of nk samples with m features is given. Therefore, the p regression coefficient
vectors can be represented in a matrix β ∈ Rm×p. The task similarity is
reflected in the learning criterion by a regularizer R applied to this matrix.
For p linear regressions, MTL is formulated as:

β̂ = arg min
β:=[β•1,··· ,β•p]

{ p∑
k=1

nk∑
i=1

1

2nk
(zik − yT

ikβ•k)
2 + λR(β)

}
(5)

where R may account for task relatedness. Equation (5) is a special case of
Equation (2) and can be solved with Algorithm.1. Note that when nk = n
and R = Rℓ1,1 , Equation (5) reduces to Equation (3). Thus, by choosing a
regularizer that is more appropriate than the ℓ1,1 norm for considering task
relatedness, discovering an SODE can be formulated as MTL.

2.4.1 Considering task relatedness

To account for task relatedness, the regularizer has to be matrix-structured,
for instance, solving Equation (5) with Rℓ2,1(β) := ∥β∥2,1 =

∑m
i ∥βi•∥2 (i.e.

group-lasso [11]), makes β row-sparse i.e. some rows are identically nonzero
and all the others are null [32], due to the nonseparability with respect to
βi• and sparsity with respect to β•j . To discover an SODE, Rℓ2,1 forces all
the equations to share the same candidate functions of ΘXn

. The proximal
operator associated with Rℓ2,1 is given in the Appendix.B.

2.4.2 Considering task-specific elements

Although an SODE shares some candidate functions across its equations, it
is sufficiently flexible to allow specific candidate functions for each equation.
This can be achieved by taking a convex combination of two norms i.e.
Rℓ2,1+ℓ1,1,α(β) := α∥β∥2,1 + (1 − α)∥β∥1,1 with α ∈ [0, 1] [12]. For α > 0.5,
a greater level of importance is given to commonality in candidate functions
across equations compared to specificity, and conversely, for α < 0.5. In prac-
tice, α is chosen by cross validation. The proximal operator associated with
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Rℓ2,1+ℓ1,1,α is given in Appendix.B. For the sake of clarity, we omit the index
α in the notation and write Rℓ2,1+ℓ1,1 .

2.4.3 Limitations of sparse convex MTL regularizers

Despite being able to select relevant candidate functions, the convexity of Rℓ2,1

and Rℓ2,1+ℓ1,1 induces a bias, similarly to Rℓ1,1 , in β̂ through their associated
proximal operator [12].

In Section 2.1 and Section 2.4, task relatedness and nonconvexity are shown
as being two important weaknesses that cannot be addressed by the ℓ1,1
regularizer. Our contribution harnesses both the nonconvexity and the task
relatedness within a single regularizer to improve the discovery of an SODE.

3 A nonconvex matrix-structured regularizer

In this section, we introduce our proposal, a regularizer, which jointly accounts
for task relatedness, sparsity and unbiasedness. Then we introduce a gener-
ative, iterative, thresholding learning algorithm [33] that can be instantiated
with all the regularizers presented in this paper.

3.1 A nonconvex nonseparable regularizer

We propose to ”un-separate” RSCAD
λ,θ to unharness both from the nonsepara-

bility and the nonconvexity of the SCAD. The key technique is to replace the
second summation in RSCAD

λ,θ by rSCAD
λ,θ (∥wi•∥1):

RSCAD−ℓ1
λ,θ (W ) :=

m∑
i=1

rSCAD
λ,θ

(
∥wi•∥1

)
(6)

In this way, as the regularizer acts on the coefficient vector of the i-th
candidate function using the SCAD of the ℓ1 norm, RSCAD−ℓ1

λ,θ forces wi• to
be sparse, unbiased and correlated across the p tasks. Another way of under-
standing the rationale behind our proposal is to see the hierarchical sparsity.
The first level (the ”highest”) is the task-level: we enforce the set of nonzero
coefficients to be the same across each task. Such a sparsity level is somehow
a group sparsity and enforces the learning to be multitask. The second level
(the ”lowest”) is the component level: for a given task, we allow some (small)
coefficients to be both nonzero and specific to each task. It is important to
note the analytical similarity with Rℓ2,1 =

∑m
i=1∥wi•∥2 (Section 2.4), which

does not allow each equation of the SODE to have a specific candidate func-
tion. Contrary to Rℓ2,1 , our proposal jointly enforces unbiasedness and sparsity
in each wi•, and thereby enables the equations of the SODE to have specific
candidate functions.

Despite RSCAD−ℓ1 being nonconvex, it is closed and proper by construc-
tion. Thus the image of the proximal operator of our regularizer is nonempty
and we can compute it analytically as follows: for any W ∈ Rm×p, λ > 0,
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θ > 2 and (i, q) ∈
{
1, . . . ,m

}
×

{
1, . . . , p

}
, let w̃iq be the element of the i-th

row and q-th column of the matrix W̃ returned by the proximal operator,

w̃iq :=


sign(wiq)max(0, |wiq| − λ) if |wiq| ≤ B1

i ,
θ − 1

θ − 2
sign(wiq)max(0, |wiq| −

θλ

θ − 1
) if B1

i < |wiq| ≤ B2
i ,

wiq if |wiq| > B2
i

(7)

with B1
i := 2λ− ∥wi•,−q∥1, B2

i := θλ− ∥wi•,−q∥1 and wi•,−q denotes all the
elements except the q-th of the vector wi•. Knowing this proximal operator is
a computational benefit in solving Equation (2). We give a proof detailing the
computational steps to obtain the above closed form in the Appendix.A.

