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Abstract—In this work, the uplink channel estimation problem
is considered for a millimeter wave (mmWave) multi-input multi-
output (MIMO) system. It is well known that pilot overhead
and computation complexity in estimating the channel increases
with the number of antennas and the bandwidth. To overcome
this, the proposed approach allows the channel estimation at
the base station to be aided by the sensing information. The
sensing information contains an estimate of scatterers locations in
an environment. A simultaneous weighting orthogonal matching
pursuit (SWOMP) - sparse Bayesian learning (SBL) algorithm is
proposed that efficiently incorporates this sensing information in
the communication channel estimation procedure. The proposed
framework can cope with scenarios where a) scatterers present
in the sensing information are not associated with the commu-
nication channel and b) imperfections in the scatterers’ location.
Simulation results show that the proposed sensing aided channel
estimation algorithm can obtain good wideband performance only
at the cost of fractional pilot overhead. Finally, the Cramer-Rao
Bound (CRB) for the angle estimation and multipath channel
gains in the SBL is derived, providing valuable insights into the
local identifiability of the proposed algorithms.

I. INTRODUCTION

Millimeter wave (mmWave) and terahertz (THz) frequencies
are considered to be a key component of 5G and 6G cellular
systems [1]. However, as the operating frequencies increase,
path and absorption losses also increase. Despite these disad-
vantages, this approach will allow packing more antennas in a
small area and, then, the network can leverage beamforming
techniques to compensate for the losses operating in such
frequencies. However, the gains stemming from these multiple
antenna techniques hinge on the ability to accurately estimate
the channel state information (CSI).

Estimating channel coefficients over a wideband and across
multiple antennas incurs significant resource overhead in terms
of resources occupied for sending pilot symbols. However,
it has been observed that the mmWave channel exhibits a
sparse behavior with only a few resolvable multi-paths in
angle and delay domain [2] and [3]. By leveraging such
sparsity, several works have come with compressed sensing
(CS) based approaches for channel estimation and precoder
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Fig. 1. Uplink multi-path scenario along with the co-located radar.

design in mmWave multi-input multi-output (MIMO) systems
[4]–[9]. However, while used in wideband massive MIMO
systems, these approaches lead to higher complexity due to the
requirement of inverting huge matrices (for every subcarrier)
across such antenna arrays.

Since the sparse wireless channel is described by a few
geometric multi-path propagation parameters, one might ask:
Can the information on the physical propagation environment,
for example, scatter or reflector locations, be useful in channel
estimation? Indeed, one of the earlier works in [10] has utilized
this key observation. The authors extract physical multi-path
parameters from the CSI measurements in one frequency band
and then use them to construct the CSI in another frequency
band. However, no extra pilots are used in aiding the channel
estimation, and they assume that the extracted multi-path
parameters are perfect.

On the other hand, advances in radar and joint communica-
tion sensing made it possible to have real-time dynamic radio
environment maps at the communicating devices providing
situational awareness [11]–[18]. The works in [11]–[14], [17],
[18] use such side information in multi-path angular domain
for the beam prediction and channel estimation. A recent work
in [19] tried to address the problem of channel estimation in
massive MIMO systems by leveraging the sensing information
obtained from a co-located radar at the base station (gNB).
Both delays and angles of multi-path parameters are extracted
from the radar information, and then used to initialize the
dictionary in an orthogonal matching pursuit (OMP) based
channel estimation algorithm. However, the extracted multi-
path parameters from the radar are assumed to be error-free.

In this work, we consider the problem of channel estimation



in a wideband mmWave MIMO system in which sensing
information is obtained from a co-located radar at the gNB,
as shown in Fig. 1. Contrary to state-of-the-art, we propose
a sparse Bayesian learning (SBL) framework that efficiently
incorporates erroneous delay and angular sensing information
and improves their resolution with limited pilot overhead. The
contributions of our paper are summarized as follows,

1) Unlike [19], we assume that the sensing information
from the radar can be erroneous. We also consider cases
in which scatterers detected from radar might not be
associated with the communication channel.

