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Abstract. Traditional IoT setups are cloud-centric and typically fo-
cused around a centralized IoT platform to which data is uploaded for
further processing. Next generation IoT applications are incorporating
technologies such as artificial intelligence, augmented reality, and dis-
tributed ledgers to realize semi-autonomous behaviour of vehicles, guid-
ance for human users, and machine-to-machine interactions in a trustwor-
thy manner. Such applications require more dynamic IoT environments,
which can operate locally without the necessity to communicate with
the Cloud. In this paper, we describe three use cases of next generation
IoT applications and highlight associated challenges for future research.
We further present the IntellIoT framework that comprises the required
components to address the identified challenges.

Keywords: internet of things; artificial intelligence; autonomous sys-
tems; human-computer interaction; trust;

1 Introduction

In today’s Internet of Things (IoT) deployments, cloud-based platforms are typi-
cally central points of data collection and processing. However, this cloud-centric
IoT model has limitations [13, 16, 27]: (i) unreliable cloud connectivity impedes
dependable end-to-end applications, (ii) limited bandwidth restricts the amount
of data that can be processed, (iii) high round-trip times prevent real-time op-
eration, (iv) high cost of data transport and intake, as well as (v) privacy and
trust concerns. Moreover, typical hierarchical setups of IoT cloud platforms (vi)
hinder use cases with dynamically changing context due to lacking self-awareness
of the individual subsystems and the overall system.
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To enable next generation IoT applications, these issues can be overcome
through localized IoT environments comprised of heterogeneous devices (e.g.,
edge computers as well as resource-constrained devices) that can collaboratively
execute semi-autonomous IoT applications, which include functions for sens-
ing, acting, reasoning, and control. However, since IoT applications cannot be
completely autonomous in what they decide and act, they need to keep the
human-in-the-loop for control and optimization of their Artificial Intelligence
(AI).

In this paper, we derive research challenges from three key classes of Next
Generation (NG) IoT use cases: 1) a fleet of agricultural vehicles (e.g., trac-
tors) is semi-autonomously operated in conjunction with supporting devices
(e.g., drones), 2) patients are semi-autonomously guided by artificial advisors
based on IoT device input; and 3) semi-autonomous machine-to-machine col-
laboration in industrial plants (e.g., robot arms and machinery). In all three
use case areas, a human expert plays a key role in controlling, monitoring and
teaching AI-enabled autonomous systems.

The remainder of this paper is organised as follows: Section 2 presents the
three use case classes from agriculture, healthcare and manufacturing. Section
3 describes the IntellIoT framework to enable NG IoT application development.
Section 4 presents current research around key enablers to fulfill the vision and
highlights associated research challenges. Section 5 concludes this paper and
points to future work.

2 Next Generation IoT Use Cases

Due to the dimensions of variability, we selected three distinct use cases that
stand exemplary for a broad range of NG IoT applications.

2.1 Autonomous Operation of Agriculture Vehicle Fleets

Fig. 1 describes the use case of a semi-autonomous agricultural vehicle fleet. This
use case entails the provision of new functionalities (e.g., AI algorithm implemen-
tations) for IoT applications by technology providers (e.g. tractor manufacturers)
via step (1). A human operator (Farmer or Agriculture fleet management) spec-
ifies a goal for autonomous activities (e.g., ploughing or spraying a certain farm
field) of the tractor on an Edge infrastructure as depicted in step (2). From the
defined goal, a plan for IoT application instantiation is derived and a deployment
of the required functions to the involved devices, e.g., tractor or drones shown
in step (3), is triggered. Next, the deployed AI operates the involved vehicles,
which includes dealing with blockages or other adversarial events using sensors
of the vehicle (e.g., cameras or LIDAR) via step (4). This can be facilitated
by sensing the environment from multiple neighbouring vehicles to collectively
train their models and identify objects in a faster and more robust manner. The
sensed data can also serve as a training dataset for continually improving the
underlying AI models.
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Fig. 1. IntellIoT-enabled NG IoT agriculture use case.