Remark 3.1.1. In the first part, (≤ B1
i ), proxRSCAD−ℓ1

λ,θ

(·) equals proxRℓ1,1
(·)

(soft-thresholding operator). In the second part, prox
R

SCAD−ℓ1
λ,θ

(·) acts as a

(group) soft-thresholding operator but with a rate θ−1
θ−2 which is greater than

1, thus outputs unbiased coefficient vectors. In the third part, prox
R

SCAD−ℓ1
λ,θ

(·)
acts as a (group) hard-thresholding operator, returning w̃i• identically.

Remark 3.1.2. Since B1
i and B2

i are only row dependent, each row of
prox

R
SCAD−ℓ1
λ,θ

(W ) can be computed in parallel.

3.2 MTL with a nonconvex regularizer

Algorithm 1 GISTA to solve Equation (2)

Input: data samples Ẋn and Xn, , R(·), λ > 0, θ > 2 (for SCAD−ℓ1 and
SCAD), 1 > α > 0 (for Rℓ2,1+ℓ1), initial guess β0, step size γ

1: build ΘXn
from Xn

2: β ← β0, γ ← γmin, G← ΘT
Xn

ΘXn
, B ← ΘT

Xn
Ẋn

3: W ← β − γmin(Gβ −B)
4: while β has not converged do
5: while line search criterion is unsatisfied do
6: β ← proxγλR(β)
7: γ ← 0.8γ
8: end while
9: W ← β − γ(Gβ −B)

10: β ← proxγλR(W )
11: end while
Output: β
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We instantiate the general iterative shrinkage thresholding algorithm
(GISTA) [33] in Algorithm 1 to perform learning. The GISTA can be instanti-
ated with regularizers either convex, or nonconvex and expressed as a difference
of two convex (DC) functions, see [34–36] for examples of such regularizers.
It generalizes FISTA [37] whose convergence is guaranteed when minimizing
quadratic plus convex regularizers functions. Despite the nonconvexity of DC
functions, convergence guarantees to a stationary point in finite time of the
GISTA are established in [33]. RSCAD−ℓ1 and RSCAD enjoy the DC prop-
erty, thus we can use the GISTA to learn with any regularizers presented in
this paper. Convergence is not ensured for other nonconvex penalties, such as
the group bridge penalty Rℓq,r (0 < q, r < 1), since their associated proximal
operator does not give rise to a closed-form expression. Hence, to compute
the proximal operator the bridge penalty in Algorithm 1, an inner nonconvex
optimization procedure is necessary and is likely to affect the convergence of
GISTA.

GISTA consists of two nested loops. The outer loop (lines 4–12) consists
of a loss gradient descent step (line 9) followed by a proximal step (line 10)
that set to zero the coefficients that insignificantly decrease the loss term.
The inner loop (lines 5–8) consists of the backtracking line search to compute
the gradient step size γ, that given the current descent direction, ensures a
sufficient decrease [29]. The value 0.8 (line 7) is typical and corresponds to the
’slow-rate’ parameter [29]. To limit the cost of one iteration, we precomputed
ΘT

Xn
ΘXn

and ΘT
Xn

Ẋn (line 2). A detailed complexity analysis of proximal
gradient algorithms, such as GISTA, is given in [38].

4 Numerical experiments

4.1 Experimental setting

4.1.1 Synthetic datasets generated from known SODEs

We evaluated our approach on three SODEs (i.e. ground-truth) known from
the literature [4, 7, 39]: the damped oscillator with cubic dynamic (DOC) used
to model the nonlinear pendulum in mechanics, the Lotka-Volterra (LV) sys-
tem used as prey-predator interaction model and the Lorenz attractor (LAT)
used to model atmospheric turbulence. Each one of these SODEs has common
functions as well as specific other functions across their equations.

We base our experiments on those in [7].

Simulation of the state variables

We generated the state variables, x1, . . . , xp, along time (i.e. multivariate time
series) by numerically solving the true SODEs with an implicit backward dif-
ferentiation formula method of order five, implemented in the Scipy library
[40]. For each SODE, the resulting time series has n = 5× 103 time steps.

In a real life scenario the data are noisy so we added white noise to the clean
time series. We experimented with Gaussian noise, by varying the variance
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(a) DOC (p = 2 tasks)

x(t = 0) =
[
0, 2

]
, for t ∈

[
0; TDOC = 25

]
:

{
ẋ1(t) = −0.1x3

1(t) + 2x3
2(t)

ẋ2(t) = −2x3
2(t)− 0.1x3

1(t)
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(b) LV (p = 2 tasks)

x(t = 0) =
[
10, 4.5

]
, for t ∈

[
0; TLV = 5

]
:

{
ẋ1(t) = 1.5x1(t)− x1(t)x2(t)

ẋ2(t) = −3x2(t) + x1(t)x2(t)

0
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(c) LAT (p = 3 tasks)

x(t = 0) =
[
− 5, 1, 20

]
, σ = 10, ρ = 28, β = 8

3 , for t ∈
[
0; TLAT = 10

]
:


ẋ1(t) = −σx1(t) + σx2(t)

ẋ2(t) = ρx1(t)− x2(t)− x1(t)x3(t)

ẋ3(t) = −βx3(t) + x1(t)x2(t)
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Fig. 3: Left: the ground-truth SODEs used in our experiments. Center: the
numerical solution (black), i.e. the state variables x1, . . . , xp plotted w.r.t time.
The training data (blue) corresponds to a noisy version (in these plots the
noise is Gaussian) of the numerical solution. Right: same data as in the center
plotted as one state variable w.r.t the other(s) to visualize their correlation.

level in terms of logarithmic signal-to-noise ratio (log-SNR). The log-SNR is
defined as:

log-SNR := 10 log10
(∑p

j=1 σ
2
ground−truth,k

σ2
noise

)
(8)
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where σ2
ground−truth,k is the variance in the k-th state variable (without noise)

and σ2
noise is the variance in the noise. This enables a comparison of the results

across synthetic datasets with an equal amount of noise w.r.t the variance in
the ground-truth. The lower the log-SNR, the higher the noise variance. In
our experiments, for each SODE we fixed the log-SNR to {20, 30, 40, 50} and
then deducted σ2

noise. Samples of the clean and noisy time series (for a log-
SNR equal to 30) are plotted in Fig 3 for each SODE. Since the noise may
contain outliers in real life, we also experimented with a Student-t noise with
five degrees of freedom (maximum kurtosis) i.e. the tail distribution is the
heaviest.

