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Abstract—Current simulation of metal forging processes use
advanced finite element methods. Such methods consist of solving
mathematical equations, which takes a significant amount of time
for the simulation to complete. Computational time can be pro-
hibitive for parametric response surface exploration tasks. In this
paper, we propose as an alternative, a Graph Neural Network-
based graph prediction model to act as a surrogate model for
parameters search space exploration and which exhibits a time
cost reduced by an order of magnitude. Numerical experiments
show that this new model outperforms the Point-Net model and
the Dynamic Graph Convolutional Neural Net model.

Index Terms—Deep Learning; Graph Neural Network; Point-
Net; Dynamic Graph Convolutional Neural Net; Finite Element
Analysis; GPU;

I. INTRODUCTION

Finite element methods (FEM) are extensively used to

simulate real world physical phenomenon [1], [2]. In FEM,

the mathematical equations associated to the physics are

reformulated with a variational formulation which is then

discretized. This discretization is performed on a mesh, and

the quality of the elements of the mesh impacts directly the

approximated solution. Several techniques exit to ensure high

quality of the approximated solution, including for instance

Streamline-Upwind Petrov-Galerkin (SUPG) [3], stabilized

finite elements [4], bubble elements [6], infinite elements [7],

[8]. Since the FEM solution is obtained by solving a linear

system of equations, whose size is proportional to the number

of discretization points composing the mesh, this represent a

significant part of the computational time. The high time cost

of generating the FEM solution makes it tedious for running

thousands of simulations by varying the input parameters for

optimization applications and finding the best input parameter

set. This is particularly true in metal forging process design.

In this paper, as an alternative to FEM, we explore deep

learning models for metal forging process design. The mo-

tivation behind using a deep learning surrogate model is to

create a hybrid approach in which FEM is only used to

generate high resolution results in a reduced parametric space.

Neural Networks [25] are efficient at learning patterns in data

and have been widely used in various applications including

image learning, speech recognition, graph learning and so on,

where classical learning is difficult because of the complexity

in data. The low time cost of deep learning model enable

faster parameter search space exploration and can save many

days’ worth of time during the optimization process design.

Here, we created a Graph Neural Network-based deep learning

model that takes the mesh objects in the form of a graph

and the input parameters as the features of this graph. The

reason for considering Graph Neural Network [19] based

approach relies in the property of graphs [20] which share the

same permutation in-variance property between meshes and

point-cloud objects. We train the model to some simulations

(generated by FEM) to minimize the Mean Squared Error

loss for the prediction and the actual graph for all training

simulations and test the performance of the model on some

test simulations. The proposed Graph Neural Network (GNN)

model, once trained, can generate the output data for a set

of inputs in a time smaller than 500 milliseconds, keeping in

mind that the actual simulation process using FEM takes 110

minutes to generate the same output data. The proposed model

takes 99.9% less time than FEM.

This paper is organized as follows, In section II, we present

some related works for the task of classification and segmen-

tation on point-cloud objects. In section III, we describe in de-

tails the methodology. In section IV, we address several issues

like framing of the problem, exploring the dataset, evaluation

methods, model architectures and results. In section V, we

present the conclusions.

II. RELATED WORKS

There are different types of algorithms to create classifica-

tion and segmentation models, see for instance [12] and refer-

ences therein. Support Vector Machines (SVM) [10] [14] [13]