2) To address these issues, a novel Simultaneous Weight-
ing Orthogonal Matching Pursuit (SWOMP) - Sparse
Bayesian Learning (SBL) based channel estimation is pro-
posed that incorporates the imperfect sensing information
from the radar.

3) We also provide local identifiability analysis for the
parameter estimation using SBL by deriving Cramer-Rao
bound (CRB) for the joint angle of arrival (AoA) and path
gain estimation using SBL.

II. SYSTEM MODEL

We consider a scenario where a user (UE) communicates
with base station (gNB) in an environment with the scatterers
located between them. The scatterers are represented by Sr,
and |Sr| = Lr. Only a subset of these scatterers, Sc ⊆ Sr,
|Sc| = Lc, are assumed to affect the UE-gNB communication
channel. The set Sc is unknown, however, we assume that
location estimates of scatterers in Sr are provided by a sensing
system. This represents a scenario where the scatterers are
present in the blind zone to UE but can be detected by a
sensing system co-located at the gNB as shown in the Fig. 2.

A. Sensing Information

We assume that the gNB obtains sensing information either
by using a co-located radar operating in a separate band [20]
or through a joint communication sensing framework [21]. The
sensing measurements available at the gNB is given by

{(τ radℓ , θℓ) = (τ̄ℓ + eτℓ , θ̄ℓ + eθℓ) | ℓ = 1, 2, . . . , Lr},

where τ̄ℓ and θ̄ℓ represent the true round trip delay and angle
of the ℓ-th scatterer from the gNB, respectively. τ radℓ and θℓ
represent the round trip delay and angle of the ℓ-th scatterer
with an error assumed to be Gaussian distributed as eθℓ ∼
N (0, σ2

θ) and eτℓ ∼ N (0, σ2
τ ). The error in the radar spatial

information can appear due to noise and the inability of the
radar to resolve delay and/or angles sufficiently.

B. Communication Model

We consider a mmWave orthogonal frequency division mul-
tiplexing (OFDM) system with a single antenna UE and M
antenna gNB. The gNB is equipped with a uniform linear array
with half-wavelength spacing between consecutive antennas.

The UE sends P ≪ K (narrowband) pilots, where K is
the total number of subcarriers used for communication. The
pilot index p ∈ P ⊂ {0, . . . ,K − 1} and |P| = P . The

received complex baseband signal at the p-th subcarrier after
down-conversion, zero prefix removal, OFDM demodulation,
and correlation with the pilots is given by

y[p] = h[p] + n[p], (1)

where h[p] ∈ CM×1 represent the baseband channel, n[p] ∼
CN (0, σ2IM ) is a circularly symmetric complex Gaussian
distributed additive noise vector. We define the received signal-
to-noise-ratio (SNR) at subcarrier p as ∥h[p]∥2/σ2. Next, we
describe the mmWave channel model generation that is a
parametric function of the multipath components.

C. Channel Model

A frequency-selective geometric channel model with Nc

delay taps and Lc + 1 paths [7] is considered. The channel
consists of a line-of-sight (LoS) component, and Lc (yet
unknown) reflections resulting from the scatterers as described
earlier. The d-th delay tap is modeled as

hd =

√
M

Lc + 1

Lc∑
ℓ=0

αℓp(dTs − τℓ)a(θℓ), (2)

where p(.) is the pulse-shaping filter, Ts is the sampling inter-
val, αℓ, τℓ, θℓ represent the path gain, delay and the angle-of-
arrival (AoA) of the ℓ-th path, respectively. The receiver array
steering vector for the ℓ-th path is denoted by a(θℓ) ∈ CM×1.
The index ℓ=0 is always associated with the LoS path. We
can compactly represent the channel as hd=A∆d, where
A=[a(θ0) a(θ1) . . . a(θLc

)] ∈ CM×(Lc+1) contains the
receiver side steering vectors and

∆d =
[
α0p(dTs − τ0), · · · , αLcp(dTs − τLc)

]T
. (3)

We obtain the frequency domain channel representation by
taking a K-point DFT of the delay-domain channel, and the
channel at subcarrier k ∈ {0, . . . ,K − 1} can be written as

h[k] =

Nc−1∑
d=0

hd exp

(
−j2πkd

K

)
= A∆[k], (4)

and ∆[k] is given by ∆[k] =
Nc−1∑
d=0

∆d exp
(
− j2πkd

K

)
.