Building the dictionary

The dictionary of candidate functions was built sufficiently large, involving
both monomial and interaction terms (x1x2, x

2
1x2) that can span polynomials

up to degree three. It was computed from the noisy time series, hence the
regression covariates were also corrupted.

Estimation of the derivative

We experimented with three methods to estimate the time derivative of the
state variables from the noisy time series: the finite-difference (FD) method,
the spectral (SP) method and the B-spline (BSP) method.

The FD method is the most basic derivative estimation method as
it consists approximating the derivative pointwisely as follows ẏ(tj) =
y(tj+1)−y(tj−1)

2 . It is computationally inexpensive but sensitive to noise [9,
ch. 5].

The SP method relies on the following property: let Fy(f) be the Fourier
transform (FT) of the differentiable function y at frequency f ∈ R, then
F dy

dt
(f) = 2πifFy(f). In other words, the derivative can be estimated by tak-

ing the inverse FT of the original time series multiplied by a linear factor.
Thus, by using this property, it benefits from the low computational cost of
the inverse Fast FT algorithm [41] for estimating the derivative from the raw
data. Since noise measurement resides in high frequencies, the FT spectrum
is low-pass filtered before computing its inverse transform. We experimented
three filter sizes.

The BSP method, widely used in functional data analysis [42], consists
of two steps. First, approximate the time series with a weighted linear com-
bination of BSPs i.e. piecewise polynomial functions, usually of degree three
or four. The weights are computed by minimizing standard least-square crite-
ria as the data fidelity term. To balance between smoothness and data fitting
error, the minimization is stopped when the error reaches a fixed amount s
(the higher, the smoother the approximation). We experimented with six val-
ues of s ∈ {5, 10, 50, 100, 500, 1000, 5000}. Second, knowing the analytical form
of each BSP, the derivative is computed from the approximated function as
a linear combination of the BSPs’ derivative. See [42, ch. 4,5] and [43] for a
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detailed explanation of penalized curve smoothing and an application to outlier
detection in functional data analysis, respectively.

4.1.2 Real data

As an example of a real-world application, we applied our approach to discover
the dynamics of a laboratory-based ecological phenomenon whose SODE is
unknown [44]. In this system, algae of genus Chlorella is grown in a large glass
test tube (chemostat) to which a nutrient-rich medium is continuously added,
and from which the contents are removed (including the algae) at a constant
rate. The growth of the algae population is limited by nutrition in the ecology
and by predation by the rotifer, Brachionus, a genus of microscopic animals.
The rotifers reproduce according to how much algae they consume, and die
either from natural causes or when they are removed from the tank. Hence,
there might be a predator-prey dynamic between these two quantities [9]. The
goal is to discover the SODE that governs the dynamics underlying the growth
rate of the algae and the rotifers.

The dataset (abbreviated Chemostat data) consists of a bivariate time
series with 108 daily time steps. The first state variable, x1, is the Chlorella
concentration, and the second state variable, x2, is the Brachionus concentra-
tion. As recommended in the analysis of [9], we preprocessed the time series
by approximating them with 103 cubic BSP (using the R packages FDA [45]).
Then we reconstructed the time series by evaluating the approximation func-
tion on a regular grid of 5×103 time steps in the interval [7; 114]. The resulting
reconstruction can be considered nonnoisy, so we estimate the derivative with
the FD method. We built the dictionary with monomial functions up to degree
five, with first, second and third order interactions x1x2, x

2
1x2, x

3
1x2.

4.2 Setting for the GISTA

We followed the settings of the original GISTA paper [33]. We initialized the
algorithm with β0 = 0 and set the step size γ = 2. We stopped the outer
loop (lines 4-11 Algorithm.1) when the iteration number exceeded 103. We
stopped the inner loop when the objective function of Equation (2) was below
its quadratic approximation or the number of inner iterations exceeds 10. The
hyperparameters λ, θ (for RSCAD−ℓ1

λ,θ and RSCAD
λ,θ ) and α (for Rℓ2,1+ℓ1) were

selected with a time based five fold cross validation: each training/testing fold
consists in successive samples of the state-variables (for a given fold, the last
training sample ”immediatly preceeds” the first testing sample). The training
folds are of increasing size (25%, 40%, 55%, 70% and 85% of the whole dataset)
and, the testing folds do not overlap and have a fixed size (15% of the whole
dataset). Moreover, this strategy enables to asses the effect of the number of
training time steps on the SODE recovery.
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4.3 Comparison with baselines

We compare our proposal RSCAD−ℓ1
λ,θ to four baselines Rℓ1,1 , Rℓ2,1 , Rℓ2,1+ℓ1,1

and RSCAD
λ,θ . To fairly compare the effects of the baseline regularizers on the

learned SODEs, all were instantiated them within GISTA.

We compared the learned SODEs with three metrics: ϵβ =
∥β̂−β∗∥2

2,2

∥β∗∥2
2,2

, ϵT =∑n
i=1∥x̂(ti)−x∗(ti)∥2

2∑n
i=1∥x∗(ti)∥2

2

2 and ϵMIS =
∑

i,j I(β̂ij ̸=β∗
ij)∑

i,j I(β∗
ij ̸=0) .

