N

N

Inferring landscape resistance to gene flow when genetic
drift is spatially heterogeneous
Paul Savary, Jean-Christophe Foltéte, Hervé Moal, Gilles Vuidel, Stéphane

Garnier

» To cite this version:

Paul Savary, Jean-Christophe Foltéte, Hervé Moal, Gilles Vuidel, Stéphane Garnier. Inferring land-
scape resistance to gene flow when genetic drift is spatially heterogeneous. Molecular Ecology Re-
sources, 2023, 23 (7), pp.1574-1588. 10.1111/1755-0998.13821 . hal-04141978

HAL Id: hal-04141978
https://hal.science/hal-04141978

Submitted on 26 Jun 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04141978
https://hal.archives-ouvertes.fr

Inferring landscape resistance to gene flow when genetic drift is
spatially heterogeneous

Savary, Paul*!' 2 3 Foltéte, Jean-Christophe?, Moal, Hervé!, Vuidel, Gilles?, and
Garnier, Stéphane?

YARP-Astrance, 9 Avenue Percier, 75008 Paris, France
2ThéMA, UMR 6049 CNRS, Université de Franche-Comté, 82 Rue Mégevand, 25030 Besangon Cede,
France
3 Biogéosciences, UMR 6282 CNRS, Université Bourgogne-Franche-Comté, 6 Boulevard Gabriel 21000
Dijon, France

Abstract

In connectivity models, land cover types are assigned cost values characterising their re-
sistance to species movements. Landscape genetic methods infer these values from the
relationship between genetic differentiation and cost distances. The spatial heterogeneity of
population sizes, and consequently genetic drift, is rarely included in this inference although
it influences genetic differentiation. Similarly, migration rates and population spatial distri-
butions potentially influence this inference. Here, we assessed the reliability of cost value
inference under several migration rates, population spatial patterns, and degrees of pop-
ulation size heterogeneity. Additionally, we assessed whether considering intra-population
variables, here using gravity models, improved the inference when drift is spatially het-
erogeneous. We simulated several gene flow intensities between populations with varying
local sizes and spatial distributions. We then fit gravity models of genetic distances as a
function of (i) the ’true’ cost distances driving simulations or alternative cost distances,
and (ii) intra-population variables (population sizes, patch areas). We determined the con-
ditions making the identification of the ’true’ costs possible and assessed the contribution
of intra-population variables to this objective. Overall, the inference ranked cost scenarios
reliably in terms of similarity with the ’true’ scenario (cost distance Mantel correlations),
but this true’ scenario rarely provided the best model goodness-of-fit. Ranking inaccuracies
and failures to identify the ’true’ scenario were more pronounced when migration was very
restricted (< 4 dispersal events/generation), population sizes most heterogeneous and some
populations spatially aggregated. In these situations, considering intra-population variables
helps identify cost scenarios reliably, thereby improving cost value inference from genetic
data.

Keywords: landscape genetics, gene flow, cost distances, connectivity, gravity models, sim-
ulation
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1 Introduction

Dispersal movements maintain genetic diversity and contribute to species survival in human-
shaped landscapes (Frankham, 2005; Spielman et al., 2004). Deriving efficient conservation
measures to halt the continuing erosion of biodiversity thus requires knowledge regarding the
influence of landscape features on species movements. For that end, landscape ecology stud-
ies have provided spatially-explicit models for dispersal paths by quantifying the resistance of
landscape features to dispersal (Zeller et al., 2012). This implies assigning a cost value to every
landscape feature on a resistance surface in order to identify the most likely dispersal paths, e.g.
using least cost path modelling (Adriaensen et al., 2003) or applying circuit theory to ecological
connectivity (McRae, 2006). However, these connectivity models are only reliable under the
condition that the cost values assigned to each landscape feature realistically depict the be-
haviour of the species when moving across landscape features. Accordingly, although the choice
of cost values on resistance surfaces is often based upon expert opinion, a wide range of biological
data can be used to calibrate them so that they somehow fit ecological reality (Zeller et al., 2018).

Following the emergence of landscape genetics (Manel et al., 2003), genetic data have often
been used for calibrating cost values because the genetic structure of a set of populations de-
pends upon the structure of the landscape (Keyghobadi, 2007). Indeed, provided enough time
has elapsed following population settlement and the most recent landscape changes for the ge-
netic differentiation pattern to reach an equilibrium, we can expect a positive linear relationship
between genetic differentiation and effective cost distances between populations (Hutchison and
Templeton, 1999; McRae, 2006; Slatkin, 1993). The Isolation By Landscape Resistance (IBLR)
model is an extension of the original Isolation By Distance (IBD) model to heterogeneous land-
scapes in which population spatial distribution is irregular and effective distances are computed
as cost-distances or resistance distances rather than geodesic Euclidean distances (Guillot et al.,
2009; McRae, 2006). In this context, the inference of cost values from genetic data relies upon
the IBLR model and consists in identifying the cost scenario which maximises the strength of
the relationship between the corresponding cost-distances and genetic distances among a set of
alternative cost scenarios (Cushman et al., 2006; Graves et al., 2013; Peterman, 2018).

These approaches usually assume a preponderant influence of landscape-driven gene flow on
genetic differentiation (Richardson et al., 2016), although the latter is also substantially driven
by genetic drift. When a population is subdivided into several small populations, especially
when their effective sizes are reduced and the migration rate is low, genetic drift is responsible
for a loss of genetic diversity which tends to increase genetic differentiation between population
pairs (Frankham, 1996; Frankham et al., 2004; Hartl et al., 1997). According to theory, when
the size of a population varies over time, genetic drift will be most intense when the population
is the smallest. Thus, the harmonic mean of the population sizes over time is a reliable proxy for
the intensity of drift over the whole period because it weights smaller populations more heavily
(Hartl et al., 1997; Prunier et al., 2017). Applying this same theory to the spatial context of
subdivided populations, Serrouya et al. (2012) and Weckworth et al. (2013) showed that the
harmonic mean of the population sizes of population pairs was a good predictor of their pair-
wise genetic differentiation. Therefore, just as gene flow does not affect genetic differentiation
between all population pairs in the same way depending on the effective distances between them,
genetic drift does not affect genetic differentiation between all pairs in the same way depending
on their respective sizes.



