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Abstract

In this paper, we investigate the role played by the Total Capital Ratio (TCR) and Liquidity

Coverage Ratio (LCR) among determinants of banks’ profitability. To this end, using Random

Forest regressions and a large dataset of banks’ balance sheet variables, we assess the impact

and predicting power of Basel III capital and liquidity ratios. Our results confirm the trade-off

theory of the capital structure: banks have an optimal capital ratio below which the relation

between capital and profitability is positive. On average, this optimum falls between 15% and

20%. Furthermore, we show that LCR has a positive, but weak, effect on profitability. Overall,

our findings illustrate the fact that regulatory ratios do not constitute binding conditions for

banks’ performance.
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1 Introduction

Banks play a fundamental role in the economy through their role of liquidity creation and risk

transformation. In a context of hardening competition with alternative and unintermediated

financing channels (the so-called shadow banking) and tightening prudential regulation, a crucial

interrogation arises: is banks’ profitability at risk? This question finds several interests. First,

the idea according to which a threat hangs over banks’ profitability, consists of an argument for

the banking industry when defending its interests in front of regulators. Second, some evidence

shows a positive link between banks’ profitability and their internal financial stability (Keeley,

1990; Xu et al., 2019).1 Therefore, if Basel III effectively acts as a constraint on profitability, it

could also threaten the very macroeconomic financial stability it seeks to achieve.

Figure 1 – Evolution of profitability variables

Source: Author’s calculations from FitchConnect data (550 to 1150 banks per year in 21 developed
countries). The figure reports the dynamics of four profitability variables: Return On Average Assets
(ROAA), Return On Average Equity (ROAE), Operating Profit to Total Asset (OPTA) and Net
Interest Margin (NIM). The blue line represents the median of each variable. The red lines indicate
the first and last quartiles. The green line shows the 2007 level of each median.

As shown in Figure 1, profitability seems to have recovered a positive dynamic since the fi-

nancial crisis. However, performances’ median levels remain lower than before 2007. Moreover,

profitability as measured by Return On Average Assets (ROAA), Return On Average Equity

(ROAE), and Operating Profit to Total Assets (OPTA) displays a more flat than positive dy-

namic since 2012. At a first sight, it might correspond to a slowdown due to the implementation

of Basel III agreements. It is equally likely that this phenomenon is imputable to the weakening

of the financial system, the European sovereign debt crisis, or the Zero Lower Bond context. As

for the Net Interest Margin (NIM), it decreases since 2000. Thus, the recent regulatory accords

cannot be responsible for this overall pattern.

1See also the speech by L. de Guindo, Vice-President of the ECB, on May, 1st 2019: ”Clearly, bank profitability
matters for financial stability”. It shows how much an institution as the ECB values banks’ profitability.
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Indeed, Basel III agreements were signed in 2010. They are transposed and progressively imple-

mented since 2012, and will continue to be applied until the early 2020’s with the finalisation

process (”Basel IV”). Therefore, knowing if prudential regulation prevents banks from being

profitable constitutes a relevant and primordial question to be answered. From now, it should

be noted that when we discuss regulatory requirements, we refer to Total Capital Ratio (TCR)

and Liquidity Coverage Ratio (LCR), two flagship requirements of Basel III agreements.

Although the existing literature dealing with the role of capital and liquidity requirements in

determining profitability provides some evidences on the link between capital and profitabil-

ity (Berger, 1995; Berger et al., 1995; Gropp and Heider, 2010; Kraus and Litzenberger, 1973;

Osborne et al., 2012), it is rather scarce on the relation between liquidity and profit (Berger

and Bouwman, 2009; Bordeleau and Graham, 2010; Molyneux and Thornton, 1992), and even

more on the connections amid both capital and liquidity, and performance (Distinguin et al.,

2013; Tran et al., 2016). Obviously, those two variables (capital and liquidity ratios) are not

the only ones to determine banks’ profitability. Incidentally, many studies investigate other

determinants, among which macroeconomic variables such as the monetary policy (Borio et al.,

2017), tax variables (Albertazzi and Gambacorta, 2009; Chia and Whalley, 1999), or the Non-

Performing Loans (Garćıa-Herrero et al., 2009). However, from what has been observed in the

literature, no study seems to establish a clear comparison between regulatory ratios and other

determinants.2

The objective of this paper is to fill this gap by comparing the importance of those different

variables in determining banks’ performance. Specifically, we aim to identify among the de-

terminants used in the literature, which one best improves the out-of-sample prediction of the

different profitability variables we study. Moreover, we seek to compare regulatory ratios’ per-

formance with that of other variables. To this end, a key contribution of our paper is to use

random forest (RF) regressions, whose out-of-sample forecasting performance is widely recog-

nized (Hastie et al., 2009). Three reasons motivate this choice of methodology rather than more

traditional methods: RFs do not impose the choice of a functional form on the estimated model,

they allow us to account for a wide range of explanatory variables (or features), and they in-

corporate both a procedure for estimating the determinants and their impact on the explained

variable (or label). In order to ensure the stability and soundness of our results, we provide sev-

eral robustness checks: (i) we consider four profitability variables, (ii) all results are compared

to the linear model, (iii) all simple RFs’ outcomes are compared with the mean of results of 100

RFs ran on random sample selection, and (iv) two samples are used in our empirical strategy,

one being smaller than the second but containing Basel III Liquidity Coverage Ratio (LCR).3

We go further than the existing literature in various ways. We consider a broad set of deter-

2It should be noted here that some studies, such as Distinguin et al. (2013), include both regulatory ratios
and other determinants. However, their approach is not to compare the determining efficiency of those two kinds
of variables (regulatory versus non-regulatory).

3The NSFR, a fundamental ratio implemented under Basel III, is not incorporated for unavailability reasons.

2



minants issued from the literature, including regulatory ratios. In particular, we rely on LCR

which has not been widely studied due to its recent implementation. From a methodological

viewpoint, we consider RF regressions which have not been used so far to investigate bank’s

profitability. This methodology is particularly relevant since it allows us to detect and model

existing non-linearities in the individual effect of each requirement and the interactions between

variables. Moreover, its out-of-sample prediction performance is known to be satisfactory com-

pared to more standards methods (Hastie et al., 2009).

Relying on annual data over the 2000-2018 and 2012-2018 periods, our main findings can be

summarized as follows. Above all, the Liquidity Coverage Ratio does not appear to be the most

critical determinant of banks’ performance, which is a quite innovative result in the literature.