If an obstacle is detected and the tractor cannot determine how to traverse it
(step 5), then control of the tractor is handed over to a human operator (step 6).
Data from the cameras and sensors is transmitted to the human operator who
can use AR/VR technology to have a surround view of the situation. Direct and
indirect strategies for taking over remote control are both necessary for step (7):
Direct interaction with the tractor (i.e. remotely driving the vehicle) requires
a reliable and high-speed connection enabling real-time interaction between op-
erator and tractor. Indirect control with VR tooling aims to identify a feasible
trajectory around the tractor, and control is given back to the tractor, while
the human operator supervises the tractor remotely while it traverses the newly
defined trajectory correctly. Based on the input from the human operator, the
vehicle can refine its AI models by continually learning (step 8) how to overcome
such obstacles in the future in addition to potentially sharing the learned model
with other vehicles.

In the future, service providers will also offer such semi-autonomous vehicles
(e.g., to provide farming services). Then, contractual agreements need to be set
up using distributed ledger technology (DLT) (e.g., ownership of the farmer’s
land needs to be confirmed). This information will constitute a digital evidence
that the field owner authorized the requested services and the area in which the
smart equipment operates. Storing performed agricultural activities back in the
DLT as historic evidence (step 9) can then be utilized in business models.

2.2 Collaborative intelligence for remote patient monitoring

Advances in AI and in IoT-enabled systems may lead to significant benefits in
healthcare, enabling physicians to efficiently improve patient outcomes, safety
and comfort, for instance by leveraging the new technology to remotely guide
their patients through recovery and rehabilitation at home. The solution em-
powers patients to focus on their recovery, giving them the confidence that they
are safe, that the tools can support and inform them all the way, and that their
physicians are always in the loop when needed.

Fig. 2 describes a system that leverages IoT device inputs to give clinical
experts accurate information on the health status of their patients and provides
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AI-assisted recommendations and interventions to patients, with clinical expert
oversight. Patient users are equipped with wearable sensing devices measuring
relevant data that is transferred to a personal IoT device (e.g., smart watch)
(step 1). The AI on board of this IoT device analyses the data in step (2) to
identify the need for interventions or recommendations, according to the initial
AI model and the intervention workflows previously defined as goals by the
clinicians in charge of the patient. The model is applied on the collected data,
and when the need for an intervention is detected, either a recommendation is
sent to the patient (step 3a), or the case is escalated to involve a clinician, leading
to the human-in-the-loop (step 3b). Privacy and security-compliant exchange is
thereby crucial. The system may further implement a model for monitoring and
diagnosing technical issues with the constrained devices (step 4).

Fig. 2. IntellIoT-enabled NG IoT healthcare use case.

In the IntellIoT solution, when an escalation takes place and a clinical ex-
pert is notified, the clinician may decide to contact the patient as shown (step
5a), respond to the personal device (step 5b), or raise an alarm (step 5c). The
clinician provides feedback which is used to validate and re-train the AI model
locally on the personal IoT device (step 6). Model updates are then contributed
to the aggregated model at the edge infrastructure (e.g., of a hospital) (step 7).
This distributed AI can be implemented using federated learning and the model
update is communicated to all IoT devices, either in a device to device fashion
(step 8a) or through distribution of the aggregated model (step 8b). Further,
federated learning can be done between hospitals (step 9). All the involved com-
munications and interactions need to be covered by state-of-the-art security and
privacy provisions, catering for the intricacies of the private-sensitive user data.
Digital consent management to drive the interactions of the system (patients,
clinicians, devices) can be managed e.g. via smart contracts.