Recently, Prunier et al. (2017) introduced the Spatial-Heterogeneity-in-Population-Sizes hy-
pothesis (SHNe) for assessing the contribution of population size spatial heterogeneity to genetic
differentiation patterns. Using both simulated and empirical data, they showed that when the
migration rate is low and the overall population size heterogeneity is high, pairwise population
size heterogeneity contributes to genetic differentiation more significantly than the distance be-
tween populations does. These authors developed two pairwise metrics measuring population
size heterogeneity that can be included in the analysis of genetic differentiation drivers. This
makes it possible to account for drift spatial heterogeneity and to assess more reliably the re-
lationship between i) effective distances and ii) genetic distances, which then directly reflects
the spatial drivers of gene flow. Failing to do so may potentially lead to spurious conclusions
regarding dispersal patterns (Weckworth et al., 2013; Prunier et al., 2017). Accordingly, met-
rics quantifying population size heterogeneity could be variables as important as the effective
distances between populations under the IBD or IBLR hypotheses for explaining the spatial
genetic structure (Prunier et al., 2017). Yet, whether variables accounting for population size
heterogeneity also improve cost value inference remains to be investigated.

Estimating population effective sizes is a requisite for taking their heterogeneity into account
in the analyses, but is undoubtedly a difficult task (Wang, 2005). Yet, provided that effective
sizes are somehow proportional to census sizes, they can be approximated with environmental
proxies for the carrying capacities of habitat patches occupied by populations (Prunier et al.,
2017), thereby saving costly field work. Furthermore, environmental variables computed at the
population level may reflect not only population sizes but also local incentives to departure
or establishment (Baguette et al., 2013; Bonte et al., 2012). Such variables have already been
shown to influence significantly genetic structure (Murphy et al., 2010; Wang, 2013; Wang et al.,
2013), though seldom considered in landscape genetic analyses (Pfliiger and Balkenhol, 2014),
and could positively contribute to cost value inference.

Finally, Graves et al. (2013) suggested that the spatial aggregation of individuals could pre-
vent gene flow between clumps of individuals thereby preventing gene flow from compensating
for drift effects. The influence of the spatial distribution pattern of individuals on the spatial
genetic structure has already been evidenced (Ueno et al., 2000). However, it is not known
whether the population spatial distribution pattern could influence cost value inference when
populations are the focus of the analysis.

The first objective of this study was to assess the reliability of cost value inference from
genetic data under several migration rates, population spatial distribution patterns and degrees
of population size heterogeneity. We expected the quality of the inference to be reduced when
migration rates are limited, some populations are spatially aggregated, and population sizes are
spatially heterogeneous. The second objective was to identify situations where the inclusion
of intra-population variables in the models improves this inference. When population sizes are
heterogeneous, we expected the inclusion of intra-population variables, i.e., either population
sizes or patch areas, to move the results of the analyses closer to the ecological reality. Gravity
models (Anderson, 1979; Fotheringham and O’Kelly, 1989) have already been used in landscape
genetics and allow for the test of these hypotheses because these models enable researchers to
assess the influence of intra- and inter-population variables on measures of genetic differentiation
(Murphy et al., 2010; Robertson et al., 2018; Watts et al., 2015; Zero et al., 2017). When
patch capacities or population sizes and inter-patch distances are the predictor variables of
the genetic distance between populations, several models including different predictor variables
can be compared on the basis of a same measure of goodness-of-fit, which makes it potentially



possible to identify the most realistic cost value scenario while accounting for population size
heterogeneity. Accordingly, we used a factorial design to simulate several intensities of gene flow
between sets of populations with varying levels of population size heterogeneities and spatial
distribution patterns. We then fit gravity models explaining simulated genetic distances as a
function of the cost distance driving the simulation as well as other alternative cost distances,
and of intra-population variables, i.e. population sizes and patch areas. We could thus identify
the conditions making cost value inference possible and situations where the inclusion of intra-
population variables helped identifying the ’true’ cost scenario driving the gene flow simulations.

2 Methods

2.1 Overall methodological approach

The basic framework for inferring landscape resistance from the relationship between land-
scape distances and genetic distances consists in computing cost-distances (CD), or other re-
sistance distances, from a land cover map and several cost scenarios, i.e., sets of cost values
assigned to each land cover type. These cost-distances are included in models explaining genetic
distances, and the scenario providing the best model goodness-of-fit is supposed to best reflect
the effect of the landscape on dispersal (Peterman, 2018). To assess the reliability of this type of
inference (objective 1), we simulated the genetic differentiation pattern emerging through gene
flow over several generations in a species with limited dispersal capacities (Figure 1). We knew
the 'true’ cost values associated with land cover types, arbitrarily fixed prior to simulations, and
the resulting CD driving dispersal in the simulated landscapes. We then assessed the capacity
of landscape genetic models to identify this 'true’ cost scenario among a range of ’alternative’
cost scenarios diverging more or less from the 'true’ cost scenario (Figure 2). Next, using re-
gression trees, we tried to delineate the range of situations over which gravity models including
both inter-population CD and intra-population variables improved cost value inference, when
population size are heterogeneous (objective 2).

2.2 Simulations
2.2.1 Landscape and population simulations

When simulating landscapes, we ensured that patches were sufficiently large for cost-distances
to vary substantially according to the cost value scenario. Indeed, landscape fragmentation is
known to affect CD variability when using different cost scenarios (Cushman et al., 2013; Ray-
field et al., 2010). This variability ensures that several alternative scenarios lead to different
cost-distance matrices, thereby making the inference possible. To this end, we simulated 200
landscapes with four land cover types by discretizing spatially correlated Gaussian random fields
models (Schlather et al., 2015). We used a level of land cover auto-correlation leading to vari-
able cost-distances across the cost scenarios (autocor=30 in the nlm_gaussianfield() function
from the NLMR R package (Sciaini et al., 2018)).