In all cases, LCR has a positive quasi-linear effect on variables of performance. On the contrary,

even if the TCR never takes the first place, it always belongs to the four to five first most

important determinants. In most cases, capital ratios exert a non-linear effect on profitability:

a positive one for low values and a negative one for values above 15%. This finding confirms

the trade-off theory of an existing optimum (Kraus and Litzenberger, 1973). In addition, a

non-linear effect is at play when looking at both ratios’ impact; such combined impact revealing

an accumulation phenomenon. Finally, we show that banks’ profitability main determinants

can be gathered in four groups: expenses including taxes, provisions for credit risks, assets and

equity variables, and loan features.

The remainder of this paper is structured as follows. Section 2 presents the related literature.

Data and methodology are discussed in Section 3. Some descriptive statistics are displayed in

Section 4. Sections 5 presents the results, and robustness checks are provided in Section 6. We

give our conclusions in Section 7.

2 Literature review

2.1 Definition, measures and accounting relations between regulatory

ratios and profitability

We consider four commonly used profitability variables in order to measure banks’ performance:

ROAA (Berger et al., 1995; Osborne et al., 2012; Tran et al., 2016; Xu et al., 2019), ROAE

(Berger, 1995; Osborne et al., 2012; Distinguin et al., 2013; Tran et al., 2016; Xu et al., 2019),

OPTA (Xu et al., 2019),4 and NIM (Albertazzi and Gambacorta, 2009; Xu et al., 2019). Let us

now describe these variables.

• ROAA is measured by the ratio of net income to average total assets. It measures the

4Note that the usual variable here is Operating Profit in level. A size effect being strongly detected in our
regressions, we controlled for this bias dividing Operating Profit by Total Assets.
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profitability of assets, meaning how a firm uses the resources it owns to generate profit.

It refers to the returns on the assets purchased using each unit of money invested. Net

Income designates the total revenues (from all the activities of the firm) minus business

expenses (costs of sales, administrative expenses, operating expenses,...) and taxes. Assets

refer to the resources with economic value owned by the firm and from which a benefit is

expected (cash, cash equivalent, account receivable, long term resources, financial assets,

intangible assets).

• ROAE is the net income to average shareholders’ equity ratio and represents the amount

of income created for each monetary unit of shareholders’ equity. It measures the return

on each unit of money invested. Equity corresponds to the assets minus the liabilities.

• Operating Profits are the profits generated by a firm’s core business. This variable mea-

sures the business potential profitability and is distinct from net incomes, which represents

the revenues of all activities. In order to control for a significant size effect, we divide op-

erating profits by total assets. From an accounting point of view, this procedure means

that the new ratio refers to the firms’ capacity to use their resources to make the main

line of business profitable.

• Net Interest Margin gives the returns on invested funds. It is measured by the difference

between the interests received and those paid, divided by the average invested assets. The

NIM is supposed to be influenced by macroeconomic variables (interest rates particularly).

As discussed earlier, we consider two regulatory ratios to account for Basel III requirements:

total capital ratio and liquidity coverage ratio. The TCR is defined as the bank’s capital in

relation to its risk-weighted assets (RWA): TCR = Tier 1 + Tier 2
RWA . The ratio’s numerator is

accountingly close to net incomes since it regroups cash, government securities, interest-earning

loans, less loan-loss reserves, and debt. RWA is the sum of a bank’s assets weighted by the risk

associated with each type of asset. The regulatory prerogatives imply an increase in this ratio

following the Basel III implementation. Therefore, each bank should either increase its capital or

decrease its RWAs. An increase in the numerator should be associated with a rise in profitability

if it comes from a reduction of reserves and debt, or an extension in interests. However, if this

increase is based, for instance, on an expansion of cash and government securities, at the expense

of higher interest assets, banking performance may then suffer. The antagonism between these

two effects creates an ambiguity in the expected impact of the TCR on profitability.

The LCR is defined as the High Quality Liquid Assets (HQLA) in relation to Total Net Cash

Flow Amount: LCR = HQLA
Total net cash flow amount . HQLA includes assets with a high potential of

quick cash convertibility. It regroups among others, cash and government securities, some loans

and deposits, and some securities. Those assets are weighted depending on their ability to be

converted in cash. As for the TCR, the liquidity ratio encourages acquisition of traditionally
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low interest assets (such as government securities in the context of ZLB). Therefore, one should

expect a negative relationship between LCR and profitability. However, this relation could not

be true since an increase in HQLA, all things being equal, can also be the sign of a healthy

expense of business. In this sense, a rise in the LCR can also refer to an increase in income.

Regarding profitability variables and regulatory ratios definitions, no clear accounting relation

can be drawn between them. It does not mean that no relationship exists: we will see in the

next section which links can appear from an economic perspective.

2.2 On the relationship between regulatory ratios and profitability

According to the trade-off theory of the capital structure (Kraus and Litzenberger, 1973), an

optimum for the debt to equity ratio exists in describing the best capital structure of a bank.

Therefore and from this perspective, if the TCR required by regulators is superior to the opti-

mal capital ratio for a given bank, then an increase in capital for this bank generates costs and

jeopardizes its performance. On the contrary, if a bank’s optimal capital ratio is lower than the

regulatory TCR, no cost is created by an increase in capital. The Modigliani and Miller (1958)’s

theorem is more categorical and states that the debt to equity ratio does not affect the firm’s

average costs. However, many hypotheses compel this theorem, and empirical investigations

do not converge towards clear-cut findings: Balling (2015) validates the theorem, while Miller

(1995) raises doubts regarding its application to banks, which is confirmed by Goddard et al.

(2013).

All put together, the relation linking capital ratio to banking profitability depends on the de-

terminants of the capital ratio optimum, and banks’ place in relation to this optimum. Banks’

individual characteristics condition the position to the optimal capital ratio. The determination

of the optimum itself depends on several elements. Berger (1995) shows that the optimal capital

structure corresponds to a situation in which total benefits, including tax expenses, equal costs

of debt. Acting on bankruptcy costs, the capital ratio influences the optimum level and, there-

fore, the relation between capital and profitability. Berger (1995) also finds that the economic

cycles can influence the optimum through an impact on bankruptcy costs: during periods of

troubles, expected losses increase, as the optimum, making positive the link between capital

and profitability, and upside down during prosperous years. This result is later confirmed by

Osborne et al. (2012).

As we can see, there is no clear consensus on an immutable (positive or negative) link between

capital and profitability. Empirically, the evidences are mitigated: some findings underline pos-

itive relations between well-capitalization and profitability (Berger, 1995; Iannotta et al., 2007;

Lee and Hsieh, 2013), whereas some others show negative links (Goddard et al., 2013; Baker

and Wurgler, 2015).

