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1 Introduction

Ethanol is derived from various agricultural products (cassava, corn, hemp, sugar
beet or sugarcane) and has been increasingly added to gasoline blends for several
reasons: (i) it helps to reduce greenhouse gases emissions (GHG) in the transporta-
tion sector, (ii) if produced with agricultural feedstock, ethanol can be seen as a
renewable energy, and (iii) from a technical point of view, the use of ethanol helps
to boost octane numbers and leads to an improvement in thermal engine efficiency.
All these factors have contributed to the development of ethanol’s use worldwide.
Such recent evolution calls for a detailed investigation of the ethanol market to fully
understand its dynamics. Specifically, the aim of this paper is to study the ethanol
price dynamics and determine the optimal hedging strategy on the US market.

Ethanol policy is a story that has many chapters in the past 40 years in the
US. Ethanol inclusion in US gasoline blends began in 1908 when the Model-T Ford
could be customized to run on gasoline or alcohol. It was not until the late Seventies,
however, that the meaningful inclusion of ethanol came about. The first government
involvement for ethanol was the Energy Tax Act of 1978 (a tax exemption for adding
ethanol to the gasoline blend) in the wake of geopolitical concerns in the oil market
with the 2nd world oil shock. The Surface Transportation Assistance Act of 1982 and
the Tax Reform Act of 1984 gave an impetus for ethanol inclusion despite a decrease
of the tax exemption during the 1992-2000 period with the Omnibus Budget Recol-
lection Act. The Renewable Fuel Standard (RFS) program, created by the Energy
Policy Act of 2005 and extended by the Energy Independence and Security Act of
2007, has led to a new expansion of the US ethanol market. Ethanol production and
consumption have since been multiplied by four between 2005 and 2016, increasing
approximately from 300 to 1,200 million gallons.

Since 2009 the US has become a net exporter in the ethanol market. According
to the US Census Bureau, the Department of Commerce, and the Department of
Agriculture, the US exported 836 million gallons of ethanol in 2015 (5.7% of total
US ethanol production) and imported 93 million gallons of fuel ethanol (less than
1% of US ethanol consumption). Canada (30% of US exports), Brazil (14%), Philip-
pines (9%), China (8%), and India (6%) are the top destinations of US ethanol in
2015. Brazil also remains the main supplier for the US with 73% of the imported
ethanol volume in 2015. This export-import structure within the ethanol market
with Brazil can be easily explained by the RFS and California Low Carbon Fuel Stan-
dard (LCFS) targets put in place for the reduction of GHG emissions that impose
more stringent requirements. As mentioned by the Energy Information Administra-
tion,1 life cycle analysis (LCA) studies demonstrate that ethanol from sugarcane has

1https://www.eia.gov/todayinenergy/detail.php?id=25312
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a better scoring in terms of GHG emissions than products based on corn feedstock.
It contributes to the substitution of corn-ethanol production from the countryside
with imported sugarcane-ethanol from Brazil. The ethanol market structure is al-
ready driven by (i) the inclusion policy of different countries, (ii) energy prices and
especially the evolution of the crude oil price, and (iii) the regulatory framework.
But recent changes prove that the production process (ethanol is derived from dif-
ferent agricultural products) could also impact the international market structure
and ethanol price dynamics. Ethanol prices registered several ups and downs since
2008, with prices ranging from $1.47 per gallon to more than $4 per gallon following
the volatility observed in energy and agricultural prices.

Due to the increase of ethanol production and consumption in the US in the
first part of the last decade, futures contracts on corn-based ethanol were launched
on March 2005 on the Chicago Board of Trade (CBOT).2 Derivatives markets allow
commercial players to reduce their price risk exposure with various hedging strate-
gies and different tools (futures contracts, options, etc.). These tools protect against
adverse price movements in order to reduce the risk of loss in the business. In this
context, the optimal hedging strategy is to minimize the variance of the hedge port-
folio containing spot and futures contracts. A variety of questions has been asked
regarding the derivatives strategy, which is related to traders’ behavior, speculation,
price volatility, etc.

The motivations of this paper are threefold. Firstly, considering the role the
ethanol market could play in the transportation sector for its own energy transition,
we study the long-term relationship between ethanol spot prices and the prices of
futures contracts on the CBOT; allowing us to investigate the weak form of the
efficient market hypothesis.3 To the best of our knowledge, this is the first article
focusing on ethanol in this research field. Secondly, we have a methodological mo-
tivation and contribution. Indeed, we compute a wide range of time-varying hedge
ratios4 with different econometric models to look for the optimal hedging strategy
for ethanol commercial players. We consider adjustments to long-term equilibrium
and regime shifts governed by a Markov chain (as Alizadeh et al. (2008)) and short-
run dynamics between spot and futures price changes (as in Salvador and Arago

2CME Group is the world’s leading and most diverse derivatives marketplace, made up of four
markets, CME, CBOT, NYMEX, and COMEX. Each market offers a wide range of global bench-
marks across major asset classes.

3An efficient market is characterized by prices that reflect all available information. The weak
form of market efficiency considers only historical price or return series in the information set (Fama,
1970).

4One of them is the hedge ratio which is initially defined as the estimated coefficient between spot
and futures price changes based on Ordinary Least Squares (OLS) estimation (Ederington, 1979)
i.e., the ratio of the unconditional spot and futures price changes covariance over the unconditional
variance of the futures price changes. It provides the number of futures contracts to buy or sell for
one unit of the underlying asset (in the case of this article: ethanol) to minimize the variance of
the hedged portfolio returns.
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(2014)). In addition, we extend the work of Salvador and Arago (2014) by allowing
short-run dynamics between prices to be state-dependent on price volatility. Hamil-
ton (1989) proposes the Markov-switching model while Krolzig (1999) extends this
specification to the vector autoregressive model. By including structural breaks in
the variance equation, we take into account the high volatility persistence (Lam-
oureux and Lastrapes, 1990). With structural breaks in the short-run dynamics,
we allow for time-varying behavior in the adjustment to the equilibrium and the
short-run dynamic processes. We then include an informational link between mean
and volatility processes across each market state (Alizadeh et al., 2008). Finally,
relying on the Gjr framework (Glosten et al., 1993), we introduce asymmetric be-
havior to the variance process (see also Brooks et al. (2002)) to take into account
different responses to new information according to the past shocks sign. Therefore,
we estimate a Markov-switching vector error correction model with a Gjr-MGarch
error structure (Ms-VECM-Gjr-MGarch). To overcome Johansen (1988)’s approach
drawbacks,5 we use Nielsen (2010)’s nonparametric cointegration approach to an-
alyze its ability to improve hedging strategy. As Nielsen (2010)’s nonparametric
cointegration procedure does not require model specification, we assume non-linear
dynamics in short-run and variance equations. Thirdly, we check the performance
of a cross-hedging strategy6 with the gasoline futures market. Indeed, Franken and
Parcell (2003) highlight its efficiency while Dahlgran (2009) concludes there is a
lower performance with this market compared to the ethanol futures market.

