
HAL Id: hal-04141992
https://hal.science/hal-04141992v1

Submitted on 26 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward the use of LES for industrial complex
geometries. Part II: Reduce the time-to-solution by

using a linearised implicit time advancement
Thomas Berthelon, Guillaume Sahut, Julien Leparoux, Guillaume Balarac,

Ghislain Lartigue, Manuel Bernard, Vincent Moureau, Olivier Métais

To cite this version:
Thomas Berthelon, Guillaume Sahut, Julien Leparoux, Guillaume Balarac, Ghislain Lartigue, et al..
Toward the use of LES for industrial complex geometries. Part II: Reduce the time-to-solution by
using a linearised implicit time advancement. Journal of Turbulence, 2023, 24 (6-7), pp.311-329.
�10.1080/14685248.2023.2225139�. �hal-04141992�

https://hal.science/hal-04141992v1
https://hal.archives-ouvertes.fr


ARTICLE TEMPLATE

Toward the use of LES for industrial complex geometries. Part II:

Reduce the time-to-solution by using a linearized implicit time

advancement.

T. Berthelona, G. Sahuta, J. Leparouxb, G. Balaraca,c, G. Lartigued, M. Bernarda,
V. Moureaud, and O. Métaisa
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ABSTRACT
The strong increase in computational power observed during the last few years has
allowed to use Large Eddy Simulation (LES) for industrial configurations. Never-
theless, the time-to-solution is still too large for a daily use in the design phases.
The objective of this work is to develop a new time integration method to reduce
the time-to-solution of LES of incompressible flows by allowing the use of larger
time-step. The projection method, probably the most commonly used method in
the context of LES of incompressible flow, is generally applied using explicit time
advancement which constrains the time-step value for stability reasons (CFL and
Fourier constraints). The time-step can then be small with respect to the physi-
cal characteristic times of the studied flow. In this case, an implicit time advance-
ment method, which is unconditionally stable, can be used. However, this leads to
non-linear resolution of momentum equation which can strongly increase time-to-
solution because of non-linear iterations inside a physical iteration. In order to relax
the stability constraints while minimizing the computational cost of an iteration,
a linearized implicit time advancement based on Backward Differentiation Formula
(BDF) scheme is proposed in this work. The linearization is performed using an
extrapolated velocity field based on the previous fields. This time integration is first
evaluated on a turbulent pipe test case. It is observed a time-to-solution up to five
times lower than the explicit time integration while keeping the same accuracy in
terms of mean and fluctuating velocity fields. In order to incorporate this new time
advancement method in the automatic mesh convergence developed in Part I, a
time-step control method based on the local truncation error is used. The resulting
automatic time-step and mesh procedure is evaluated on a turbulent round jet case
and on PRECCINSTA configuration, a swirl burner which is a representative case
of an industrial aeronautical injection system. This new procedure leads to a time-
to-solution up to three times lower than the previous procedure, presented in Part
I.
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1. Introduction

High-Fidelity simulations are now possible in various complex geometry configurations
with the growth of computational resources. In this context, Large-Eddy Simulation
(LES) which consists in explicitly solving the largest scales of the flow and modeling
the effect of the smallest ones introducing a Subgrid-Scale (SGS) model, appears as a
compromise between Direct Numerical Simulation (DNS) and statistical approaches
such as Reynolds-Averaged Navier-Stokes equations (RANS). In a previous work [1],
a user-independent mesh adaptation strategy has been proposed to guarantee reliable
LES in any configuration, without a priori knowledge of the flow dynamics. This paves
the way to use LES as a decision support tool for various applications. However, to
achieve this goal, the objective is now to be able to reduce as much as possible the
time-to-solution of LES to be compatible with project time scales in various industrial
or geophysical application fields. The objective of this work is then to revisit the time
advancement scheme for LES of viscous incompressible flow to be able to overcome
the stability constraint and use larger time-steps to reduce the time-to-solution of
simulations.