2.3 Autonomous Collaboration of Production Machines

This use case (Fig. 3) describes an example of machine to machine collaboration.
A customer of a shared manufacturing plant orders a product by specifying a
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manufacturing goal (step 1). In step (2), a machine orchestration and associated
process plan is determined to manufacture the desired product from a workpiece.
The event-based process planner monitors the manufacturing process and reacts
when the health state of a machine changes. If the process planner cannot find
a solution for the manufacturing goal on its own (step 3) it can request support
from a human plant operator or eventually customer. In step (4), a robot or
AGV is tasked to transport the workpiece to the next production step and man-
ufacturing process data is sent to involved machines. As these machines may be
operated by the plant owner or a third-party operator, contractual arrangements
need to be set up, for which a distributed ledger is used. Further, comprehensive
security mechanisms are applied to ensure privacy and security of customer data.

Fig. 3. IntellIoT-enabled NG IoT manufacturing use case.

In step (5), a local AI on board of the robot decides how the robot picks a
workpiece and places it in the next machine. If the confidence-level of the lo-
cal AI is low and it cannot pick and place the workpiece, it can request support
from a human plant operator or machine owner again (step 6). Utilizing AR/VR
technology, the human can virtually grab the workpiece to support the robot. A
tactile communication needs to be established for this interaction, under consid-
eration of security and privacy. Additionally, 3D cameras can be used to generate
an accurate enough reconstruction of the surroundings and the robot itself which
allows the full control and visual information about the parameters of the robot.
For grabbing and haptic feedback to the user, special user input devices (e.g., a
stylus or glove) are needed. If support from a remote operator is needed, a tactile
communication may not be possible through long-distance internet connection.
Hence, the operator would be able to control a virtual robot, rendered in the
local edge, with delayed movement of the real robot. From the human handling
of the work piece, local AI on the robot re-trains itself (step 7), and federates
the learned process parameters to other robots through model update on edge
(step 8).
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3 A Next Generation IoT Framework: the IntellIoT
approach

Analyzing the above use cases, a pattern of NG IoT applications can be extrap-
olated, as shown in Fig. 4: NG IoT applications generally consist of multiple
heterogeneous devices that collaborate in a semi-autonomous way through AI.
Users interact with the system to provide knowledge and thereby may (re-)train
the AI. Interaction among the devices and with the user may have to happen in
a tactile way, with low latencies and high bandwidth.

Fig. 4. Pattern of an NG IoT Application.

Tackling the above use cases in a holistic manner is the driver of the Intel-
lIoT project10. It aims to develop a framework for the management of intelligent
IoT environments and their IoT applications, which is realized through an archi-
tecte comprising three building blocks (see Fig. 5): (a) distributed, self-aware,
& semi-autonomous IoT applications; (b) a human-in-the-loop to define
and support the autonomy in (a), and (c) an efficient, reliable and trustworthy
computation and communication infrastructure that enables (a) & (b).

Fig. 5. IntellIoT concept for enabling intelligent IoT environments

3.1 Distributed, self-aware, semi-autonomous IoT applications

Autonomous software agents of a novel hypermedia-based multi-agent system
(HyperMAS) [8] execute IoT applications. Interoperable access to agents and

10 http://intelliot.eu



IntellIoT: Intelligent IoT Environments 7

functions is given through standardized interfaces that are hosted by IoT or edge
devices, e.g., based on W3C Web of Things specifications [20]. Using these func-
tions as building blocks, software agents can autonomously create distributed
IoT applications and execute these applications while flexibly reacting to envi-
ronment dynamics. To further facilitate IoT application development, interop-
erability is supported through components that are able to translate between
communication technologies, protocols and vocabularies. Software agents are
self-aware and observe each other, e.g., to detect and autonomously mitigate
failures. They participate in a distributed ledger to enable contractual relations
and monetization. Leveraging reinforcement and federated learning [22], dis-
tributed AI is enabled by on-device training and inference that are subject to
the device’s resource constraints.

3.2 Autonomy defined by a Human-in-the-Loop

The human-in-the-loop provides expertise to the IoT environment and is there-
fore crucial to the system: At design time, the human defines goals and re-
quirements. Then, a mechanism automatically deducts and translates an IoT
application workflow into IoT/edge device interactions with associated network
constraints. At runtime, the human observes the AI-enabled autonomous behav-
ior and provides input [14] to improve it. For that, the human needs to leverage
tactile interactions through AR/VR to refine the model and avoid blockages by
e.g., teaching an industrial robot how to handle a product.