The rest of the paper is organized as follows. Section 2 briefly reviews the lit-
erature on storable commodity market efficiency and hedging-ratio estimation. In
section 3 we present data and the Markov-switching vector error correction model
(Ms-VECM-Gjr-MGarch). Section 4 presents empirical results on the efficient mar-
ket hypothesis and the optimal hedging strategy. The main conclusions are summa-
rized in the final section.

2 A brief overview of literature

Following the works of Kaldor (1939), Working (1948), Brennan (1958) and
Telser (1958), spot and futures prices of a storable commodity should be equal. The
difference between these prices is explained by the cost of storage and the interest
rate as,

F T
t = Stexp[(rt + s̄)(T − t)] (1)

5In particular, Johansen’s procedure could lead to an estimation bias due to the restrictions
imposed on the short-run dynamics which are supposed to be linear.

6Cross-hedging occurs when the asset underlying the contract is different than the asset whose
price is being hedged (Hull, 2005).
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and with a log-transformation,

fT
t = st + (rt + s̄)(T − t) (2)

Here, F T
t (resp. fT

t ) is the price (resp. log-price) of futures contract at the time t
for a maturity T . St (resp. st) is the spot price (resp. log-price) at the same date. rt

and s̄ refer, respectively, to the risk-free interest rate and the cost of carry, this latter
is supposed to be constant. According to the aforementioned works, the difference
between spot and futures prices is instantaneously compensated by arbitrageurs.

This hypothesis has been relaxed by Garbade and Silber (1983). They mention
that arbitrageurs operate in the markets if the spread between these prices is large
enough to enlarge their profits according to the transaction and information costs.
Therefore, the unit relationship between spot and futures prices is only valid in the
long term.The spot and futures markets are thus efficient if prices are cointegrated as
in Chowdhury (1991) or Lai and Lai (1991). In addition, Garbade and Silber (1983)
show that futures markets integrate new information faster than in the underlying
spot market, leading to a causality from futures to spot prices. It helps the price
discovery process registered in commodities markets which leads to informational
efficiency for physical and financial markets.

Figuerola-Ferretti and Gonzalo (2010) extent this model by integrating the con-
venience yield, i.e., the premium attributed by agents for physically holding the
commodity instead of holding a futures contract. It depends on various market
characteristics in the spot market (weather conditions, geopolitical unrest, transac-
tion costs, etc.).7 With a constant free-risk interest rate, one-period futures contract
and the approximation of the convenience yield, yt, used by these authors, as

yt = γ1st − γ2ft (3)

equation (2) becomes

ft =
1 − γ1

1 − γ2
st +

r̄ + s̄

1 − γ2
(4)

Their theoretical framework allows a long-term relationship, i.e., a cointegrating
relationship, with a non-unit coefficient between spot and futures prices. In addi-
tion, they mention that the coefficient value depends on the spot market condition.
The parameter is greater (resp. smaller) than unity if the spot market is in contango
(resp. backwardation).

Literature about the estimation of an optimal hedge ratio has been developed
since the seminal work of Ederington (1979) who proposes using the estimated co-
efficient between changes in spot and futures prices with an ordinary least square

7See Routledge et al. (2000) or Heaney (2002) for more details on the convenience yield.
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estimator (OLS). However, this hedge ratio is unsatisfactory for many markets (Cec-
chetti et al., 1988; Myers and Thompson, 1989). Baillie and Myers (1991) and Kro-
ner and Sultan (1993) state that the hedge ratio should be time-varying based on
the time-varying distribution of many asset prices. They propose computing this
dynamic optimal hedge ratio (δt) for each period by taking into account all past
information (Ωt−1) such as

δt|Ωt−1 =
σt−1(ΔFt−1, ΔSt−1)

σ2
t−1(ΔFt−1)

(5)

Many studies estimate those conditional covariance (σt−1) and variance (σ2
t−1)

with the multivariate Garch model proposed by Engle and Kroner (1995) as, for in-
stance, Kroner and Sultan (1993), Garcia et al. (1995) or Kavussanos and Nomikos
(2000) and conclude there has been an improvement of the hedging strategy with the
dynamic hedge ratio compared to the constant formulation. The improvement de-
gree depends on the market and the futures maturity studied (Lien and Tse, 2002).

The estimation of the dynamic hedge ratio should integrate the possible existence
of a cointegrating relationship between spot and futures prices. Kroner and Sultan
(1993), Ghosh (1993), Chou et al. (1996) or Lien (1996) highlighted an underesti-
mated hedge ratio if this characteristic is not accounted for. In addition, Brooks
et al. (2002) show the improvements of the hedge ratio effectiveness with the inte-
gration of the asymmetric volatility response against positive and negative shocks,
i.e., the leverage effect. Furthermore, the conditional mean (Sarno and Valente,
2000) and variance (Lamoureux and Lastrapes, 1990) estimations can be biased if
regime shifts exist. Thus, the hedge ratio effectiveness can be improved by integrat-
ing regime shifts in the estimation. Lee and Yoder (2007a,b) include regime shifts
in the variance process and show an improvement – but not always significant – of
the hedge ratio effectiveness. Alizadeh et al. (2008) extent this model by integrating
regime shifts in variance and conditional mean processes and highlight a significant
effectiveness improvement for most of the markets studied. Finally, Salvador and
Arago (2014) propose incorporating (i) the regime shifts, the cointegrating rela-
tionship and the leverage effect in the same model in order to estimate an optimal
dynamic hedge ratio, as well as (ii) the short-run dynamics between spot and futures
price changes.

The literature concerning hedging strategies on energy markets is well developed
with, for instance, Lien and Yang (2008) for heating and crude oil markets, Al-
izadeh et al. (2008) on crude oil, unleaded gasoline and heating oil markets, Hanly
(2017) with WTI and Brent crude oils, natural gas, unleaded gasoline, heating oil
and gasoil. However, the literature on hedging strategies on ethanol market is very
scarce. Franken and Parcell (2003) highlight the cross-hedging efficiency between
ethanol spot price and unleaded gasoline futures markets. However, while they cor-
rect the estimation for autocorrelation and heteroscedasticity, they do not incorpo-
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rate the error correction term, regime switching and time-varying variance process.
Finally, Dahlgran (2009) compares direct hedging for ethanol commercial agents
with cross-hedging strategy with unleaded and Reformulated Gasoline Blendstock
for Oxygen Blending (RBOB gasoline) futures markets. He demonstrates that the
direct hedging strategy outperforms cross-hedging for a four-week, and more, hedge
horizon.