LES of viscous incompressible flow are most often based on the projection method
for pressure-velocity coupling initially introduced by Chorin [2] and Temam [3]. This
method can be qualified as prediction-correction method. Indeed, in a first step the
velocity is predicted using the momentum equation. While this step advances accu-
rately the solenoidal part of the velocity field, errors in the continuity equation are
introduced. Then, this velocity prediction is corrected with a pressure term in order to
ensure the continuity equation. This correction step requires the solution of a Poisson
equation. The common practice is to perform the prediction using explicit or semi-
implicit schemes, which consists in using an explicit scheme for the non-linear convec-
tive term and an implicit scheme for the viscous term. In both cases, the time-step
has to satisfy the Courant-Friedrichs-Lewy (CFL) constraint to ensure the stability of
the scheme. It is then possible that this stability constraint leads to time-steps smaller
than the smallest physical characteristic times given by the resolved spatial scales in
LES. More precisely, this criterion can lead to very small time-steps in high-velocity
region with small cells. However, if the gradients are small in these regions, this limi-
tation is not physical but only numerical. In this case, it should be preferable to use
a fully implicit scheme in order to get rid of this constraint. Choi and Moin [4,5] have
for example shown that it was possible to gain a factor of 5 on the required CPU time
on turbulent flow over riblets. To this purpose, they used the implicit Crank-Nicolson
scheme. The non-linearity of the convective term forces them to use a Newton-like
method which can be computationally expensive. In order to avoid the non-linear it-
erations of these methods, Kim et al. [6] use the Beam and Warming procedure [7] to
linearize the convective term of the Crank-Nicolson scheme. The same idea is present
in the work of Simo and Armero [8] who identify a linear implicit scheme of order 2
as well as in that of Olshanskii et al. [9] who use a linearized Backward Difference
Formulas (BDF) scheme. These different studies show that it is possible to use an
implicit scheme to solve incompressible flows, which allows to use time-steps larger
than those satisfying the CFL constraint. Nevertheless, a too large time-step can not
allow to simulate adequately the studied physical phenomenon. For example, Choi and
Moin [5] have shown that for a DNS of a turbulent channel, the turbulent fluctuations
can not sustain if the time-step is larger than the characteristic time associated with
the Kolmogorov scale. In an LES context, it is difficult to know a priori the relevant
time-step. It is however possible to choose the time-step according to the accuracy of
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the time integration scheme. This kind of methods is called adaptive time-step meth-
ods. In the fluid mechanics literature, these methods have been designed for a large
number of time integration schemes [10–12]. They have in common the use of an es-
timate of the temporal integration error to determine the next time-step in order to
reach a specified user-defined error value.

In this work, a linearized implicit time advancement is proposed. The accuracy and
the performance in terms of time-to-solution are compared with classic explicit time
advancement. Moreover, a time-step adaptation procedure is used, based on the error
estimation of the BDF time integration [13,14]. However, there is no universal temporal
error value to ensure that the LES computation is accurate. This is why an automatic
and a user-independent procedure is proposed to determine the target value of this
temporal error. Finally, this procedure is combined with the mesh adaptation strategy
proposed in Part I [1] to obtain a user-independent procedure by combining time-step
and mesh convergence for any LES configuration at reduced time-to-solution. The
paper is organized as follows. Section 2 presents the explicit solver used in this study
as a reference by introducing the key concepts to understand the development of the
linearized implicit time advancement. Section 3 details this implicit time advancement
by introducing the linearization of the convective term using an extrapolated velocity
(section 3.1). The proposed method is then evaluated on the academic test case of a
turbulent flow pipe, and compared with a classic explicit time advancement in terms
of time-to-solution (section 3.2). The time-step adaptation procedure is then detailed
in section 4.1 and is embedded in the mesh adaptation strategy by adding a method to
determine the target value of the temporal error (section 4.2). The overall procedure is
first applied to a turbulent round jet configuration (section 4.3). Finally, it is applied
to the industrial case of the PRECCINSTA swirl burner (section 4.4). The results are
discussed in terms of accuracy and reduction of time-to-solution in comparison with
the use of explicit time advancement.

2. Numerical tool: LES solver based on unstructured body-fitted meshes

As in the previous paper [1], LES were performed using the YALES2 flow solver [15].
This code solves the incompressible and low-Mach-number Navier-Stokes equations
for turbulent flows on unstructured meshes using a projection method for pressure-
velocity coupling [2,3]. It relies on central finite-volume schemes and on highly efficient
linear solvers [16]. YALES2 solver is able to deal with unstructured grids composed
of tetrahedral and hexahedral elements allowing to perform LES or DNS of complex
geometries with dynamic mesh adaptation [17,18] in the context of massively parallel
computations. For all presented cases, the dynamic Smagorinsky subgrid-scale model is
used [19]. In this work, the method mentioned as explicit corresponds to the projection
method in which the prediction step is performed using an explicit scheme for the non-
linear convective term and an implicit scheme for the viscous term. For the sake of
clarity, the explicit method is detailed using the forward Euler method, but in practice
a fourth-order modified Runge-Kutta scheme [20] is used with a CFL number set to
0.9. The first step of the projection method consists in making a prediction of velocity
at time n+ 1, named u⋆, by using the previous pressure field,

