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Uncertainty Quantification of the ONERA 7A Rotor
Performance and Loads Using Comprehensive Analysis
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and

Hyeonsoo Yeo‡
U.S. Army Combat Capabilities Development Command, Moffett Field, California 94035

Quantification of blade stiffness uncertainties and sensitivities on rotor power and structural loads for the ONERA 7A

rotor is established using the U.S. Army and ONERA rotorcraft comprehensive analysis tools. A stochastic-based

approach is implemented to generate probabilistic bounds of the response outputs, including rotor performance and

loads due to uncertainties in blade stiffness using 1) aMonteCarlo approach coupled directlywithU.S. Army’s rotorcraft

comprehensive toolset, and 2) a surrogate of ONERA’s rotorcraft comprehensive analysis solver using polynomial chaos

expansions to efficiently predict the response outputs.Theanalysis showed that uncertainties in blade torsion, flap, and lag

stiffnesses impact the predicted rotor power by a quantifiable amount. Significant uncertainties in peak torsion, flap, and

chord bending moments are also confirmed. The sensitivities of the stiffness properties on response outputs using Sobol

indices are also studied. The results show that total required power is exclusively sensitive to variability in torsion stiffness

withno interactioneffectswith flapand lag stiffnesses. Sensitivitiesdue to independentparameter effects andbycombining

with other parameters on peak structural loads are also examined. The analysis demonstrates the merits of integrating a

stochastic, data-driven approach for uncertainty and sensitivity analyses in rotorcraft aeromechanics predictions.

Nomenclature

CBM = chord bending moment, N ⋅m
CL = rotor lift coefficient
CT = rotor thrust coefficient
EIflap = normalized flap stiffness

EIlag = normalized lag stiffness

FBM = flap bending moment, N ⋅m
GJ = normalized torsion stiffness
N = number of uncertain variables
N �μ; σ� = normal distribution (mean, standard deviation)
P = rotor power, HP
TM = torsion moment, N ⋅m
Zα∕2

σ��
n

p = standard-of-error

μ = mean
ρN = normal probability density function
σ = blade solidity or standard deviation
σμ = standard error of the mean

Ψj = polynomial chaos expansion basis

Ω = probability design space

I. Introduction

A DVANCEDmodeling and simulation tools are needed in rotor-
craft design for predictive performance analysis. Aerodynamic

performances and loads, in general, cannot be accurately predicted
using deterministic solvers, and safety factors are typically used as
fail-safe mechanisms to design robust and certified flight systems.

Computational methods regardless of fidelity have parameter and
model form uncertainties that propagate through the engineering
analysis, resulting in variability in response outputs. Accordingly,
the outputs will likely differ from expected performances because of
the unaccounted uncertainty in the model.
There have been rapid advancements in computational power that

have resulted in the development of advanced rotorcraft tools, includ-
ing the state-of-the-art HPCMP CREATE-AV Helios [1] and elsA
[2]. The capabilities of these methods can be further enhanced by
incorporating the impact of system uncertainties, both epistemic and
aleatory on model responses. The impact of aleatory uncertainties on
the accurate estimation of helicopter performance and loads has not
been studied in detail. It has been discussed in the literature that
stochasticmodel inputs can significantly influence the design process
where the achievement of system performance goals cannot be
guaranteed due to the inherent uncertainties in the inputs [3]. The
goal of this task is to account for uncertainties for rotorcraft applica-
tions so that an accurate representation of the performance envelope
can be established using statistical metrics. To address this need, the
methodologies presented in this work support the transition from
deterministic to a stochastic-based analysis.
Comprehensive analysis (CA) tool chains are widely used for rotor-

craft performance and loads assessment, and thesemethodswill be used
in the present study to address the research outcomes. The CA tools
that will be applied in the calculation of rotor power and blade struc-
tural loads include the Rotorcraft Comprehensive Analysis System
(RCAS) [4] and the Helicopter Overall Simulation Tool (HOST) [5].
RCAS, developed by the U.S. Army, is a comprehensive multidisci-
plinary, computer software system. HOST, developed by Airbus Heli-
copters, is also a rotorcraft CA tool that models blade dynamics using a
multibody scheme [6]. The solvers are used to first establish code-to-
code comparisonof input–output on a commonproblem-of-interest and
are then used to verify the influence of the dependencies in uncertainty
propagation. This will involve the identification and characterization
of the system uncertainties and sensitivities on quantity-of-interest
(QoI) by using the outputs of the deterministic method. Access to this
critical information will facilitate capabilities in model knowledge,
including risk management and mitigation. The study will ultimately
define the role of uncertainty quantification (UQ) in computational
rotorcraft aeromechanics so that methodology benefitswhen integrated
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into the available CA tool chain set and eventually into higher-fidelity
codes are identifiable. The data established will permit the definition of
flight performance and load variance envelopes with probability inter-
vals, and this knowledgewill guide informed decisionmaking as part of
the aircraft design cycle.
Application of UQ methods for aerospace applications has been

documented in the literature [7–9]. In support of a stochastic-based
analysis, Lee et al. [10] documented guidelines for the verification
and validation (V&V) of computing simulations that incorporate
error and uncertainty sources during the modeling, verification, and
validation processes, with the goal of estimating the total prediction
uncertainty of a simulation. The practices proposed have been used as
a baseline for follow-up works in the field. Baurle and Axdahl [7]
used computational fluid dynamics (CFD) tomodel both aleatory and
epistemic uncertainties in a highly backpressured scramjet isolator
flowfield. The analysis confirmed that discretization error has a
significant influence on system uncertainties. Beran et al. [8] mod-
eled aircraft aeroelastic interactions, and proposed a mixed-fidelity
approach with CFD to efficiently drive the UQ process. Stanford and
Massey [9] also used CFD to model the influence of the parametric
uncertainties, including atmospheric flow and structural variables
of a generic transport wing model configuration on the damping
character of the dynamic aeroelastic wing response due to some
perturbation.
Quantification of system uncertainties for rotorcraft applications

usingCA tools has also been documented in the literature. Singh et al.
[11] used RCAS to model the performance uncertainties of a new
Hover Validation and Acoustic Baseline (HVAB) rotor blade with
prescribed distribution (uncertainty) in blade structural properties.
The analysis confirmed that the magnitude of the difference between
the established statistical mean of the output response, CT∕σ, due to
input torsion stiffness uncertainty was less than 1% in comparison to
the deterministic (without uncertainty) value. Anusonti-Inthra et al.
[12] performed sensitivity and uncertainty analysis of a coaxial
corotating rotor system in hover using RCAS. They showed that
pitch control settings and performance metrics are sensitive to vari-
ability in the center-of-gravity placement of the platform. It was also
shown that the hub forces and moments are sensitive to changes in
ambient drift speeds where stochastic-based derived data due to
input uncertainty are different compared to deterministic derived data
when uncertainty is not factored in the analysis. Murugan et al. [13]
modeled the effects of spatially uncertain material properties on the
aeroelastic response predictions (rotating blade natural frequencies
and vibratory hub loads) of a composite helicopter rotor. In the ana-
lysis, it was shown that spatial uncertainty has considerable impact
on aeroelastic response predictions where uncertainty in composite
properties significantly influences the rotating frequencies of the
rotor blades. It was also shown that the uncertainty effects on the
rotating frequencies vary with higher frequency flap, lag, and torsion
modes. Sensitivity analysis (SA) also showed that frequencies of flap,
lag, and torsion are influenced by the uncertainties in stiffness at the
root and inboard sections of the rotor blade. In additional works by
Siva et al. [3], the effects of structural and aerodynamic uncertain-
ties on the performance predictions of an untwisted and linearly
twisted rotor blade were investigated using Monte Carlo simulation
(MCS). The analysis confirmed uncertainties in rotor power in hover
and axial climb phases. In comparison to baseline performance with-
out uncertainties, the magnitude of differences between stochastic
mean and baseline result was more than 25% for rotor power. The
largest uncertainty in power coefficient was established for a forward
flight case, hence enforcing the need to carefully select an appropriate
powerplant that will attain the desired performance requirements.
TheUQandSAmethodologies presented in thiswork further support
these research efforts by performing code-to-code comparisons with
RCAS and HOST on the ONERA 7A rotor at high speed. Further, a
comparative analysis using different uncertainty propagation meth-
ods with MCS (U.S. Army) and a surrogate-assisted simulation
approach (ONERA) are evaluated to assess data convergence.
The contributions of this work add to the current body-of-knowl-

edge related to uncertainty analysis for rotorcraft aeromechanics.
Here, the impact of uncertainties in blade stiffness on rotor power

and blade structural loads is established. Thework documented in the
literature [11,12] addresses simplified hover cases, yet in this work
the UQ analysis is extended to high-speed forward-flight scenarios.
Further, the parameterization of stiffness uncertainties is also induced
using uniform and nonuniform methods to compare the effect of
input stiffness mapping schemes on uncertainty in rotor performance
and loads.
The paper is organized as follows: Sec. II outlines the scope of the

study, which includes the introduction of the 7A rotor reference test
case, including thevalidation of the numerical solver used to establish
rotor performance and loads, followed by a preliminary parametric
analysis for cross-validation purposes; Sec. III introduces fundamen-
tal uncertainty analysis concepts and the propagation of aleatory
uncertainties through the proposed UQ framework; in Sec. IV, UQ
and global sensitivity analyses are undertaken; and in Sec. V, main
conclusions are summarized.