We simulated the movement of a forest specialist species with limited dispersal capacities
avoiding anthropogenic land cover types when dispersing. Accordingly, forests covered 20 %
of the simulated landscapes and were the most permeable areas for dispersal (cost: 1). Cost
values and proportions of the other land cover types were set to reflect the dispersal constraints
of a forest specialist species in a heterogeneous landscape: grasslands (cost: 10, proportion:
27%), crops (100, 27%) and artificial areas (1000, 26%). Similar cost values have already been
employed to analyse ecological connectivity for forest species (Gurrutxaga et al., 2010; Schadt
et al., 2002) and their range (1-1000) matches that inferred from field data in other studies



Objective 1: Is cost value inference from genetic data reliable?

i Simulated landscape
12|5 Z'mmated s 206 ALTERNATIVE COST SCENARIOS
andscapes
P Y Scenar. ID Forest Grasslands Crops Artificial
1 921 643 124 102
X ° 780 15 62 142
TRUE COST SCENARIO . e i o o
- Forest Grasslands Crops Artificial : 37 841 452 76
2 p::)tr'). SiZe »| 60 populations 1 10 100 1000 i 29 L g Les
settings: c
o
Equal, Area S ®
£ ®
S @
X E e e =]
n ® o g Cost-distance (CD)
o] b -
4 migration - > 0. calculation
rates: 3 AR
0.0005, 0.001, a. 1=
0.002, 0.005 8 TRUE ALTER.
z =
Dispersal CD L
o Mantel correlation —
probabilities - HCD
s(i;;r:ﬁaftli(:m between CD matrices C
[}
1000 |
gene flow
simulations
Y
Genetic —
. N1
distances III—‘ Mantel r ‘2I'RUE vs ALTER, ,Sp\_ Cost
(GD) 2N - R Costy —
N1
o~ III_‘ Area; — Area Mantezl r TRUEvs ALTER | rg, Eost-Area
GD & - R* Cost-Area, )
— . .
III ~Pop size; —Pop size; Mantel r TRUE vs ALTER, ?Cost_,;op
) :
‘ A — R* Cost-Pop, ]
296 values
1 per ALTER cost scenario k
Inference
< > <% > >
3 types of (gravity) models Model Inference qua!Iity:
including or not goodness of fit: rank correlations
intra-population variables RzMode,k "sp

Figure 1: Overall methodology of the gene flow simulations performed for assessing the ability of several types of
models to identify the 'true’ cost scenario driving gene flow in a set of alternative cost scenarios diverging more
or less from this true’ scenario (Objective 1).



Objective 2: When does the inclusion of intra-population variables improve cost value inference?
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(Khimoun et al., 2017; Pérez-Espona et al., 2008; Ruiz-Gonzélez et al., 2014; Wang et al., 2008).
The resulting landscapes were raster grids of 60 x 60 km with a cell resolution of 100 m.

The spatial heterogeneity of population sizes has been shown to explain a significant share
of genetic differentiation variation (Prunier et al., 2017) and one of the aims of our study was
to assess whether this heterogeneity could influence cost value inference. Besides, this spatial
heterogeneity is partly dependent upon the spatial distribution of the habitat patches as patch
area is often positively related with population sizes. Accordingly, we simulated population size
distributions with varying degrees of heterogeneity (measured using the Gini inequality index,
see below) and matched their heterogeneity with that of habitat patch areas in the simulated
landscapes (Figures S1 and S2). We maintained the total population size constant in all cases
and we also carried out the simulations without population size variation for comparison pur-
poses.

For that purpose, we randomly sampled 60 cells within the forest patches of every landscape,
separated by a distance larger than 1000 m. Habitat patches occupied by every population con-
sisted of a buffer made of the forest pixels located around each sampled cell at a distance less
than 500 m (Supporting information, Figure S1). This allowed us to vary the area of the habitat
patches according to the landscape structure. The 60 discrete populations (demes) were located
in the 60 sampled cells and each was considered to be panmictic at that scale.

We distinguished two spatial distributions of population sizes, totalling 3300 individuals in
every case:

1. Equal population sizes (Equal): all 60 populations contained 55 individuals.

2. Area-dependent population sizes (Area): population sizes were spatially heterogeneous.
They ranged from 10 to 100 individuals, depending on the area of the habitat patch
occupied by the population (rank-correlation = 1).

The 'Equal’ setting constituted the reference baseline making it possible to assess the effect
of population size heterogeneity on the quality of the inference by comparison with the ’Area’
setting (objective 1). For the ’Area’ setting, we aimed at covering a wide gradient of population
size heterogeneity while mimicking realistic conditions in which population sizes are driven by
patch areas. For that purpose, we randomly generated series of 60 values between 10 and 100
making a total of 3300 + 50. We then classified these series according to their heterogeneity
using the Gini inequality index (Gini, 1912)(Supporting information, Figure S2). In parallel,
we computed the Gini index describing the heterogeneity of the sampled patch areas in every
landscape. We then associated each landscape/population distribution with the population size
distribution corresponding to a degree of heterogeneity equivalent to that of patch area. Largest
population sizes were therefore assigned to populations located in the largest patches. We then
calculated the accumulated cost along the least-cost path between each pair of populations,
thereafter referred to as cost-distance (CD).

Apart from simulating a large range of population size and patch area heterogeneity pat-
terns, we also ensured that we simulated diverse patterns of population spatial distributions in
order to test for the influence of the population spatial pattern on the inference. Indeed, the
presence of clumps of populations exchanging more frequently between themselves than with
other populations could influence our capacity to infer landscape resistance to gene flow (Graves
et al., 2013). To test for this potential influence, we measured the degree of spatial aggregation
of the populations with the harmonic mean of the whole set of CD values between populations.



This index reflects the frequency of small CD values which should favour short distance dispersal
as a consequence of population spatial aggregation.

2.2.2 Alternative cost-scenarios

Identifying situations in which landscape genetic models are able to identify the ’true’ cost-
value scenario among alternative cost-scenarios requires that the CD values resulting from all
these cost scenarios are not too highly correlated so that they can somehow be distinguished
(Cushman et al., 2013). Rayfield et al. (2010) have shown that least-cost paths were sensitive
to the range of relative cost values. Accordingly, alternative CD distributions resulted from 296
randomly generated alternative cost-scenarios. We used the approach of Shirk et al. (2010) to
set alternative cost values using the following function:

Rank;
Rankpae

Ci - ( )x X Cmax

where C} is the cost value between 1 and C,,,,, associated with the i-th land cover type. Rank;
is the rank of the land cover type i between 1 and Rankpq, = 4. Because the maximum cost
value provides insight into the contrast between the most and least favourable land cover type
for species dispersal, we used C),q, values equal to 100, 1000 (maximum value of the 'true’ cost
scenario) and 10,000. We used x values equal to 1, 2, 4, 8 or 16. We therefore obtained 5 series
of values for every maximum cost value. Using each of them, we randomly assigned cost values
to the four land cover types and randomly selected 296 alternative cost scenarios among these
combinations. We then used these cost scenarios to compute the 296 alternative CD distributions
in every landscape and we computed the Mantel r correlation coefficient between each alternative
CD matrix and the 'true’ one (Figure 1). This setting provided us with alternative cost-scenarios
covering a gradient of similarity with the ’true’ cost-scenario.