u⋆ − un

∆t
+∇ · (un ⊗ un) = ∇ · ((ν + νt,un)∇un)− 1

ρ
∇Pn− 1

2 , (1)
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where νt,un represents the turbulent viscosity of the LES model. Then, the previous
pressure gradient is removed1,

u⋆⋆ = u⋆ +∆t
1

ρ
∇Pn− 1

2 . (2)

In order to find the current pressure Pn+ 1

2 which leads to divergence-free velocity, the
following Poisson equation is solved:

∇2Pn+ 1

2 =
ρ

∆t
∇ · u⋆⋆. (3)

Finally, the velocity field at time n+ 1 is obtained with the correction step,

un+1 = u⋆⋆ − ∆t

ρ
∇Pn+ 1

2 . (4)

This method is widely used in the context of LES of incompressible flows. In partic-
ular, this is the method employed during the automatic mesh convergence procedure
proposed in the previous paper [1]. Nevertheless, the time-step ∆t is constrained by the
stability of the prediction step, Eq. (1), typically CFL≤1 for forward Euler method.
This can lead to a prohibitive time-to-solution for aplications.

3. Implicit time advancement

3.1. Linearized implicit time advancement using extrapolated velocity

One way of reducing the time-to-solution of LES is to increase the time-step. For
this purpose, it is necessary to use implicit time integration to overcome the CFL
and Fourier constraints, due to the advection and diffusion terms, respectively. The
prediction step can then be performed using the BDF time integration scheme at order
p,

α0u
⋆ +

p∑
k=1

αku
n+1−k
i +∇ · (u⋆ ⊗ u⋆) = ∇ · ((ν + νt,u⋆)∇u⋆)− 1

ρ
∇Pn− 1

2 . (5)

The coefficients αk depend only on the successive time-steps. These coefficients are
computed thanks to a recursive function detailed in [12]. This equation is non-linear
and requires Newton-like methods, involving evaluation of Jacobian matrices, that can
be complex and/or costly. The idea of the implicit method developed in this work is to
linearize this equation by introducing an extrapolation of order l of the velocity field
ũn+1 :

ũn+1 =

l+1∑
k=1

γku
n+1−k. (6)

1This could directly be done in the first step for the Euler method, but not for Runge-Kutta methods of order
greater than one.
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The coefficients γk correspond to the Lagrange polynomial evaluated at time tn+1:

γk =

l+1∏
m=1,m ̸=k

tn+1 − tn+1−m

tn+1−m − tn+1−k
. (7)

This allows to write the prediction step, by using an implicit approach, as a linear
equation with u⋆ as unknown,

α0u
⋆ +

p∑
k=1

αku
n+1−k
i +∇ · (u⋆ ⊗ ũn+1) = ∇ · ((ν + νt,ũn+1)∇u⋆)− 1

ρ
∇Pn− 1

2 . (8)

The next steps of the method are similar to the ones of the explicit time advancement.
The previous pressure is removed,

u⋆⋆ = u⋆ +
1

α0ρ
∇Pn− 1

2 . (9)

The Poisson equation is solved to find the current pressure,

∇2Pn+ 1

2 = α0ρ∇ · u⋆⋆. (10)

Finally, the velocity is corrected to guarantee the free divergence condition,

un+1 = u⋆⋆ − 1

α0ρ
∇Pn+ 1

2 . (11)