II. Study Scope

The uncertainties in blade properties on rotor performance and
structural loads are investigated. In this section, an overview of the
study scope is summarized:
1) CA tools and test model: RCAS and HOST solvers are intro-

duced, including the ONERA 7A rotor blade.
2) Dynamic inflow model is established to validate number of

states using RCAS and HOSTwith available test data.
3) Parametric analysis is performed to establish the relationships

between blade stiffness (inputs to the UQ study) on loads and rotor
performance.
4) Uncertainty quantification includes the following:
a) Concept theory and background
b) Uncertainty propagation using MCS and a surrogate-based

polynomial chaos expansion (PCE) approach
5) SA using PCE is introduced.

A. Rotorcraft Comprehensive Analysis and Test Model

RCAS, developed by the U.S. Army, is a comprehensive, multi-
disciplinary, computer software system for predicting rotorcraft
aerodynamics, performance, stability and control, aeroelastic stabil-
ity, loads, and vibration. RCAS can model a wide range of complex
rotorcraft configurations operating in hover, forward flight, and
maneuvering conditions. The RCAS structural model employs a
hierarchical, finite element, multibody dynamics formulation for
coupled rotor–body systems. HOST used by ONERA is also a rotor-
craft CA tool that was developed by Airbus Helicopters. HOST
modeling of blade dynamics is based on a multibody approach.
The blade is represented as an assembly of rigid segments connected
by virtual joints. Euler-beam modeling provides three degrees of
freedom, namely, flapwise bending, chordwise bending, and torsion.
RCAS and HOST have similar aerodynamic models. The aerody-
namics is based on a lifting-line approach with airfoil lookup tables
combined with a wake model. In this effort, among the several wake
models available, finite-state dynamic inflow model is used in both
analyses.
The ONERA 7A rotor blade operating at a high-speed condition

(μ � 0.40,CL∕σ � 0.063) is used as a test model. The configuration
was extensively tested in the ONERA S1MA transonic wind tunnel
for rotor performance and loads data and was previously investigated
using various analysis tools andmethods [6,14–16]. The 7A rotor is a
four-bladed fully articulated rotor, with a radius of 2.1 m and solidity
σ of 0.084. The blade shown in Fig. 1 is of rectangular planform and
uses two airfoils, the OA213 and OA209. Figure 1 also shows the
locations of structural loads measurements from strain gauges. Flap
bendingmoments (FBMs) are available at six radial locations (30, 40,
55, 65, 75, and 85%R). However, chord bending moments (CBMs)
are available at three radial locations (30, 40, and 85%R) and torsion
moments (TMs) are available at five radial locations (30, 40, 55, 65,
and 75%R). During the test, the rotor was trimmed to satisfy the
Modane flapping law (β1s � 0, β1c � −θ1s) in addition to the speci-
fied rotor lift and propulsive force using rotor collective and cyclic
controls and shaft angle.



InRCAS, the bladewas analyzed using 16 nonlinear beam elements

and 22 aerodynamic segments shown in Fig. 2. Similar discretization

was also implemented in HOST with 25 spanwise elements used for

the computational analysis. Both analyses modeled the rotor hub

as fully articulated with pitch bearing and flap and lag hinges. The

elastomeric lag damper of the 7A rotor was modeled with equivalent

hinge stiffness anddampingvalues at the laghinge.A5.0° (72 steps per

rotor revolution) azimuthal step sizewas used for trim in RCAS, and a

6.0° azimuthal step size was used in HOST.

In Ref. [15], blade natural frequencies were calculated as a func-

tion of rotor speed using RCAS and HOST. The predictions by the

two comprehensive codes showed excellent agreement with each

other for low-frequency modes. This confirms that the structural

dynamics models of the two analyses are equivalent.

B. Inflow Model Validation with Experiment

Avalidated inflow model is to be established as a baseline for the
uncertainty analysis to follow. In this setup, the goal was to establish
an acceptable balance between computational efficiency and solver
accuracy using the proposed CA tools. The present study used the
finite-state dynamic inflow model, which was based on the actuator
disk solution of the three-dimensional potential flow equations. The
induced velocity is expressed in terms of Fourier harmonics (for
azimuthal variations) and Legendre functions (for radial variations).
In an m-by-n dynamic inflow model, m represents the number of
harmonics and n represents the highest power in the Legendre poly-
nomials. In the analysis, half peak-to-peak blade structural loads are
established as a function of the number of inflow states. Figure 3
compares theRCASpredictions for TM, FBM, andCBMresultswith
the measured data along the blade span.
The analysis in Fig. 3 confirmed that, as the number of inflow states

is increased, the calculated peak-to-peak structural loads decrease and
converge to the experimental data. Although not shown, the analysis
showed the same convergence trends for rotor power. The computa-
tional disparity between an8 × 8 and 12 × 12 statemodel is negligible,
yet the computational effort in the two cases was noticeable. Accord-
ingly, an 8 × 8 model was selected as the baseline for follow up UQ
works due to an acceptable balance between computational agreement
with experiment and computing resources needed for a converged
solution.
Adynamic inflowstudywas alsoperformedwithHOST, and similar

trends from Fig. 3 were noted for the convergence of rotor power and
bending moment loads. Direct comparison of RCAS and HOST data
with experiment is presented in Fig. 4. The analysis confirms accept-
able convergence of RCAS and HOST data for TMs and FBMs with
experiment, yet both analyses overpredict the CBM.Yeo et al. [15] has
shown that the RCAS calculations coupled with Helios CFD code
reduced the half peak-to-peak CBMs and significantly improved the
correlation, but the HOST calculations coupled with elsA CFD code
overpredicted the CBMs. The reasons for the observed differences are
not known.

C. Parametric Analysis

As outlined at start of Sec. II, parametric analysis is undertaken
to map the trends between uncertain inputs on response outputs. A
scaling factor (SF) is introduced, which acts as a multiplier to the
baseline stiffness to induce systematic and uniform variations to
flap (EIflap), lag (EIlag), and torsion (GJ) stiffness across a range of
40–200%. In this case, each parameter is varied one at a time, while
other properties are fixed at their baseline setting. At each increment
change, the rotor power and structural loads, including TMs, FBMs
and CBMs, are calculated. Figure 5 represents the test envelope of
the variations in EIflap and GJ that were induced in RCAS relative to

the baseline setting.
As a result of the induced parametric variations, the impact

on rotor power using RCAS is presented in Fig. 6. The analysis

Fig. 1 The 7A blade plan form with structural loads measurements (□:
flap bending; ∘: chord bending; ×: torsion moment measurements).

Fig. 2 The 7A rotor blade modeling using comprehensive analysis
(shown here is the RCAS configuration).
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Fig. 3 Half peak-to-peak structural loads: convergence of dynamic inflow model with test data using RCAS.



confirmed that power is sensitive to changes in GJ, and relatively

power remains unchanged due to the variability in lag and flap

stiffness. Critically it is noted that there is a penalty in rotor power as

GJ decreases. In the earlier analysis by Jain and Yeo [17], this

pattern was also established with the UH-60A rotor in high-speed

forward flight. This was attributed to the distribution of the average

drag across the rotor disk, whichwas observed to increase as GJwas

decreased such that there was a higher drag penalty on the outboard

region of the retreating side. Accordingly, an increase in rotor power

follows to maintain trimmed flight.

Comparison of rotor power with variability in torsion stiffness

using RCAS andHOST is presented in Fig. 7. The general trends are
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Fig. 4 Analysis of structural loads using RCAS and HOST with test data.