2.2.3 Gene flow simulation

We used the cDPOP software program (Landguth and Cushman, 2010) for simulating gene
flow and individual allelic state resulting from it. Population sizes and sex-ratio (equal to 1)
remained constant throughout the simulations, which lasted for 500 generations to ensure that
the equilibrium genetic differentiation pattern had been reached. At each generation, individuals
mated in their own population and juveniles could disperse for establishing themselves in other
populations. The number of offspring per female followed a Poisson distribution (A = 3). Once
every population was occupied by a number of individuals equal to its specific size, remaining
individuals died. Generations were non-overlapping and mating was done with replacement
for males only. Individual genotype was simulated for 20 independent loci (no linkage dise-
quilibrium) with 30 alleles per locus because high allelic richness is known to limit the risk of
size homoplasy (Estoup et al., 1995, 2002). Initial genotypes were randomly created at gener-
ation 0 by assigning each individual two alleles randomly chosen among the 30 alleles for the
20 loci. There was no selection pressure but mutations could occur (k-alleles mutation model,
p = 0.0005).

According to the concept of dispersal kernel, dispersal probability decreased quickly as inter-
population C'D;; between populations ¢ and j increased, even if long distance dispersal remained
possible (Clobert et al., 2012). Therefore, the dispersal probability between populations ¢ and
J was proportional to p;;, which was computed as the negative exponential of the cost-distance
CD;j, such that p;; = e~BCEDi; following Urban and Keitt (2001). § values were calculated such
that the CD for which the dispersal probability was equal to 0.01 was equivalent to 1000 cost
units, imposing the simulated species constant dispersal limitations over the range of cases.



Prunier et al. (2017) showed that the contribution of population size heterogeneity to the
spatial pattern of genetic differentiation also depended upon the migration rate and we therefore
carried out these simulations with migration rates equal to 0.0005, 0.001, 0.002 and 0.005 to
identify the influence of this parameter on the cost value inference and on the effect of popula-
tion size heterogeneity. Preliminary analyses showed that migration rates above 0.005 (i.e., > 17
dispersal events per generation at the landscape scale, cf. Results below) led to situations in
which gene flow was too strong for heterogeneous drift effects to influence the inference whereas
migration rates below 0.0005 (i.e., < 2 dispersal events/generation) led to situations in which
drift effects were too strong for inference to be possible, whatever the landscape and population
parameters. At every generation, once a fraction of individuals equal to the migration rate was
selected in a given population, they dispersed to other populations with probabilities depending
on the cost-distances to the other populations, as specified above, rescaled so that they sum to
1. In total, after 125 landscapes were selected (cf. Results), 1000 simulations were performed
(125 landscapes x 2 distributions x 4 migration rates).

After the simulations, we used population genotypes at generation 500 to compute the pair-
wise Dpg between populations, i.e. the population-based version of a genetic distance equal
to 1 - the proportion of shared alleles (Bowcock et al., 1994). This genetic distance has been
shown to reflect well landscape resistance influence on genetic differentiation patterns in previous
simulation analyses using similar settings (Savary et al., 2021b).

2.3 Gravity models

Gravity models have been initially used in geography and economics (Anderson, 1979; Fother-
ingham and O’Kelly, 1989; Schneider et al., 1998) to model various types of spatial interactions.
Their application in ecology (Bossenbroek et al., 2001, 2007; Ferrari et al., 2006; Kong et al.,
2010; Xia et al., 2004) and in landscape genetics (DiLeo et al., 2014; Moran-Lopez et al., 2016;
Murphy et al., 2010; Robertson et al., 2018; Watts et al., 2015; Zero et al., 2017) is more recent.
They model spatial interactions or fluxes as a function of both the variables characterising the
objects involved in the interaction and of the distance between them (masses and distance in
Newton’s gravity theory, respectively). In landscape genetics, these models have mostly been
used to infer the joint effect of local environmental variables and inter-population distances on
the different stages of dispersal events leading to gene flow (e.g., Murphy et al. (2010)). In
contrast, we here used them to consider both CD values between populations and population
sizes as predictor variables in models explaining genetic differentiation. Indeed, genetic differ-
entiation results from (i) dispersal movements leading to gene flow, supposed to be reflected by
CD values, and (ii) genetic drift, which occurs at the population level and depends on popu-
lation sizes. Our approach is novel in that it considered gravity model predictors not only as
drivers of the stages of dispersal depending on local patch conditions, but more importantly as
drivers of genetic drift intensity (alike predatory fish presence in Murphy et al. (2010)). We
hypothesized that these models could improve how we infer cost values from genetic distances
reflecting differentiation, by explicitly considering the two genetic processes acting at the "node"
and "link" levels (i.e., drift and gene flow). We used gravity models to model the genetic distance
G'i; between populations i and j (response variable, link-level) as a function of several predictors
computed at two levels:

o At the population-level (node level):

— Habitat patch areas (a;, a;)
— Population sizes (N;, N;)



o Between populations (link-level):

— Cost-distance C'D;j;, between populations ¢ and j in the cost scenario k

We computed three types of models of the following form in order to assess the quality of
cost value inferences (objective 1) and to identify cases in which gravity models improve it when
population sizes are heterogeneous (objective 2)(Figures 1 and 2):

’Cost’ model: G;; ~ C’D?}k
"Cost-Area’ model: G;; ~ CDj) X aj x a3

’Cost-Pop’ model: G;; ~ CD; x NP x NJ‘?

with m, n, o, p and ¢ being constant. We computed these three models using the CD
values obtained with every ’true’ or alternative cost scenario. The 'Cost’ model is not a gravity
model as it does not include any local variable. It was used as a reference for comparing
the performance of gravity models with distance-based models commonly used for cost value
inference or optimization (Peterman, 2018; Shirk et al., 2017). The ’Cost-Area’ and ’'Cost-Pop’
models include local variables and allowed us to test for the relevance of using gravity models
when patch areas or population sizes can be obtained, respectively (objective 2). Because gravity
models have a multiplicative form, a natural log was applied to these formulas to obtain the
classical formula of a multiple regression model whose parameters (m, n, o, p and ¢ in our case)
can be estimated. To account for the non-independence inherent to distance matrices, we used
constrained linear mixed effect models by adding a random effect corresponding to the identity
of the populations (MLPE models, Clarke et al. (2002)).

2.4 Assessment of model performance

We assessed the quality of the cost inference in the different situations and identified the
situations in which the models including intra-population variable improved this inference (Fig-
ure 1). From these results, we aimed at deriving general guidelines for cost value inference in
landscape genetics.