This method is a generalization with arbitrary orders of the linearized BDF2 projec-
tion scheme proposed by Olshanskii et al. [9]. The appendix A illustrates the theo-
retical convergence order in a pure convection test case, showing the benefit of the
linearization. The implementation of this method in YALES2 flow solver is relatively
straightforward and can easily benefit from development on resolution of linear sys-
tems in HPC context [16,21]. Nevertheless, special care is required for the implicitation
of boundary conditions. Indeed, depending on the type of a given boundary condition
(inlet, outlet, wall, . . . ) and the presence of backflow, the value of the velocity pre-
dictor on the boundary can be known (e.g., previous or reference value, if a Dirichlet
condition is used) or unknown (i.e., equal to the one being computed), resulting in
a term located in the right- or left-hand side of the linear system of Eq. (8), respec-
tively. In order to take backflow into account in Eq. (8), the volumetric flow rates
across all domain boundaries are computed using un. Backflow is detected depending
on the sign of the scalar product of the volumetric flow rate and the normal vector
to the boundary, with the convention that the latter always points to the outside of
the domain. Table 1 summarizes the treatment of boundary conditions for inlets and
outlets depending on the presence of backflow. Once the left- and right-hand sides
are constructed, the linear system, Eq. (8), is solved using the BiCGStab(2) linear
solver [21] to deal with the anti-symmetric part of the matrix. The BDF integration
order and the extrapolation order are chosen such as p = l = 2 because it seems a
good compromise between stability and accuracy of the linearized implicit scheme.
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Table 1. Boundary conditions for Eq. (8) depending on the presence of backflow: uref is a known reference

condition, e.g., a Dirichlet condition; lhs and rhs stand for left- and right-hand sides, respectively.

Boundary type Without backflow With backflow

inlet uref, rhs u∗, lhs

outlet u∗, lhs un, rhs
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Figure 1. Comparison of turbulent pipe flow statistics: DNS (black line), explicit (black dashed line) versus
implicit method for different time-steps (blue dashed lines). The different time-steps are kept constant during

each simulation, and they roughly correspond to a range of CFL numbers between 0.9 and 100.

3.2. Validation and performance on turbulent pipe flow

To assess the performance and the precision of the linearized implicit time integration
method, the case of a turbulent pipe flow with a Reynolds number equal to 5, 300,
based on the bulk velocity and the pipe diameter, is considered. The flow configu-
ration is similar to the DNS performed by Wu and Moin [22] on a structured mesh
composed of 67.7 million cells and is identical to the one treated in the previous pa-
per [1]. The mesh is the one obtained by the automatic mesh convergence detailed in
section 4.4.2 of the previous paper [1] and contains 58,556,190 elements. The computa-
tions presented in this section are performed with constant time-steps. The linearized
implicit time advancement is used with 8 values of time-steps. The smallest one corre-
sponds to the average value obtained using the explicit time integration performed at
a CFL number equal to 0.9, and is mentioned as ∆tref . The largest time-step corre-
sponds approximately to 100 ∆tref . Figure 1 shows statistical quantities comparison
between explicit time integration, performed with ∆tref , and linearized implicit time
integration. It can be seen that the larger the time-step, the greater the discrepancies.
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Figure 2. Evolution of time-to-solution scaled by time-to-solution of the explicit case, Timp/Texp, and error
on turbulent kinetic energy, ETKE , as a function of the time-step.

The error on the turbulent kinetic energy (TKE), ETKE , is defined as the L2-norm
of the TKE difference between explicit and implicit time integration normalized by
the maximum of the TKE in explicit case. The variation of ETKE as a function of
time-steps is shown in Fig. 2. For ∆t/∆tref < 10 the error is less than 1%, then in-
creases rapidly to more than 8%. Figure 2 also shows the evolution of time-to-solution
of the linearized implicit time advancement, Timp, normalized by time-to-solution of
the explicit time advancement Texp. It can be seen that the larger the time-step, the
lower the time-to-solution. For ∆t/∆tref ≈ 10, the time-to-solution for linearized im-
plicit time advancement is more than 5 times lower than in the explicit case. Note
that due to very small elements close to the wall, the semi-implicit diffusion used for
the explicit case needs a significant number of sub-steps. In this particular case, the
linearized implicit approach has then a smaller time-to-solution, even at small time-
step. As a result, the use of implicit time integration allows a significant reduction
in time-to-solution while maintaining the accuracy of the statistics. Nevertheless, it is
difficult to know a priori the maximum time-step that allows to keep a given level of
accuracy. This is why an automatic convergence procedure based on temporal error
control is proposed in the next section.

4. Automatic time-step and mesh determination

4.1. Time-step determination

A strategy is required to determine the time-steps of the simulation. The choice
has been made to base this strategy on the local truncation error. The time-step is
chosen at each iteration in order to stay at a user-defined error level. The idea behind
the choice to control time-step with temporal error is to draw a parallel with the
automatic meshing approach presented in the previous paper [1], which used spatial
discretization error in order to adapt mesh size. The global strategy will be presented
in section 4.2.