Fig. 5 RCAS: test envelope (shaded region) for design parametric analysis relative to baseline (solid line); stiffness values are normalized by the
corresponding maximum values.
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Fig. 6 RCAS: impact of blade stiffness variation on rotor power.
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captured by both analyses. At nominal stiffness with SF = 1.0, high-
speed experimental power equals 118.16 HP [6], and at this setting
RCAS predicted 124.80 HP. In comparison, HOST yields closer
agreement relative to RCAS at 120.57 HP, yet this reading is also
overpredicted relative to experiment. Despite the disparity between
the two results, the data trends confirm that a valid analysis can
follow for the quantification of 7A rotor blade performance and
loads uncertainties due to stiffness variability.
As next step, a scatter plot with 500 Latin hypercube sampling

(LHS) points is generated to assess the trends between blade stiffness
properties on rotor power and peak loads in Fig. 8. A r- correlation
coefficient is calculated to quantify the trends between inputs and
outputs and is bounded between values of −1 and 1 to assess the
strength of the linear relationship between the parameters. Values
near 1 indicate strong positive correlation; −1 represents strong
negative correlation; and 0 represents no correlation. Critically the
analysis only factors the linearities between the parameters and does
not confirm the degree of nonlinearity.
The linear regression scatter plot in Fig. 8 shows the following:
a) GJ has moderate linear relationship with rotor power

and peak FBM and CBM, yet nonlinearity with peak TM is
observed.
b) Variation in flap stiffness exhibits strong linear trend with

peak FBM and moderate negative correlation with peak TM, yet
against rotor power and peak CBM, nonlinear patterns are noted.
Also confirmed is the overall magnitude of change in rotor power
(y axis between 124.4 and 124.8 HP) and peak TM (y axis between
18 and 20 N ⋅m) is minimal, hence indicating that the respective
outputs are insensitive to flap stiffness.
c) Sampling of lag stiffness only exhibits notable linear trend

with rotor power although the overall change in performance is
minimal (y axis between 124.5 and 125 HP). Nonlinear trends are
confirmed for all peak loads where peak TM is observed to be
insensitive (y axis between 18 and 20 N ⋅m) to variation in lag
stiffness. The results confirm that parametric-based approaches
can be used to assess input sensitivity on uncertain outputs if the
dimensionality is low. If the uncertain input space becomes large,
the parameters are likely to exhibit complex nonlinear trends due to
the coupling effects by the different combinations of the input
parameters, and these relationships cannot be quantified using
systematic parametric-based approaches.

As next step, the variation in GJ and EIflap on spanwise TMs and

FBMswith RCAS andHOST is presented. As a general trend in both

analyses, it is observed that as GJ increases in Fig. 9, the TM across

the span decreases slightly. This pattern (GJ on peak TM) was also

confirmed in the sensitivity matrix plot in Fig. 8, where an r-corre-
lation of −0.63 was established. In general, changes in torsion stiff-

ness have a small influence on TM except when there is a significant

reduction in GJ as noted when the SF � 0.40. Figure 10 shows fan

plot of the 7A blade. Solid lines represent the blade frequencies with

the baseline properties and dotted lines represent those with 40 and

200% of baseline GJ values, respectively. Note that EIflap and EIlag
values are the same as baseline values for the frequency calculation.

Torsion stiffness has a substantial influence on the blade torsion

frequencies (about 4.1/rev with 40%GJ and about 8.4/rev with

200%GJ). Due to pitch–flap coupling, flap frequencies also changed

slightly. The baseline torsion frequency is about 6.3/rev. As torsional

stiffness is reduced, torsion frequency also decreases. Initially there is

a small change in the peak-to-peak TM amplitude. However, as the

torsion frequency approaches 4/rev, the peak-to-peak loads starts to

increase. Although the absolute values are different (Fig. 9), similar

pattern is captured in both RCAS and HOST analyses except for the

lowest stiffness value. HOSTanalysis shows significantly higher TM

for the 50% of baseline GJ value case. The reasons for this discrep-

ancy are not known.

The impact of flap stiffness on spanwise FBM is further presented

in Fig. 11. Flap stiffness has a significant influence on spanwise

FBM (also confirmed in matrix sensitivity plot in Fig. 8). As

expected, the spanwise FBM increases, including the maximum

peak-to-peak load at r∕R ≈ 0.125, as EIflap increases and the span-

wise FBM decreases as EIflap decreases. Both RCAS and HOST

show a similar trend.

The parametric analysis shown in Figs. 6–9 and 11 confirms that

performance variability in power and structural loads exists due to

changes in blade stiffness. Both RCAS and HOST data exhibit

matching performance trends despite the disparity in solver accuracy

relative to experiment. It has also been established in Fig. 8 that

nonlinear trends are present in the design space; hence a sampling

study using a stochastic-based approach is warranted for the quanti-

fication of response output uncertainties due to variability in blade

stiffness.

Fig. 8 Latin hypercube sampling of 500 points representing the relationship between blade stiffness parameters on rotor power and peak loads using
RCAS.



III. Uncertainty Quantification and Sensitivity Analysis

In this section, a brief overview of the UQ and SA approaches will

be presented. The uncertainty frameworkwill include a description of

the probabilistic method in the form of 1) the Monte Carlo–based
approach and 2) the computationally efficient PCEmethod. SAwill
provide an overview of the global variability approach using the
Sobol indices (SIs). The computational implementation of these
methods will then follow including an overview of the statistical
measures that support data postprocessing from the response
outputs.

A. Uncertainty Quantification

The model f is considered as a black box and represents the
underlying system (in this case, the CA tools, RCAS, and HOST),
which is analyzed by solving the governing equations. Here f is

the general model with output Y such that Y � f�x�, where x �
�x1; x2; : : : ; xk�T is a vector of k inputs to the model with associated
probability distributions.

Y � f�x� (1)

The output Y is any value in the output space Ω with an unknown
probability density function (PDF), ρY , that is established using a
uncertainty propagation scheme. This involves the determination of
the distribution of Y for function f in Eq. (1) based on the distribu-
tions of the input parameters of xk. The uncertain input parameters are
characterized using a normal (Gaussian) distributionwithmean μ and
standard deviation σ such that N�μ; σ�. The PDF of the normal
distribution ρN�x� is denoted by

ρN�x� �
1

σ
������
2π

p e−
1
2�x−μσ �2 (2)
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Fig. 9 Spanwise distribution of torsion moment due to variability in GJ spanning 40–200% relative to baseline.
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Fig. 11 Spanwise distribution of flap bending moment due to variability in EIflap spanning 40–200% relative to baseline.



Once the input parameters x are propagated into the model, f
(CA or surrogate), the uncertainty metrics of a continuous random
variableX are established from the statistics of the PDF, ρ. This can
include the mean E (expectation value) and variance V. The mean
is defined as

E�X� �
Z
Ω
x ⋅ ρ�x� dx (3)

The statistical measures are calculated using moment i, with
Eq. (4) representing the variance (i � 2):

V�X� �
Z
Ω
�x − E�X��i�2 ⋅ ρ�x� dx (4)

where the ith moment represents the variance (i � 2), skewness
(i � 3), and kurtosis (i � 4).
Postprocessing of UQ data is carried out by generating a cumu-

lative distribution function (CDF) that is representative of the area
under the PDF. It is used to evaluate the probability P that output Y
will take a value less than or equal to a set threshold y such that

fY�y� � P�Y ≤ y� (5)

The probability that Y is in the interval �a; b� such that a < b is
denoted by

P�a < Y ≤ b� � fy�b� − fy�a� (6)

The CDF permits the assessment of critical design questions, for
example: Given the uncertainties in blade properties, what is the

probability that rotor load will exceed a critical safety threshold?