[15], Multi-Layer Perceptron [18], Convolutional Neural Net-

works, Recursive Deterministic Perceptron (RDP) [11], Neural

Network, and Deep Learning Methods. SVMs construct a hy-

perplane that separates the objects with the maximum possible

margin. Taking advantage of the Kernel Trick, we are able to

project the data into higher dimensions which allows for non-

linear margins. Multi-Layer Perceptrons (MLP), Convolutional

Neural Networks (CNN), Deep Learning models all are made

up of neurons. MLPs are stacked fully connected layers

where a neuron of a layer is connected to every neuron in

the other layer. In CNNs, instead of matrix multiplications,

convolutional operation is employed. The Point-Net model

[21] is one of the first iterations of deep learning models which

can deal with permutation invariant data structures like the

point cloud object. The Point-Net model consists of various

1D convolutional layers and activation functions followed by



a Global Max Pooling with fully connected layers in the

end, modified for the objective of the model. The Dynamic-

Graph Convolutional Neural Network model forms connec-

tions between the points of the point-cloud object after every

layer following a K-Nearest Neighbors algorithm. This graph

structure allows for pooling of local level features and takes the

neighborhood into consideration. This approach drastically im-

proved the performance of Segmentation tasks on Point-Cloud

data. Graph Neural Network-based models were applied on 3D

objects for the task of object classification and segmentation

using Dense Graph Convolutional layers. These approaches

were mainly developed for classification/segmentation and not

for data prediction purposes.

FEM simulate physical phenomena modeled by Partial

Differential Equations (PDE) by solving a discrete problem

[1], [5], [9]. There have been attempts to approximate the

PDE solutions using deep learning [22]. These models have

been tested on complex fluid dynamic simulations and use

a hybrid (graph) neural network that combines a traditional

graph convolutional network with an embedded differentiable

fluid dynamics simulator inside the network itself for faster

results and a good approximation.

The 3D objects considered is usually in the point-cloud

format which ignores the topology of the object. The Point-

Net, DGCNN and GNN models were not commonly used

as surrogates for simulation procedures but were used for

automatic analysis of data generated by FEM. In the following

section, we explore deep learning models using Graph Neural

Networks for data prediction.

III. METHODOLOGY

A. Dataset

We used data arising from FEM simulations of a Yoke

metal forging process. Generating each simulation on a quad-

core machine takes approximately 110 minutes, which appears

to be a very expensive time cost for parameter search space

exploration and optimization tasks. The input parameters pro-

vided to the simulation are initial temperature of the billet and

friction coefficient between the billet and the lower deformable

die. The goal is to predict the wear prediction as a surface field

on the lower deformable die/upper deformable die for a given

set of initial input conditions. The proposed deep learning

graph neural network model will approximate the final lower

deformable die/upper deformable die for the given input set.

The input parameters of temperature and friction coefficient

are added as node features to each of the node of the mesh.

The surface Lower Deformable Die (LDD) consists of 9 215

nodes. The surface Upper deformable die (UDD) consists of

6 617 nodes. Each Cell of the mesh has features like the

normal stress, flow stress and wear, but all the features that

cannot change have been eliminated to reduce the complexity

of the model. The points of the mesh and their features are

considered as the node features of the graph. Within the total

number of 40 simulations in the dataset, 30 simulations are

considered for training the proposed model and 10 simulations

are considered for testing the proposed model.

B. Finite element mesh to graph conversion

The model should take as input the starting mesh object and

the set of input parameters (temperature, friction coefficient,

. . . ) and as output the final simulation object with wear field

for each of the nodes. The mesh object is converted to graph

and the input parameters are added to every node of the graph

as node features. We extract the mesh topological connectivity

and use it to connect nodes in the corresponding graph data

structure. The connections are between the points and the

features are associated with the cells of the mesh. So, we

convert the cell features to point features by averaging the

feature values of all the cells the point belongs to. An example

of the visualization [16] is shown in Figure 1.

Fig. 1. Lower Deformable Die. Mesh (left) and finite element solution (right).

C. Mathematical formulation

We design a deep learning model that directly takes a graph

as an input and returns a graph as output. A graph is repre-

sented as a set of node features, edge features, graph features

and node-to-node connectivity. For each simulation, we will

convert the mesh to a graph by taking the point features as the

node features, and the point-to-point connectivity of the mesh

as the node-to-node connectivity of the graph. The proposed

model will predict the final simulation in the form of a graph

with node features as the point features. The proposed model

once trained can be used as a surrogate model for FEM.