The determination of time-step is based on the local truncation error En+1
p , which
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can be expressed in the framework of a p-order BDF time integration by [13],

En+1
p =

tn+1 − tn

tn+1 − tn−p
|un+1 − ũn+1|∞. (12)

In this equation, un+1 represents the vector of all the nodes and the three directions of
numerical evaluation of u at time tn+1. Moreover, this definition implies the velocity
extrapolation:

ũn+1 =

p+1∑
k=1

γku
n+1−k. (13)

Contrary to Eq. (6), the order of extrapolation is imposed by the order of the BDF
scheme. The adaptive time-step method is based on this evaluation of the local trun-
cation error at time tn+1 in order to estimate the next time-step, ∆tn+1 = tn+2− tn+1,
which is defined relatively to the current time-step ∆tn with the ratio σ such that
∆tn+1 = σ∆tn. The procedure is based on the expected behavior of the error with the
time-step within the so-called asymptotic range [12],

En+1
p ≈ C∆tp+1

n , (14)

where C is assumed independent of the time-steps. If En+1
p is evaluated with Eq. (12)

and En+2
p is targeted to a user-defined error ϵT , Eq. (14) leads to:

σ =

(
ϵT

En+1
p

) 1

p+1

. (15)

The evaluation of the error at iteration n is used to compute the time-step at iteration
n+1. Although the strategy of time-step determination is independent of the linearized
implicit method with extrapolated velocity, there is a strong link between these two
aspects of the developed approach. Indeed, the error made in the linearization of
the convective term in the implicit approach is directly linked to the quality of the
extrapolation of the advecting velocity. It appears then natural to determine the time-
step to control this extrapolation error. The benefit, in term of computational cost, of
the adaptive method is illustrated on a pure convection test case in appendix A. Note
that for all the linearized implicit cases presented in this paper, the BDF order as the
extrapolation order for the linearization is fixed to 2.

4.2. Methodology to determine the target value of the temporal error

The automatic time-step and mesh convergence is an extension of the mesh conver-
gence presented in the previous paper [1], where the mesh is adapted until the global
turbulent kinetic energy (TKE) production, PV

TKE, and the global molecular dissipa-
tion,DV

ν , are independent of the mesh. This procedure is based on the criterion QC1(x⃗)
allowing to control the spatial discretization error and on the criterion QC2(x⃗) allow-
ing to guarantee that enough turbulent scales are resolved [18]. The mesh convergence
procedure proposes to sequentially determine the target values for QC1,T and QC2,T .
The extension proposed in this work is to use linearized implicit time integration while
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Table 2. Comparison of time-to-solution given in hours for the explicit reference automatic mesh convergence

(Texp) and linearized implicit automatic time-step and mesh convergence (Timp) for the turbulent round jet

case.

State 0 1 2 3 4 Total
Texp 0.08 7.78 9.39 - 10.05 27.30
Timp 0.04 2.24 1.80 1.22 2.69 7.99

Texp/Timp 2.00 3.47 5.21 - 3.73 3.41

determining automatically the target time error value, ϵT . Therefore, the new proce-
dure still does not require any a priori flow knowledge or any comparison to reference
results, which is mandatory to be able to use LES in complex flows as a predictive
tool. Note also that the procedure has been fully automated and it does not require
any action from the user.

A sketch of the overall algorithm is shown in Fig. 3. The first computation is per-
formed with an initial and arbitrary CFL number which allows to determine the initial
value of ϵT = ϵ0T = ⟨|E|⟩ (State = 0). Then, the values of QC1,T (State = 1) and QC2,T

(State = 2) are obtained with iterative process involving the global molecular dissi-
pation, DV

ν , and the global TKE production, PV
TKE. This procedure is detailed in [1].

Keeping the final values for QC1,T and QC2,T , a reduced value ϵT = ϵ1T = ϵ0T /β is
tested. The coefficient β is chosen in order to reduce the time-step by a factor of 1.5.
Using temporal mean of Eq. (14) in the case of p = 2, the coefficient leading to a
reduction of a factor 1.5 of the time-step is β = 1.53 = 3.375. The procedure is re-
peated m times, until the deviation of the global molecular dissipation, ∆DV

ν , and the
deviation of the global transfer to TKE, ∆PV

TKE are less than 10%. Then, the final
value for ϵT is fixed equal to ϵmT . This part is identified as State = 3 in Fig. 3. Lastly,
the final mesh is then obtained and final statistics are computed (State = 4).