We first assessed the goodness of fit of the models using Edward’s R% (Edwards et al., 2008),
which is a reliable model selection criterion when fitting mixed models with residual maximum
likelihood estimation (Van Strien et al., 2012). Under our settings, if a given type of model
(’Cost’, 'Cost-Area’ or ’Cost-Pop’) performs well in distinguishing among cost scenarios, R%
values obtained by including alternative CD values in these models should reflect the correlation
degree of every alternative CD matrix with the *true’ CD matrix driving the simulation. In con-
trast, a given type of model leads to lower quality inferences if the ranks of the models obtained
with every alternative cost scenarios according to R% values and their correlation with the 'true’
cost-scenario are independent. Therefore, for quantifying the performance of the different types
of models, we computed the Spearman rank correlation coefficient g, between the series of R%
values obtained for each cost scenario and the Mantel r correlation coefficient measuring the
similarity of each cost scenario to the ’true’ one. In a given case, we expected the difference D
between the rg, value associated with the 'Cost-Area’ or 'Cost-Pop’ models and the rg, value
associated with the "Cost’ model to take positive values if the inclusion of intra-population vari-
ables in the model improves the cost-value inference (Figure 2).
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Finally, we assessed the influence of every simulation parameter on the additional perfor-
mance of the models including intra-population variables, measured by D values, using regression
trees built with the CART algorithm (Breiman et al., 1984)(Figure 2). This method involves
splitting the predictor space into a limited number of regions called leaves in which the response
variable is predicted to take its mean value within the leaf (James et al., 2013). It can take
both continuous and categorical predictor variables. Apart from performing better than linear
models (e.g. ANOVA) in our case due to non-linear relationships, it provided us with a deci-
sion tree showing situations in which including intra-population variables helps identifying cost
values. For that purpose, the response variable was D and we used the migration rate, the
type of models, the Gini index of patch areas and the harmonic mean of the ’true’ CD between
populations as predictor variables. Regression trees were pruned with a criterion ensuring that
at least 40 landscape and population configurations were included in every leaf, to prevent from
overfitting. This minimal sample size allowed us to perform a one-side Student test to test for
significant positive values of D in each leaf.

We carried out our analyses in R using graph4lg package (Savary et al., 2021c) to sample
populations, compute cost-distances, genetic distances and patch areas, nlme (Pinheiro et al.,
2013), 1me4 (Bates et al., 2007) and r2glmm (Jaeger, 2017) packages to fit gravity models and
assess their goodness of fit and rpart package (Therneau et al., 2010) to fit regression trees.

3 Results

3.1 Simulation results

Overall, the landscape simulation settings allowed us to vary the degree of patch area het-
erogeneity and population spatial aggregation. We selected 125 landscapes maximising their
contrasts in order to test for their respective influence on the inference. The Gini indices mea-
suring the contrasts in population size distributions in the ’Area’ setting ranged from 0.170 to
0.290 (median: 0.232). The spatial aggregation of populations also varied substantially with
harmonic means of 'true’ CD values ranging from 170 to 430 CD units (median: 297). Besides,
these simulated landscapes were sufficiently heterogeneous for the CD matrices derived from
alternative cost scenarios to exhibit a wide range of correlations with the true CD matrix, with
Mantel correlation coefficients between the 'true’ CD matrix and the alternative ones ranging
from -0.350 to 0.999 (median: 0.628).

During the gene flow simulations, the mean number of migrants between the 60 populations
per generation was equal to 2.0, 3.7, 7.1 and 17.3 with migration rates of 0.0005, 0.001, 0.002
and 0.005, respectively. Individuals could potentially disperse between 1770 population pairs
(W) with a probability depending on cost-distances. However, lower migration rates made
long distance dispersal events less likely, and the number of different dispersal paths actually
followed across 50 generations averaged 84 (£ 15), 145 (£ 16), 240 (£ 26) and 423 (£ 68)
with migration rates of 0.0005, 0.001, 0.002 and 0.005 respectively. Accordingly, the respective
influence on genetic differentiation of gene flow relative to genetic drift, as well as the number
of long distance dispersal events substantially increased with migration rates.

3.2 Gravity models

R% values obtained for a given simulation and model with different CD values exhibited
large variations (coefficients of variation ranging from 0.49 to 0.78), meaning that the models
were able to distinguish cost scenarios among them (Table 1). For all models, population size
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heterogeneity settings (Equal, Area) and cost scenarios, the lowest model goodness of fit were
obtained for the lowest migration rate (0.0005) and the largest values for the highest migra-
tion rate (0.005), relatively to the set of tested rates. Although the median R% values over the
125 landscapes were always larger when including the ’true’ CD values in the models rather
than the alternative CD values, we observed the opposite trend when considering the maximum
R% values (Table 1). This means that in every case, the model with the best goodness of fit
was computed with CD values not obtained from the ’'true’ cost scenario driving dispersal in
our simulation. The few alternative scenarios responsible for these results differed from the
‘true’ cost scenario by their absolute cost values, by how the different land cover types were
ordered according to these values or by both criteria (e.g. [1,4,1000,101], [1, 40,1002, 10000],
[1, 40, 10000, 1002], [40, 625, 10000, 3165] instead of [1,10,100,1000]). They often assigned low
values to forest and grasslands but tended to assign a higher cost to crops than to artificial areas.

Pop. sizes Mig. rate Model Median R?j Max R%
TRUE ALTER TRUE ALTER

Equal 0.0005 Cost 0.053 0.036 0.117  0.525
Equal 0.0005 Cost-Area  0.055  0.039 0.117  0.547
Equal 0.001 Cost 0.147 0.107 0.294  0.463
Equal 0.001 Cost-Area  0.151 0.111 0.294 0.475
Equal 0.002 Cost 0.337  0.227 0.519  0.584
Equal 0.002 Cost-Area  0.344  0.233 0.521 0.590
Equal 0.005 Cost 0.558 0.380 0.774  0.776
Equal 0.005 Cost-Area  0.562 0.388 0.774  0.776
Area 0.0005 Cost 0.087  0.063 0.210  0.432
Area 0.0005 Cost-Area  0.100 0.074 0.239 0.439
Area 0.0005 Cost-Pop ~ 0.099 0.073 0.236 0.442
Area 0.001 Cost 0.182  0.133 0.344  0.446
Area 0.001 Cost-Area  0.194 0.142 0.367 0.458
Area 0.001 Cost-Pop  0.193  0.142 0.372  0.471
Area 0.002 Cost 0.334 0.234 0.546  0.543
Area 0.002 Cost-Area  0.345 0.242 0.548 0.545
Area 0.002 Cost-Pop  0.345 0.242 0.547  0.545
Area 0.005 Cost 0.539  0.366 0.732  0.735
Area 0.005 Cost-Area  0.554 0.372 0.734 0.736
Area 0.005 Cost-Pop  0.554  0.373 0.733 0.737

Table 1: Goodness of fit of the gravity models as measured with R?; according to the heterogeneity of
population size settings (Equal, Area), the migration rate (0.0005, 0.001, 0.002, 0.005), the variables included in
the models (Cost, Cost-Pop, Cost-Area) and the cost scenarios corresponding to the CD values included in the

models. TRUE means that the models include the ’true’ CD values driving the simulations whereas ALTER

means that the models include the alternative CD values. For the columns corresponding to the ALTER case,

median and maximum reported values were computed for each line from 37000 values (125 landscapes x 296
scenarios), whereas for the columns corresponding to the TRUE case, they were each computed from 125 values.