3.3 Efficient, reliable and trustworthy computation &
communication infrastructure

Intelligent IoT environments must operate upon a communication & computa-
tion infrastructure capable of flexibly supporting the capabilities described in
3.1 & 3.2 above, whereby resource-constrained IoT devices and more power-
ful edge assets must be efficiently managed, optionally integrating cloud-based
services, and also supporting complex, cost-intensive computations (e.g., AI in-
ference/training, as well as AR rendering). Edge resources will be diverse [28],
e.g., Multi-access Edge Computing (MEC) offered through 5G functionalities,
or an industrial edge offered by networked computing devices in a manufactur-
ing plant. Computation & communication form a closed-loop system through
which the infrastructure will be optimized in an integrated way (i.e., deploy-
ment of application functions on IoT/edge resources must be optimized under
consideration of network constraints, and the network must be dynamically man-
aged and reconfigured to optimally serve the purpose of the application and the
IoT/edge devices). The infrastructure will enable ultra-reliable and low-latency
communication through dynamic network management, through heterogeneous
network technologies (e.g., 5G NR [17], NB-IoT [15], or D2D [1]). The wireless
front end will be specifically designed to support communication requirements
of advanced techniques, such as DLTs and federated learning. Finally, security
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& privacy assurance concepts will be included by design to ensure reliability and
overall trustworthiness of the developed solution.

3.4 Bringing all together - the IntellIoT high-level architecture

Integrating the above concepts, a high-level view of IntellIoT’s logical architec-
ture has been derived, shown in Fig. 6. The three key concepts highlighted (i.e.,
Collaborative IoT, Human-in-the-loop and Trustworthiness) are prominently fea-
tured in the architecture.

In total, five core component groups have been identified, with individual
components falling into one of the following groups:
– Collaborative IoT enablers: Components that realize IntellIoT’s Collab-

orative IoT pillar, focusing on the cooperation of various semi-autonomous
entities to execute IoT applications.

– Human-in-the-Loop enablers: Components involved in IntellIoT’s Human-
in-the-Loop pillar, which focuses on involving the human in the process; e.g.,
to solve complex situations.

– Trust enablers: Components that are part of IntellIoT’s Trust pillar. This
pillar focuses on privacy, security, and ultimately building trust into the
IntellIoT framework.

– Infrastructure management: The computation & communication infras-
tructure and its management capabilities, enabling the deployment and man-
agement of edge applications.

– Use-Case deployment: Components which are use case-specific, (i.e., per-
taining to the use case environment deployment), such as edge devices, edge
apps, and edge AI models.
For more details on the individual components comprising the architecture,

we defer the reader to the publicly-available architecture specification of Intel-
lIoT [9].

4 State of the Art and Research Challenges

To achieve its vision, IntellIoT improves the state of the art in the related re-
search areas; the key enablers and resulting research challenges are highlighted
in the subsections that follow.

4.1 Autonomy and distributed intelligence

Next generation IoT applications require a paradigm shift from classic ML to
distributed, low-latency and reliable ML at the wireless network edge [22]. Fed-
erated learning (FL) is a decentralized learning technique where private-sensitive
training data is distributed across learning agents[19]. Agents share their local
models, instead of the training data, reducing communication latencies during
ML training. Nevertheless, except few works, such as [26, 7], most of the exist-
ing literature assumes ideal client-server communication conditions, overlooking
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Fig. 6. IntellIoT high-level architecture