3 Data and methodology

As stressed above, our article deals with the relationship between the spot prices
and the futures prices of ethanol. As transaction volumes have risen, in particular
for the shortest maturities, we focus on the relationship between the spot prices and
the prices for the two-month futures contracts. The data studied are relative to the
ethanol in the North American market: the spot price for ethanol (Argus Ethanol
USGC barge/rail fob Houston), the futures prices of ethanol on the CBOT, and the
transaction volumes and open interest for the same market, (weekly market busi-
ness reports of the Commodity Futures Trading Commission [CFTC]). Apart from
the spot price of ethanol, these pieces of information are all in the public domain.
The data cover the period from July 2008 to December 2016, corresponding to 468
weekly observations. The prices are expressed in US dollars per gallon and are log-
transformed.

Table 1 presents some descriptive statistics and tests results. Unit root tests
confirm the stationarity of spot and futures prices series in their first-difference.8 In
addition, the Ljung and Box (1978) and ARCH tests confirm the presence of auto-
correlation in most cases and heteroscedasticity, respectively. These characteristics
justify the choice of a specification with autoregressive terms and heteroscedastic
errors.

We apply the Johansen (1988)’s test to check the existence of a long-term rela-
tionship with unit cointegrating vectors and to estimate the conditional mean with
a Markov switching vector error correction model (Ms-VECM) within a bivariate
framework. The inclusion of a multivariate generalized autoregressive conditional
heteroscedasticity (MGarch) error structure allows us to compute the dynamic hedge
ratio. By including a long-term equilibrium, we eliminate the bias in the hedge ratio

8In view of the conflicting results for the spot log-price series, we apply the Perron (1990)’s unit
root test which confirms its non-stationarity with a break in mean on March 12 2014. We choose
this test in view of series characteristics, i.e., the absence of trend and a potential break in the
mean. We present results with innovational-outlier model for break date determination. Results
with additional-outlier model are similar.
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estimation mentioned by Kroner and Sultan (1993) and Ghosh (1993). In addition,
the nonlinear specification avoids estimation bias due to the existence of multiple
regimes in the mean (Sarno and Valente, 2000) and variance (Lamoureux and Las-
trapes, 1990) equations. Furthermore, the dynamic hedge ratio computed with this
specification outperforms OLS hedge ratio in many energy markets (Alizadeh et al.,
2008). Finally, we take into account the leverage effect within the Gjr framework.

Table 1: Summary statistics and unit root tests

Variables
Log First-log differences

Spot Futures Spot Futures
Mean / / 0.000 0.000
Std. errors / / 0.050 0.040
Skewness / / 0.047 -0.283
Kurtosis / / 6.039 4.288
ADF 0.047* 0.297 0.001* 0.001*
PP 0.099* 0.306 0.001* 0.001*
KPSS 0.010 0.010 0.100* 0.100*

Perron
-1.148 -1.229 / /
-3.8 -3.8 / /

Q(6) 0.001 0.001 0.001 0.681
Q2(6) 0.001 0.001 0.001 0.001

Note: This table reports descriptive statistics and the p-value of the
unit root tests applied, i.e., Augmented Dickey and Fuller (1981)’s
test (ADF), Phillips and Perron (1988)’s test (PP) and Kwiatkowski
et al. (1992)’s test (KPSS). The Perron’s line refers to the Perron
(1990) test with the test’s statistic and the critical value at a 5% sig-
nificance level in the first and second line, respectively. The critical
value comes from Perron and Vogelsang (1992). The null hypothesis
of unit root with break is rejected if the test statistics is greater than
the critical value. The star mentions the stationarity of the variable
at a 10% significance level. Q(6) and Q2(6) are the p-value of the
Ljung and Box (1978)’s test and ARCH test (Engle, 1982) for 6th

order autocorrelation, respectively.

It should be emphasized that the Johansen (1988) cointegration test requires
assumptions regarding the short-run dynamics that must follow a linear process.
Using Johansen (1988)’s procedure with a non-linear short-run specification may
lead to bias in both cointegration test results and long-term estimations, generating
in turn a bias on the short-run and conditional variance estimations. To overcome
these major drawbacks, we rely on Nielsen (2010)’s nonparametric variance ratio
testing approach as this methodology does not require assumptions in the short-run
specification.9 The nonparametric variance ratio trace statistic is defined by

Λn,r(d1) = T 2d1

n−r∑

j=1

λj (6)

where λj , j = 1, ..., n, are the eigenvalues, listed by increasing order, of the observed
(n×T ) time series matrix, r is the cointegration rank tested and d1 is a summation
parameter fixed to 0.1.10 The eigenvalues of the price series matrix are given by the
solutions of

|λBT − AT | = 0 (7)
9For more details on the testing procedure, see Nielsen (2010).

10As mentioned by Nielsen (2010), the choice of d1 = 0.1 maximizes the power of the test.
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with

AT =
T∑

t=1

ZtZ
′
t

BT =
T∑

t=1

Z̃tZ̃
′
t

(8)

where Z̃t is the fractional difference of Zt truncated by d1. Zt is our time series
matrix after demeaning. The null hypothesis is the presence of r − 1 cointegration
relationships. A test statistic that is greater than the critical value leads to the
rejection of the null hypothesis in favor of the alternative, i.e., the existence of r
cointegration relationships. In addition, the estimated cointegration coefficients are
provided by the eigenvectors associated with eigenvalues and converge to their real
values. Therefore, by using both Johansen (1988) and Nielsen (2010) cointegration
approach, we can analyze the effect of the long-term estimation bias on the hedge
ratio efficiency.

The Ms-VECM with Gjr-MGarch11 error structure can be expressed by

ΔXt = c + ΓstΔXt−1 + ΠstXt−1 + εt,st

εt,st =

(
εs,t,st

εf,t,st

)

|Ωt−1 v IN(0, Ht,st)
(9)

where ΔXt = (Δst, Δft)′ (resp. Xt−1 = (st−1, ft−1)′) is the vector of log-returns
(resp. log-price) and c is a vector of constant. Γst and Πst are coefficient matrices
related to short- and long-term dynamics, respectively.12 These (2 × 2) matrices
depend on the regime st, st = 1, 2. εt,st is a regime-dependent Gaussian white noise
vector. With our multivariate Garch error structure, the error covariance matrix,
Ht,st, is time- and regime-dependent.