B. Uncertainty Propagation Analysis Method

1. Monte Carlo Approach

Awidely used probabilistic approach for uncertainty propagation
is the Monte Carlo method. The framework can facilitate UQ in a
nonintrusive manner as it does not require the modification of the
underlying solver, and it also does not make any assumptions about
the model. The method randomly selects the input parameters from
the input PDFs across the ranges of uncertain variables, x, of size N
by a stratified sampling scheme. The model is then evaluated at
sample x that creates the mapping of the inputs to outputs:

�xi; yi�; i � 1; 2; : : : ; N

where yi � f�xi�. Equations (3) and (4) are used to calculate the
statistics of the response output, and the process is repeated by
increasing sampling size N until statistical convergence of the out-
puts is achieved. The mapping of inputs to outputs can be postpro-
cessed using scatterplots to assess the relationships (linear, nonlinear,
discontinuities), or a least-squares approach is used to form a regres-
sionmodel that relates output to inputs. Additional statistical analysis
is also undertaken to generate output PDFs and CDFs, leading to the
quantification of response intervals with probabilities due to input
uncertainties.
Uncertainty propagation with MCS will converge to the exact

stochastic solution as the sample population, N → ∞. Yet, the con-
vergence of themean error, σμ, estimatewill be limited as the standard

deviation of the mean scales inversely with the square root of the
sample size:

σμ �
σ����
N

p (7)

Consequently statistical convergence is assessed using a) mean in
Eq. (3); b and c) convergence of PDFandCDFcurves; andd) standard
error based on the 97.5th percentile point of a standard distribution
Zα∕2 (in this case Zα∕2 � 1.96), allowing to establish the 95% prob-

ability confidence interval (CI) as follows:

CI �
�
μ − Zα∕2

σ����
N

p ; μ� Zα∕2
σ����
N

p
�

(8)

When N → ∞, the confidence interval length will be zero and

reduced to the real statistical mean. Hence, a significant limitation

of the MC approach is that it requires many function evaluations for

statistical convergence.
One approach to limit this issue involves improving the coverage

of the parameter space for the distribution of the input samples.

Accordingly LHS developed by McKay et al. [18] is used for

uncertainty propagation. In this approach, the range of each input

random variable is divided into intervals with equal probability. The

methodology has been extensively used in a wide range of applica-

tions [19–23], including rotorcraft conceptual design [24] and uncer-

tainty analysis with NASA rotorcraft sizing design tools [25]. Even

with improved stratified sampling for uncertainty propagation, the

MC approach with direct model evaluations is a computationally

expensive process especially if high-fidelity simulations govern the

solver. To adequately address this issue, a metamodel is needed for

the system response.

2. Polynomial Chaos Expansion Surrogate Modeling

Surrogatemodeling is implemented to replace the computationally

expensive deterministic model for uncertainty propagation. The goal

is to formulate a methodology that will accurately approximate the

system response using a limited set of data over a defined space.

Surrogate modeling is beneficial in scenarios where many calls to the

computational model are required, for design optimization, and in

this case for uncertainty propagation. The development of a surrogate

model requires a finite number of deterministic simulations to form a

regression model by fitting the system response as a function of the

design space.
In this work, the nonintrusive polynomial chaos (NIPC) method is

used. The approach has been applied for a wide range of aerospace

applications by Schaefer et al. [20], Debusschere et al. [26], Najm

[27], and Hosder et al. [28]. In this process, the NIPC is developed by

iteratively increasing the number of deterministic evaluations until a

surrogate model with desired accuracy and convergence is estab-

lished. Here the NIPC method is briefly defined, and a thorough

summary of the model is available in the literature [29]. If we

consider, again, the uncertain (random) variable x and its realization
y, if the latter has a finite variance, it can be represented as a second-
order random process using a PCE:

y �
X∞
j�1

ajΨj�x� (9)

The aj coefficients can be considered as the coordinates of y in the

space generated from the polynomial chaos basis, Ψj. Consider a

single random variable problem for sake of clarity before a general-

ized formulation is provided. The first step is to define the polynomial

basis expression. For every analytic probability distribution of a

random variable, an orthogonal polynomial basis can be defined.

Commonly used distributions and the associated polynomial chaos

basis are defined in Table 1.
The polynomial chaos functions of a given family are mutually

orthogonal, according to the following inner product in a Hilbert

space, Ω, for x:

Table 1 Polynomial chaos families correspondence with

standardized distribution laws

Variable distribution law Polynomial chaos Support

Uniform Legendre �a; b�
Gaussian (normal) Hermite �−∞;�∞�
Gamma Laguerre �0;∞�
Beta Jacobi �a; b�



hΨk�x�;Ψl�x�i �
Z
Ω
Ψk�x�Ψl�x�ρ�x� dx � hΨk�x�2iδkl (10)

where δkl is the Kronecker delta function and ρ is the PDF. The

summation in Eq. (9) must be truncated to establish the desired

maximum polynomial degree. The truncation limit p depends on

the polynomial degree d (maximum value) and the random vector

dimension n (� 1 for single variable problem), providing an expres-

sion of the approximation of the random response, ~y, according to the
polynomial chaos coefficients ~aj:

~y�x� �
Xp
j�0

~ajΨj�x� with p� 1 � �d� n�!
d!n!

(11)

The truncation scheme introduces an error that is measured by

expressing y�x� − ~y�x� as

y�x� − ~y�x� �
Xp
j�0

�aj − ~aj�Ψj�x� �
X∞

j�p�1

ajΨj�x� (12)

The norm of the error is obtained using the inner product and the

orthogonality properties of the polynomial basis:

ky�x� − ~y�x�k2 �
Xp
j�0

�aj − ~aj�2kΨjk2 �
X∞

j�p�1

a2jkΨjk2 (13)

The error is minimal when the estimation error is equal to zero; i.e.

�aj � ~aj� ∀ j ∈ f0; 1; : : : ; pg, leaving only the truncation error.

Once the truncation is defined, the coefficients aj are calculated

using the orthogonality properties of the PCE basis:

aj�x� �
hy�x�;Ψj�x�i
hΨj�x�2i

(14)

knowing that

hy�x�;Ψj�x�i �
Z
Ω
y�x�Ψj�x�ρ�x� dx

There are two methods to establish the coefficients aj. The first is to
compute the integral using aGaussian quadrature. The integral can be

approximated using a polynomial expansion γi on a discrete number

of evaluations of the random vector �x1; : : : ; xq�. This vector

includes collocation points corresponding to the chosen polynomials

zeros location in the exploration space. The integral can then be

approximated as follows:

Z
Ω
y�x�Ψj�x�ρ�x� dx ~�

Xq
i�0

y�xi�Ψj�xi�ωi (15)

The weighting factor ωi is obtained using the Gauss quadrature

method. The benefit of this approach is that it can accurately inter-

polate between the input sampling dataset as long as the function

evaluations are executed at the prescribed quadrature points. Addi-

tional details of this methodology are provided in [30].
In the second technique for the calculation ofaj, the quadratic error

between themodel and approximated value is minimized [31]. In this

case, the evaluations are not restrained to quadrature locations, but the

accuracy of the regression is guided by both the input sampling as

well as the minimization algorithm efficiency.
As extension to multivariate problems, a multi-index vector is

introduced:

I �
�
α ∈ Nd; jαj �

Xd
i�0

αi ≤ d

�

And a polynomial chaos Ψi
αi of order αi is associated with random

variable xi, where the PCE assumption that the random variables are

independent is defined as follows:

ρ �
Yn
i�1

ρi�xi� (16)

Equation (11) can then be extended:

~y�x� �
X
α∈I

aαΨα�x� with Ψα�x� �
Yn
i�1

Ψi
αi�xi� (17)

The aα coefficients are obtained using the expression transposed

from Eq. (14). In this study, the regression approach is used to

mitigate solver nonconvergence issues at the quadrature point

locations.

3. Sensitivity Analysis Using Polynomial Chaos Expansion

Variance-based decomposition methods such as analysis of vari-

ance (ANOVA) for linear approaches or global sensitivity analysis

(GSA) for nonlinear functions provide an insight on theweight of the

variable randomness on output response. The GSA proposed by

Sobol [32,33] uses SIs that quantify the fractional effect of each

random variable, including higher-order interactions effect on model

output. It is shown that there is a unique decomposition of y that is

integrable on Ω with respect to each random variable using the

ANOVA representation:

y�x� � y0 �
Xn
i�1

yi�xi� �
Xn
i�1

Xn
j�1

yi;j�xi; xj� �
X

: : :

� y1;: : : ;n�x1; : : : ; xn� (18)

provided that

Z
Ω
yk1;: : : ;ks�xk1 ; : : : xks� dxkm � 0

∀ �k1; ks�∕f1 ≤ k1 < : : : < ks ≤ ng ∀ s ∈ �1; n�

In the first term in Eq. (18), y0 is constant and represents the mean of

the model, y. The total variance is expressed as

V�y� �
Z
Ω
y2�x� dx − y20 (19)

and for each function of the decomposition,

Vk1;: : : ;ks �
Z
Ω
: : :

Z
Ω
y2k1;: : : ;ks �x� dxk1 : : : dxks

∀ �k1; ks�∕f1 ≤ k1 < : : : < ks ≤ ng ∀ s ∈ �1; n� (20)

The first order and second order, including total SIs, are generated

from the variance as follows:

Si �
V�E�yjxi��

V�y� � Vi

V�y� (21)