ϵβ measures the relative bias w.r.t the ground-truth coefficient matrix β∗.
ϵT measures the relative squared error, along t, of the numerical solution for the
learned SODE w.r.t to the numerical solution of the ground-truth SODE. ϵMIS

measures the rate of misidentified candidate functions. The lower ϵβ , ϵT and
ϵMIS are, the better the recovery of the SODE. Since the SODE is unknown
for the Chemostat, note that only ϵT , wherein x∗ refers to the learning data
(preprocessed), can be computed.

4.4 Implementation

The GISTA was implemented in the Python library Lightning [46] which is a
Scikit-learn compatible interface for linear regression and classification. The
experiments were run in parallel on a cluster equiped with 24 Intel Xeon-Gold-
6136 3GHz processors, each one holding 192Go RAM. The whole process, i.e.
building the dictionary, derivative estimation, hyperparametrs selection and
earned SODE simulation, is implemented within the Python API Pysindy
[47]3.

4.5 Results

4.5.1 Synthetic datasets

For each of these SODEs, we repeated the experiment five times. In Fig 4,
5 and 6 we report the average and standard deviations of ϵβ , ϵT and ϵMIS .
We see that for all the experiments the bias is reduced with RSCAD and our
proposal RSCAD−ℓ1 (see purple curves and vertical bars for ϵβ). (given in the
supplementary material as it results in many figures)

Effect of the derivative estimation methods

As can be seen in Fig 4, 5 and 6, the variations in the three error metrics are
high when the derivative is estimated with the FD method. That (unsurpris-
ingly) tells us that this method is highly sensitive to noise. The SP method
gives the worst results, which we explain with the non-stationarity of the time
series resulting from the SODE. Indeed, only a part of the signal is seen during
the time based cross validation, thus the Fourier spectrum of the training part
might be a poor estimate of the whole ground-truth. The filter size selection

2x̂(ti) is the solution to the learned SODE at ti and x∗(ti) is the solution to the ground-truth
SODE at ti.

3The code is accessible from https://github.com/Clej/Unbiased-SODE-discovery.

https://github.com/Clej/Unbiased-SODE-discovery
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is noise sensitive, and consequently, in the Fourier sepctrum, some ground-
truth frequencies which are close to the noise frequencies might be abnormally
removed, resulting in a poor derivative estimate. Therefore, the SP method
is unreliable for derivative estimation used with (nonstationary) time based
cross validation. When using BSP instead, the errors are quite stable against
noise. This makes it a good candidate for inferring the derivative when the
practitioner does not have prior knowledge about the noise measurement level.

Effect of the noise level and type

We observe that for low log-SNR values, learning with RSCAD−ℓ1 in conjunc-
tion with the FD method is similar to learning with the baseline regularizers.
The same observation holds when using the BSP method. However, as the log-
SNR increases (i.e. the noise level decreases), the error decays are the highest
with RSCAD−ℓ1 whereas the decay is lower (or remains constant) with the
convex regularizers. Also, note that with the BSP method, learning with con-
vex regularizers increases ϵMIS w.r.t the log-SNR whereas with the nonconvex
RSCAD and RSCAD−ℓ1 , it remains constant. Overall the Gaussian noise exper-
iments suggest that with both the FD and BSP methods, and for moderate
log-SNR levels ≥ 30, (that means when dealing with high-quality samples of
the state variables), the SODEs are best recovered with our proposal. The
experiments with the Student-t noise partially confirm our observations made
about the effect of the derivative estimation method. Since for the convex reg-
ularizers and RSCAD, the errors are quite variable across the three SODEs, the
FD method is not robust against noise (here heavy-tailed). Indeed, the errors
are low with the LV SODE (see the first row of Fig 5 ) and high with the
DOC and LAT SODEs. Note however that, RSCAD−ℓ1 is more robust than the
baselines against the Student-t noise. The three errors are almost the highest
with the SP method for the three SODEs, hence we confirmed that it is not
suited to derivative estimation for SODE discovery. When the SODE is learned
with the nonconvex regularizers, the BSP method gives much better results
than both the FD and SP methods. Overall, the Student-t noise experiments
suggest that the SODEs are better recovered with nonconvex regularizers.

Effect of the multitask consideration

We now compare the results of the multitask based regularizers (Rℓ2,1 ,
Rℓ2,1+ℓ1,1 , R

SCAD−ℓ1) w.r.t the single-task-based ones (Rℓ1,1 , R
SCAD). First,

we analyze the results of DOC experiments, in which the SODE has the same
terms across across its equations (see (a) Fig 3). Hence, among the baselines,
since Rℓ2,1 enforces the equations to share the same terms, it should better
recover the ground-truth SODE than the single-task-based ones. This is con-
firmed by our results since the single-task-based regularizers (blue and red in
Fig 4) are outperformed by Rℓ2,1 and RSCAD−ℓ1 (orange and purples curves).
We note however that the decay of ϵT with Rℓ2,1 is similar to RSCAD−ℓ1 ,
and the latter gives lower errors. Similarly, we analyze the results of the LV
experiments, in which the SODE (see (b) Fig 3) has one common and one
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specific term across its two equations. In this context, we expect Rℓ2,1+ℓ1,1 to
recover the ground-truth SODE well. This is partly confirmed by our results,
we see that Rℓ2,1+ℓ1,1 performs similarly to Rℓ1,1 , but both are outperformed
by RSCAD−ℓ1 (blue and green in Fig 5). The decays of ϵT are also similar and
RSCAD−ℓ1 is slightly better. Finally and equivalently, we analyze the results of
the LAT experiments in which the SODE has approximately the same number
of shared and specific terms (see (c) Fig 3). For this kind of SODE, we again
expect Rℓ2,1+ℓ1,1 to perform best. This is clearly not the case as both RSCAD

and RSCAD−ℓ1 behave similarly (red and purple in Fig 6), the former being
slightly better. As for the LV SODE, Rℓ2,1+ℓ1,1 and RSCAD−ℓ1 show similar
results and Rℓ2,1 gives the worst results. Overall, we see that task relatedness
is an important feature in SODE discovery and that our proposal improves it.
Although Rℓ2,1+ℓ1,1 was designed to trade off between task relatedness and task
specificity, the balance is driven by a hyperparameter whose selection is sen-
sitive. Contrarily, by construction, our proposal is shown by our experiments
to be adaptive to the balance between task relatedness and task specificity.