4.3. Application to turbulent round jet

The proposed automatic time-step and mesh convergence procedure is applied to the
turbulent round jet case treated in the previous paper [1]. The numerical set-up includ-
ing boundary conditions and domain size is detailed in section 4.4.1 of the previous
paper [1]. The results obtained with automatic mesh convergence with explicit time
integration are considered as reference. The procedure starts from the same initial
tetrahedral mesh, composed of 307,806 elements, but the simulation is started with
a constant CFL number of 10. The evolution of the main quantities characterizing
the procedure is shown in Fig. 4. Based on the statistics of the initial mesh (State
= 0), the sequential determination of the target values for QC1,T (State = 1), QC2,T

(State = 2) and ϵT (State = 3) starts. The number of elements has a strong increase
at the first steps, leading to a final mesh composed of 8, 573, 945 elements which is
very close to the 8, 125, 037 elements of the reference case. The evolution of the global
molecular dissipation and the global transfer to TKE production are also comparable
to the reference case. The temporal mean time-step decreases strongly during the first
adaptation before converging to value until State = 3 where the change of ϵT leads to a
reduction of the time-step as expected. The statistics prediction obtained by automatic
time-step and mesh convergence is compared to the reference case in Fig. 5. There is
a good agreement for both mean and root mean square (rms) velocity profiles at the
different stages of the round jet transition, which validates the precision of the lin-
earized implicit time advancement. Table 2 shows the comparison of time-to-solution
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dissipation, DV

ν , the global TKE production, PV
TKE, the mean time-step ⟨∆t⟩ and the number of elements,

Nelem. Note that the resolved, PV
res, and the modeled PV

mod, parts of the TKE production are also shown.

for the different states. Even if an additional step is needed to guarantee the temporal
accuracy, the improvement of performance due to linearized implicit time advance-
ment allows to reduce significantly the time-to-solution of the other states. At the
end, the automatic time-step and mesh convergence is more than 3 times faster than
the reference case. This confirms that the proposed linearized implicit time method is
able to correctly predict shear layer transition in addition of wall-bounded flows, as
shown in Section 3.2.

4.4. Application to the PRECCINSTA burner

The proposed automatic time-step and mesh convergence procedure is finally applied
to the PRECCINSTA burner case treated in the previous paper [1]. The numerical
set-up including boundary conditions and domain size is detailed on section 5 of the
previous paper [1]. The procedure starts from the same initial tetrahedral mesh, com-
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Table 3. Comparison of time-to-solution given in hours for the explicit reference automatic mesh convergence
(Texp) and linearized implicit automatic time-step and mesh convergence (Timp) for the PRECCINSTA burner

case.

State 0 1 2 3 4 Total
Texp 0.21 12.19 7.06 - 15.23 34.69
Timp 0.14 6.62 3.51 2.93 10.78 23.98

Texp/Timp 1.50 1.84 2.01 - 1.41 1.45

posed of 446,661 elements, but the simulation is started with a constant CFL number
of 10. The evolution of the main quantities characterizing the procedure is shown in
Fig. 6. Based on the statistics of the initial mesh (State = 0), the sequential determi-
nation of the target values for QC1,T (State = 1), QC2,T (State = 2), and ϵT (State
= 3) starts. The evolution of the quantities is similar to that of the reference case
presented in the pevious paper. The final mesh is composed of 185,212,606 elements,
which is close to the 178,586,310 elements of the reference case. The statistics pre-
diction obtained by automatic time-step and mesh convergence is compared to the
automatic mesh convergence, presented in the previous paper [1], and experimental
results [23,24] in Fig. 7. There is a very good agreement for both mean and rms ve-
locity profiles at the different stages between the two automatic procedures. Table 3
shows the comparison of time-to-solution for the different states. The improvement is
less pronounced than in the case of the turbulent round jet (see Table 2), but high
enough to compensate for the extra step (State 3). As a result, the whole procedure
is 1.45 times faster.