Si;j �
Vi;j

V�y� (22)

STi � Si �
Xn
j�1

Si;j �
Xn
j�1

Xn
k�1

Si;j;k � : : : (23)

The SIs further have the following property:



X
k1;ks

Sk1 ;: : : ;ks � 1 ∀ �k1; ks�∕f1 ≤ k1 < : : : < ks ≤ ng

∀ s ∈ �1; n� (24)

The indices can be evaluated using the Monte Carlo approach,
but Sudret [34] showed that the PCE approach can also be used
to efficiently generate the SI values. As both the PCE and the SI
approaches provide a similar decomposition, and considering the
PCE basis orthogonality properties, the SI first-order can be
expressed using the PCE coefficients:

Si �
P

α∈Ii a
2
αP

α∈I� a
2
α

with

8<
:
Ii � fα ∈ I;αi ≠ 0; ∀ j ≠ iαj � 0g
I� �

n
α� �α1; : : : ;αi; : : : ;αm� ∈ Nm;

P
m
i�1 αi ≤ d and α ≠ 0m

o

(25)

For the second order, the SI is

Si;j �
P

α∈Ii;j a
2
αP

α∈I� a
2
α

with Ii;j � fα ∈ I; αi; αj ≠ 0; ∀ k ≠ ietk ≠ jαk � 0g (26)

And for the total SI,

STi � 1 −
P

α∈ ~Ii
a2αP

α∈I� a
2
α

with ~Ii � fα ∈ I; αi � 0; ∀ j ≠ iαj ≠ 0g
(27)

The analysis assumes that the uncertain input variables are sta-
tistically independent, else the application of the Rosenblatt [35]
transformation would be warranted.

IV. Numerical Analysis

In this section, uncertainty and sensitivity of the ONERA 7A rotor
blade are established. The analysis will address the following
questions:
1) Uncertainty analysis: How do the uncertainties in blade stiff-

ness properties impact rotor power and half peak-to-peak (HPP)
structural loads?
2) Sensitivity analysis: Which blade stiffness property has the

greatest contribution to overall uncertainty in rotor power and struc-
tural loads, and where in the blade (radial span stations)?
As first step, the identification of the sources of uncertainties in

blade properties is required. A UQ-based computational framework
is then exercised using a propagation scheme with MCS and a
surrogate-assisted model. A SA approach using a global nonlinear
method with SIs then follows to identify blade properties and regions
that are most influential on total system variability.

A. System Uncertainties

The classification of uncertain blade stiffness properties are defined
inTable 2.Variability in blade stiffness properties is characterized to be
aleatory uncertain due to the inherent randomness in spanwise blade
properties as a result ofmanufacturing variations which are introduced
due to imprecise equipment, varied raw material properties, and heat
treatment processes. At predefined blade regions, an SF is applied, as
a multiplier to the baseline setting to impose stiffness variability for
the uncertainty analysis. In the absence of real-life manufacturing data
that can be referenced indicating design fabrication tolerances and/or
defects during assembly leading to variances in blade properties, the
scope-of-randomness for aleatory parameter definition is assumed in
thiswork.Here the SF is set to be normally distributedwithmean, μ �
1.0 (blade at baseline state). At initial analysis, two standard deviations
were tested at σ � 10% and σ � 20% (variability of uncertainty about

the nominal state). In the preliminary analysis, itwas established that at
σ � 10%, the uncertainties in rotor power andmaximumpeak-to-peak
loads were negligible. Accordingly in the analysis to follow, the
standard deviation was increased to σ � 20% for both RCAS and
HOST studies to then establish if at a higher variability, performance
uncertainties will follow.
Theparameterization of blade stiffnesswasuniformly induced using

a constant SF at each radial station spanning from root to tip. The
impact of these uncertainties has been studied using two different
approaches. Firstly, the uncertainty of the maximum half peak-to-peak
loads along the span is considered, and, secondly, the comparison of
the variability at the blade span locations where the blade structural
loadsweremeasuredwith strain gauges is considered. The first study is
performed using the MC strategy coupled directly to CA, while the
alternate approach takes advantage of a CA surrogate-based approach.

B. Uncertainty Analysis Using Monte Carlo Simulations

The uncertainty in blade stiffness properties on response outputs is
quantified using RCAS with 1500 LHS generated Monte Carlo runs.
Ideally the simulation sample size needs to be governed by a sta-
tistically converged result, but to maintain reasonable computing
overheads, the maximum run size was capped. The sample size
adopted will provide an acceptable design space coverage (although
not fully converged) from which expected data trends can be estab-
lished for the assessment of system uncertainties.

1. Blade Stiffness Versus Rotor Power

Initially each stiffness parameter is sampled using LHS one-at-a-
time before the combined effects of all three stiffness parameters (GJ,
EIflap,EIlag) are integrated to study the coupling effects. The results in

Tables 3–6 represent the response output for rotor power and maxi-
mum spanwise half peak-to-peak loads. In each table, the dashed line
( ) characterizes deterministic RCAS response when the stiff-
ness is at baseline (SF � 1.0; nominal stiffness setting without
uncertainties); the bullet symbol ( ) represents mean from the Monte
Carlo runs; the 95% probability distribution from the MC runs is
captured by establishing the 2.5th and the 97.5th percentile of the
distribution from the CDF to then form the 95% probability width
( ) of the responses. Accordingly the uncertainties in blade
stiffness properties on rotor power are summarized in Table 3.
Uncertainty in GJ on rotor power is summarized in the top row of

Table 3. The variability in rotor power using the 95% probability
interval width (difference between 2.5 and 97.5% cumulative prob-
ability bounds) is much bigger than the other cases modeled. An
interval width of 4.13 HP is ≈3.00% of the deterministic value of
124.81 HP, where no uncertainties are factored. The sensitivity of
rotor power to GJ is expected from the parametric analysis in Figs. 6
and 8, where a decrease in rotor power with increasing torsion stiff-
ness was established.
In the postprocessing analysis to follow, the PDF of the response

outputs is established using the MATLAB Statistics and Machine
Learning Toolbox [36]. In Fig. 12b, it is established that rotor power
follows an asymmetric generalized extreme value (GEV) probability
distribution [36,37]with extreme outliers in the tails of the curve. The
GEV distribution represents a family of continuous probability dis-
tributions that are based on the extremevalue theory (EVT) [38]. EVT
provides the statistical framework to make inferences about the
probability of extreme outlier events in the distributed sample set.
From the power PDF, the MCS statistical mean of 125.10 HP was

Table 2 RCAS study: representation of uncertain stiffness input
parameters to establish impact on rotor power and structural loads

(torsion, flap, and chord bending moments)

Stiffness Parameter (SF) PDF Mean (μ) Std. dev. (σ)

GJ SFGJ Normal 1.0 0.20

EIflap SFEIflap Normal 1.0 0.20

EIlag SFEIlag Normal 1.0 0.20



established, which is greater than the deterministic result of Pdet: �
124.81 HP. The data confirm that skewness in rotor power with

extreme outliers follows due to input uncertainty using the normal

distribution where the stochastic mean is higher than baseline when

no uncertainties are factored.

The CDF in Fig. 12c is generated to assess the probability intervals

due to GJ uncertainty. A symmetric 95% probability interval between

2.5 and 97.5% cumulative probability bounds is generated (shaded in

Fig. 12c) to assess the performance intervals in power performance.

Critically, off-design performance with probability can also be estab-

lished using the CDF. Assuming a critical power of 129.00 HP, the

probability that rotor power due to GJ uncertainty will be less than this

setting is ≈99%.

In Table 3, the variability in rotor power due to independent

modeling of the uncertainty in EIflap and EIlag is also presented.