The Spearman rank correlation coefficients 7g, between the R% values obtained using alter-
native CD values in the model and the correlation coefficients between the 'true’ CD values and
these alternative CD values took large values, with mean values ranging from 0.782 to 0.944
(Table 2). This means that models with the best goodness of fit were obtained when considering
cost scenarios similar to the ’true’ cost scenario. Therefore, the models performed well in in-
ferring cost values and it was true even in cases where overall R% values were low (Tables 1 and 2).

When population sizes were heterogeneous and depended on patch area, especially when
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Pop. sizes Mig. rate Model Min. rgp, Median rs, Mean rg, Max rg,

Equal 0.0005 Cost -0.526 0.838 0.782 0.980
Equal 0.0005 Cost-Area  -0.606 0.848 0.790 0.982
Equal 0.001 Cost -0.265 0.910 0.874 0.983
Equal 0.001 Cost-Area  -0.392 0.919 0.878 0.984
Equal 0.002 Cost 0.259 0.938 0.915 0.988
Equal 0.002 Cost-Area 0.186 0.943 0.917 0.984
Equal 0.005 Cost 0.628 0.957 0.944 0.989
Equal 0.005 Cost-Area  0.646 0.961 0.944 0.988
Area 0.0005 Cost -0.452 0.816 0.727 0.971
Area 0.0005 Cost-Area -0.397 0.872 0.798 0.974
Area 0.0005 Cost-Pop  -0.431 0.871 0.797 0.974
Area 0.001 Cost -0.046 0.889 0.837 0.981
Area 0.001 Cost-Area  -0.149 0.907 0.866 0.982
Area 0.001 Cost-Pop  -0.227 0.910 0.865 0.982
Area 0.002 Cost 0.118 0.932 0.904 0.986
Area 0.002 Cost-Area  0.021 0.943 0.914 0.986
Area 0.002 Cost-Pop  -0.027 0.940 0.912 0.986
Area 0.005 Cost 0.656 0.960 0.943 0.989
Area 0.005 Cost-Area  0.661 0.960 0.944 0.988
Area 0.005 Cost-Pop  0.666 0.960 0.944 0.988

Table 2: Spearman rank correlation coefficients (rs,) between the R% of the models and the correlation
coefficients between the 'true’ CD values and each alternative CD values, according to the heterogeneity of
population size settings (Equal, Area), the migration rate (0.0005, 0.001, 0.002, 0.005) and the variables
included in the models. The larger the rg, values, the better the models are able to identify the cost scenarios
most similar to the ’true’ one. Minimum (Min.), Median, Mean and Maximum (Max.) rgp values were each
computed from 125 values.

the migration rate was low (0.0005 or 0.001), rg, values were more variable (Table 2). They
often took slightly lower values than when using similar migration rates and models ("Cost’,
"Cost-Area’) but with equal population sizes, meaning that population size heterogeneity had
overall a negative influence on the reliability of cost value inference in these cases. Besides,
the differences between rg, values obtained with the 'Cost’ model and either the ’Cost-Area’
or ’Cost-Pop’ models in the Area’ case were larger with the lowest migration rates (Table 2).
In particular, although maximum rg, values obtained using the three types of models ("Cost’,
'Cost-Area’, 'Cost-Pop’) were relatively similar, respective median and mean rg, values were
more different ; the values obtained with the ’Cost-Area’ and ’Cost-Pop’ models being larger
than the values obtained with the ’Cost’ model (Table 2). This means that although in some
landscapes, including intra-population variables provided a very slight advantage, there were
some landscapes in which it improved the quality of the inference more significantly. In the next
section we therefore focus on the results obtained with the two lowest migration rates to explain
the differences of model performance in some landscapes with a regression tree considering
landscape characteristics.

3.3 Regression trees

When population sizes depended on patch areas ('Area’), the difference of performance D
between models including CD values only ("Cost’) and gravity models including both CD values
and intra-population variables such as patch areas or population sizes (’Cost-Area’, 'Cost-Pop’)
averaged 0.050 overall when the migration rate was either 0.0005 or 0.001 (Figure 3) and ranged
from -0.330 to 0.590 (see figures S3 and S4 for similar results when considering all the migra-
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Figure 3: Regression tree obtained when considering four predictors (Model, Mig.rate, CD.harm.mean,
Area.gini) to explain the response variable D. Only the cases corresponding to the scenario in which population
size and habitat patch areas are rank-correlated (i.e., ’Area’ setting), and migration rates are equal to 0.0005 or

0.001, are considered. The tree was pruned in order to have at least 40 observations in every leaf. The total

number of observations is 500. The numbers in the boxes refer to the mean values of D for each leaf of the tree.
The percentages refer to the proportions of the 500 observations included in each leaf.

tion rates). The best pruned regression tree explaining D contained migration rate, CD value
harmonic mean and patch area Gini index as predictor variables but did not include the type
of model. There were indeed negligible differences of D values between the 'Cost-Area’ and
"Cost-Pop’ models (Table 2). This regression tree explained 86 % of the variation in D and was
made of six leaves corresponding to different regions of the predictor space (Figures 3 and 4).
Values of D were significantly different from 0 in five of these leaves and positively in all five
cases (one-side Student tests, o = 0.05, with Bonferroni p-value adjustments)(Figure 4).