5. Conclusion

In this paper, a linearized implicit time advancement is proposed in order to reduce the
time-to-solution of LES of incompressible flows. The linearization is carried out using
extrapolation of the velocity field in the prediction step of the projection method. This
allows the use of larger time-steps than those constrained by the stability of explicit
schemes. For a turbulent pipe flow, the use of linearized implicit time advancement
allows to reduce the time-to-solution by a factor of 5 while keeping the same accu-
racy in terms of mean and fluctuating velocity fields. Nevertheless, it is difficult to
know a priori the maximum time-step that allows to correctly capture the time scales
involved. This is why an automatic convergence procedure based on temporal error
control is proposed. This procedure is based on a time-step control strategy which
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aims to determine at each iteration the time-step that keeps the local truncation time
error at a certain level. Moreover, in order to be user-independent, this level of error
needs to be determined automatically. This is why the automatic mesh convergence,
proposed in the previous paper, is adapted. A criterion on the temporal error is then
added to the criterion on the correct discretization of the mean field and to the cri-
terion on the determination of the cut-off of the resolved scales. These three criteria
are sequentially constrained until a mesh-independent mean kinetic energy field is ob-
tained. The resulting automatic time-step and mesh procedure has been successfully
applied to a turbulent round jet and to an industrial swirl burner, named PREC-
CINSTA. The use of the linearized implicit time advancement significantly reduces
the time-to-solution of the whole procedure, despite the extra cost of adding the step
of time-error level determination. The automatic time-step and mesh procedure is 3
times faster for the turbulent round jet and 1.45 times faster for the swirl burner than
the previous procedure using explicit time integration. Future work will focus on the
reduction of the time-to-solution of the approach by optimizing the time windows of
the statistical accumulation, as well as by using anisotropic cells to reduce the number
of mesh elements.
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Appendix A. Assessment of theoretical errors

The objective of this appendix is to illustrate the behavior of the linearized implicit
scheme in an idealized case of pure convection. First, the impact of linearization on
the temporal convergence orders of the BDF is evaluated. Then, the benefit of the
adaptive time step is demonstrated. The test case corresponds to the convection of a
signal on a 2D periodic domain of size L× L,

∂ϕ

∂t
+ u(t)∇ϕ = 0, ϕ(0) = e

1

r2
0 e

1

r−r0 . (A1)

where r represents the distance to the center of the domain and r0 = 0.4L. The
convective velocity u follows a quadratic law in time such that the signal returns to
its initial position after a period of T ,

u(t) = 3

(
t

T

)2

. (A2)

Using the linearized implicit time advancement, the convection equation becomes,

p∑
k=0

αkϕ
n+1−k + ũn+1∇ϕ = 0, (A3)

where p represents the BDF order and ũn+1 the extrapolation of the convective velocity
performed at order l, Eq. (6).
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Figure A1. Errors evolution in function of constant time-step. Different combination of BDF order and
extrapolation order of the convective velocity (l) are illustrated. Black lines correspond to convergence order

1, 2 and 3.

The equation is solved using an uniform regular triangular mesh composed by 512×
512 grid points, to minimize the spatial error. The error is then evaluated with the L2

norm between the initial scalar field ϕ(0) and the final scalar field obtained after one
period ϕ(T ). The evolution of this error as a function of a (constant) time-step size
is illustrated on Fig. A1. Concerning the BDF scheme at order 1, noted BDF 1, the
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both values of extrapolation order l = 0 and l = 1 lead to same theoretical order of
convergence of 1. The benefit of the extrapolation is clearly shown for the BDF scheme
at order 2, noted BDF 2. Indeed, the theoretical order of the scheme is recovered only
when the second order extrapolation l = 2 is used. With an extrapolation at order 0,
l = 0, an order of convergence close to 1 is obtained.
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Figure A2. Errors evolution in function of number of iteration. The adaptive time-step is compared to
constant time-step in case of BDF 1 (l = 1) and BDF 2 (l = 2).

The adaptive time-step is now evaluated for BDF schemes at order 1 and 2 with
four values of ϵT , the targeted value of local truncation error presented in section 4.1.
The resulting errors are illustrated on Fig. A2 as a function of the total number of
iterations Nit, which is an indicator of the computational cost. The adaptive time-
step is compared to the constant time-step, already presented on Fig. A1. It can be
noticed that the adaptive time-step maintains the theoretical convergence order of the
BDF schemes. Moreover, it can also be noticed that to achieve the same level of error,
less iterations are needed for the adaptative time-step cases in comparison with the
constant time-step cases for both BDF schemes, showing the benefit of the adaptive
time-step approach. For example, the number of iterations is roughly divided by 2 for
the second order BDF scheme.
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