Further substituting for ∆d from (3), we obtain

∆[k] = [βk,0α0, βk,1α1, . . . , βk,Lc
αLc

]
T
, (5)

where βk,ℓ=
∑Nc−1

d=0 p(dTs − τℓ) exp
(
− j2πkd

K

)
. Substituting

∆[k] in (4), a compact form of the frequency domain channel
h[k] can be obtained as

h[k] = Aβkα, (6)

where βk=diag
(
βk,0, . . . , βk,Lc

)
, and α=[α0, . . . , αLc ]

T.
Further substituting (6) in (1), the received frequency domain
signal y[p] of the pilot index p can be written as

y[p] = Ψpα+ n[p], (7)

where Ψp = Aβp ∈ CM×(Lc+1).



Fig. 2. Scatterer environment along with the sensing information.

III. SENSING AIDED CHANNEL ESTIMATION

In this section, we provide a channel estimation framework
that incorporates the sensing information available at the gNB.
From (7), the received P pilots in vectorized form is given by

y =
[
yT[0]yT[1] . . . yT[P − 1]

]T
, (8)

y =
[
ΨT

0 Ψ
T
1 · · ·ΨT

P−1

]T︸ ︷︷ ︸
Ω

α+ n, (9)

where the matrix Ω ∈ CMP×(Lc+1) carries the delay-angle in-
formation of the multipath components and n is the vectorized
noise n = [nT[0]nT[1] · · ·nT[P − 1]]T.

Moreover, the sensing information can be used as an ini-
tial estimate of the multipath delays and angles. Let θ̃ =
[θ0, θ̃1, θ̃2, . . . , θ̃Lr ], where θ0 is the angle associated with the
LoS path and θ̃ℓ, ℓ ∈ [1, Lr] is the AoA of the ℓ-th path ob-
tained from the sensing information. The round-trip propaga-
tion delay between the gNB and the ℓ-th, ℓ ∈ [1, Lr], scatterer
is denoted by τ radℓ . Let us define τ̃ = [τ0, τ̃1, τ̃2, . . . , τ̃Lr

],
where τ0 is the delay between the UE and the gNB, and the
delay of the ℓ-th communication path can be estimated using
the radar delay τ radℓ as

τ̃ℓ = τ radℓ /2 + τ ′ℓ, (10)

where τ ′ℓ is obtained using triangle laws of cosines as shown
in Fig. 3,

τ ′ℓ =

√
τ20 +

(
τ radℓ /2

)2 − τ0(τ radℓ )cos(θ̃ℓ − θ0). (11)

Similar to the matrix Ω in (9), using the sensing information
(τ̃ , θ̃), we can construct a matrix Ω̄ ∈ CMP×(Lr+1) that
captures the delay-angle information of the Lr + 1 paths.
As we described earlier, only a subset of Lc among the Lr

scatterers are included in the communication channel, and Lc

is unknown. This can be mathematically represented as

Ω = Ω̄B +E, (12)

where B ∈ R(Lr+1)×(Lc+1) is obtained by selecting Lc +
1 columns of the identity matrix ILr+1. The indices of the
columns that are included in B, correspond to the paths that
are present both in the communication channel and sensing
information. The unknown error term is denoted by E.

Fig. 3. Communication delay estimation from radar delay.