Since we have independent graphs for training, testing and

validation, we will use the inductive setting [23] of graph

models for this problem. Because we are using the inductive

setting, we don’t have to worry about cross talk or information

leakage from unseen data.

IV. BUILDING THE MODEL

The required steps to build the model include: (i) processing

the Dataset for training and testing, (ii) defining the evaluation

metric to test the model’s performance, (iii) defining the

model’s architecture, (iv) training and testing the model’s

performance with multiple datasets and other relevant models.

Below we describe all the steps to build the GNN Surrogate

model we proposed, which will predict what the final result

will be, and we evaluate it’s performance.

A. Evaluation metric

Since, the task is a graph node regression problem, we will

use the Mean Squared Error (MSE) as a metric to compute

the loss of our model. For each node of the output graph,

we calculate the difference squared with the actual output



and average it over all the nodes. This will be the MSE

loss for the first simulation, which will be used to readjust

the weights of the model. We trained the model to minimize

the Mean Squared Error loss. After completely training the

models, we tested our model on the unseen data using the

MSE loss metric. MSE = 1
n

∑n
i=1(ŷi − yi)

2 where n is the

number of nodes in the graph, yi is the actual wear for node

i in the graph, and ŷi is the predicted wear for node i in the

graph. We will also use the Root Mean Squared Error (RMSE)

and the coefficient of determination to evaluate how well the

trained model is performing on the test data. Coefficient of

Determination R2 is the proportion of variation in the target

variable yi that is explained by the model and is calculated

as follows: R2 = 1 − SSres

SStot
, where SSres =

∑n
i=1 ε

2
i ,

SStot =
∑n

i=1(yi − ŷ)2 with εi equal to ŷi − yi. RMSE and

R2 are much more comprehensible to the human eye when

assessing the performance of the model.

B. Graph Neural Network-based surrogate model for FEM
simulations

Neighbourhood information of nodes in graphs plays an

important role in prediction of the target feature of the

nodes. The problem of considering neighbourhood information

through convolutions to make predictions for graphs is unlike

a structured object like images where the pixels are arranged in

a certain structure. Graph Convolutional Layers are excellent

approaches to take the neighbourhood information to make

predictions using deep learning models for graph like permu-

tation invariant data structures. The proposed model consists of

five Graph Convolutional Layers followed by Re-LU activation

layers. To avoid over-fitting, Dropout method of regularization

is introduced with a probability of dropout of 1%. The model

is designed to generate the wear field, and since wear can only

take positive values, the proposed model is designed with a

Re-LU layer as the final layer which ensures that the model

outputs are with positive values for each of the nodes.

C. Graph convolutional layer

Each node of the graph constitutes a computation graph built

using it’s neighbours [17]. The neighbourhood information

is aggregated using a permutation invariant operation like

average or maximum, after which a neural network is applied

on the aggregated information before sending it to the next

layer. This process of information propagation through the

neighbourhood to the central node ensures that the information

passed is not altered if the permutations are changed for the

same computation graph. Each graph convolutional layer takes

in node features for information propagation, and the neural

networks of the layers control the number of node features for

the output graph. For the first graph convolutional layer in the

proposed GNN surrogate model, the layer takes a graph with

5 node features as input and returns a graph with 50 node

features as output before applying the activation function. The

activation functions add non-linearity to the model. The second

graph convolutional layer takes a graph with 50 node features

and returns a graph with 100 node features followed by Re-LU

activation layer. Then, in the following 3 graph convolutional

layers with activation functions, the 100 features are reduced

to 50 features and then to 1 feature which is the target wear

feature to which the Mean Squared Error loss function is

applied. The dropout layers are used for regularization and

are stacked after each activation function. The final layer is a

Re-LU layer to ensure that the model only predicts positive

values for the nodes.

D. Training the model

The model’s architecture is trained using the deep graph

library framework [24] based on Pytorch. We trained the

models on two separate datasets predicting the final mesh

of the lower deformable die and the upper deformable die.