Effect of the number of training time steps

We remind that in time based cross validation, each training/testing fold con-
sists in successive samples of the observed time series, the training folds are of
increasing size and the size of the testing folds is fixed. Hence, the number of
training time steps increases w.r.t the fold index. The testing folds do not over-
lap but the training ones do. Consequently, as mentioned in Section 4.2, time
based cross validation enables to assess the relationship between the recov-
ery errors and the number of training time steps. We assess this effect on the
three synthetics SODEs with a log-SNR value of 30. For that, we train the
models (one for each regularizer) on each (training) fold and then we compute
the three errors metrics on the associated testing folds. We report the results
on Fig 7, 8, 9. From these figures, we confirm that as the fold number index
increases, the errors decrease or remain stationary, with an exception for the
spectral derivative estimator. We note that the highest error decays occur with
RSCAD−ℓ1 and RSCAD. The convex baselines are similar.

Statistical assesment of the experimental results

Regularizer ϵβ(0.40) ϵMIS(0.40) ϵT (0.40)

Rℓ1,1 3.66 3.33 3.26

Rℓ2,1 3.35 4.04 3.02

Rℓ2,1+ℓ1,1 3.46 3.31 3.51

RSCAD 2.33 2.41 2.75

RSCAD−ℓ1 2.17 2.10 2.54

Table 2: Mean rank of each regularizer w.r.t the three error metrics. Second
row, in parenthesis, is the critical distance, see [48] for details. Bold refers to
the best rank.
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We assess the relevance of our conclusion with a two step statistical hypoth-
esis test. We apply the method of Demsar [48]. The first step aims to confirm
that not all the regularizers are similar, i.e. at least one is different w.r.t the
other ones. This step is accomplished with the non-parametric Friedman test.
If the latter concludes that at leat one regularizer is different from the others,
then in the second step all the regularizers are compared pairwisely through
their mean rank: if the difference between two average ranks is greater than
what is called a ”critical distance” statistic, the two regularizers are said to be
different. The second step is done with the Nemenyi post-hoc test. See [48] for
more details. For any hypothesis tests, we set the p-value to 5%. We repeat
the whole procedure for each one of the three error metrics on all the results
(derivative estimator, log-SNR value, etc). The null hypothesis of the Fried-
man test is rejected with probability of error 10−40 for ϵβ , 10

−86 for ϵMIS and
10−14 for ϵT , thus there is a difference between the regularizers. We report
the mean ranks in Table 2. It confirms our empirical comparisons made in the
previous paragraphs.

4.5.2 Chemostat dataset

We show the numerical solution, as well as the analytic form, of the SODEs
learned for each regularizer in Fig 10(a) and Fig 10(b) respectively. As for the
synthetic datasets, the results show that learning with RSCAD−ℓ1 improves
the recovery performance (smallest ϵT in Table 3) compared to RSCAD and
the convex baselines.

Regularizer ϵT

Rℓ1,1 35.0

Rℓ2,1 30.0

Rℓ2,1+ℓ1,1 30.0

RSCAD 20.0

RSCAD−ℓ1 4.6

Table 3: ϵT for the Chemostat SODE learned with the four baseline regular-
izers and our proposal RSCAD−ℓ1 .

We interpret the dynamics of the underlying biological phenomenon by
examining the closed-form SODE discovered with RSCAD−ℓ1 (Fig 10(b) last
column). Based on the analysis carried out in [9] and noting the strong similar-
ity with the LV model (i.e. only linear and same first-order interaction terms in
the two equations), we can interpret the discovered SODE as a predator-prey
model as follows: within both equations, we observe the presence of a first-order
interaction term x1x2 that models the rate (decreasing or increasing depending
on the coefficient sign) at which the Chlorella, x1, and the Brachionus, x2, meet
in the chemostat. Note that among the five SODEs displayed, only RSCAD−ℓ1

enabled the discovery of this interaction term in both equations, which empha-
sizes the importance of considering the SODE coupling using MTL. The linear
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terms in the two equations can be interpreted as the exponential reproduction
of each ”species”. This exponential dynamic reproduction is limited by the
species interaction and is only true for the experimental time frame.

5 Conclusion & future work

We recast the discovery of a closed-form SODE as an MTL problem. We
proposed a penalty that (i) accommodates the coupling within an SODE and
(ii) provides unbiased coefficients. The learning was conducted by instantiating
GISTA [33]. Numerical experiments on synthetic and real datasets confirmed
that harnessing both MTL and nonconvexity outperforms learning with state-
of-the-art MTL-based convex regularizers.

Scientific data analysts also face the case where an experiment has been
repeated under various experimental designs and they have to deal with mul-
tiple datasets. In future work, we will address the joint discovery of SODEs
from multiple multivariate time series. We also plan to extend our work to
partial differential equations to discover dynamics from spatiotemporal data,
and thereby understand both time and spatial dynamics.
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Appendix A

Proof of the results in Equation 7 We detail the steps to obtain the closed form of
the proximal operator of RSCAD−ℓ1 , defined for any W ∈ Rm×p as:

RSCAD−ℓ1
λ,θ (W ) =

m∑
i=1

rSCAD
λ,θ

(
∥wi•∥1

)
=


λ∥wi•∥1 if ∥wi•∥1 ≤ λ

−λ2−2θλ∥wi•∥1+∥wi•∥2
1

2(θ−1)
if λ < ∥wi•∥1 ≤ θλ

(θ+1)λ2

2 if ∥wi•∥1 > θλ
(A1)