Fig. 4. SWOMP-SBL algorithm.
A. Problem Formulation

Utilizing the received pilot signal (9) and the sensing
information in the form of (12), the maximum a posteriori
(MAP) based channel estimation problem is formulated as:

[Ω∗,α∗] = argmax
Ω,α

p(Ω,α | y), (13)

where p(.) represents the probability distribution and α is the
channel gain vector.

The optimization problem at hand is difficult to solve in
general as a) it is hard to obtain the distribution p(Ω,α | y)
b) the combinatorial nature of the path association matrix B
and the unknown error. A conventional approach to relax this
problem and solve it using compressed sensing schemes, such
as SBL, by considering a joint dictionary matrix consisting
of finely spaced angles and delays. However, such a solution
results in cubic complexity with respect to the dictionary
dimensions, which has to be finely spaced to alleviate the off-
grid errors. Hence, a two-stage SWOMP-SBL algorithm has
been proposed to overcome such high complexity.

IV. SWOMP-SBL ALGORITHM

The proposed algorithm works in two stages. In the first
stage, based on the sensing information, a SWOMP algorithm
is used to find the paths and their respective AoAs that are
associated with the communication. Based on these selected
paths, a SBL inference algorithm is used in the latter stage
to obtain a finer estimate of the delays and their correspond-
ing channel gains α̂. A schematic describing this two-stage
algorithm is shown in Fig 4.

A. SWOMP Stage

The algorithm is initialized with assuming that all the Lr+1
paths from the sensing information are present in the com-
munication channel. The AoA’s θ̃ are used to form the angle



Algorithm 1 SWOMP Stage

Require: y, θ̃, τ̃ , dθ, dτ , σθ, στ , σ
2

1: Initialize: χ = {}
2: θ′

l = θ̃l − 2σθ : 4σθ

dθ
: θ̃l + 2σθ ∈ R1×dθ

3: A′=[a(θ′
0) a(θ

′
1) · · · a(θ′

Lr
)] ∈ CM×dθ(Lr+1)

4: θ̂ = SWOMP(y,A′, σ2)

5: θ̂ ∈ R1×L′
is {θ̂ℓ | ℓ = 0, 1, · · · , L′ − 1}

6: Path association:
7: for ℓ = 0 : L′ − 1 do
8: p = argmin{|θ̂ℓ1− θ̃|} ▷ 1 ∈ 11×(Lr+1)

9: χ = χ ∪ p ▷ p = path index
10: end for
11: τ̃ (χ) ∈ R1×L′

is {τ̃ℓ(χ) | ℓ = 0, 1, · · · , L′ − 1} ▷ delays
of the corresponding path index obtained in step 9

12: τ̂ℓ = τ̃ℓ(χ)− 2στ : 4στ

dτ
: τ̃ℓ(χ) + 2στ ∈ R1×dτ

13: τ̂ = [τ̂0 τ̂1 · · · τ̂L′−1] ∈ R1×dτL
′

14: The resulting βk obtained using τ̂ is denoted as β̂k ∈
CdτL

′×dτL
′

15: Âℓ = [a(θ̂ℓ)a(θ̂ℓ) · · · a(θ̂ℓ)] ∈ CM×dτ ▷ Repeat dτ times
16: Â = [Â0 Â1 · · · ÂL′−1] ∈ CM×dτL

′

17: Ψ̂k = Âβ̂k ∈ CM×dτL
′

18: Ω̂ = [Ψ̂T
0 Ψ̂

T
1 · · · Ψ̂T

P−1]
T∈CMP×dτL

′

Algorithm 2 SBL Stage

Require: y, Ω̂, py(y | Ω̂,α)
1: Initialize: t = 0, (α̂)t using LS estimate.
2: repeat
3: [Estimate α]
4: Σt

y = 1
ζt−1 I + Ω̂Γ−1Ω̂H .

5: Σ̂t = Γ−1 − Γ−1Ω̂H
(
Σt

y

)−1
Ω̂Γ−1.