channel dynamics and uncertainties. FL uses stochastic gradient decent (SGD)
techniques (e.g., elastic SGD, entropy SGD) for local training, each with its own
intrinsic characteristics (computation requirements, accuracy etc.). However, the
impact of different ML algorithms in real-world applications is an open research
area. The continual discovery and interaction of agents within their environment
requires the use of multi-agent Reinforcement Learning (RL). Furthermore, the
branch of deep RL (DRL) [5] addresses issues arising from the larger state dimen-
sions. Model-free, value/policy-based, and actor-critic RL within DRL exhibit
efficient and accurate decision-making capabilities over classical RL. Yet the
aspects of computation-communication limitations and privacy in distributed
multi-agent RL are still not well-understood and require further investigation.
The involvement of a human expert in data collection, training, testing, and
validation is the fundamental philosophy behind the human-in-the-loop for ML.
With distributed AI techniques, the interaction between the agents and the hu-
man needs to consider time sensitivity, learning procedure and ability to control
and train/teach remotely in the scalable systems. Hence, it is mandatory to in-
vestigate various transfer learning methods [24] as well as suitable optimizers
and the human-in-the-loop of the training [14].
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For the IntellIoT framework and realization of the envisioned use cases (Sec-
tion 2), distributed ML needs to consider application-specific target accuracies
and worst-case training latencies under tolerable number of failures (reliabil-
ity and robustness guarantees), wireless resources availability, on-device energy,
storage, or computing restrictions. In addition, studying the control stability
(plant, string, swarm- stabilities) of both single and multi-agent systems will
be mandatory. Investigating the co-design of ML, communication-computation
and control are crucial for developing novel distributed AI solutions. For fully en-
abling the human-in-the-loop, the fusion between transfer learning, optimization
and FL/RL are being incorporated.

4.2 Next generation IoT computation and communication
infrastructure

IoT applications are moving from the cloud to the edge, so that computing hap-
pens in closer proximity to the data producers and consumers [28]. Relevant
solutions include concepts such as fog computing or multi-access edge comput-
ing (MEC), where computing resources are part of a 5G network. This has the
potential to address the concerns of response time requirements, battery life
constraints, bandwidth cost saving, or safety and privacy (e.g., [27, 13]). In NG
IoT applications, a key challenge for the computation infrastructure is to decide
on which computing resource to handle a specific workload (e.g., execute an AI
algorithm). There are multiple existing allocation strategies, e.g., [6, 21], which
optimize different performance metrics, e.g., response time, bandwidth, avail-
ability, or energy consumption. Therefore, components are needed for advanced,
dynamic resource management which can be flexibly applied in various private
edge environments. IntellIoT develops a mechanism for optimized allocation of
workloads to computing resources (i.e., mapping of IoT applications to devices).
It consists of a flexible algorithmic framework that builds on prior work [23]
and is adjustable to different optimality criteria at runtime. Further, it needs
to be dynamically adapting to network changes based on high-level application
requirements [4]; i.e., establishing closed-loop infrastructure management.

While IoT/edge devices can provide the computation side of the infrastruc-
ture, the communication side needs to be driven by advanced networking tech-
nologies, such as 5G New Radio (NR) and its extensions towards private net-
works and Industrial IoT. Further, 5G eV2X, as a complete redesign of the LTE
V2X, can play a role for cooperative automated mobility and ’sidelink’ device-
to-device (D2D) [1] communications, e.g., between robots and machines. For
“tactile” communication links, a major challenge is to design a steer-/control-
based communication framework for real-time transmission of haptic information
(touch, motion, etc.) in addition to conventional audio-visual and data traffic.
The provided solutions need to enable efficient spectrum usage [3] in downlink,
with massive sensory feedback on the uplink, targeting 1ms downlink, 10ms
uplink with 99.99% availability. In order to support ultra-reliable and low la-
tency (URLL) communication towards TSN for 5G Industrial IoT, 5G mmWave
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radio (with fiber data speed, real-time reactivity and massive sensorics capac-
ity) [12] as well as support for IEEE TSN, are being investigated. Regarding
distributed networking support, functions for ad-hoc scheduling capabilities for
enhanced D2D communication do not include a specific scheduler, hence, Intel-
lIoT develops a wireless TSN-grade D2D scheduler providing deterministic QoS
for decentralized computing in the IoT context.