We first note that RSCAD−ℓ1 is row-separable. We compute proxRSCAD
λ,θ

(·) according
to the bounds λ and θλ. We denote the subdifferential of a function g at u ∈ Rp as
∂g(u) = {y, g(z) ≥ g(u) + y⊤(z − x),where z is in the domain of g}. By abuse of
notation, the sign function is used equivalently for vectors and scalars.
For the first bound, the optimization problem is:

z∗ arg min
z∈Rp

1

2
∥x− z∥22 + λ∥z∥1

From the first-order optimality condition, we have the necessary conidition:

0 ∈ ∇∥x− z∥22 + λ∂∥z∥1
Which is separable in p scalar problems. For zj ̸= 0, we have ∂∥z∥1 = sign z, thus
we have:

0 = zj − xj + λ sign zj

⇐⇒ zj = xj − λ sign zj

Thus, on the first hand we have |xj | > λ and sign zj = signxj and we also have:

∥z∥1 ≤ λ ⇐⇒ ∥x− λ signx∥1 ≤ λ

⇐⇒
∑
j

|xj − λ signxj | = |xq − λ signxq|+
∑
j ̸=q

+|xj − λ signxj | ≤ λ

⇐⇒ |xq| − λ ≤ |xq − λ signxq| ≤ λ−
∑
j ̸=q

|xj − λ signxj |

⇐⇒ |xq| ≤ 2λ−
∑
j ̸=q

|xj − λ signxj |

Thus for zj ̸= 0, the q-th component of the minimizer is z∗q = xq − λ signxq if
λ < |xq| ≤ 2λ−

∑
j ̸=q|xj − λ signxj |. For zj = 0 we have:

0 ∈ −xj + [−λ, λ] ⇐⇒ |xj | ≤ λ

And then, putting it all together, for the first bound, the q-th component of the
minimizer is:

z∗q = signxq max(|xq| − λ, 0) if |xq| ≤ 2λ−
∑
j ̸=q

|xj − λ signxj | (A2)
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For the second bound, we follow a very similar path and so we write it shorter. The
optimization problem is:

z∗ = arg min
z∈Rp

1

2
∥x− z∥22 − λ2 − 2θλ∥z∥1 + ∥z∥21

2(θ − 1)

Then, writting the optimality condition, we obtain for zj ̸= 0:

zj =
θ − 1

θ − 2
xj −

λθ

θ − 2
sign zj

And so we have |zj | > λθ
θ−1 and sign zj = signxj , which, by again using the

boundedness of z, λ < ∥z∥1 ≤ λθ and separating the sum, lead to:

z∗q =
θ − 1

θ − 2
signxq max(|xq| −

λθ

θ − 2
, 0) if 2λ−Aq < |xq| ≤ λθ −Aq (A3)

with Aq =
∑

j ̸=q|xj − λ signxj |. Finally, for the third bound, the result is trivial
since the second term in the optimization problem is a constant, thus the minimizer
is necessarily z∗q = xq. Now by gathering (A2)(A3) and the last term, we obtain the
q-th component wq of the output of the proximal operator evaluated on, wi•, the
i-th row of W :

sign(wq)max(0, |wq| − λ) if |wq| ≤ 2λ− ∥wi•,−q∥1,
θ − 1

θ − 2
sign(wq)max(0, |wq| −

θ

θ − 1
λ)

if 2λ− ∥wi•,−q∥1 < |wq| ≤ θλ− ∥wi•,−q∥1,
wq if |wq| > θλ− ∥wi•,−q∥1,

□

Appendix B

For reproducibility, we give the formulaes of the proximal operators associated
with the four baseline regularizers used in our experiments. W ∈ Rn×p, wi•
denotes the i-th row (vector) of W , λ > 0 and θ > 2.

B.1 LASSO

Rℓ1,1(W ) =
∑

i

∑
j |wij |

proxλRℓ1,1
(W )ij = sign(wij)max (0, |wij | − λ)

for any entry wij of W [25].

B.2 Group-LASSO

Rℓ2,1(W ) =
∑

i∥wi•∥2

proxλRℓ2,1
(W )i• = wi•

(
1− λ

max(λ, ∥wi•∥2)

)
for any row-vector wi• of W [11].
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B.3 Sparse-Group-LASSO

Rℓ2,1+ℓ1,1(W ) = α
∑

i∥wi•∥2 + (1− α)
∑

i

∑
j |wij |

proxλRℓ2,1+ℓ1,1
(W )i• = prox(1−α)λRℓ1,1

(proxαλRℓ2,1
(W )i•)i•

for α ∈ [0, 1] and a row-vector wi• of W . It corresponds to applying the
”outer” proximal operator of Rℓ1,1 entrywisely on the vector output by the
”inner” proximal operator of Rℓ2,1 [12].

B.4 SCAD

RSCAD
λ,θ

proxRSCAD
λ,θ

(W )ij

=


sign(wij)max(0, |wij | − λ) if |wij | ≤ 2λ

sign(wij)
θ−1
θ−2 max(0, |wij | − λθ

θ−2 ) if 2λ < |wij | ≤ λθ

wij if |wij | > λθ

for any entry wij of W [10].