According to the splitting rules of the regression tree (Figure 3), when small CD values were
frequent (Cd.harm.mean < 225), adding intra-population variables improved cost value inference
as D values reached an average of 0.140 in these cases. The second splitting rule evidenced that
the advantage provided by the inclusion of intra-population variables in cost value inference
was larger when the patch areas were the most heterogeneous. Indeed, when the Gini index
was larger than 0.27, D values averaged 0.080 whereas they were halved for lower degrees of
patch area heterogeneity. In the latter case, mean D values were equal to 0.020 and 0.050 for
migration rates equal to 0.001 and 0.0005, respectively (Figure 3), meaning that gravity models
improved more substantially the inference when migration rate was the lowest. Then, when the
migration rate was equal to 0.0005, although cases in which the harmonic mean of CD values
was lower than 253 led to small D values (0.015), cases in which this index was between 253 and
331 led to much larger values (0.071)(Figure 3). Besides, when this harmonic mean was larger
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Figure 4: Distribution of D in each leaf of the regression tree displayed on figure 3(refer to this figure for the leaf
numbers). Only the cases corresponding to the scenario in which population size and habitat patch areas are
rank-correlated (i.e., ’Area’ setting), and migration rates are equal to 0.0005 or 0.001, are considered. The red
stars indicates that the one-side Student test testing whether the mean was different from 0 was significant («

=0.05).

than 331, D values averaged 0.034, meaning that the inclusion of intra-population variables
seemed to improve cost-value inference in several cases where the populations were spatially
aggregated according to this index. Note that the interpretation of the regression tree obtained
when considering all the migration rates was similar, although the first splitting rules separated
cases corresponding to the two largest migration rates (Figures S3 and S4).

4 Discussion

4.1 Is cost value inference from genetic data reliable?

Overall, the models performed well in inferring cost values, which confirms the relevance
of genetic data for inferring cost values, as suggested by Beier et al. (2008) and empirically
validated by Zeller et al. (2018). Models with the lowest goodness of fit (low R% values) and
capacity to identify the most realistic cost scenarios were obtained when migration rates were

15



the lowest (relatively high rg, values in comparison). This may stem from the stronger influence
of drift relative to gene flow on genetic differentiation in these cases (Hutchison and Templeton,
1999). Yet, even with these low migration rates, the different models still performed relatively
well in ranking several cost value scenarios according to their similarity with the ’true’ cost
scenario (high median and mean rg, values). This means that even when the ratios between the
signal due to gene flow effect and the noise due to random drift effect are low, using genetic data
makes it possible to rank different scenarios of landscape resistance to gene flow in a reliable way.

Nonetheless, the alternative’ cost scenarios leading to the CD values most correlated to the
‘true’ CD values were often identified as the ’best’ ones according to a model goodness-of-fit
criterion because they provided a better explanatory power of genetic distances than did the
‘true’ CD values. These scenarios were different from the 'true’ scenario in both their absolute
cost values and the relative ranking of these values. This calls for caution when inferring cost
values on the sole basis of the goodness-of-fit of models linking genetic distances and CD values,
especially when using optimization methods to identify a unique best cost scenario within a set
of potentially highly correlated scenarios (e.g., Peterman (2018)). Such an erroneous output
could lead to wrong conservation measures for several reasons. First, if the relative ranking of
the inferred cost values is not reflecting the actual dispersal behaviour of the study species, it
could lead to wrongly consider some landscape features as easy to cross or, conversely, as land-
scape barriers. Second, if the inferred cost values are used for the spatial modelling of potential
dispersal paths although they do not accurately reflect dispersal paths, it could decrease the
effectiveness of conservation measures. Indeed, it has been shown by Savary et al. (2021a) that
two closely correlated cost-distance values can correspond to least-cost paths that are spatially
distinct. For instance, this study showed that the Mantel correlation coefficient between two
cost-distance matrices can be up to 0.9, while corresponding least-cost paths only overlap on
less than 20 % of their length.

However, retaining a set of several cost scenarios resulting in high values of goodness-of-fit
and deriving a set of least-cost paths from them could be a way to account for the uncertainty of
the inference when competing cost distances matrices are highly correlated (Rayfield et al., 2010).
Besides, in our study, landscapes were simulated so that cost-distance matrices obtained with
different cost scenarios ranged widely in terms of similarity, from being positively to negatively
correlated. Yet, we can expect this variability to be lower in many landscapes and for many
sampling designs, which could compromise the reliability of the inference, even in situations
supposed to be optimal based on the goodness-of-fit of the best model. Similarly, Cushman
et al. (2013) and Graves et al. (2013) observed that when different cost scenarios lead to highly
correlated cost-distance matrices, cost value inference is more difficult. Therefore, it would be
first useful to consider the landscape properties responsible for the similarity of cost scenarios,
such as land cover diversity or patch configuration (see Savary et al. (2021a)), in order to select
study areas in which cost-distances vary substantially. Assessing the correlations between cost-
distance matrices deriving from different cost scenarios prior to the inference would also be a
way to determine which precision can be reliably expected from the results. When the inference
might not be reliable because some CD matrices obtained from different cost scenarios are highly
correlated, our results indicate that the relative ranking of a large set of scenarios could overall
be reliable, whereas the qualitative interpretation of the unique ’best’ scenario and its use for
locating dispersal paths should be avoided.
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4.2 Do the population size heterogeneity, spatial distribution of popula-
tions and migration rates influence the inference?

On the one hand, in accordance with our hypothesis, population size heterogeneity tended to
lessen the quality of cost value inference from genetic data when migration rates were the lowest
(i.e., 5x107*, 10 x 10~%, corresponding to approximately 2 and 4 dispersal events per generation
at the landscape scale, respectively). This inference relies upon the assumption that gene flow is
sufficient relative to local genetic drift so that genetic differentiation reflects landscape influence
on gene flow at the scale of the study area (Savary et al., 2021b). Accordingly, the inference is
complicated by the fact that genetic drift adds random noise to the gene flow signal in genetic
differentiation, especially when migration rates are low and populations are small (Frankham,
1996). We here found evidence that an additional difficulty arises when population sizes are spa-
tially heterogeneous because this random noise is not homogeneously distributed, which makes
it even more difficult to infer landscape resistance to gene flow from genetic differentiation.

On the other hand, also consistent with our prediction, the spatial aggregation of the popu-
lations tended to affect the quality of cost value inference. We used the harmonic mean of CD
values for distinguishing landscapes in which dispersal events frequently occurred at a restricted
scale because populations tended to form spatial aggregates. When population sizes are het-
erogeneous and dependent upon habitat patch areas, the spatial aggregation of populations in
the most favourable areas of the landscapes increases the frequency of dispersal events between
neighbour populations of large sizes. This could in turn increase their genetic differentiation
from both i) other small and isolated populations and ii) large populations from other ’clusters’
of populations. It then makes it more difficult to relate the overall genetic differentiation pat-
tern with landscape matrix resistance. The latter point had been suggested by Graves et al.
(2012) and Graves et al. (2013) but was not specifically investigated in the context of cost value
inference.