As mentioned by Alizadeh et al. (2008), two steps are necessary to estimate this
model. Firstly, we check the existence of a cointegrating relationship between spot
and futures prices. Considering a linear process, we apply the Johansen (1988)’s
test. The λmax and λtrace statistics allow us to check the rank of the matrix Π.
Under the alternative hypothesis, there is at least one cointegrating relationship.
If the rank of the long-term adjustment is non-null, Π can be decomposed such as
Π = αβ′. The vectors α and β are (2 × 1) coefficient vectors referring to the error
correction coefficients, i.e., characterizing the adjustment process to the long-term
equilibrium, and the long-term coefficients, describing the long-term equilibrium,
respectively. In addition, we apply the likelihood ratio test from Johansen (1995) to

11We estimate a wide range of specifications but only detail the more complex model.
12We integrate only one lag in the short-run dynamics according to the information criterion BIC

from Schwarz (1978) during the Johansen cointegration procedure.
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check the existence of unitary long-term coefficients between spot and futures prices.
The non-reject of the null hypothesis of unit coefficient will favor the Garbade and
Silber (1983) model against that proposed by Figuerola-Ferretti and Gonzalo (2010).

Secondly, we introduce regime shifts depending on an unobserved state variable
st. The latter can takes two values, st = 1, 2, corresponding to two different regimes.
This variable follows a first order Markov process with the transition probability
matrix,

P =

(
P11 P21

P12 P22

)

=

(
1 − P12 P21

P12 1 − P21

)

(10)

where P12 (resp. P21) is the probability that the system will shift from state 1 (resp.
2) to state 2 (resp. 1). P11 (resp. P22) is the probability that the system will stay
in regime 1 (resp. regime 2). We obviously have P11 + P12 = 1 and P21 + P22 = 1.

All the coefficients depend on the regime st except for the long-term coefficients,
β. Indeed, variables with a nonlinear cointegrating relationship do not admit an
error correction model (Gonzalo and Pitarakis, 2006). In the presence of a cointe-
grating relationship, the Πst matrix is decomposed as Πst = αstβ

′.

The conditional covariance matrix of error terms, Ht,st, is regime-dependent,
time-varying, and follows a multivariate Garch specification with a Baba et al. (1987)
framework, i.e., BEKK, as

Ht,st = C ′
stCst + A′

stεt−1ε
′
t−1Ast + B′

stHt−1Bst + D′
stηt−1η

′
t−1Dst (11)

with εt−1 and Ht−1 being the vector of mean equation residuals and the global co-
variance matrix for the past period, respectively. ηt−1 is negative past shocks, i.e.,
ηt−1 = min(εt−1, 0). Cst is a (2 × 2) lower triangular matrix containing regime-
dependent coefficients. Ast, Bst and Dst are (2× 2) diagonal matrices of coefficients
measuring the past shock effects on the conditional covariance matrix, their per-
sistence and the additional effect of a past negative shock, respectively. However,
the conditional covariance matrix depends on the sequence of all previous regimes
through Ht−1. With this path-dependence problem, the estimation by the maximum
likelihood method is numerically infeasible. To overcome this problem, we follow the
formulations of Gray (1996) and Lee and Yoder (2007b) concerning the conditional
variances, hss and hff , and the conditional covariance, hsf , respectively, as

hss,t = π1,t(r
2
s,1,t+hss,1,t)+(1−π1,t)(r

2
s,2,t+hss,2,t)− [π1,trs,1,t+(1−π1,t)rs,2,t]

2 (12)

hff,t = π1,t(r
2
f,1,t+hff,1,t)+(1−π1,t)(r

2
f,2,t+hff,2,t)−[π1,trf,1,t+(1−π1,t)rf,2,t]

2 (13)

hsf,t = π1,t(rs,1,trf,1,t + hsf,1,t) + (1 − π1,t)(rs,2,trf,2,t + hsf,2,t) (14)

−[π1,trs,1,t + (1 − π1,t)rs,2,t][π1,trf,1,t + (1 − π1,t)rf,2,t]

9



In equations (12), (13) and (14), πst,t is the probability of being in the state st
at the time t. hss,st,t (resp. hff,st,t) is the regime-dependent variance concerning
the spot (resp. futures) price at the time t and is contained in Ht,st. Similarly,
hsf,st,t is the state-dependent covariance at the time t and is an element of the same
matrix. rs,st,t (resp. rf,st,t) is the regime-dependent conditional mean of the spot
(resp. futures) price equation at the time t. These latter are calculated from the
following equations:

εs,t = Δst − [π1,trs,1,t + (1 − π1,t)rs,2,t] (15)

εf,t = Δft − [π1,trf,1,t + (1 − π1,t)rf,2,t] (16)

This Ms-VEC model is estimated by maximizing of the likelihood function. Each
state-dependent error follows a N-dimensional normal distribution with zero mean
and Ht,st covariance matrix. The global density function is a mixture of these
distributions weighted by the probability of being in each regime:

f(Xt, θ) =
π1,t

2π
|Ht,1|

− 1
2 exp(−

1
2
ε′t,1H

−1
t,1 εt,1) (17)

+
π2,t

2π
|Ht,2|

− 1
2 exp(−

1
2
ε′t,2H

−1
t,2 εt,2)

L(θ) =
T∑

t=1

logf(Xt, θ) (18)

with θ denoting the parameter vector. The log-likelihood function (equation (18))
is maximized using the expectation-maximisation algorithm proposed by Dempser
et al. (1977) under constraints like π1,t + π2,t = 1, π1,t > 0 and π2,t 6 1.

With our specification, we can compute the dynamic hedge ratio as

δt|Ωt−1 =
hsf,t−1

hff,t−1
(19)

where hsf,t−1 et hff,t−1 are defined in equations (14) and (13), respectively.

In order to analyze the hedging strategies’ performance of each specification13

we compute hedged portfolios each week and their returns variance over the samples
chosen as

V AR(Δst − δtΔft) (20)

13We estimate 22 specifications including 8 linear and 14 nonlinear models. Specifications vary
about inclusion, or not, of error correction and autoregressive terms in mean equation, asymmetry
in variance equation, as well as parameters allowed to switch. In addition, we use an OLS model
and a naive model, i.e., with a unit hedging ratio.
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In addition, as in Kroner and Sultan (1993) or Alizadeh et al. (2008) among others,
we compute the hedger’s utility function as

Et−1U(Δst − δtΔft) = Et−1(Δst − δtΔft) − k × V ARt−1(Δst − δtΔft) (21)

where k is the degree of risk aversion. This utility function represents economic
benefits from the hedging strategy. Another way to consider this benefit is the
value-at-risk (VaR) exposure and is computed as

V aR = W0[E(Δst − δtΔft) + Zα

√
V AR(Δst − δtΔft)] (22)

where W0 is the initial value of the portfolio and Zα is the normal distribution quan-
tile.