References

[1] Brunton, S.L., Noack, B.R., Koumoutsakos, P.: Machine Learning
for Fluid Mechanics. Annual Review of Fluid Mechanics 52, 477–
508 (2020) https://arxiv.org/abs/1905.11075. https://doi.org/10.1146/
annurev-fluid-010719-060214

[2] Li, S., Kaiser, E., Laima, S., Li, H., Brunton, S.L., Kutz, J.N.: Discovering
time-varying aerodynamics of a prototype bridge by sparse identification
of nonlinear dynamical systems. Physical Review E 100(2), 22220 (2019).
https://doi.org/10.1103/PhysRevE.100.022220

[3] Greiner, W.: Classical Mechanics: Point Particles and Relativity. Springer,
??? (2006)

[4] Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations
from data by sparse identification of nonlinear dynamical systems.
Proceedings of the National Academy of Sciences (2016)

[5] Long, Z., Lu, Y., Ma, X., Dong, B.: PDE-Net : Learning PDEs from Data.
In: International Conference on Machine Learning (2018)

[6] Schaeffer, H.: Learning partial differential equations via data discovery
and sparse optimization. Proceeding of the Royal Society A 573 (2017)

[7] Schaeffer, H., McCalla, S.G.: Sparse model selection via integral terms.
Physical Review E 96(2), 023302 (2017)

{arXiv:1905.11075}
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1146/annurev-fluid-010719-060214
https://doi.org/10.1103/PhysRevE.100.022220


Springer Nature 2021 LATEX template

Data-Driven Discovery of SODE Using Nonconvex Multitask Learning 25

[8] Zhang, L., Schaeffer, H.: On the Convergence of the SINDy Algorithm.
Multiscale Modeling and Simulation 17(3), 948–972 (2019)

[9] Ramsay, J.O., Hooker, G.: Dynamic data analysis (2017)

[10] Fan, J., Li, R.: Variable Selection via Nonconcave Penalized. Journal of
the American Statistical Association 96(456), 1348–1360 (2001)

[11] Yuan, M., Lin, Y.: Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society. Series B:
Statistical Methodology 68(1), 49–67 (2006)

[12] Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso.
Computational and Graphical Statistics, 1–13 (2013)

[13] Raissi, M., Perdikaris, P., Karniadakis, G.E.: Numerical Gaussian Pro-
cesses for Time-dependent and Non-linear Partial Differential Equations.
SIAM Journal of Scientific Computing 40, 1–50 (2017) https://arxiv.org/
abs/arXiv:1703.10230v1

[14] Raissi, M., Karniadakis, G.E.: Hidden physics models : Machine learn-
ing of nonlinear partial differential equations. Journal of Computational
Physics 357, 125–141 (2018)

[15] Bhat, H.S., Rawat, S.: Learning Stochastic Dynamical Systems via Bridge
Sampling. In: European Conference on Machine Learning (2019)

[16] Champion, K., Lusch, B., Kutz, J.N., Brunton, S.L.: Data-driven discov-
ery of coordinates and governing equations. PNAS 116(45), 22445–22451
(2019)

[17] Rowley, C.W., Mezi, I., Bagheri, S., Schlatter, P., Henningson, D.S.: Spec-
tral analysis of nonlinear flows. Journal of Fluid Mechanics 641, 115–127
(2009). https://doi.org/10.1017/S0022112009992059

[18] Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A Data–Driven Approx-
imation of the Koopman Operator: Extending Dynamic Mode Decom-
position. Journal of Nonlinear Science 25(6), 1307–1346 (2015) https:
//arxiv.org/abs/1408.4408. https://doi.org/10.1007/s00332-015-9258-5

[19] Yeung, E., Soumya, K., Hodas, N.O.: Learning Deep Neural Network Rep-
resentations for Koopman Operators of Nonlinear Dynamical Systems. In:
American Control Conference, pp. 4832–4839 (2019)

[20] Kawahara, Y.: Dynamic Mode Decomposition with Reproducing Kernels
for Koopman Spectral Analysis. In: NIPS, pp. 1–9 (2016)

[21] Li, J., Sun, G., Zhao, G., Lehman, L.-w.H.: Robust Low-Rank Discovery

{arXiv:arXiv:1703.10230v1}
{arXiv:arXiv:1703.10230v1}
https://doi.org/10.1017/S0022112009992059
{1408.4408}
{1408.4408}
https://doi.org/10.1007/s00332-015-9258-5


Springer Nature 2021 LATEX template

26 Data-Driven Discovery of SODE Using Nonconvex Multitask Learning

of Data-Driven Partial Differential Equations. In: AAAI (2020). https:
//doi.org/10.1126/sciadv.1602614

[22] Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component anal-
ysis? Journal of the ACM 58(3) (2011). https://doi.org/10.1145/1970392.
1970395

[23] Schmidt, M.D., Lipson, H.: Distilling free-form natural laws from experi-
mental data. Science 324, 81–85 (2009)

[24] Rudy, S., Alla, A., Brunton, S.L., Kutz, J.N.: Data-driven identification
of parametric partial differential equations. SIAM Journal on Applied
Dynamical Systems 18(2), 643–660 (2019)

[25] Tishbirani, R.: Regression shrinkage and selection via the Lasso. Journal
of the Royal Statistical Society. Series B 58(1), 267–288 (1996)

[26] Zou, H., Hastie, T.: Regularization and variable selection via the elas-
tic net. Journal of the Royal Statistical Society. Series B 67(2), 302–320
(2005)

[27] Combettes, P.-L., Pesquet, J.-C.: Proximal splitting methods in signal
processing (2011)

[28] Parikh, N., Boyd, S.: Proximal Algorithms. Foundations and Trends in
Optimization (2013)

[29] Boyd, S., Vandenberghe, L.: Convex optimization (2004)

[30] Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet
shrinkage. Biometrika 81(3), 425–455 (1994)

[31] Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learn-
ing. Machine Learning 73(3), 243–272 (2008)

[32] Obozinski, G., Taskar, B., Jordan, M.I.: Joint covariate selection and
joint subspace selection for multiple classification problems. Statistics and
Computing 20(2), 231–252 (2010)

[33] Gong, P., Zhang, C., Lu, Z., Huang, J.Z., Ye, J.: A General Iterative
Shrinkage and Thresholding Algorithm for Non-convex Regularized Opti-
mization Problems. In: International Conference on Machine Learning
(2013)