Propagation of uncertainty in EIflap resulted in a Monte Carlo–

established mean of Preq � 124.75 HP, which was slightly lower

than baseline, and the propagation of uncertainty in EIlag resulted in

Monte Carlo mean power that equaled the baseline result. The 95%

probability interval bands for both EIflap and EIlag cases were also

relatively narrow in comparison to the GJ case. In the parametric

analysis in Fig. 6 and SA in Fig. 8, it was shown that the variability in

EIflap and EIlag had a minimal impact on rotor power. A decrease in

rotor power was obtained as EIflap and EIlag are independently

lowered about the baseline at SF � 1.0. Accordingly, the data

Table 4 Representation of normally distributed, N �1.0; 0.20�, blade stiffness uncertainties on maximum torsion
moment (TMmax) using 95% probability intervals

Uncertain stiffness TMmax. �Det: � 19.60 N ⋅m� μ 2.5% Prob. 97.5% Prob. Width

GJ

18 18.5 19 19.5 20 20.5

19.30 18.52 20.22 1.70
EIflap 19.46 18.00 20.00 2.00

EIlag 19.46 18.48 20.00 1.52

GJ, EIflap, EIlag 19.16 18.31 20.40 2.09

Table 3 Representation of normally distributed,N �1.0; 0.20�, blade stiffness uncertainties on rotor
power (Preq) using 95% probability intervals

Uncertain stiffness Preq �Det: � 124.81 HP� μ 2.5% Prob. 97.5% Prob. Width

GJ

123 124 125 126 127 128

125.10 123.90 128.03 4.13
EIflap 124.75 124.39 124.84 0.45

EIlag 124.81 124.58 125.02 0.44

GJ, EIflap, EIlag 125.03 123.91 127.85 3.94

Table 5 Representation of normally distributed,N �1.0; 0.20�, blade stiffness uncertainties on maximum flap bending moment
(FBMmax) using 95% probability intervals

Uncertain stiffness FBMmax. �Det: � 41.00 N� μ 2.5% Prob. 97.5% Prob. Width

GJ

40 45 50

41.49 39.54 51.70 12.16
EIflap 41.74 36.52 47.21 10.69

EIlag 41.16 39.23 44.07 4.84

GJ, EIflap, EIlag 42.23 36.60 51.37 14.77

Table 6 Representation of normally distributed,N �1.0; 0.20�, blade stiffness uncertainties on
maximum chord bending moment (CBMmax) using 95% probability intervals

Uncertain stiffness CBMmax. �Det: � 34.50 N ⋅m� μ 2.5% Prob. 97.5% Prob. Width

GJ

35 40 45 50 55 60 65

35.04 30.60 42.14 11.54
EIflap 34.30 33.11 35.85 2.74

EIlag 41.46 34.30 58.42 24.12

GJ, EIflap, EIlag 42.50 32.00 65.40 33.4



sampled in the MCS using the prescribed distribution,N �1.0; 0.20�,
further re-enforced this pattern.
The data in Table 3 further present the combined effects of uncer-

tainties in GJ, EIflap, and EIlag on rotor power. The Monte Carlo–

established mean is only slightly greater than the baseline result, and
the width of the 95% probability intervals matches the earlier GJ

result such that it is ≈3.00% of the deterministic value. The results

confirm that GJ alone has an active influence on rotor power in

comparison to uncertainties in EIflap and EIlag. Hence, from a design

perspective, uncertainty in GJ for the 7A rotor blade needs to be
managed to ensure that vehicle power requirements are not violated.

2. Blade Stiffness Versus Maximum Torsion Moment

The uncertainties in blade stiffness parameters on maximum TM

is presented in Table 4. The mean with variability in GJ results with

TMmax equaling 19.30 N ⋅m, which is lower than the nominal

deterministic result (no uncertainties factored) at 19.60 N ⋅m. In

the supporting analysis (not presented here), it was noted that as GJ

increases, the torsion frequency also increases, and for the 7A rotor,

the peak-to-peak TM decreases relative to the baseline where the

stiffness SF equals ones. This pattern was also confirmed in the

parametric analysis in Fig. 9a, where an increase in GJ resulted in a

decrease in TMmax. To represent system uncertainties, the 95%

probability interval width was generated at 1.70 N ⋅m, which is

≈9% of the deterministic result.
Uncertainties in EIflap and EIlag yield matchingMonte Carlo result

whereTMmax mean at 19.46 N ⋅m is lower than baseline at 19.60 N ⋅
m for both stiffness parameters. Yet, the 95% probability interval

width representing the range of performance values expected due to

respective EI uncertainties is≈10% relative to the deterministic value

for EIflap compared to ≈8% for EIlag.

Due to the combined stiffness effects, themeanMonte Carlo result at

19.16 N ⋅m is further lower than baseline at 19.60 N ⋅m. This is ex-

pected as each individual stiffness contribution independently resulted

in the lowering of the Monte Carlo mean than deterministic, and these
effects are further projected in the combined stiffness study. To further

analyze the propagation of input uncertainty on TMmax, the data from

the stochastic analysis are presented using a PDF and CDF in Fig. 13.
The PDF in Fig. 13a is formed using the maximum likelihood

estimation (MLE)method to determine the parameters of a probability

distribution that fit the sampled TM data by maximizing a likelihood

function. Based on the fitting analysis, the PDF follows the GEV

distribution. Accordingly, the EVT is applied to make inferences of

extreme deviations in maximum TM due to the stochastic patterns of

the sampled dataset. This is interpreted through a CDF in Fig. 13b,

where a probability of ≈98% is established that TM maximum will

be less than an assumed critical threshold of TMmax � 20.50 N ⋅m.
The CDF further provides a symmetric 95% probability range of

18.31–20.40 N ⋅m due to input uncertainties centered around the data

median (Table 4 and shaded in Fig. 13b). These data can then be used

for ongoing design refinements if point estimate probabilities for a

given load condition are not within acceptable thresholds.

3. Blade Stiffness Versus Maximum Flap Bending Moment

Uncertainties in blade stiffness parameters on maximum FBM

are presented in Table 5. Independent uncertainty in GJ, EIflap,
and EIlag results in a converged Monte Carlo mean that is margin-

ally higher than the deterministic result. Importantly the uncer-

tainty bands are quantified using the 95% probability interval

where uncertainty in GJ leads to expected FBMmax loads span-

ning 39.54 N ⋅m through 51.70 N ⋅m with an overall width that

is approximately 30% relative to the deterministic result of

Fig. 12 Uncertainty propagation of GJ on Preq.



41.00 N ⋅m. The uncertainty bands are also asymmetrical about the
deterministic and Monte Carlo mean result. A similar trend is also
established for uncertainty in EIflap where the 95% probability

interval is ≈26% relative to the deterministic measure and the
uncertainty bands are symmetrical about the baseline (no uncer-
tainties factored) and Monte Carlo mean measure. Further, uncer-
tainty in EIlag also constitutes to a symmetrical distribution of the

95% probability intervals about the Monte Carlo mean and match-
ing deterministic result, yet the width of the uncertainty bands is
reduced to ≈12% relative to uncertainties interval width for GJ and
EIflap conditions alone. This result infers that lag stiffness has a

reduced effect with sensitivity on FBMmax: than variability in GJ
and EIflap (confirmed in Fig. 8 also).

In the combined effects with uncertainties in GJ, EIflap, and EIlag,
the mean FBMmax: from the Monte Carlo run equals 42.23 N ⋅m,
which is about the baseline result at 41.00 N ⋅m andmatches closely
to the means from the uncertainties of the individual blade stiffness
parameters. Yet, thewidth of the uncertainty band is extended relative
to previous cases analyzed at ≈36% relative to the deterministic
result. Further probabilistic analysis with the corresponding uncer-
tainties is analyzed in Fig. 14.
The PDF in Fig. 14a follows the GEV distribution where the fitting

was estimated using the MLE method. The GEV distribution mean is
42.23 N ⋅m ( ) which is higher than the deterministic perfor-
mance at 41.00 N ⋅m ( ), where blade stiffness is at the nominal
setting. The analysis confirms that FBMmax: expectation value formed
using a stochastic framework with uncertainties is greater than the
FBMmax: load established using a deterministic framework where
input uncertainties are not factored. The PDF further shows that at
the tail there are extreme cases where FBMmax: exceeds 60.00 N ⋅m.
The probabilities of the established design loads are interpreted using a
CDF in Fig. 14b. The probability that blade FBMmax: will be below the
deterministic threshold such that FBMmax: ≤ 41.00 N ⋅m ( in

Fig. 14b) is ≈42%; the probability that a blade will be characterized
with extreme FBMmax: > 53.00 N ⋅m ( in Fig. 14b) is≈1%; and

the 95% probability intervals are formed by establishing the interval
width between 2.5 and 97.5% cumulative probability bounds resulting

in intervals of 36.60–51.37 N ⋅m (Table 5 and shaded in Fig. 14b

between lines).