Regarding the impact of LCR on profitability, the literature is also non-consensual. On the

one hand, liquid assets detention decreases maturity mismatch risks and liquidity risks. Thus,

5



it should reduce default probability and financing costs, and, therefore, support performances

(Berger and Bouwman, 2009; Bordeleau and Graham, 2010). Moreover, some evidence shows

that the quality of assets supports profitability. It appears when the portion of gross margin

provisioned in order to cover poor quality assets is superior to income generated by those assets

(DeYoung and Rice, 2004). However, liquid assets generate lower returns and therefore lower

revenues. From this point of view, the incentive to increase HQLA tends to weigh on banks’

profitability (Goddard et al., 2013; Molyneux and Thornton, 1992). As for the TCR’s impact

on banks performance, no consensus appears in the literature supporting a positive or negative

relation between LCR and profit.

Other determinants of banks’ profitability have been highlighted in the literature, such as:

market concentration (Bourke, 1989; Dietrich and Wanzenried, 2014; Molyneux and Thornton,

1992), inflation (Bordeleau and Graham, 2010; Bourke, 1989; Dietrich and Wanzenried, 2014;

Molyneux and Thornton, 1992), cash and bank deposits (Bourke, 1989; Molyneux and Thorn-

ton, 1992), credit risks and loan loss provisions (Dietrich and Wanzenried, 2014; Garćıa-Herrero

et al., 2009), GDP growth rates (Bordeleau and Graham, 2010; Dietrich and Wanzenried, 2014),

etc. This list is far from being exhaustive, and it would be interesting but fastidious to list all of

the possible determinants. In this regard, Random Forest regressions appear to be particularly

relevant. Indeed, as Random Forest regressions allow for large number of features, we shall take

in our empirical approach as many profitability determinants as we can in order to control for

any effect that can influence banks’ performance on an accounting and balance sheet point of

view, as well as on an economic perspective.

3 Data and methodology

3.1 Data

Our two datasets consist of banks’ balance sheet variables from the twenty-one following coun-

tries: Belgium, Canada, China, Denmark, Finland, France, Germany, Ireland, Italy, Japan,

Luxembourg, Netherlands, Norway, Poland, Portugal, Singapore, Spain, Sweden, Switzerland,

United-Kingdom and United-States. Data are annual and come from FitchConnect.

In order to be able to consider a maximum number of balance sheet variables that could deter-

mine profitability, as well as a maximum number of banks, we first constituted a large dataset

on which some treatments have to be applied. The first constraint comes from the fact that

RF regressions cannot be carried out successfully if the database contains any missing value.

Looking into the evolution of the number of available observations depending on the number of

variables without any missing value (Figure 2), we kept the following shapes for both databases:

63 variables for 1221 banks in the sample with LCR, and 62 variables for 15310 banks in the

sample without LCR. Rearranging our databases removing twin variables (with a very similar
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definition and measurement), we kept respectively 46 and 45 variables5 (among which five iden-

tity variables, four profitability labels, and the rest of features, Table 2). Note that as the LCR

is specific to Basel III, the dataset that contains it covers the 2012-2018 period only, whereas

the other dataset goes from 2000 to 2018.

Figure 2 – Datasets’ size by number of variables

Source: Author’s calculations from FitchConnect data.

The critical difference in the number of observations when forcing the dataset to contain the

LCR comes from the fact that FitchConnect does not disclose any data for this regulatory ratio

regarding US banks. In a robustness procedure (see Section 6) and in order to control for this

lack of data, we run our empirical investigation using a proxy variable for LCR. For this third

dataset, we have 46 variables for a sample of 4046 banks.

Figure 3 – Number of banks per year

Source: Author’s calculations from FitchConnect data.

Note that we have an unusual data structure. Indeed, our datasets are all balanced in the sense

that there are no missing values. They also are unbalanced regarding the number of periods per

banks. Figure 3 displays the evolution of the number of banks by year for the two databases

we consider. As can be seen, very few LCR data were disclosed between 2012 and 2014. This

particular dataset architecture is not an issue regarding RF implementation, and each bank for

a given year represents an observation.

5We also constrained the dataset to include some accounting and macroeconomic variables identified from the
literature.
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3.2 Random forest regressions

Tree-based models and Random Forest regressions

We use Random Forest regressions in our empirical strategy, due to their high out-of-sample

performance (Hastie et al., 2009). Besides, the RF methodology is particularly well designed

in identifying determinants from a large set of variables and in assessing their impact on the

explained variable. Indeed, this methodology allows us to consider a large sample of explanatory

variables. In our case, since the problem of detecting bank profitability’s determinants is rather

accounting, the possibility of taking into account many balance sheet variables is quite relevant.

RF is also capable of capturing non-linearities and interactions between variables.

The Random Forest methodology (Breiman, 2001) is a supervised statistical learning method6

issued from bootstrap aggregation (or bagging) techniques. Bagging consists of averaging results

of multiple repetitions of the same experiment, which is itself characterized by a high variance

and a low bias. Boosting methods being more adaptive than bootstrap aggregation approaches,

they are generally preferred. However, RF regressions are slightly different from bagging,7

and their performance is often close to those of boosting (Hastie et al., 2009). Since RF is

computationally simpler to implement, it is generally preferred to boosting methods.

The main idea behind the RF method is to average a more or less large number of decision

trees. Therefore, in order to understand this technique, we first briefly present the construction

of a tree. This method consists of partitioning explanatory variables’ space into regions, and

then predict an output value through a simple model (like a constant). The M final regions

(or leaves) of the tree {Rm,m ∈ [[1,M ]]}, are obtained via recursive binary partitions. At each

split of features space, we choose the variable for which the split gives the best fit of the output

variable (or label). Once the tree is built, the label is predicted by a constant value in each final

region, that is:

f(x) =

M∑
m=1

cmI(x ∈ Rm) (1)

where I is an indicative function that scores 1 when x ∈ Rm, M the number of final leaves (final

regions), and cm the predicted value of the explained variable y, in region m. Therefore, this

method is a non-parametric estimation of the unknown function f . This function defines the

true model: y = f(x) + ε, where ε designates the error term. Based on a criterion minimization

of the sum of squares (Hastie et al., 2009), the best ĉm is given by the average (ave) of yi in

region Rm:

ĉm = ave(yi|xi ∈ Rm) (2)

6The model is trained on a sub-sample of the dataset and then tested on observations that have not been
included in the training sample. The supervised aspect of this approach is the fact that we impose to the model
the variable it shall predict.

