Adaptive and Privacy-Aware Persuasive Strategies to Promote Healthy Eating Habits: Position Paper
Diana Nurbakova, Audrey Serna, Abdelbasset Omiri, Antoine Boutet

To cite this version:

HAL Id: hal-04142017
https://hal.science/hal-04142017
Submitted on 26 Jun 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Adaptive and Privacy-Aware Persuasive Strategies to Promote Healthy Eating Habits: Position Paper

DIANA NURBAKOVA and AUDREY SERNA, Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, France
ABDELBASSET OMIRI, Univ Lyon, INSA Lyon, CNRS, UCBL, LIRIS, UMR5205, France and University of Passau, Germany
ANTOINE BOUTET, Univ Lyon, INSA Lyon, INRIA, CITI, France

Food has become a social issue. Developing a healthy relationship with food is a complex process as it implies a behaviour change. At first sight, recent advances in recommender system domain ensure personalised service and assistance of a user in decision-making process. However, traditional recommender systems lack the consideration of health-related factors (e.g., healthy diet guidelines, food allergies, etc.). Moreover, instead of recommending a new item (recipe), an effective system should apply persuasion strategies to accompany a user in a long process, a little step at a time. Furthermore, most of existing recommender models do not take privacy preservation into account. In this position paper, we outline the challenges faced by a persuasive system for promoting eating habits and discuss our vision on the implementation of adaptive and privacy-aware persuasive strategies for healthy food promotion.

CCS Concepts: • Information systems → Collaborative filtering; • Human-centered computing → Social recommendation; User models: • Applied computing → Consumer health.

Additional Key Words and Phrases: persuasive system, healthy eating habits, behaviour change

ACM Reference Format:

1 INTRODUCTION AND BACKGROUND

Malnutrition (undernutrition and overweight) threatens human health 1. Thus, according to the World Health Organization (WHO) 2, in 2016, over 1.9 billion adults (over 39%) were suffering from being overweight, among who 650 million were considered obese (13% of adults) 3. Moreover, WHO urges to promote diets that are both healthy and have low environmental impact [17]. But food is much more than calorie intake. It reflects culture, family traditions, rites, taste savouring. For instance, in 2010, the Gastronomic meal of French was inscribed on the UNESCO Representative List of the Intangible Cultural Heritage of Humanity 4. At the same time, it can have comforting and convenient facets and be seen as a punishment or reward. Moreover, socio-economic shifts have contributed to the way we eat and produce food.

1 Both authors contributed equally to this research.
2 https://www.who.int/news-room/fact-sheets/detail/healthy-diet
3 For adults, WHO defines overweight and obesity based on the value of body mass index (BMI) as follows: overweight if $\text{BMI} \geq 25$, obesity if $\text{BMI} \geq 30$

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/authors. Publication rights licensed to ACM.

Manuscript submitted to ACM
(Re-)establishing a healthy relationship with food is a challenge as it implies to change our eating behaviour for the better. To assist such a change, recommender systems can be used, providing a user with personalised content. However, to achieve the final goal of behaviour change, such a system should go far beyond a traditional recommender system. Indeed, the works on (healthy) food recommendation (e.g., [5, 6, 11]) mainly focus on recommending personalised recipes or diets. As argued in [5], most existing food recommenders ignore crucial health factors (e.g., allergies and nutrition needs), and/or do not consider the rich food knowledge for recommending healthy recipes. Personal and sensitive information is often exchanged without protection for the recommendation process, which poses important privacy concerns [3] and a potential limit for the user adoption. Moreover, and maybe most importantly, existing food recommenders fail at accompanying a user all over the process of behaviour change that usually takes time.

Indeed, to well incorporate behaviour change models / theories, a system should provide a combination of services, pieces of advice, progress tracking and support for individuals, and to be adjusted in time within the user’s progress [19]. To address such challenges, persuasive design principles can be adopted [13]. Various recent works have shown that persuasive games and gamified systems can enhance users’ motivation and engagement for behaviour change for health [14]. A recent study [20] proposes a taxonomy for behaviour change applications drawn on the Self-Determination Theory (SDT) [16], a well-known theory of human motivation and personality. The authors argue that future research should be focused on tailoring the system interventions to resonate with the constructs of SDT, in particular offering optimal challenges to users. In the same line, [15] point out several design recommendations such as tailoring the content and allowing users to set their own goals, offering suggestions on both how to set effective goals and how to reach the goals. The authors also underline the differences related to users’ privacy consciousness, suggesting to adopt either a system-controlled tailoring or a user-controlled tailoring approach.