6: (α̂)t = ζt−1Σ̂tΩ̂Hy.
7: [Hyper-parameters Update]
8: γt

i =
2a−1

E((α̂i)2)+2b .

9: ζt = 2c−1
E(|y−z|2)

MP +2c
, zi = Ω̂α̂.

10: until Convergence

dictionary A′ as described in steps 2 and 3 of the Algorithm 1.
The SWOMP algorithm [22] outputs the maximum correlated
paths θ̂ corresponding to the angle dictionary A′ with the
received signal y. The noise variance σ2 is utilized as a
stopping condition in SWOMP, where all the refined angles
associated with the channel are estimated. The path index
p ∈ χ of a corresponding refined angle θ̂ℓ is estimated
using minimum absolute difference of θ̂ℓ among the sensed
angles θ̃. However, a dictionary matrix Ω̂ is needed to refine
the delays further and estimate the channel gains. The path
association matrix B can be obtained from the estimated χ,
but it’s avoided since the path indices are enough to create
the dictionary matrix Ω̂. Ω̂ is constructed using the refined

AoA θ̂ obtained using SWOMP and a finely space dictionary
matrix of the associated delays. The association of the path
is given by the path indices χ and maps the refined angles
to their corresponding delays. The details of our algorithm
are discussed in Algorithm 1. The refinement of the delays τ̃
and their corresponding channel gains α are estimated using
SBL with the obtained Ω̂ in the next stage. The computational
complexity of SWOMP per iteration in the SWOMP stage is
MP (dθL

′)2 +MPdθLr +MPdθL
′.

B. SBL Stage

Recalling the measurement equation with the obtained Ω̂,
we write y = Ω̂α + n. We formulate the estimation method
of (α, τ̃ ) using SBL as follows.

SBL is a type-II maximum likelihood (ML) estimation
procedure to obtain the channel estimate [23], [24]. In this
method, α is considered as a hidden variable, and the pos-
terior statistics are obtained from the given observations.
SBL assumes a complex Gaussian prior distribution for the
entries of α, written as p(αi)=

γi

π e−γi|αi|2 . The hyperparam-
eters αi are also estimated using the inference procedure.
γi is assumed to follow a Gamma distribution, such that
G(γi; a, b)=Γ((γi))

−1(γi)
a−1e−bγibγi . Defining, Γ=diag(γ),

where γ is the vector of γi. Noise is assumed to be complex
Gaussian, CN (0, 1

ζ I). ζ is assumed to have Gamma distribu-
tion as a prior distribution such that pζ(ζ)=G(ζ; c, d), and c, d
are known. Note that in the case of an uninformative prior,
the values of a and b corresponds to 1 and 0 respectively.
Now, the posterior distribution of α and the hyper-parameters
γ, ζ needs to be obtained. Since the prior and the noise
are both Gaussian, obtaining the posterior statistics of α
is straightforward. But, the computation of γ requires the
computation of the marginal probability distribution p(y;γ, ζ)
and maximizing it (alternatively) w.r.t. γ, ζ. This procedure is
known as evidence maximization or type-II ML estimation.

To solve this, expectation-maximization (EM) algorithm is
used, which proceeds by lower bounding the logarithm of the
evidence p(y;γ, ζ), and maximizing it iteratively. Treating α
as a hidden variable, in the expectation (E) step, expectation
of the log likelihood of (y,α) w.r.t. p(α|y,γ, ζ) is computed.
In the maximization (M) step, the hyper-parameters γ, ζ are
computed by maximizing the function obtained in the E step.
More details of SBL and type-II ML estimation can be found
in [23]. Detailed steps for the channel estimation are provided
in Algorithm 2. The SBL algorithm outputs the estimate of the
channel gains α̂. Using step 17 in Algorithm 1, the channel
estimate ĥ at the k-th subcarrier can be obtained by ĥk=Ψ̂kα̂
for all the K subcarriers. The convergence properties of the
SBL algorithm are well understood in the literature [23]. In
short, using similar arguments in [23], we can show that
the proposed SBL converges to the sparsest solution when
the noise variance is zero and to a sparse local minimum,
irrespective of the noise variance. The computational complex-
ity of each iteration of SBL is (MP )3 + 2(MP )2(dτL

′) +
2(dτL

′)2MP + (dτL
′)2 +4MP (dτL

′) + (dτL
′). Finally, the

choice of the parameters 2στ and 2σθ considered to refine



both τ̃ and θ̃ in the Algorithm 1 is from the knowledge of
the error distribution that most of the error lies within two
standard deviations.