4 Empirical results

Futures contracts on corn-based ethanol were launched on floor-based trading in
March 2005. The CBOT launched the ethanol contract on the electronic platform
in 2006 contributing to an increase in liquidity within the market. In 2007 options
contracts were also launched in the market. For the first time, the volume reached
1,000 contracts in July 2006 and it really took off after 2009 with a sharp increase
in the spot prices. During previous decades, and especially in the initial phase
of construction of the ethanol futures market, the main objective was to attract
and concentrate the liquidity required for commercial traders to achieve hedging
activities. Nevertheless, the rise in transaction volumes has been accompanied by a
concentration of traders’ liquidity on the shortest maturity contracts exchanged on
commodity markets. This factor has been observed and studied, for example on the
WTI market in the US (Hache and Lantz, 2013).14 For ethanol futures prices, we ob-
served a decrease in transaction volumes between 2008 and 2016 as contract terms
grew longer (Figure 1), and a virtual absence of liquidity for long-term contracts
(compared to short-term maturity). In fact, the inadequate information available
at any given moment t on contracts whose maturity period is greater than one year
does not give traders the incentives to trade in the market. As a consequence,
the liquidity for distant contracts at a maturity greater than five months decreases
sharply. Moreover the maturity greater than two months registered a sharp decline
in transaction volumes after 2012.

On the one hand, by studying available data from 2008 to 2016, we observed a
marked rise in transaction volumes for each maturity. Measured in batches of 29,000
gallons (a standard financial contract for ethanol on the CBOT), these transactions

14See also the literature review in Lautier (2005).

11



have risen, for two-month term contracts, from around 78,864 in 2008 to 404,133 in
2016, i.e., multiplied by a factor of 5 (Figure 2). On the other hand, the share of non-
commercial players increased from around 15% before 2008 to over 35% on average
since 2014 (Figure 3). However, both the increase in the volume of transactions on
financial trading floors and the growing share of non-commercial players should be
kept in perspective. As mentioned previously, during the previous three decades and
especially in the initial phase of construction of the commodities markets, the main
objective of the different derivatives marketplaces was to attract and concentrate the
liquidity required for commercial traders to achieve hedging activities. In October
1974, the NYMEX launched the first energy contracts for industrial fuel oil. Simon
(1984) explains the failure of this first attempt by the under-development of the fi-
nancial markets and because of the very specific contract specifications (the delivery
point of the futures contracts was Rotterdam which held no appeal for the American
commercial players). A contract for heating oil in the NYMEX was also launched
in 1978 and was abandoned because of inadequate liquidity’s volume. During the
1980s in the context of deregulation put in place by the Reagan administration,
the NYMEX decided a simultaneous launch of energy contracts: gasoline (1981),
crude oil (1983), and heating oil (1990). In Europe the International Petroleum
Exchange (IPE) launched its first fuel oil contract in 1981. Since then, financial
markets have registered an increase in transactions volume and in the share of non-
commercial players in the exchange markets. In the petroleum sector, competition
between the two main exchanges (i.e., the NYMEX in New York and the Intercon-
tinental exchange [ICE] in London) led to a strong deregulation process. In the US,
for example, the introduction at the end of December 2000 of the law modernizing
commodities markets, the Commodity Futures Modernization Act (CFMA), trig-
gered market instability in the crude oil market (Medlock and Jaffe, 2009; Hache
and Lantz, 2013).

Figure 1: Open interest by contracts maturity
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Figure 2: Position (number of contracts) by actors

Figure 3: Commercial positions

In order to analyze the ability of Garbade and Silber (1983) and Figuerola-
Ferretti and Gonzalo (2010) to explain the ethanol market, we apply Johansen(1988)’s
cointegration tests. The results in Table 2 confirm the presence of a long-term re-
lationship between spot and futures ethanol prices regardless of the cointegration
test used. The Likelihood Ratio test does not reject the null hypothesis of unit
coefficient at a 10% significant level. Thus, the Garbade and Silber (1983)’s the-
ory is a valid explanation of the long-term relationship between spot and futures
prices in the ethanol market. Finally, the long-term causality tests conclude in favor
of a price discovery process from futures to spot prices, at a 10% significant level.
These findings are in line with the informational efficiency of the US ethanol market.

We estimate the Ms-VEC model with two states applied to both the mean and
the variance equations. These two states refer to low and high volatility regimes.
Table 3 presents results with the Nielsen’s cointegration specification.15 In each

15Table 3 presents results for the best models in terms of explanatory power and hedging strategy.
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state, only futures prices adjusts to equilibrium (αf,st). This result highlights the
minor role of futures prices in the discovery process in the short term. Note that the
adjustment process is faster during the low volatility regime (st = 2), compared to
the high volatility regime (st = 1). Concerning the short-run dynamics (γij,st), these
two markets (spot and futures) seem to be disconnected during normal periods and
only past changes of futures prices have a significant impact on spot prices for the
high volatility state (γsf,1). This last result highlights the fact that futures market
can help in understanding the ethanol price dynamics during periods of instabil-
ity. Furthermore, the relationship is regime-dependent, confirming the ability of our
Markov-switching specification to describe it. Figure 4 presents the probability of
being in the regime of high volatility.16 Two main periods of high volatility are
observed in 2008-2009 and 2013-2014. Market volatility during these two periods
could be explained by the low liquidity during the first one (Figure 1) and by few
positions taken by commercial agents for the second period (Figure 2).

Table 2: Cointegration and causality tests

βsst + ft + β0 = ut

Lags H0
P-value Cointegration vector LR test

λmax test λtrace test (βs 1 β0) H0 : βs=-1 H0 : β0=0
1 r=0 0.001 0.001 (-1.044 1 0.109) 0.078 0.001

- H0 Test stat Critical Value Cointegration vector - -
- r=0 3.78 3.57 (-1.010 1 -) - -

Causality test P-value
Spot to futures prices 0.867
Futures to spot prices 0.087

Note: The two first lines present the Johansen (1988)’s test results. The lags column mentions the
number of lags in the VEC Model. Lag length choice is based on Schwarz (1978)’s Information Crite-
rion. The two P-value columns refer to the P-value of two tests mentioned. P-value inferior to 0.05
leads to the null hypothesis reject of zero cointegrating relationship against one. Cointegration vector
column mentions coefficients estimated with β̂s normalized to unity. The LR test checks the existence
of a one-to-one relationship between spot and futures prices. We mention the P-value of the test.
The next two lines present the Nielsen (2010) test results with the test statistic and the critical value
associated at a 5% significance level. The chosen specification is constant and without trend. The null
hypothesis is rejected when the test statistic is superior to the critical value. Note that constant is
not estimated with this procedure. The causality test refers to the Toda and Yamamoto (1995) test
whose null hypothesis is the absence of long-term causality.