Building on the computation and communication infrastructure, IoT artifacts
need to be able to discover and interact with one another. A first major step
towards this goal has been the Web of Things (WoT) [20], where interactions
between devices are based on the Web architecture. Crucially, however, interop-
erability on the semantic level is a central requirement in the future evolution of
the Web. Based on efforts of the W3C WoT, new means to use hypermedia for
designing evolvable Web APIs and general-purpose clients are being explored.
IntellIoT will build up on these developments towards integrating them with
research on multi-agent systems (MAS) towards enabling a hypermedia-based
MAS (HyperMAS) [8] that are vertically and horizontally scalable with respect
to the number of agents, devices, and interactions among these components. It
will support self-aware agents within IoT environments and semi-autonomous
IoT systems.

4.3 Humans and trust in intelligent IoT

The wide adoption of IoT technologies in a plethora of domains, necessitates con-
sidering security, privacy, and trust requirements early in the design phase [10].
Even securely initialised devices can be compromised, allowing attackers to affect
connected devices, the network, or collaborative applications. Trust-based mech-
anisms can be used to defend against such attacks by monitoring the behaviour
of each participant. An IoT deployment must also have the intelligence to protect
itself proactively, e.g., through Moving Target Defence (MTD) techniques [25],
where AI-driven agents periodically alter the network topology and/or configura-
tion to counter attacks. Thereby, security assurance evaluations for IoT systems
are still in their infancy (e.g., [2]). Therefore, IntellIoT provides security and
trustworthiness by design, via a combination of: (i) an evidence-based continu-
ous security assurance, integrating hybrid assessments which considers different
attack surfaces and vulnerabilities; ii) trust-based computing mechanisms that
will act as distributed intrusion detection system, and (iii) MTD strategies with
security-context aware processes.

Supporting these security and trust mechanisms, IntellIoT uses distributed
ledger technologies (DLT) to encode transaction logic and policies, which in-
clude the requirements and obligations of the party requesting access to an IoT
resource as well as its provider [18]. This can lead to a wave of novel applications,
enabling trusted access to IoT resources. Therefore, the state-of-the-art is being
progressed in three aspects (building on previous work [11]): (1) circumventing
devices’ resource constraints; (2) advancing uplink-dominated IoT network de-
signs; (3) providing interoperability with third-party devices. In IoT, an edge
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gateway with DLT solutions is equipped with the necessary computational in-
telligence. Yet, devices in a blockchain should keep a copy of the DLT record,
which can be large and increasing over time and limits the scalability of the
system. Moreover, the transactions associated with smart contracts require two-
way communication traffic, which violates the common assumption that the IoT
systems are dominated by an uplink traffic. An IoT/edge device in a blockchain
network should be capable of verifying information in the blockchain, which is
associated with the downlink traffic. Therefore, the IntellIoT framework provides
an architecture that aims at trading off complexity of the device, achieved trust
and network capabilities, and maintain the trust when a device belongs to a
third party.

5 Conclusions & Future Work

The key contributions of this paper is the analysis of three classes of Next Gen-
eration IoT use cases, the extrapolation of a common pattern, the presentation
of the IntellIoT framework, and the postulation of key research challenges asso-
ciated with it. All three use cases are based on semi-autonomous behaviour of
the IoT system. Multiple heterogeneous devices are interacting and autonomous
control of their collaboration is provided through AI, which can be (re-)trained
through human intervention. This pattern can be assumed for many next gen-
eration IoT applications.

The described pattern spreads over three key areas: (1) providing the dis-
tributed artificial intelligence for autonomous behaviour, (2) providing efficient
and reliable communication and computation resources, and (3) incorporating
the human (by providing trust in the system) and learning from his input. The
described framework of IntellIoT addresses all three fields. The presented high-
level architecture combines software components to realize functionalities re-
quired by these fields. The full implementation of this architecture is currently
in process. Thereby, the key research challenges that are being faced are outlined
and describes the further path of research for this project and beyond.
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