7RF method averages responses of trees like bootstrap aggregation does. The difference comes from the fact
that trees are built on a randomly selected sample among the training data and features.
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To this point, there are still two parameters to define, which are j and s, respectively, the

splitting variable and point. Those define the two half-planes wrote as: R1(j, s) = {X|Xj 6 s}
and R2 = {X|Xj > s}. Finding j and s is equivalent to solve the problem given by:

min(j,s)[minc1
∑

xi∈R1(j,s)

(yi − c1)2 +minc2
∑

xi∈R2(j,s)

(yi − c2)2] (3)

Solutions for the inner minimizations are given by Equation (2). Replacing ci,i∈[[1,2]] by ĉm in the

expression (3), the determination of s for each feature is deeply simplified. The selection of (j, s)

is made comparing the results of the minimization problem given in (3) for every input variable.

Once the two regions are identified, the process is repeated among them. As mentioned, RF,

as proposed by Breiman (2001), aggregates the results of several trees that are built using a

different bootstrap sample of the data (as bagging methods). This procedure allows considering

different split points and various first splitting variables from one tree to another. This ensures

results convergence and that the complexity of the relationships involved is captured. In ad-

dition, Breiman (2001) suggests to change each tree’s structure: the features selected in the

process of a tree building are not necessarily the same from a tree to another. This ensures the

de-correlation between trees. Therefore, parameters (j, s) for any given node are not the same

between trees.

A second step in building a decision tree is to determine the maximum depth of a tree and the

minimum number of observations in every leaves. Indeed shallow trees are likely to have poor

prediction performance, and too deep trees might lead to overfitting issues and consequently bad

out-of-sample forecasting. Following the same logic, a large number of observations per final

region will predict poorly, while too little observations per leave are also subject to overfitting

problems.

Thus the determination of those two parameters (depth and observations per leave) is crucial

and can be done in several ways. In the context of a single tree, Hastie et al. (2009) propose

to rely on a cost complexity criterion that should be minimized. This procedure works on the

fact that an increase in complexity (measured by the depth of the tree) that leads to overfitting

the data and decreases the sum of squares is counterbalanced by an increase in a cost term that

depends on the tree’s depth. In the context of RF, this approach is quite demanding in terms

of calculation: the criterion must be minimized for each tree. Another technique consists in

making varying those two parameters in multiple RF regression estimations simultaneously and

retain those that maximize the out-of-sample prediction performance.

The last parameter to establish is the number of trees in the forest. There are some debates

on the optimal value for this parameter (and the very existence of an optimum). Hastie et al.

(2009) suggest that the error of the model generally decreases and converges as the number of

trees grows. From this perspective, the right number of trees corresponds to the moment where

the error does not decrease below a certain threshold. Oshiro et al. (2012) show that, in some
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cases, the convergence of errors is not ensured. To avoid any risks in our empirical investigation,

we determine simultaneously all three parameters: (Tmax, Omin,Mtrees), respectively the max-

imum depth of trees, the minimum number of observations per final region, and the number of

trees. To do so, we compare RF regressions out-of-sample scores making those three parameters

vary.

RF interpretation: variables importance and Quantitative Input Influence (QII)

As the number of features increases, visualization becomes more complex. However, it

remains central since it often appears that numerous variables are irrelevant. This part is

managed by the calculation of predictors’ relative importance (Breiman et al., 1984; Hastie et al.,

2009). Moreover, some techniques known as quantitative input influence make it possible to

visualize features’ impact on labels. Precisely, we use both Partial Dependence Plots (Friedman,

2000; Hastie et al., 2009) and Accumulated Local Effects (Datta et al., 2016).

In order to assess variables’ importance, we rely on a generalization of Breiman et al. (1984)’s

measure of relevance for a single tree:

I2
j =

1

K

K∑
k=1

No−1∑
t=1

i2t I(v(t) = j) (4)

where I2
j is the importance of the predictor variable Xj , K represents the number of trees in

the forest, No indicates the number of nodes in the tree, v(t) is the variable chosen at node t to

split the space, and i2t refers to the improvement gave by the splitting variable, in squared error

risk compared to a constant adjustment across all regions. This measure attributes a score to

all features giving their determining power on labels.

A Partial Dependence Plot (PDP) is then built to provide a summary of the output dependence

on the joint values of the inputs (Friedman, 2000; Hastie et al., 2009). Considering a subset of

l < p inputs XS,S⊂{1,2,...,p} of XT = (X1, ..., Xp), such that f(X) = f(XS , XSC ),8 the partial

dependence of f to XS is given by:

fS(XS) = EXSC
f(XS , XSC ) (5)

Note that Equation (5) defines a measure of XS effect on f(X) after accounting XSc effect. To

calculate this impact in practice, we process as follows. We first assess Individual Conditional

Effect (ICE), meaning the partial dependence of f(X) on XS when considering values of XSc

for a given individual i:

ICEi = {f̂(xkS , Xi,SC ), xkS ∈ [Xmin
S , Xmax

S ]} (6)

8SC being the complementary of S: S ∪ SC = {1, 2, ..., p}.
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where ICEi is the ICE for the i-th individual, Xi,SC refers to values of XSC of this individual,

and xkS are the values of XS that vary from its minimum to its maximum with a step k. This

provides a set of points representing a plot of partial dependence of the explained label on the

variables included in S for the i-th individual. In a second step, we average those plots for all

the individuals, and we obtain the PDP.

One of the most important issues in PDPs is that it assumes independence between the predic-

tor for which the partial dependence is computed and the other one. Besides, making xkS vary

across all the distribution of XS creates a risk to overfit regions with almost no data. In order

to overcome this issue, we rely on Accumulated Local Effect (ALE).

ALE (Datta et al., 2016) also proposes to calculate the marginal effect of XS . The main dif-

ferences with PDP can be summarized as follows: ALE is unbiased even when features are

correlated, it marginalizes over probable combinations of features, and it is faster to compute.

Technically, ALE bases its calculation on existing data intervals for explanatory variables. More-

over, ALE averages the changes of predictions, not the predictions itself. Another significant

difference with PDP is that ALE accumulates the local gradients over the range of features S,

giving the effect of those on the predicted variable. Finally, ALE method is centred so that the

average effect is zero.

In practice, ALE for one given feature is computed, dividing it into many intervals, and com-

puting the differences in the predictions.9 First, the uncentred effect is calculated:

∼̂
f j(x) =

kj(x)∑
k=1

1

nj(k)

∑
i:x

(i)
j ∈Nj(k)

[f(zk,j , x
(i)
\j )− f(zk−1,j , x

(i)
\j )] (7)

where
∼̂
f j(x) is the uncentred effect of the variable j. f(zk,j , x

(i)
\j ) gives the prediction given by

the model, and considers the i-th individual for features values excepted xj that takes the value

zk,j . The z are the values taken by the variable Xj that has been distributed on a grid defined

by a given step. The internal sum adds up the impacts of all individuals within an interval

(i : x
(i)
j ∈ Nj(k)) that appears as a neighbourhood. This sum is weighted by the number of

individuals nj(k) present in the k-th neighbourhood. Finally, we sum the average effect over all

intervals.