Turning to the conditional variance equation, as expected, we note a high per-
sistence degree (a2

ii,st + b2
ii,st for st = 1, 2) during volatile periods. This feature is

common to oil and gasoline markets (Fong and See, 2002; Alizadeh et al., 2008). In
addition, our specification captures well the leverage effect especially during volatile
periods with high and significant coefficients dii,st. Losses in players’ portfolio, i.e.,
negative shocks, have a greater impact on future volatilities than gains, i.e., positive
shocks. Finally, the probability of switching from high to low variance states (P12) is

We interpret results only for the more explanatory model. Results concerning the 22 specifications
are available upon request.

16We represent the smoothed probability which provides the best estimation of the states at each
time using full-sample information. See Krolzig (1997) for further details on its calculation as well
as on other existing probabilities. This figure concerns the Ms-VECMN -Gjr-MGarch. The figure
for the VECMJ -Ms-MGarch is similar and available upon request to the authors.
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greater compared to the probability of switching from low to high variance regimes
(P21). This result indicates a shorter duration for high volatility regimes and is
confirmed by the average expected state duration calculation proposed by Hamilton
(1989).17 This latter result is interesting as it supports the idea of a certain efficiency
of the financial market in the short run through the arbitrage process realized by
the different players. These durations are nine and twenty weeks for high and low
volatility regimes, respectively.

Figure 4: Smoothed probabilities of being in a high volatility state

Our different model specifications allow us to compute the dynamic hedge ra-
tios. We also compute the naive (δ = 1) and OLS hedge ratios of Ederington (1979).
We provide information about a non-hedged strategy for comparison purpose. In
addition, we compute cross-hedge ratios with gasoline futures markets estimating
from our different specifications. These latter will allow us to compare hedging with
the ethanol futures market and cross-hedging with the gasoline futures market.18

The gasoline market could be used by ethanol commercial agents for risk hedging
(Franken and Parcell, 2003). Table 4 provides variance, utility and value-at-risk
for main specifications and each market,19 as well as the variance improvement of
the best strategy compared to each other. During the final period of our sample,
i.e., Panel A, the optimal specification is a VAR-Gjr-MGarch. The lack of high
volatility (Figure 4) during this period explains this result, as well as a possible
lack of a cointegration relationship. In addition, all cross-hedging strategies under-
perform both direct hedging strategies and the situation without a hedging strategy.

17The average expected duration of state 1 (resp. 2) can be calculated by (P12)
−1 (resp. (P21)

−1).
18New York Harbor Reformulated RBOB Regular Gasoline Contract. More details on

http://www.cmegroup.com/trading/energy/refined-products/rbob-gasoline.html
19A table with all the specifications is available upon request to the authors.
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Table 3: Estimation results
Ms-VECMN -Gjr-MGarch VECMJ -Ms-MGarch

βs -1.011 (-) -1.044 (-)
βf 1 (-) 1 (-)
β0 - (-) 0.109 (-)

st = 1 st = 2
cs,st -0.005 (0.417) 0.002 (0.429) 0.001 (0.791)
cf,st -0.011 (0.049) 0.006 (0.017) 0.003 (0.203)

αs,st -0.001 (0.960) -0.001 (0.977) -0.001 (0.923)
αf,st -0.083 (0.048) -0.119 (0.001) -0.076 (0.001)

γss,st 0.037 (0.801) -0.145 (0.390) -0.114 (0.140)
γsf,st 0.317 (0.029) 0.230 (0.214) 0.260 (0.002)
γfs,st 0.065 (0.552) 0.072 (0.651) 0.051 (0.445)
γff,st 0.025 (0.822) -0.071 (0.686) -0.027 (0.733)

st = 1 st = 2
c11,st 0.034 (0.001) 0.011 (0.016) 0.030 (0.001) 0.013 (0.001)
c21,st 0.037 (0.001) 0.029 (0.001) 0.034 (0.001) 0.029 (0.001)
c22,st 0.043 (0.001) 0.029 (0.001) 0.049 (0.001) 0.030 (0.001)

a11,st 0.626 (0.001) 0.292 (0.037) 0.815 (0.001) 0.376 (0.001)
a22,st 0.309 (0.060) 0.189 (0.144) 0.536 (0.001) 0.256 (0.027)

b11,st 0.001 (0.971) 0.214 (0.266) 0.001 (0.887) 0.149 (0.458)
b22,st 0.427 (0.021) 0.001 (0.945) 0.391 (0.006) 0.001 (0.869)

d11,st 0.657 (0.025) 0.320 (0.053) - - - -
d22,st 0.571 (0.014) 0.442 (0.005) - - - -

P11 0.890 (0.001) 0.880 (0.001)
P12 0.110 (0.009) 0.120 (0.001)
P21 0.050 (0.001) 0.056 (0.001)
P22 0.950 (0.001) 0.944 (0.001)

LogL 1.951×103 1.936×103

Spot Futures Spot Futures
JB 0.001 0.001 0.001 0.001

Q(6) 0.160 0.665 0.004 0.834

Q2(6) 0.001 0.001 0.001 0.001

Note: J and N refer to Johansen (1988) and Nielsen (2010)’s cointegration estimation, respectively.
For each parameter, we mention the estimated coefficients and the P-value of the Student test in
bracket. The coefficient is significant at the 10%, 5% or 1% if P-value is less than 0.10, 0.05 or
0.01, respectively. LogL, JB, Q(6) and Q2(6) are the log-likelihood, the Jarque and Bera (1980)
test for normality, the Ljung and Box (1978) test for autocorrelation and the ARCH test (Engle,
1982) for heterosckedasticity, respectively.