The models are trained for 2 500 epochs with a method for

stochastic optimization using a learning rate of 8 × 10−4.

Each of the datasets consists of 40 simulations, where 30 of

which are used for training and 10 are used for testing. The

Data-Loader is defined with a batch size of 1, i.e., only 1

simulation is used per iteration of model training. The loss-

curves, illustrated in Figure 2, suggest that the models trained

on LDD and UDD datasets are properly trained without any

over-fitting. After 2 500 epochs, the train and test loss per

simulation is nearly the same, suggesting that the model is

well trained.

Fig. 2. Left: Loss Curve (LDD). Right: Loss Curve (UDD)

E. Bench-marking the new model

The model’s prediction seems to be a good reflection of the

wear. After training, the model obtained 73.56 N/m RMSE

loss on average per simulation on the test LDD dataset. On

the test UDD dataset, the model obtained 26.44 N/m RMSE

loss on average. Average Coefficient of Determination on the

test data for LDD is 93.7% and for UDD is 92.8%.

Along with the proposed model, we also tested Point-Net

and Dynamic Graph Convolutional Neural Network models

using the 75%/25% split model experimentation methodology.

Point-Net segmentation model’s last layers have been modified

to predict a continuous value for each of the nodes. Dynamic

Graph Convolutional Neural Net segmentation model’s last

layers are also modified to accommodate for the dataset. For

the DGCNN model, we chose dynamic neighbours as 5 and the

embedding dimension size as 64. Early Stopping mechanism

is implemented while training to avoid over-fitting.

The Point-Net and the DGCNN models take point-cloud

objects as input and not the node-to-node connectivity. Point-

Net model performs 1d convolution operations and activations

for several layers before performing a Global Max Pooling to

aggregate the features, which are later fit into a fully connected



layer to output the prediction. There is no necessity for node-

to-node edges for the Point-Net model. The DGCNN model

computes the connections between nodes using the K-Nearest

Neighbours method and updates connections after each layer.

The proposed GNN model has the advantage of taking the

actual connections of the topological structure of the mesh

and aggregate neighbourhood information using that.

TABLE I
RMSE FOR THE MODELS TESTED

Model LDD dataset UDD Dataset

Point-Net model 299.11 137.58
DGCNN model 303.31 126.79
Proposed GNN model 73.56 26.43

The values shown in Table I correspond to the root mean

squared error loss per node of the final data predicted on

average on the testing data. All the models are tested on two

datasets corresponding to the Lower Deformable Die and the

Upper Deformable Die respectively. This is used to compare

the models’ performance.

The GNN model performs extremely well when compared

to the other models. The RMSE loss on the testing dataset

is significantly better than the other models. The point-cloud

based deep learning models didn’t fare well in comparison

with the GNN model. The Point-Net model works well when

compared to DGCNN, but couldn’t compete with the GNN

model. The GNN’s ability to take the neighbourhood infor-

mation using the topological connections of the mesh might

be the reason why the proposed GNN model outperforms the

Point-Net model and the DGCNN model.

F. Time cost analysis using the proposed surrogate model

FEM simulations were generated on a quad-core computer

with 16 CPUs. A single simulation took about 1 hour 50

minutes (on 4 CPUs/case), but the 40 cases were automatically

launched on 16 CPUs meaning that 4 cases were running si-

multaneously in parallel. The total effective time for generating

40 simulations is 18 hours. After training the surrogate model

on the same CPUs, the average time taken to generate the

final result is 500 milliseconds, this means that using the GNN

Surrogate, we can save the time cost by 99.9%.

V. CONCLUSIONS

Using the Graph Neural Network approach to act as surro-

gate model for FEM is a well performing approach. Depend-

ing, on the time-cost versus accuracy required, we can adapt

the model ensuring flexibility. An important point to mention

is that the surrogate model we proposed performs well, even

though it was trained only on 30 simulations data. The Graph

Neural Network surrogate model, because of its cheap time

cost, can aid in parameter search space exploration.
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