Second, we center in order to obtain a null main effect:

f̂j(x) =
∼̂
f j(x)− 1

n

n∑
i=1

∼̂
f j(x

(i)) (8)

f̂j(x) is interpreted as the main impact of the explanatory variable compared to the average

prediction of the data.

9This approximates the local gradients and allows us to compute ALE using Random Forest regressions.
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From a practical point of view, some comments should be made. We use the sickit-learn

package for RF regressions that includes PDPs calculation. ALE being a far more recent tech-

nique, it has not been widely developed yet. As for now, and to the best of our knowledge, only

the ALE-python package proposes Accumulated Local Effect in python; we thus rely on this

package in our empirical approach.10 In the representation, we generally cut the extreme values

of the variable we look at; indeed, the deviation from a value to another increasing as we move

towards the distribution queues. As a result, the QII curves stretch for high values of the input

and the additional information loses in relevance.

4 Descriptive statistics

Before presenting the results of RF regressions, we display some descriptive statistics on the

explained variables’ distribution and the features correlations.

Figure 4 – Profitability variables’ distribution

Source: Author’s calculations from FitchConnect data.

Figure 4 shows the distribution of our four profitability variables. As can be seen, the output

variables are highly concentrated around their respective average. All four variables also display

outliers,11 but RF regressions are robust to the presence such observations. Indeed, each tree

is built on a new randomly selected sample of features and data. Therefore, among the entire

10Note that this package includes Monte-Carlo simulations. Therefore, we provide the robustness checks
consisting in assessing the average results over a 100 RF, only on PDPs.

11Those outliers are not apparent being too few.
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forest, outliers are taken into account.12

As mentioned earlier, Partial Dependence Plots’ calculation can be biased when features are

correlated. As shown by Figure 5 which displays the linear correlations between all explanatory

variables, high correlation exists for some features. Indeed, the sample of variables going from

Business Volume to Other Assets displays high correlation levels with numerous other inputs.

The use of ALE in order to support PDPs’ results is relevant.

Figure 5 – Linear correlation between features

Source: Author’s calculations from FitchConnect data.

12To ensure that no bias is created by those high values, we constrained the sample selection of the robustness
check by averaging results over 100 RF regressions. To do so, we forced the model to select data from all deciles.
We controlled the sampling comparing the new and old distributions’ first two moments.
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5 Results: Random forest with ROAA

Let us consider in this section only the results for RF regressions on ROAA, in the sample

including LCR. The results averaging outcomes over 100 RFs, for the three other profitability

variables, in the whole sample and with the LCR proxy are all presented in Section 6 dedicated

to robustness checks. We fix RF parameters and make vary the number of trees, the minimum

observations per leave, and the maximum number of nodes/ depth of trees simultaneously.13 We

compare the set of parameters that maximize the out-of-sample R2: 200 trees with a minimum

of 10 observations per final region, and a maximum of 12 nodes.

Whatever the profitability variable we explain, our empirical approach is based on four steps.

In the first one, we look at the model’s quality, relying on its R2 in- and out-of-sample. Once

the usefulness of the model is confirmed, we focus in a second step, on the most important

variables. Precisely, our goal is to compare the predicting power of regulatory ratios with those

of other determinants. The third stage consists in the calculation of most important variables’

PDP and ALE. Finally, we interpret the results. This approach in four steps is also followed in

all robustness checks.

To check the model’s quality, we look at the model’s performance in and out-of-sample, and

compare those two scores to those issued from linear regressions (OLS).14 Table 1 displays the

results for those two regressions on ROAA.

Table 1 – Model’s quality: RF versus OLS

Sample Models
RF OLS

In-sample 0.85 0.25
Out-of-sample 0.43 -0.32

Source: Author’s calculations. The table shows

the coefficient of determination (R2) scores.

As can be seen, RF outperforms OLS in predicting in and out-of-sample.15 Even if OLS is

undoubtedly not well suitable to estimate our model, it remains relevant to compare its perfor-

mance to that of RF: it confirms the usefulness of relying on a non-linear model and constitutes

a benchmark from which we can establish RF’s predicting power. We still propose an alternative

method (regularized least squares) in section 6.

Now that the relevance in the use of RF regressions is confirmed, we look into the classifica-

tion of the most important variables. The calculation of the predicting power of each feature,

13We estimated multiple RF making the number of trees vary from 10 to 1000, the depth from 4 to 15 and the
maximum number of obsevation from 8 to 12.

14OLS are run using only the 6 first important variables underlined with RF and the two regulatory ratios.
15The negative R2 for out-of-sample OLS means that the linear model performs worse than a constant. It is

certainly due to the sample selection procedure. The data contained in the test set are sufficiently different from
the data in the learning set so that the linear model predicts poorer than a constant.
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as described in Section 3.2, allows us to order explanatory variables. Figure 6 shows the im-

portance of each input. We can observe that TCR has relatively high importance, taking the

fourth place among all variables. Including TCR in the features improves the model predic-

tions by 8%. Looking into the partial dependence and accumulated local effect of this ratio to

ROAA is therefore relevant. However, the LCR only takes the thirteenth place and enhances

the predicting power of the model only by 1%. PDP and ALE of LCR present less interest:

we still can calculate the impact of liquidity ratio on ROAA, but we should expect a weak effect.

Figure 6 – ROAA - Variables importance

Source: Author’s calculations from FitchConnect data. In red the two regulatory ratios.

The third step of our analysis concerns the calculation of features’ marginal effect on ROAA.

Precisely we plot the one-way and two-ways PDP and ALE of TCR and LCR in relation to

ROAA. Then we also look into partial dependence and local effect of the first six most important

variables. The results are compared with those of the linear model.