Table 5 displays results of the main hedging strategies for two other panels,20

i.e., the first half of 2010 and 2012. The VECM-Ms-MGarch with Johansen’s coin-
tegration provides the best strategy for both periods. This result confirms the
suitability of Markov-switching and Johansen’s cointegration specifications for the
hedging strategy on the ethanol market. Note that coefficients of this model are
consistent with the previous specification presented (Table 3). Hedgers can decrease
$1,268 and $2,453 of their average weekly value-at-risk with an initial portfolio value
of $1,000,000 compared to the simple OLS specification. These weekly decreases cor-
respond to $9,144 and $17,689 annualized decreases, that is to say, only 0.09% and
1.77% of the initial portfolio value. Finally, cross-hedging strategies outperform the
non-hedged situation for each period with the OLS and Ms-VECMN -Gjr-MGarch
for panels B and C, respectively. This last result highlights the ability of the Nielsen
procedure to provide a good hedging strategy.

Table 6 present results for the out-of-sample simulation concerning the period
from December 28, 2016, to June 21, 2017, i.e., 25 observations. Concerning non-

20A table with all the specifications is available upon request to the authors.
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linear specifications, we estimate the model at each point of time to forecast states’
probabilities as well as state-dependent conditional mean and variance-covariance
matrix. We then compute the prediction of the hedge ratio after recomposition of
the global variance-covariance matrix coming from equations (13) and (14). The
optimal hedging strategy is the linear multivariate Garch specification with a vari-
ance improvement of 80.5% and 22.9% compared to a no-hedged situation and the
OLS-based hedge ratio, respectively. However, this strategy does not significantly
outperform most of the specifications studied especially the naive strategy consist-
ing of a unit hedge ratio. In addition, cross-hedging with the gasoline market is not
efficient compared to the direct hedging strategy. This result is also valid compared
to the no-hedged situation for most of the strategies. Furthermore, nonlinear speci-
fications do not seem efficient for hedging in the ethanol market. This result could
be explained by the difficulty in well-forecasting the states’ probability or by the
absence of high volatility periods. Finally, the Johansen (1988) cointegration pro-
cedure outperforms the nonparametric approach of Nielsen (2010) for 10 strategies
against eight with ethanol markets but out-performs for eight against 10 strategies
with cross-hedging in gasoline futures market.21

Table 4: In-sample hedging simulation
Ethanol spot and futures Ethanol spot and gasoline futures

Var. V. Impr. Util. VaR Var. V. Impr. Util. VaR

Panel A

No Hedged 12.82 56.5% -5.127 59,073 12.82 56.5% -5.127 59,073
Naive 5.650 1.44% -2.260 39,219 36.67 84.8% -14.67 99,912
OLS 6.053 8.02% -2.423 40,596 18.16 69.3% -7.266 70,322
MGarch 5.640 1.28% -2.256 39,187 18.96 70.6% -7.583 71,841
VAR-Gjr-MGarch 5.568 - -2.227 38,933 18.18 69.3% -7.271 70,348

VECMJ -MGarch 5.592 0.43% -2.237 39,019 18.92 70.5% -7.569 71,774

VECMN -Gjr-MGarch 5.611 0.76% -2.244 39,084 18.24 69.4% -7.295 70,465
Ms-MGarch 6.054 8.03% -2.422 40,599 18.13 69.2% -7.250 70,247
VAR-Ms-Gjr-MGarch 6.467 13.9% -2.587 41,960 18.36 69.6% -7.346 70,708

VECMJ -Ms-Gjr-MGarch 6.596 15.5% -2.638 42,376 18.17 69.3% -7.267 70,327

VECMN -Ms-MGarch 6.620 15.8% -2.648 42,453 18.00 69.0% -7.201 70,007
Ms-VAR-MGarch 5.626 1.02% -2.250 39,135 18.06 69.2% -7.222 70,112

Ms-VECMJ -Gjr-MGarch 5.598 0.53% -2.239 39,038 18.37 69.7% -7.347 70,712

Ms-VECMN -MGarch 5.855 4.91% -2.342 39,927 18.36 69.7% -7.345 70,705

Note: Panel A refers to 5/25/16-12/21/16. Variance (Var.) and Utility (Util.) are presented in 10−4 and 10−3,
respectively. Variance improvement (V. Impr.) measures the incremental variance reduction of the best strategy
versus the other strategies with the formula: [V ar(Strategyi) − V ar(Best)]/V ar(Strategyi). VaR is in US dollars
for an initial investment of $1 million and k = 4. J and N refer to Johansen (1988) and Nielsen (2010)’s cointegration
estimation, respectively.

21These results come from the comparison between Johansen (1988) and Nielsen (2010)’s approach
for each specification including those not presented in Table 4, 5 and 6.
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Table 5: In-sample hedging simulation with panel B and C
Ethanol spot and futures Ethanol spot and gasoline futures

Var. V. Impr. Util. VaR Var. V. Impr. Util. VaR

Panel B

No Hedged 9.774 48.3% -3.910 51,584 9.774 48.3% -3.910 51,584
Naive 5.797 12.9% -2.319 39,728 17.87 71.7% -7.148 69,751
OLS 5.395 6.50% -2.158 38,325 7.752 34.9% -3.101 45,939
Gjr-MGarch 5.606 10.0% -2.242 39,065 7.917 36.2% -3.167 46,426
VAR-MGarch 5.612 10.1% -2.245 39,088 8.072 37.5% -3.229 46,879

VECMJ -MGarch 5.617 10.2% -2.247 39,105 8.033 37.2% -3.213 46,764

VECMN -Gjr-MGarch 5.645 10.6% -2.258 39,201 8.069 37.4% -3.228 46,869
Ms-MGarch 5.104 1.17% -2.042 37,278 7.916 36.2% -3.167 46,425
VAR-Ms-MGarch 5.129 1.65% -2.052 37,369 7.848 35.7% -3.139 46,224

VECMJ -Ms-MGarch 5.044 - -2.018 37,057 7.883 36.0% -3.153 46,327

VECMN -Ms-MGarch 5.160 2.24% -2.064 37,480 7.818 35.4% -3.127 46,134
Ms-VAR-Gjr-MGarch 5.153 2.11% -2.061 37,454 7.973 36.7% -3.189 46,590

Ms-VECMJ -MGarch 5.251 3.94% -2.100 37,808 7.822 35.5% -3.129 46,148

Ms-VECMN -Gjr-MGarch 5.105 1.19% -2.042 37,280 8.232 38.7% -3.293 47,339

Panel C

No Hedged 10.95 75.9% -4.380 54,600 10.95 75.9% -4.380 54,600
Naive 3.133 16.0% -1.253 29,207 14.19 81.4% -5.676 62,152
OLS 2.850 7.75% -1.140 27,853 11.11 76.3% -4.444 54,996
Gjr-MGarch 3.414 22.9% -1.366 30,486 11.02 76.1% -4.406 54,763
VAR-Gjr-MGarch 3.309 20.5% -1.324 30,016 11.09 76.2% -4.438 54,957