Both population size heterogeneity and spatial aggregation are parameters directly related
with the amount and configuration of the habitat and with the spatial distribution of the pop-
ulations in this habitat. They influenced significantly the cost value inference. This means that
independently from the study species and its specific migration rate, landscape structure and in
particular habitat spatial distribution are parameters to consider when planning a study aiming
at inferring landscape influence on gene flow, as pointed out by Cushman et al. (2013).

We acknowledge that the consideration of our results in empirical landscape genetic analyses
is limited by the fact that the variables included in the regression tree (Gini index, CD harmonic
mean) hardly allow us to get a representation of similar real situations. However, if the inference
of cost values from genetic data can possibly be carried out in several areas, our results indicate
that the area where (i) population sizes are expected to be the least heterogeneous and (ii)
where the spatial distribution of the sampled populations is the most regular should be chosen.
In such situations, using a modelling approach including proxy variables for the local intensity of
genetic drift (e.g., gravity models in our study, among other possibilities) would not substantially
affect the inference. Besides, although we simulated gene flow in a virtual forest species, these
guidelines should apply for every study species forming discrete populations and dispersing in
heterogeneous landscapes.
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4.3 When should intra-population variables be included in models for cost
value inference?

Our second objective was to assess the interest of including intra-population variables for
taking population size heterogeneity into account in the cost value inference. For that purpose,
we fit gravity models in which both CD values and intra-population variables such as patch ar-
eas ('Cost-Area’) and population sizes ('Cost-Pop’) were predictor variables explaining pairwise
genetic distances between populations. In cases where population size heterogeneity influenced
cost value inference, the inclusion of intra-population variables in these models improved the
quality of the cost value inference (positive D values) in accordance with our hypothesis; al-
though slightly. Our results therefore extend to the specific context of cost value inference the
recommendation of Prunier et al. (2017) to account for population size heterogeneity in land-
scape genetic analyses.

The interest of including intra-population variables in gravity models for inferring cost values
was not only dependent upon the migration rates and the heterogeneity of population sizes, it
also depended upon the degree of this population size heterogeneity and of the spatial aggrega-
tion pattern of the populations. On the one hand, D values were larger in cases where patch
areas, and related population sizes, were most heterogeneous according to the Gini index of
inequality. This result is similar to that of Prunier et al. (2017), who showed that population
size heterogeneity significantly explains genetic differentiation patterns provided a substantial
heterogeneity and low migration rates. Yet, these authors quantified overall population size
heterogeneity using the coefficient of variation of these sizes, instead of the Gini index here used.

In addition, we showed that landscape variables computed from the habitat spatial pattern
at the population level could improve the cost value inference when included in gravity models.
Indeed, considering either patch area or population sizes in the gravity models led to similar
results in cases where including intra-population variables improved cost value inference. These
two variables were rank-correlated but not directly proportional in our settings. This situation
is likely to be met in most real cases when patch area drives their carrying capacity and sub-
sequently their population size. Thus, including environmental proxies for population size in
gravity models could improve cost value inference in many situations. This result reinforces that
of Prunier et al. (2017) which used river width and home-range sizes as environmental proxies
for gudgeon (Gobio occitaniae) population sizes and this way estimated a significant share of
population size heterogeneity effects on genetic differentiation. It also means that costly estima-
tions of population sizes through field works could be saved when there is a close relationship
between some environmental variables and population sizes.

4.4 Limits and perspectives

The migration rates for which we observed a significant influence of population size hetero-
geneity on cost value inference were rather low. However, they reflect realistic situations given
that inferred genetic migration rates are often much lower than inter-patch movement rates (0.5
% versus 7-32 % respectively in Riley et al. (2006) study) and very low migration rates have
often been inferred from genetic data (Meirmans, 2014). In addition, this result is consistent
with that of Prunier et al. (2017) even if we here used migration rates in the lower end of the
migration rates these authors used. However, our results show that intra-population variables
help inferring cost values when gene flow is very reduced but they do not mean that population
size heterogeneity is not substantially affecting genetic differentiation for larger migration rates.

In our simulations, we considered that we knew and sampled the exhaustive set of pop-
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ulations. In practice, exhaustive sampling is rarely possible, although strongly recommended
(Van Strien, 2017), and we can wonder to what extent our results would be affected by consid-
ering only a subset of the populations. Yet, when sampling is not exhaustive, gravity models
could reveal helpful for predicting genetic distance between non-sampled populations provided
they have a high goodness of fit and can be reliably extrapolated. Given the gain in perfor-
mance provided by these models in certain situations, this would make these models relevant
tools for deriving predictions in landscape genetics. However, in most situations where adding
intra-population variables may be interesting for predicting more reliably genetic differentia-
tion, drift effects are very strong and may generate high variability in genetic differentiation,
thereby making predictions highly variable and potentially imprecise. The predictive use of
these models thus deserves further investigation and would probably be more relevant when
intra-population variables reflect processes affecting both population size and dispersal (Pfliiger
and Balkenhol, 2014; Watts et al., 2015). In this context, landscape graphs, which are com-
monly used for modelling connectivity and include both patch (node) and potential dispersal
paths (links) characteristics, would be an adequate tool as their structure directly provides the
inputs of gravity models. Besides, some variables influencing cost value inference such as patch
area heterogeneity or patch spatial aggregation could be computed from different landscape
graphs before hand as a way to identify contexts in which inference would be most reliable when
the effects of population size heterogeneity are at play. Finally, although we simulated dispersal
and gene flow in a forest specialist species, our results apply to a large range of species having
patchy distributions. Future research aiming at improving cost value inference should be carried
out for a set of taxa and landscapes reflecting the diversity of landscape genetic analyses.

5 Conclusion

Considering matrix heterogeneity when inferring landscape resistance to gene flow has been a
common feature of many landscape genetic studies. In contrast, they have rarely considered the
simultaneous influence of migration rates, population size heterogeneity and population spatial
aggregation on this type of inference. Here, we showed that cost value inference from genetic
data is reliable in a wide range of conditions but is hampered when migration is very restricted,
population size is heterogeneous and populations are not regularly distributed in the landscape.
Our study further demonstrates the interest that intra-population variables, such as population
sizes or their proxies, represent for genetic differentiation analyses. It extends it to the context
of cost value inference and shows that gravity models can be helpful for the inclusion of these
variables in the inference of cost values associated with land cover types.
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