Figure 7 shows the results of the two regulatory ratios’ PDP and ALE (one and two-ways) from

the RF regression on ROAA, and the PDP of the linear model (a line whose slope is defined by

the OLS parameter estimated). As can be seen, the marginal effect of capital on profitability

is non-linear: a positive relationship links this regulatory ratio to ROAA for values below 15 to

20%, and a negative effect of TCR on banks’ performance is captured for values higher than

20%. This result is obtained with both PDP and ALE. The linear model remains irrelevant

in that it displays an overall negative relationship between TCR and ROAA. The non-linearity

detected by RF strongly supports Kraus and Litzenberger (1973)’s trade-off theory of the capital

structure: on average, a capital ratio optimum exists and is comprised between 15 and 20%. As
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for the LCR, RF highlights a linear or quasi-linear16 relationship between the liquidity Basel

III ratio and banks’ profitability. This finding endorses the fact that detaining High Quality

Liquid Assets goes with healthier activity and low costs funding. Though, what should be kept

in mind regarding LCR’s impact is that it has weak power on the prediction outcomes of the RF

regressions. In other words, LCR does not appear to be a powerful determinant of profitability.

Figure 7 – ROAA - Regulatory ratios’ marginal impact

Source: Author’s calculations from FitchConnect data. The first two plots display PDPs of TCR and LCR. The
two following ones show ALE of TCR and LCR. The fifth and sixth plots represent OLS results. The last line
depicts interactions between capital and liquidity ratios in their effect on ROAA. Distribution of explanatory
variables can be seen in axes (deciles and percentiles are displayed for, respectively, PDP and ALE).

16It seems there would be a threshold above which appears a new and higher regime of profitability. However,
looking at the LCR distribution, this relation is captured for too few observations to be considered as reliable.
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The two-ways PDP and ALE show the cumulative effect of TCR and LCR on ROAA, de-

pending on each-other’s level. Indeed, it does not appear that ratios’ impact structure is changed

when taking into account both of them. However, it is clearly shown that the overall impact

changes when moving towards higher values of both ratios. Therefore, an optimal combination

appears: on average, when taking reasonable values (between second and ninth deciles of both

distributions) for the two Basel III requirements, a bank finds interest in converging around 20%

of TCR and the minimum LCR required, namely 100%. However, here again, the interpretation

of those two-ways plots should be taken carefully in the sense that LCR gives weak importance

in the model’s prediction. Finally, some comments on scales should be made. Note that the

intervals (y-axis) in which PDPs and ALEs vary are small showing that, even regarding TCR,

the determining power may be sure, it is not highly significant.

The fourth step of our analysis must also be conducted on the most important variables

displayed in Figure 6, excluding TCR that has been already studied. Figure 8 shows Random

Forest regressions’ PDP, ALE and OLS PDP for the six first determinants of ROAA. While

each variable would deserve particular attention, our main interest here is to establish some cat-

egories of powerful determinants of banks’ profitability. Thus, we will have to cross-checked our

results with those provided in Section 6. Still, let us make some comments. A strong positive

relationship links tax expenses to ROAA. As we shall see hereafter, we attribute this finding to

an inverse causal effect: the more profitable a bank is, the higher its tax expenses. Loan loss

reserves appear to have a negative impact on ROAA. This result is quite intuitive since those

reserves represent a cost/unused capital for the bank. The total equity to total assets ratio,

which is close to the regulatory leverage ratio, displays a positive impact on profitability. This

result underlines the idea according to which high regulatory ratios improve banks’ ability to

generate interests. This can be explained by a decrease in funding costs. The same logic seems

to link the reserve NPL to gross loans ratio, to bank performance. Unsurprisingly, gross loan

growth is positively associated with ROAA. Finally, deposits and money market funds have a

positive effect on performance. On average, those instruments appear to have positive returns.

From those findings, determinants can be classified among four categories: expenses, provisions

for credit risks, assets and equity variables, and loan features.

We can summarize our main results as follows. TCR is a strong determinant of profitability

though its marginal impact seems low. The trade-off theory of an optimum for the capital ratio

is confirmed, and takes a value between 15 and 20%. LCR is shown to be a weak determinant

of banks’ profitability. Accumulated effects appear when looking at both capital and liquidity

impact. Let us now conduct numerous robustness checks to ensure the stability and reliability

of our results. The goal of the next section is also to validate the four categories of profitability

determinants.
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Figure 8 – ROAA - 6 first most important variables’ impact

(a) Tax expenses

(b) Loan loss provisions to gross loans

(c) Total equity to total assets
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(d) Reserve NPL to gross loans

(e) Gross loan growth

(f) Deposits, money market funding growth

Source: Author’s calculations from FitchConnect data. For each of the first six most important variables: RF’s

PDP on top the left, RF’s ALE on the top right, and PDP of OLS at the botton.
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6 Robustness

6.1 Results for other profitability variables

To assess the robustness of our findings to the profitability measure, we use three other bank

profitability variables (ROAE, OPTA, and NIM), and apply the same empirical approach as for

ROAA. The results of the corresponding RF regressions are displayed in Appendix B.1.

All three models show high in-sample prediction performance, and higher out-of-sample R2

than those of linear regressions in-sample (Table 3). The out-of sample explicative power of

RF regressions goes from 41% to 81%. These results corroborate those obtained with ROAA,

and have sufficient prediction power to be trusted. Regarding the most important variables

(Figure 9), and the place took by the two Basel III ratios among these, the results also confirm

those of the regression with ROAA: capital ratio takes a prominent place, except in the model

with NIM, and LCR never appears as a powerful predictor of the model. For both ROAE and

OPTA, an optimum level of capital is visible around 15% (Figure 10b): the effect of TCR being

positive before and becoming null or negative beyond the optimum. In the three models, LCR

shows positive impact on profitability (Figure 12b). The models with ROAE and OPTA confirm

the accumulated effect of increasing simultaneously capital and liquidity. Finally, we find some

stability in the set of the most important variables. Among the predictors that regularly appear

in the first most important variables, we can find the loan loss provisions to gross loans ratio,

the tax expenses, the gross loans growth, deposits and money market funding growth, and the

NPL reserves to gross loans ratio. Overall, except for the case of capital in the model with NIM

as the explained variable, all results are corroborated.

6.2 Averaging results of 100 regressions taking into account outliers

The second robustness test we conduct concerns the training data sample selection. Indeed, RF

regressions are trained on randomly selected data among the full sample, and then tested on the

remaining observations. In order to ensure that our results are not conditioned to a particular

selection of the data, we average results over 100 RF. For each RF regression, we re-sample

randomly the training data set, and constrain the sampling to select data from every decile.

This procedure allows us to take into account the full sample, including outliers. We ensure the

proper distribution of data by checking the first two moments of the selected data. The results

of those regressions are shown in Appendix B.2.17

On average, over 100 regressions, all four models have higher out-of-sample predicting power

(from 43% to 76%) than OLS in-sample forecasting performance (from 17% to 45%, Table 4).