VECMJ -MGarch 3.288 20.0% -1.315 29,919 10.96 76.0% -4.385 54,633

VECMN -MGarch 2.800 6.10% -1.120 27,608 10.95 75.9% -4.379 54,594
Ms-MGarch 2.676 1.75% -1.071 26,994 10.98 76.0% -4.391 54,668
VAR-Ms-MGarch 2.742 4.12% -1.097 27,324 10.78 75.6% -4.314 54,186

VECMJ -Ms-MGarch 2.629 - -1.052 26,754 10.52 75.0% -4.209 53,523

VECMN -Ms-Gjr-MGarch 2.645 0.60% -1.058 26,835 10.57 75.1% -4.228 53,642
Ms-VAR-Gjr-MGarch 2.762 4.81% -1.105 27,421 11.53 77.2% -4.461 55,104

Ms-VECMJ -MGarch 2.848 7.68% -1.139 27,844 10.80 75.7% -4.321 54,231

Ms-VECMN -Gjr-MGarch 2.704 2.77% -1.082 27,133 9.811 73.2% -3.924 51,681

Note: Panel B and C refer to 1/06/10-8/04/10 and 1/09/12-8/01/12, respectively. Variance (Var.) and Utility

(Util.) are presented in 10−4 and 10−3, respectively. Variance improvement (V. Impr.) measures the incre-
mental variance reduction of the best strategy versus the other strategies with the formula: [V ar(Strategyi) −
V ar(Best)]/V ar(Strategyi). VaR is in US dollars for an initial investment of $1 million and k = 4. Figures in
bold denote the best-performing model for each market. J and N refer to Johansen (1988) and Nielsen (2010)’s
cointegration estimation, respectively.

Table 6: Out-sample hedging simulation
Ethanol spot and futures Ethanol spot and gasoline futures

Var. V. Impr. Util. VaR Var. V. Impr. Util. VaR

No Hedged 13.18 80.5%*** -5.271 59,895 13.18 80.5%*** -5.271 59,895

Naive 2.803 8.35% -1.120 27,622 24.35 89.5%*** -9.742 81,428

OLS 3.331 22.9%** -1.332 30,116 13.32 80.7%*** -5.328 60.221

MGarch 2.569 - -1.027 26,445 13.54 81.0%*** -5.416 60,715

VAR-Gjr-MGarch 2.647 2.95% -1.059 26,847 13.45 80.9%*** -5.381 60,519

VECMJ -MGarch 2.679 4.11% -1.072 27,009 13.56 81.1%*** -5.422 60,750

VECMN -Gjr-MGarch 2.706 5.06% -1.082 27,140 13.58 81.1%*** -5.431 60,797

Ms-Gjr-MGarch 3.040 15.5% -1.216 28,768 13.46 80.9%*** -5.384 60,533

VAR-Ms-Gjr-MGarch 3.077 16.5% -1.231 28,942 13.92 81.5%*** -5.570 61,569

VECMJ -Ms-Gjr-MGarch 3.080 16.6% -1.232 28,957 13.48 80.9%*** -5.393 60,588

VECMN -Ms-Gjr-MGarch 3.098 17.1% -1.239 29,042 13.58 81.1%*** -5.432 60,805

Ms-VAR-MGarch 3.021 15.0% -1.208 28,678 13.65 81.2%*** -5.458 60,952

Ms-VECMJ -MGarch 3.083 16.7% -1.233 28,973 13.11 80.4%*** -5.243 59,738

Ms-VECMN -Gjr-MGarch 3.098 17.1% -1.239 29,042 13.21 80.6%*** -5.286 59,981

Note: Variance (Var.) and Utility (Util.) are presented in 10−4 and 10−3, respectively. Variance improvement (V.
Impr.) measures the incremental variance reduction of the best strategy versus the other strategies with the formula:
[V ar(Strategyi) − V ar(Best)]/V ar(Strategyi). Stars (*, **, ***) indicate that the best strategy outperforms the
competing model at a 10%, 5% and 1% significance level, respectively. The P-values are provided from White (2000)’s
reality check using the stationary bootstrap of Politis and Romano (1994). VaR is in US dollars for an initial investment
of $1 million and k = 4. J and N refer to Johansen (1988) and Nielsen (2010)’s cointegration estimation, respectively.
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5 Conclusion

In this paper, we analyze the ethanol prices dynamics in the US from 2008 to
2016. For this purpose, we use a Markov-switching vector error correction model
with an asymmetric Garch error structure. This specification allows us to study
the short-term, long-term and variance dynamics across different volatility regimes.
From the cointegration test we could not reject the hypothesis of a long-term equi-
librium relationship between spot and futures prices. Two distinct states (low and
high volatility) should be distinguished for the short-term dynamics. We provide
several dynamic hedge ratios and we examine their performance through in-sample
and out-sample simulations.

The ethanol market is characterized by its efficiency and a price-discovery process
from futures to spot prices in the long term. The cost-of-carry model from Garbade
and Silber (1983) is able to well-explain the long-term relationship. In addition,
the ethanol futures market can well-explain the spot prices dynamics during the
periods of high volatility. Furthermore, hedging strategies based on ethanol futures
contracts always outperform the cross-hedging strategy based on the use of gasoline
futures contracts. Markov-switching specification and Johansen (1988)’s cointegra-
tion procedure are able to provide an efficient hedging strategy for two-third of the
periods analyzed. Then , a simple multivariate Garch model is the best hedging
strategy during the first half of 2017 according to the out-of-sample simulation. Fi-
nally, while Nielsen (2010)’s nonparametric tool provides a clear explanation power
for the price dynamics, it cannot be used as a hedging strategy in the ethanol market.

In order to get a full understanding of the different hedging strategies in the finan-
cial ethanol market, this paper could be extended in various ways. The methodology
used with RBOB gasoline market could be applied to other commodities futures
markets such as crude oil, corn or sugar. More globally compared to mature futures
market (crude oil, sugar, etc.), the ethanol market was launched in 2005 and the
traders’ behaviour could have been influenced by many factors such as a lack of in-
formation regarding the physical production, commercial strategy (anti-dumping),
fiscal policy in producing countries (taxes in Brazil, in the US, etc. and more global
uncertainties regarding energy and environmental policies all around the world, etc.).
It could explain the fact that the ethanol futures market has not appealed to the
traders since the beginning of the last decade but it could become a key market in
the near future with the environmental and regulatory constraints of a 2◦C scenario.
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