C. Identifiability of the Proposed SBL: Minimum Narrowband
Pilots Required?

This subsection provides the conditions under which the
sensing-aided channel estimation using SBL becomes locally
identifiable. Furthermore, the analysis herein provides the
minimum pilots required for the respective channel estimation
algorithm to be identifiable. The distribution of y[k], after
marginalizing w.r.t α can be written as

py(y[k]) = CN (0,ΨkΓ
−1(Ψk)

H + ζ−1I). (14)

The signal model in (7) is non-identifiable if
ΨkΓ

−1
1 (Ψk)

H=ΨkΓ
−1
2 (Ψk)

H for some Γ−1
1 ̸= Γ−1

2 .
The rank of ΨT

k ⊗ Ψ is denoted as R ≤ (MP ), where ⊗
represents the Khatri-Rao product. Following similar analysis
as in [25], we can show that the SBL algorithm is identifiable
as long as L (number of nonzero elements in α) is O(R2)
(=O((MP )

2
) for suitable ΨT

k ). For a mmWave system, this
would be just fewer pilots, compared to using number of
pilots of the O(K) as in existing 5G-NR algorithms.

Next, we look at the CRB of the estimation model here.
The local identifiability (upto permutation ambiguity) of the
SBL based parameter estimation is ensured if the Fisher infor-
mation matrix (FIM) is non-singular [26]. First, the estimated
parameters are defined in a vector as Θ=[θ,α,γ, ζ, τ ]. The
FIM can be partitioned as

JΘΘ =


Jθθ Jθα Jθγ Jθζ Jθτ

Jαθ Jαα Jαγ Jαζ Jατ

Jγθ Jγα Jγγ Jγζ Jγτ

Jζθ Jζα Jζγ Jζζ Jζτ ,
Jτθ Jτα Jτγ Jτζ Jττ

 , (15)

where Jxy=E
(

∂ ln p(y,x)
∂x

∂ ln p(y,x)
∂y

T)
. Each of the FIM

blocks can be derived as (detailed derivations are skipped since
those follows classical results in estimation theory)

Jθθ = E(ζ)(βk)
HE(

∂A(θ)

∂θ

H
∂A(θ)

∂θ
)βkE(Γ−1), (16)

Jθζ = diag

(
ℜ{(βk)

H ∂A(θ)

∂θ

H

Aβk}E(Γ−1)

)
, (17)

Jγγ = −E(Γ−1) + (a− 1)E(Γ−1), (18)

Jζζ = −MPE(ζ−2) + (c− 1)E(ζ−1), (19)

Jαα = −E(Γ)− (βk)
H(A)HAβkE(ζ), (20)

Jζτ =
∂(βk)

H

∂τ
E
(
A(θ)HA(θ)

)
βkE(Γ−1), (21)

Jττ = E(ζ)
∂(βk)

H

∂τ
E
(
A(θ)HA(θ)

) ∂βk

∂τ
E(Γ−1), (22)

Jθτ = E(ζ)
∂(βk)

H

∂τ
E
(
A(θ)H

∂A(θ)

∂θ

)
βkE(Γ−1), (23)

and rest of the terms result to be zero.