4. Blade Stiffness Versus Maximum Chord Bending Moment

The impact of uncertainties in blade stiffness parameters on maxi-

mumCBMispresented inTable 6.TheMonteCarlo–establishedmean

with independent modeling of uncertainty in GJ and EIflap resulted in
an expectation value that was close the deterministic result. The 95%

probability interval with uncertainty in GJ resulted in a performance
width that spanned ≈33% of the baseline result. Yet, uncertainty in

EIflap resulted in a CBMmax: performance band that was ≈8% of the

deterministic result. Hence, it is concluded that uncertainty in EIflap
will have negligible impact on CBMmax:.
With uncertainty inEIlag, themeanCBMmax: from theMonteCarlo

runs and the 95% probability bands increase relative to the GJ and

EIflap cases. In the parametric analysis that was performed (not shown

here), it was observed that EIlag is at an optimum (minimal) state

when stiffness scaling is at a nominal (baseline) setting. A subtle

deviation (increase or decrease) in stiffness about the deterministic
threshold results in a significant increase in CBMmax: loads. These

trends are further shown in Table 6, where variability inEIlag using a

normal distribution of the SF (Table 2) results in a Monte Carlo
mean and 95% probability performance bands that are higher than

the baseline condition and the cases analyzed with uncertainties GJ
and EIflap conditions. Further, the width of the CBMmax: perfor-

mance band is ≈70% of the deterministic result, hence confirming

that a wide range of CBMmax: loads are expected due to uncertainty
in EIlag.

a) PDF b) CDF

Fig. 14 Statistical representation of the uncertainties in GJ, EIflap, and EIlag on maximum FBM.

a) PDF b) CDF

Fig. 13 Statistical representation of the uncertainties in GJ, EIflap, and EIlag on maximum TM.



Due to the combined uncertainties of the three stiffness parameters,

theMonteCarlomeanand the 95%probability intervalswidth increase

relative to the other cases analyzed. In the absence of a formal

sensitivity study, the systematic analysis presented (Table 6) confirms

that the active parameter causing the extended width of the CBMmax:

performance band is due to the uncertainty inEIlag followed byGJwith

EIflap causing minimal influence. The performance width established

is significant and extends to ≈97% of the baseline result, which

confirms that uncertainties in stiffness parameters, specifically in

EIlag, need to be mitigated to reduce the performance output domain.

Further analysis is undertaken by the representation of the output

data distribution and corresponding probabilities using a PDF and

CDF, respectively, in Fig. 15. The output PDF in Fig. 15a follows the

GEV distribution that is positively skewed and was established using

the MLE approach. Due to the input uncertainties, discrepancy

between the baseline result (34.50 N ⋅m, ) and Monte Carlo

mean at 42.50 N ⋅m ( ) follows primarily due to the effect of

EIlag (Table 6).

Further, the tails at both extrema have not reached as asymptotic

state; hence statistical convergence has not been achieved. It is noted

that, in the extreme cases, CBMmax: reaches 100 N ⋅m. Despite the

nonconvergence state, the PDF provides an acceptable framework for

the interpretation of modeled data trends.
The probabilities of the establishedCBMmax: loads are analyzed in

Fig. 15b using a CDF. The following probabilities of interest are

extracted:
1) probability CBMmax: ≤ 34.50 N ⋅m (deterministic) is ≈16%,
2) probability thatCBMmax: exceeds an assumed critical load thresh-

old of 75.00 N ⋅m is ≈3% (Fig. 15b; Pr. [CBMmax: ≤ 75.00 ≈ 0.97;
1–Pr. ≈0.03),
3) probability that CBMmax: is between the deterministic measure

of 34.50 N ⋅m andmaximumassumed load threshold of 75.00 N ⋅m
is Pr. �34.50 < CBMmax: < 75.00� ≈ 82%, and critically

4) the 95% probability intervals translate to CBMmax: domain
of 32.00–65.40 N ⋅m

The data presented in Fig. 15 quantify the loads distribution and the
resulting probabilities due to stiffness uncertainties. In the casewhere
extreme loads are evident, this information can be used as an aid for
planform design modifications to ensure that structural failure due to
excessive CBM loads is not realized.

C. Numerical Uncertainty and Sensitivity Analysis Versus
Experimental Results

In this section, the uncertainties of the system are compared with
experimental measurements at specific spanwise locations. The ran-
domoutputs considered include both rotor power and blade structural
loads. The surrogate-based approach presented in Sec. I is used to
efficiently approximate rotor performance including structural loads
at the 15 radial stations.
The analysis is structured to first consider the independent uncer-

tainties inGJ,EIflap, andEIlag, and then the combined effectsof the three

parameters are modeled using a normal distribution, N �1.0; 0.20�,
centered about the mean with a standard deviation of 20%. In the
proceeding section, statistical convergence for the quantification of
uncertainty in rotor power is presented. Uncertainties in blade structural
loads at defined radial stations are also detailed. SA is then undertaken
to identify the impact of parameter uncertainties on response outputs.

1. Uncertainty Analysis for Rotor Power Using a Response Surface Model

A critical requirement in the generation of a response surface
model (RSM) is to ensure that the approximation errors are low
relative to target observations. When using the PCE method, the
polynomial degree can significantly impact errors. To assess the
accuracy of the system, the cumulative error of the outputs is formed
and projected as a function of variance in database dimension and
polynomial degree. Figures 16a and 16b summarize the cumulative

a) PDF b) CDF

Fig. 15 Statistical representation of the uncertainties in GJ, EIflap, and EIlag on maximum CBM.

a) Database dimension dependency
(3rd PCE order)

b) PCE maximum polynomial degree dependency
(256 samples database)

Fig. 16 PCE regression cumulative relative error evolution.



relative errors of all the uncertain outputs, where the former chart
relates to the sampling of the input dimensions, and the latter focuses
on the polynomial degree variation for a given input sampling
dimension. The analysis confirms that with a sample size of 256
points using a polynomial degree of 3 (Fig. 16b), acceptable accuracy
is achievedwith an error of 0.031%. It is also noted that, even with 32
samples (Fig. 16a), the cumulative error is low and that it drops
significantly with 256 sampling points. For the latter, the error is
insensitive to a polynomial of degree greater than 3, as the random
space is already well described by the calculated random outputs at
the sampled locations.
An advantage of using an RSM is that statistical convergence

can be established using an exhaustive MC approach with negli-
gible computational effort as shown in Figs 17a–17d, where the
population of input samples is increased from 10 to 50,000 points.
At each incremental change, the statistical mean of total power
(Ptot) and the 95% confidence interval (95% CI) are formed. The
charts show that, when 50,000 evaluations are reached, both stat-
istical metrics are converged for all uncertainty cases (single- and
multidimensional uncertain variables problems). The correspond-
ing PDF and CDF responses are also generated in Figs. 18 and 19,
respectively, and it is confirmed that both curves have reached a
stabilized shape. The best-fit PDF is a gamma law that is asym-
metric and matches the response established using the global
approach (Fig. 12). Table 7 summarizes the statistical convergence
metrics for all uncertain cases. The confidence interval is negligible

and the error factor is lower than 10−3, hence confirming acceptable
convergence.
Table 8 summarizes the total power uncertainty for the considered

UQcases. The PCE-establishedmean, the converged variance, and the
95% probability intervals are presented. The trends established are
comparablewith the results from theRCAS-basedMCS inTable 3. It is
shown that the isolated uncertainty that has the most influence is
torsion stiffness, followed by flap stiffness, and lag stiffness uncer-
tainty has a negligible impact. When the combined uncertainties are
modeled, the variability around the mean matches the uncertainty in
torsion stiffness alone. In Table 3, the width of the 95% probability
interval for the combined effects was less than the interval width for
the GJ effect alone (3.94 vs 4.13, respectively). This would confirm
that the results in the Monte Carlo approach are not statistically

converged with 1500 points, as the results with 50,000 samples using
PCE (Table 8) confirm that the uncertainty widths for GJ and com-
bined effects are in agreement. In follow-up works, a surrogate-based
approach with RCAS simulations will also follow so that an extended
input sampling size can be executed to sustain statistical convergence
and to further validate this result.

2. RSM-Based Blade Structural Loads Uncertainty Analysis

Uncertainties are similarly quantified for the structural loads at
set radial stations. Figures 20a–20c represent the comparison of the
statistical mean and the resulting 95% probability interval with
experimental data and the deterministic solution. It is observed that
the experimental data arewithin the uncertainty rangewith exception
to four measurements (2 for CBM in Fig. 20a; 1 for FBM in Fig. 20b;
and 1 for TM in Fig. 20c) that are offset to the formed intervals. Also
the 95% probability interval in some cases reaches 30% of the
statistical mean, which is excessive and indicates a high sensitivity
of the output at the respective radial station to the corresponding input
parameter. Thevariability in the uncertain outputs is dependent on the
characterization of the input uncertainties, and if a different input
PDF were to be used, the resulting variability in the data relative to
experiment and baseline will change accordingly.
The impact of combined uncertainties on the three moments is

established in Figs. 21a–21c. Compared to the isolated uncer-
tainties, the 95% probability intervals, in general, are wider for
all cases, and results remain where the experimental data are not
within the established uncertainty intervals. This can also be
attributed to the setting and validation of the dynamic inflow mo-
del that was formed in Sec. II.B. The results also confirm that there
are coupling effects in the responses due to the combined input
uncertainties, and SA in the proceeding section will quantify these
effects.