Among the first most important variables (Figure 13), TCR always occupies the sixth place or

better (except for the model with NIM). An optimum for the capital ratio is detected around

17The computational cost being too high, results of ALEs and two-ways QII are not displayed.
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15% (Figure 14a). In all models, LCR improves weakly the predicting power of the forest. Its

effect remains strictly positive (Figure 14b). The main determinants of profitability variables

are stable compared to what we have shown earlier. Among those, we can find: tax expenses,

the loan loss provisions to gross loans ratio, the gross loan growth, the NPL reserves to gross

loans ratio, and the deposits and money market funds growth. Once more, most of our previous

results are confirmed.

6.3 Results with LCR proxy

Our aim in this section is to verify that LCR is not an important determinant of banks’ prof-

itability. As mentioned earlier, our database does not include this regulatory ratio for US banks.

Therefore, we take the highest correlated variable with LCR that permits to have a large number

of observations, and we use it as a proxy for LCR. We retained the total derivative liabilities

at fair value. This variable is linearly correlated at 95% with LCR and allows us to consider

a sample of more than 4 000 observations. Outputs for this robustness test can be found in

Appendix B.3.

In this model, the out-of-sample quality remains high (63%, Table 5). TCR takes the fourth

place as the most important variables, while our LCR proxy takes the twenty-ninth (Figure 15).

From this perspective, the results regarding LCR in previous regressions are corroborated.

6.4 Results in the large sample over 50 regressions

Here, we test the validity of our results regarding the capital ratio. We aim to confirm the

existence of an optimum below which the relation between capital and profitability is positive

and upside-down for higher values of capital. To do so, we run RF regressions on our four

profitability variables using a dataset of more than 15 000 observations.18 To ensure the stability

of our results, we average outcomes of 50 RF regressions. The results of those regressions are

displayed in Appendix B.4.

As shown, models’ quality remains high (Table 6). The optimum of the capital ratio is verified

for all four models, and varies from 13% to 20% (Figure 17). Though, it appears that TCR

takes a lower place among the most important variables (Figure 16). The first determinants of

profitability are close to those obtained in previous regressions.

6.5 Results of regularized least squares

In this last robustness exercise, we propose a more suitable linear method in addition to basic

OLS: regularized least squares. This approach consists in adding a regularisation term to the

error function to be minimized. In doing so, we control for over-fitting. Moreover, by gradually

18Note that this robustness check also allows us to confirm our results on the capital ratio optimum with US
banks.
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increasing the term of regularization, the model is forced to keep only the most important vari-

ables.

We use the Ridge Regression over all variables in the dataset with the LCR and ROAA as de-

pendent variable. We then estimated multiple models making vary the regularisation parameter

and resampling randomly the training and test sets. Doing so we control for both outlier values

and the regularisation parameter value. Outlier playing a key role in determining the bias of

least squares procedure, we also normalized all data.

Results show positive but low R2, in and out-sample, confirming that a linear model is not well

fitted in our case. 19

7 Conclusion

This paper analyses the determinants of banks’ profitability. Specifically, since the implemen-

tation of Basel III new regulatory requirements is under debate in the context of intensified

competition, we investigate the capital (TCR) and liquidity (LCR) ratios’ predicting power of

banks’ performance. Moreover, we establish a comparison between those two variables and other

potential determinants of banks’ profitability.

Relying on a large dataset of more than 1 000 observations and containing both regulatory

ratios, we do not find evidence of strong determining power of LCR, although its marginal effect

is positive. On the contrary, we show that TCR is a key determinant of banks’ profitability. Fur-

thermore, we corroborate the trade-off theory of the capital structure, which states the existence

of an optimal capital ratio. Conducting strong robustness checks, we estimate this optimum

to be, on average, between 15% and 20%. We also show that a positive accumulation effect

lies under the combined impact of capital and liquidity. Finally, we show that profitability’s

determinants can be classified into four groups: tax variables, provisions for credit risks (NPL

reserves, loan loss provision...), assets and equity variables (TCR, leverage ratio...), and loans

variables (gross loan growth, net loans...). The validity of our results is ensured by the use of

Random Forest regressions that are known for their ability to perform out-of-sample and capture

complex relationships between variables. The reliability of our findings has been successfully

tested through numerous robustness checks.

Tackling the determining place of regulatory ratios in banks’ profitability, our paper has im-

portant policy implications. Indeed, we assess that the optimal capital ratio falls between 15%

and 20%, which is higher than Basel III requirements. This implies that the current minimum

regulatory capital ratio is not binding for most banks. We also show that LCR has a weak and

positive effect on profitability. Therefore, the actual regulatory requirements do not prevent

banks from being profitable. The optimal capital ratio is specific to each bank. From this

19Results are not displayed in this paper but remain available at the reader’s request.
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perspective, all banks which have a TCR below its optimum still have the flexibility to change

their capital and liquidity structure in order to be compliant with Basel III and increase their

profitability. In other words, regulatory accords find efficiency by ensuring banks’ internal fi-

nancial stability without compelling their business.

The present study con be extended in several ways. From a methodological point of view,

a full dataset including LCR data for US banks should undoubtedly be worthwhile. Moreover,

as we show the existence of non-linearities in the relation between capital and profitability, the

use of a dynamic Panel Smooth Transition Regression (PSTR) would be particularly relevant

in order to account for any temporal effect. This matter finds interest in investigating Berger

(1995)’s hypotheses according to which the sign of the relation between capital and banks’

performance depends on the cycle. From an economic point of view, further research should be

done to investigate the impact of regulatory ratios on banks’ profitability. Specifically, it will

soon be possible to study the effect of Net Stable Funding Ratio (NSFR).
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A Data sources and definitions

Table 2 – Data sources and definitions

Data Definition Source

TOTAL REG CAP RA-

TIO

Total regulatory capital ratio as defined un-

der Basel agreements. It is fixed to 8% of the

risk weighted assets, plus a conservation buffer

(2%).

FitchConnect

LIQUIDITY COVER-

AGE RATIO

Short term liquidity ratio as define under

Basel III agreements. Ratio of High Quality

Liquid Assets to cash flow under stress.

FitchConnect

RESERVE NPL GROSS

LOANS

Ratio of volume of NPL to gross loans. It gives

a measure of credit risks took by a bank.

FitchConnect
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Table 2 – (continued)

LOAN CUSTOMER DE-

POSITS

Loan to customer deposit accounts, which can

be withdrawn on demand or short notice.

FitchConnect

LOAN LOSS PROVI-

SION

Provision made by a bank to hedge against

loan losses.

FitchConnect

LOAN LOSS PROVI-

SION GROSS LOAN

AVG

Ratio of loan loss provision to gross loans. FitchConnect

DEPOSITS MM FUND-

ING GROWTH

Growth rate of deposits to money market

funding.