[34] Gasso, G., Rakotomamonjy, A., Canu, S.: Recovering sparse signals with
a certain family of non-convex penalties and DC programming. IEEE
Transactions on Signal Processing 57(12), 4686–4698 (2009)

https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1145/1970392.1970395


Springer Nature 2021 LATEX template

Data-Driven Discovery of SODE Using Nonconvex Multitask Learning 27

[35] Rakotomamonjy, A., Flamary, R., Gasso, G.: DC Proximal Newton
for Non-Convex Optimization Problems. IEEE Transactions on Neural
Networks and Learning Systems 27(3), 636–647 (2016)

[36] Le Thi, H.A., Phan, D.N., Pham Dinh, T.: DCA based approaches for
bi-level variable selection and application for estimate multiple sparse
covariance matrices. Neurocomputing 466, 162–177 (2021). https://doi.
org/10.1016/j.neucom.2021.09.039

[37] Beck, A., Teboulle, M.: A Fast Iterative Shrinkage-Thresholding Algo-
rithm. SIAM Journal of Imaging Sciences 2(1), 183–202 (2009)

[38] Beck, A.: First-order methods in optimization (2017)

[39] Mangan, N.M., Kutz, J.N., Brunton, S.L., Proctor, J.L.: Model selec-
tion for dynamical systems via sparse regression and information criteria.
Proceeding of the Royal Society A (2017)

[40] Oliphant, T., Peterson, P., Jones, E.: Python for scientific computing.
Computing in Science & Engineering 9(90) (2001–)

[41] Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of
Complex Fourier Series. Mathematics of Computation 19(90), 297–301
(1965)

[42] Ramsay, J.O., Silverman, B.W.: Functional Data Analysis. Springer, ???
(2006)

[43] Lejeune, C., Mothe, J., Soubki, A., Teste, O.: Shape-based outlier detec-
tion in multivariate functional data. Knowledge-Based Systems 198,
105960 (2020)

[44] Becks, L., Ellner, S.P., Jones, L.E., Hairston Jr, N.G.: Reduction of
adaptive genetic diversity radically alters eco-evolutionary community
dynamics. Ecology letters 13(8), 989–997 (2010)

[45] Ramsay, J.O., Graves, S., Hooker, G.: Fda: Functional Data Analysis.
(2020). R package version 5.1.9. https://CRAN.R-project.org/package=
fda

[46] Blondel, M., Pedregosa, F.: Lightning: large-scale linear classification,
regression and ranking in python (2016). https://doi.org/10.5281/zenodo.
200504

[47] Kaptanoglu, A.A., de Silva, B.M., Fasel, U., Kaheman, K., Goldschmidt,
A.J., Callaham, J., Delahunt, C.B., Nicolaou, Z.G., Champion, K.,
Loiseau, J.-C., Kutz, J.N., Brunton, S.L.: Pysindy: A comprehensive

https://doi.org/10.1016/j.neucom.2021.09.039
https://doi.org/10.1016/j.neucom.2021.09.039
https://CRAN.R-project.org/package=fda
https://CRAN.R-project.org/package=fda
https://doi.org/10.5281/zenodo.200504
https://doi.org/10.5281/zenodo.200504


Springer Nature 2021 LATEX template

28 Data-Driven Discovery of SODE Using Nonconvex Multitask Learning

python package for robust sparse system identification. Journal of Open
Source Software 7(69), 3994 (2022)

[48] Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets.
Journal of Machine Learning Research 7, 1–30 (2006)



Springer Nature 2021 LATEX template

Data-Driven Discovery of SODE Using Nonconvex Multitask Learning 29

(a) DOC SODE, Gaussian noises
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(b) DOC SODE, Student-t noise
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Fig. 4: Results (average over five trials in percentage, standard deviation was
computed and lower than 10−4 hence invisible in the plots) of the learning
errors of the DOC SODE with four baseline regularizers and our proposal
RSCAD−ℓ1 . Each subfigure title (’FD’, ’spectral’ or ’spline’) indicates the name
of the derivative estimation method used. (a) Training data are contaminated
by a Gaussian noise whose variance level is varied according to the log-SNR
between 20 (high noise level) and 50 (low noise level), or by (b) a Student-t
noise that results in a log-SNR ≈ 40. ϵβ measures unbiasedness of the SODE
coefficients. ϵMIS measures the misidentification error of the learned SODE.
ϵT measures the error of the numerical solution of the learned SODE w.r.t the
clean ground-truth.



Springer Nature 2021 LATEX template

30 Data-Driven Discovery of SODE Using Nonconvex Multitask Learning

(a) LV SODE, Gaussian noises
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(b) LV SODE, Student-t noise
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Fig. 5: Results of the learning errors of the LV SODE. Detailed comments in
Fig 4.
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(a) LAT SODE, Gaussian noises
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(b) LAT SODE, Student-t noise
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Fig. 6: Results of the learning errors of the LAT SODE with five baseline
regularizers. Detailed comments in Fig 4.
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Fig. 7: Test errors of the five cross validation folds for the three synthetic
SODEs. Remind that the size of the training set increases along the folds but
the size of the test set is fixed. Same legend as in Fig 4.
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Fig. 8: Test errors of the five cross validation folds for the LV SODEs.
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Fig. 9: Test errors of the five cross validation folds for the LAT SODEs.

(a) Time series of the two state variables. Blue: training/test data. Brown: solution
of the SODEs learned with each of the four baseline regularizers and our proposal
(last column).

(b) Analytic expression of the learned SODEs. For visual convenience, the intercepts
and t dependence in parenthesis are omitted.
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ẋ1 = −0.04x1

−0.002x2

−6.10−5x2
1
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Fig. 10: (a) Training/test data and numerical solution the SODEs learned
with the four baseline regularizers and our proposal from the Chemostat
dataset. (b) Analytic form of the learned SODEs.
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