3. Sensitivity Analysis Using the PCE Approach

SA is a critical component in thisworkflow and can be integrated at
UQ preprocessing or postprocessing stages. At preprocessing, SA is
used to downselect to fewer variables that actively impact response
output if the input dimensionality is extreme. At UQ postprocessing,
SA is undertaken to study the level of contribution of each parameter

a) Torsion stiffness uncertainty b) Flap stiffness uncertainty

c) Chord/Lag stiffness uncertainty d) Combined stiffness uncertainty
Fig. 17 Total power statistical mean convergence graphs for the four UQ problems.



a) Sample dimension: 10 b) Sample dimension: 100

c) Sample dimension: 10,000 d) Sample dimension: 50,000

Fig. 18 Total power PDF convergence.

a) Sample dimension: 10 b) Sample dimension: 100

c) Sample dimension: 10,000 d) Sample dimension: 50,000

Fig. 19 Total power CDF convergence.



on response outputs through independent perturbations and through
interactions with other parameters. The knowledge gained from this

process can be used to perform targeted studies in an effort to reduce
the overall uncertainty of the system by focusing on parameter/s that
are quantified with active influences on system response. In this
work, SA is performed post-UQ for this purpose.
The PCE coefficients (Sec. III.B) that were previously established

for the uncertainty analysis in Sec. IV.C are used to now compute the
SIs. Figures 22a–22d summarize the calculated SIs (total and partial)

and the corresponding nomenclature is defined inTable 9. In Fig. 22a,
it is shown that total power is exclusively sensitive to torsion stiffness.
Parameter sensitivities on structural loads are presented in

Figs. 22b–22d. For each moment modeled in the analyses, the

sensitivity trends match irrespective of the spanwise location. As
example, in Fig. 22b high total sensitivity of lag stiffness on TM
(S2_tot) is noted at each radial station in comparison to the sensitivity

attributed by torsion stiffness (S3_tot) that is relatively lower, and
negligible sensitivity of flap stiffness (S1_tot) at the corresponding

Table 7 Representation of normally distributed, N �1.0; 0.20�, blade stiffness uncertainties on
rotor power statistical mean value for converged 95% confidence interval

Uncertain stiffness Preq �Det � 120.57 WP� μ σ Za∕2
σ��
n

p 95% CI

GJ

120 120.2 120.4 120.6 120.8 121

120.69 0.52 0.00 (�120.68 to�120.69)

EIflap 120.55 0.14 0.00 (�120.55 to�120.55)

EIlag 120.56 0.03 0.00 (�120.56 to�120.56)

GJ, EIflap, EIlag 120.66 0.51 0.00 (�120.66 to�120.67)

Table 8 Representation of normally distributed,N �1.0; 0.20�, blade stiffness uncertainties on rotor
power with 95% probability intervals

Uncertain stiffness Preq �baseline � 120.57 HP� μ σ 95% Prob. interval

GJ

119 120 121 122

120.69 0.52 (�119.95 to�121.98)

EIflap 120.55 0.14 (�120.40 to�120.95)

EIlag 120.56 0.03 (�120.50 to�120.63)

GJ, EIflap, EIlag 120.66 0.51 (�119.92 to�121.90)

a) Lag stiffness uncertainty impact on CBM b) Flap stiffness uncertainty impact on FBM

c) Torsion stiffness uncertainty impact on TM

Fig. 20 Impact of isolated stiffness uncertain on the corresponding moment.



span stations is noted. The result is further projected in Fig. 23a,
where the 95% probability interval of TM due to uncertainty in lag
stiffness is presented. The data confirman extended uncertainty range
across the span, hence validating the active sensitivity of lag stiffness
on TM.
Similarly parameter sensitivities on FBM are presented in Fig. 22c.

It is shown that flap stiffness (S1_tot) has high sensitivity to FBM,
followed by torsion stiffness (S3_tot), and lag stiffness (S2_tot)
that has a relatively muted impact with exception to span station
r∕R � 0.87. The distribution of spanwise FBM 95% probability

a) Combined stiffness uncertainties impact on CBM b) Combined stiffness uncertainties impact on FBM

c) Combined stiffness uncertainties impact on TM

Fig. 21 Impact of Combined stiffness uncertainties on the three structural loads.

a) Power sensitivity due to stiffness uncertainties b) TM sensitivity due to stiffness uncertainties

c) FBM sensitivity due to stiffness uncertainties d) CBM sensitivity due to stiffness uncertainties

Fig. 22 Sensitivity plots for required power and moments under coupled uncertainties.

Table 9 Sobol indices
correspondence table

Sobol index Correspondence

_tot Total value
1 EIflap

2 EIlag

3 GJ
12/13/23 2nd-order index
123 3rd-order index



intervals due to uncertainty in torsion stiffness is presented in Fig. 23b.
The data show that the overall magnitude of uncertainty is generally
consistent across the span, and close to the tip the intervals are reduced
primarily since the blade is relatively stiff at this region due to the
enforcement of the zero moment boundary condition.
The sensitivities of stiffness parameters on CBM at the modeled

span stations are presented in Fig. 22d. It is shown that lag stiffness is
actively influencing overall uncertainty with limited contribution by
flap and negligible by torsion stiffness. Finally, no significant second-
or third-order cross sensitivities are observed.
The results established using both uncertainty and SA facilitate the

execution of intelligent, data-driven decisions. Uncertainty analysis
quantified the magnitude of output variations from numerical pre-
dictions. Accordingly loads and performance envelopes were gen-
erated, which may deviate from target requirement. Supporting this
effort were data derived from SA, which can be used as an informa-
tion tool for targeted studies to follow in an effort to reduce the overall
uncertainty of the system by focusing on input parameters that are
identified as influential.

V. Conclusions

Uncertainty analysis is performed on the ONERA 7A rotor oper-
ating at high-speed condition to quantify the variability in blade
stiffness properties (torsion stiffness GJ, flap stiffness EIflap, and
lag stiffness EIlag) on rotor power and structural loads. Rotorcraft

CA tools, including RCAS from the U.S. Army and HOST from
ONERA, were used in the analysis. A validated structural and aero-
dynamic model was established for both RCAS and HOST. Uncer-
tainty propagation then followed usingMCScoupledwithRCASand
a surrogate-based PCE method with HOST. The RCAS and HOST
analyses showed that uncertainty in GJ was the influencing factor on
overall uncertainty in rotor power relative to EIflap and EIlag. Addi-

tional analysis was also undertaken to quantify the uncertainty in
maximum half peak-to-peak structural loads using RCAS. The larg-
est uncertainty quantified was with peak CBM, where the over-
all uncertainty width exceeded ≈97% of the baseline deterministic
analysis result. The data derived from HOST were further evaluated
against measured half peak-to-peak structural loads across the blade
span.A surrogatewas thengenerated toapproximate loads at each span
station for the quantification of systemuncertainties and sensitivities. It
was shown that uncertainties in the blade stiffness significantly influ-
ence local structural loads. It was also observed that the experimental
data were within the uncertainty range (95% probability interval) with
exception of a few spanwise locations. A Sobol based analysis further
demonstrated the benefits of performing SA to obtain a quantifiable
measure of the level-of-impact of each blade stiffness parameter on
rotor power and structural loads uncertainty. The computational effi-
ciency demonstrated by a surrogate-based approach confirmed the
benefits of integrating an RSM for rotorcraft aeromechanics uncer-
tainty and SA.

As part of ongoingwork efforts, themethodologies presented in this
work will be used to address uncertainties with increasing complexity
through the introduction of additional uncertain parameters. Higher-
fidelity tools will be implemented and a combination of epistemicwith
aleatory uncertain parameters will be considered. As the number of
uncertain inputs increases, it will bemandatory to identify andmanage
the respective dependencies on outputs. A critical requirement is to
obtain a realistic representation of the uncertainty of the input aleatory
parameters using a PDF. The uncertain outputs generated will then
represent real-life uncertainty envelope, which can then be postpro-
cessed with confidence to aid informed data-driven decision making.
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