Yet, recommender systems and behaviour change systems are largely powered by sensitive data related to users and their behaviour. The growing exploitation of personal data considerably erodes the privacy of users and the development of new technologies such as artificial intelligence only reinforces this phenomenon. To reduce privacy risks, different learning approaches preserving the privacy of personal data have emerged such as federated learning [4]. This learning scheme makes it possible to train models in a decentralized way with a very large number of participants by exchanging model information and not personal data. However, risks of inference remain even through these model exchanges [10].

In this project, we are therefore interested in tailoring persuasion strategies and system recommendations to users’ profile while providing a comprehensible user-control of their privacy for healthy food promotion. Thus, the objectives of the current project are two-fold: (1) To explore the fusion of recommender systems and persuasion and gamified strategies to overcome the individual limits of each domain to better support users in their behaviour change, offering them optimal challenges. (2) To identify different privacy control levels and their impact on the relevance of the system.

2 IMPLEMENTING ADAPTIVE AND PRIVACY-AWARE PERSUASIVE STRATEGIES

Following the framework of [19] mainly inspired by Social Cognitive Theory (SCT) [2] and nourished from other behaviour change theories, including SDT, we identify the key components of our eating behaviour change system (see Figure 1). From our perspective, to achieve our goal three axes should be considered all together: tailored motivational affordances, healthiness-aware food recommender system over a large knowledge base, and privacy preservation.

Tailored Motivational Affordances As mentioned previously, recent studies underlined the importance to rely on motivational theories when designing systems for behaviour changes, also considering users individual preferences and factors. We want to integrate in our system tailored game elements and persuasive strategies promoting the SDT psychological needs (autonomy, relatedness and competence). We chose to rely on SDT since it is well adapted to describe
the development of causal action and self-determined behaviour, with applicability across multiple life domains [20] and it is widely used in the field of gamification, in particular for player profiles. Regarding the adaptation mechanisms, in recent work [7] in the field of Education, the authors developed an algorithm to tailor game elements to learners’ profile, combining recommendations for their player profile and their motivation for the task into a unique recommendation. This resulted in an adaptation that was more effective on learners’ motivation and engagement than those based on a unique profile. It has also been shown that the analysis of logs can be useful to detect users’ engagement and could be a lever for adapting different motivational elements. Following this idea, we want to rely on two different aspects of users profiles: (a) player profile (Hexad [18], for instance) and (b), users’ motivational profile and their goals toward healthy food. The content and optimal challenges proposed should also be adapted dynamically according to behavioural patterns that we could track from the real activity of users (App use).

Healthiness-Aware Food Recommender System To make use of rich food data, we will use FoodKG [8], recipe data, and all nutrition-related data. This will allow to reason over it, as providing justifications of recommendation can effectively support users’ choices [1, 12]. Chen et al. [5] suggest a constraint-based question-answering model allowing to account for nutrient-related constraints and answer user query using FoodKG. A similar approach can be used to incorporate individual factors and constraints (e.g., allergies, health condition, etc.). However, the use of user queries is a limitation in our scenario, though we also consider to create recommendations based on the images of available ingredients. We will need to tailor the food recommendations to the behaviour change stages, goals and motivations.

Privacy Preservation Finally, the existing algorithms do not consider privacy aspects, using all kinds of data available. In this project we propose to explore to what extent an adaptation algorithm can integrate privacy constraints and how users can control this compromise. Considering such a system from the privacy point of view raises several issues. A key aspect in a persuasive behaviour change system is to be able to monitor users’ progress, keeping a track of user’s activity and behaviours and to quantify their progress. The tracked information can be quite sensitive (e.g., sex, weight, height, eating allergies, physical condition, mood etc.). Moreover, the system may allow comparison of the achievements with other users, another key component of a persuasive system. Therefore, progress monitoring and social comparison should be privacy-preserving and ethical by design, and controllable by the user themselves. A study of data minimisation schemes (e.g., [9]) and the use of Federated Learning architecture (e.g., [3, 10]) will be conducted.
3 CONCLUSION

In this position paper, we presented our vision of adaptive and privacy-aware persuasive strategies for healthy food promotion. Future work consists in a gradual implementation of such a system combining three domains: behaviour change and persuasion design, recommender systems, and privacy preservation.

REFERENCES