JΘΘ =


Jθθ 0 0 Jθζ Jθτ

0 Jαα 0 0 0
0 0 Jγγ 0 0

Jζθ 0 0 Jζζ Jζτ

Jτθ 0 0 Jτζ Jττ

 . (24)

The CRB for Θ can be expressed as CRB(Θ)=J−1
ΘΘ. The

CRB for AoA estimates and α can be written using Schur-
complement for inverting a block matrix as derived in (25),
which can be simplified as

CRB(θ,α) = (26)[(
Jθθ −

[
Jθζ Jθτ

]
F−1
ζτ

[
Jθζ Jθτ

]T)−1

0

0 J−1
αα

]
.

Following similar derivations, the CRB can be computed for
α,γ, ζ. From (26), we can conclude that for local identifiabil-
ity of θ,α, Jθθ −

[
Jθζ Jθτ

]
F−1
ζζ

[
Jθζ Jθτ

]T
, and Jαα

should be invertible, respectively.

V. SIMULATION RESULTS

In this section, the performance of our novel SWOMP-
SBL sensing aided channel estimation algorithm is evaluated
through numerical simulations. We consider a scenario where
all the scatterers provided by the sensing information in Sr

might not be associated with the communication channel.
The parameters of the scatterers chosen for the simulations
are Lr=10 and Lc=6. The positions of the scatterers are
generated randomly between gNB and UE for every monter-
carlo iteration. The channel is generated using a ray-tracing
tool using the locations of gNB, UE and scatterers.The system
parameters considered here are, subcarrier spacing=120KHz,
center frequency=28GHz, sampling rate=30.72MHz, sam-
pling period Ts=32.552 ns, fft size K=256, cyclic prefix
length Ncp=34, delay taps Nc=Ncp and the number of receive
antennas M=32. The pilots are generated similar to the
sounding reference signals (SRS) in 5G standards [27]. The
location of the pilots in the OFDM grid are arranged in a comb
fashion as defined in the 3GPP standard [27] i.e., one pilot for
every Kc subcarriers as shown in Fig. 5. The error in the
sensing information is generated with σθ=3◦ and στ=Ts/6.

In our scenario, pilots of size P=16 are transmitted with
a comb size Kc=16. The erroneous AoA from the sensing
information are refined using SWOMP with a dictionary
matrix considering dθ=500. Further, the channel gains α̂
are estimated using SBL considering dτ=50. The channel
estimation procedure with erroneous sensing information is
denoted by SWOMP-SBL + Sensing Info Error in the plot.
The channel gains α̂ are also estimated using LS assuming
perfect sensing information available at the gNB is denoted
by Ideal Sensing Info + LS.

The performance of our proposed algorithms is evaluated
by comparing the normalized mean squared error (NMSE) of
the channel using fewer P pilots to the NMSE of the channel
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Fig. 5. Uplink SRS comb structure in a OFDM symbol.

Fig. 6. SNR vs NMSE of the channel estimates.

obtained by transmitting all the K=256 pilots (wideband). The
channel estimation using the wideband pilots is performed us-
ing the classical LS method and SWOMP denoted as WB+LS
and WB+SWOMP respectively. The dictionary used for both
algorithms is of size 500, discretized in the angular domain in
[0◦, 180◦].

From Fig. 6, we can see that with sensing information,
SWOMP-SBL based channel estimation algorithm has a sig-
nificant gain in the NMSE compared to the wideband classical
LS and greedy SWOMP algorithm with fewer pilots and robust
to the errors in the sensing information. Hence, we reduce the
pilot overhead from 100% to 6.25%.

VI. CONCLUSION

In this paper, the uplink channel estimation aided by sensing
information for mmWave MIMO systems has been studied.
The proposed SWOMP-SBL algorithm, along with the sensing
information, uses fewer uplink pilots compared to conventional
state-of-the-art systems. The proposed scheme is also robust
to erroneous sensing information, including unassociated paths
in the sensing information. Simulation results have validated
the superior performance using reduced uplink pilots for the
proposed SWOMP-SBL scheme compared to conventional
state-of-the-art algorithms. Finally, CRB is derived, and local
identifiability analysis has been presented.
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