FitchConnect

TOTAL EQUITY TO-

TAL ASSETS

Ratio of total equity to total assets. This ratio

is close to the leverage ratio as defined under

Basel agreements.

FitchConnect

TOTAL LIABILITIES Liabilities of each bank. FitchConnect

INT EXP AVG INT LIAB Ratio of total interest expense / average

interest-bearing liabilities.

FitchConnect

AVG INT BEARING

LIAB

Average interest-bearing liabilities FitchConnect

LIQUIDITY ASSETS GS Liquid assets detained by the bank FitchConnect

NET LOANS TOTAL

EQUITY

Ratio of net loans to total equity. FitchConnect

NET LOANS TOTAL

ASSETS

Ratio of net loans to total assets. FitchConnect

GROSS LOANS

GROWTH

Growth rate of gross loans. FitchConnect

TOTAL ASSETS Total assets of the bank. Often used as a size

proxy.

FitchConnect

CUSTOMER DEPOSITS

TOTAL FUND DER

Ratio of customer deposits to total fund. FitchConnect

DEPOSITS ASSETS Money placed into banking institutions for

safekeeping.

FitchConnect

BUS VOLUME Managed Securitized Assets Reported Off-

Balance Sheet + Other off-balance sheet ex-

posure to securitizations + Guarantees + Ac-

ceptances and documentary credits reported

off-balance sheet + Committed Credit Lines

+ Other Contingent Liabilities + Total Assets

FitchConnect
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Table 2 – (continued)

TOTAL OPER EX-

PENSE

Operating costs include administration costs

such as staff costs.

FitchConnect

TOTAL NON INT EXP Operating expense that is classified separately

from interest expense and provision for credit

losses.

FitchConnect

OTHER OPER EXP Operating expenses. FitchConnect

TOTAL FUNDING Total Deposits, Money Market and Short-

term Funding + Total Long Term Funding +

Derivatives + Trading Liabilities

FitchConnect

TOTAL INT EXP Interests on expenses costs. FitchConnect

TOTAL DEPOSITS Total deposits. FitchConnect

TAX EXPENSE Expense for current and deferred tax for the

period.

OTHER INT EXP Interest expenses. FitchConnect

OTHER NON INT

BEARING GS

Non interest-bearing. FitchConnect

TOTAL NON EARNING

ASSETS

All assets that do not generate income. FitchConnect

NON EARNING ASSETS Assets that do not generate income. FitchConnect

TOTAL EARNING AS-

SETS

All assets that generate income. FitchConnect

OTHER NON EARNING

ASSETS

Other assets that do not generate income. FitchConnect

OTHER ASSETS Other assets FithConnect

HHI Herfindahl-Hirschman Index. Gives a measure

of the market concentration.

FitchConnect

CashAndDepositsBank Cash and deposits from other banks. FitchConnect

Inflation Annual inflation rate. OECD

GrGDPperCap Annual GDP growth rate per capita. World Bank

Corp Tax Corporate tax rate. OECD
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B Robustness outputs

B.1 Results for other profitability variables

Table 3 – Model’s quality: RF versus OLS - ROAE, OPTA, NIM

Sample Models
ROAE OPTA NIM

RF OLS RF OLS RF OLS
In-sample 0.81 0.18 0.84 0.21 0.93 0.49

Out-of-sample 0.66 -0.19 0.41 -1.65 0.81 0.37

Source: Author’s calculations. The table shows the coefficient of

determination (R2) scores.

Figure 9 – Variables’ Importance - ROAE, OPTA, NIM

(a) ROAE (b) OPTA

(c) NIM

Source: Author’s calculations from FitchConnect data.
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Figure 10 – PDP and ALE of TCR - ROAE, OPTA, NIM

(a) Partial Dependence Plots

(b) Accumulated Local Effect

Source: Author’s calculations from FitchConnect data.
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Figure 11 – PDP and ALE of LCR - ROAE, OPTA, NIM

(a) Partial Dependence Plots

(b) Accumulated Local Effect

Source: Author’s calculations from FitchConnect data.
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Figure 12 – Two ways PDP and ALE - ROAE, OPTA, NIM

(a) Partial Dependence Plots

(b) Accumulated Local Effect

Source: Author’s calculations from FitchConnect data.
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B.2 Averaging results of 100 regressions taking into account for out-

liers

Table 4 – Model’s quality over 100 RF

Sample Models
ROAA ROAE OPTA NIM

RF OLS RF OLS RF OLS RF OLS
In-sample 0.86 0.23 0.84 0.19 0.85 0.17 0.93 0.45

Out-of-sample 0.49 -0.41 0.43 -1.22 0.45 -0.68 0.76 -0.43

Source: Author’s calculations. The table shows the coefficient of determination

(R2) scores.

Figure 13 – Variables’ Importance over 100 RF

(a) ROAA (b) ROAE

(c) OPTA (d) NIM

Source: Author’s calculations from FitchConnect data. In red the two regulatory ratios.
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Figure 14 – One way PDP over 100 RF - ROAA, ROAE, OPTA, NIM

(a) Partial Dependence Plots - TCR

(b) Partial Dependence Plots - LCR

Source: Author’s calculations from FitchConnect data. In red the level of the optimum TCR.
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B.3 Results with LCR proxy

Table 5 – Model’s quality with LCR proxy over 100 RF - ROAA

Sample Models
RF OLS

In-sample 0.86 0.32
Out-of-sample 0.63 0.24

Source: Author’s calculations. The table shows

the coefficient of determination (R2) scores.

Figure 15 – Model with LCR proxy - ROAA - Variables importance

Source: Author’s calculations from FitchConnect data. In red the two regulatory ratios.
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B.4 Results in large sample over 50 regressions

Table 6 – Model’s quality in large sample over 50 RF

Sample Models
ROAE ROAE OPTA NIM

RF OLS RF OLS RF OLS RF OLS
In-sample 0.78 0.1 0.71 0.08 0.77 0.1 0.93 0.45

Out-of-sample 0.48 0.06 0.04 0.05 0.38 0.06 0.76 -0.43

Source: Author’s calculations. The table shows the coefficient of

determination (R2) scores.

Figure 16 – Variables’ Importance over 50 RF

(a) ROAA (b) ROAE

(c) OPTA (d) NIM

Source: Author’s calculations from FitchConnect data. In red the two regulatory ratios.
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Figure 17 – TCR one way PDP over 50 RF over large sample - ROAA, ROAE, OPTA, NIM

Source: Author’s calculations from FitchConnect data. In red the level of the optimum TCR.
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