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Abstract

We consider a bilateral oligopoly version of the Shapley window
model with large traders, represented as atoms, and small traders,
represented by an atomless part. For this model, we provide a general
existence proof of a Cournot-Nash equilibrium that allows one of the
two commodities to be held only by atoms. Then, we show, using a
corollary proved by Shitovitz (1973), that a Cournot-Nash allocation
is Pareto optimal if and only if it is a Walras allocation.
Journal of Economic Literature Classification Numbers: C72, D51.

1 Introduction

Gabszewicz and Michel (1997) introduced the so-called model of bilateral
oligopoly, which consists of a two-commodity exchange economy where each
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trader holds only one of the two commodities available for trade. In this
framework, strategic interaction among traders was modeled as in strategic
market games à la Shapley and Shubik (see Giraud (2003) for a survey of
this literature). This model was analyzed, in the case of a finite number of
traders, by Bloch and Ghosal (1997), Bloch and Ferrer (2001), Dickson and
Hartley (2008), Amir and Bloch (2009), among others.

In this paper, we consider the mixed bilateral oligopoly model introduced
by Codognato et al. (2015). Following Shitovitz (1973), this model analyzes
a mixed economy with large traders, represented as atoms, and small traders,
represented by an atomless part. Noncooperative exchange is formalized
as in the Shapley window model, a strategic market game which was first
proposed informally by Lloys S. Shapley and further analyzed by Sahi and
Yao (1989), Codognato and Ghosal (2000), Busetto et al. (2011), Busetto
et al. (2017), among others.

The first goal of the paper is to prove the existence of a Cournot-Nash
equilibrium for the mixed bilateral oligopoly version of the Shapley window
model. Busetto et al. (2011) provided an existence proof for the mixed
version of the Shapley window model with any finite number of commodi-
ties. Their proof is based on the same assumptions as the proof provided
by Sahi and Yao (1989) for the case of exchange economies with a finite
number of traders. In particular, it requires that there are at least two
atoms with strictly positive endowments, continuously differentiable utility
functions, and indifference curves contained in the strict interior of the com-
modity space: these restrictions are stated by Busetto et al. (2011) in their
Assumption 4. Clearly, this proof does not apply to the bilateral oligopoly
case where all atoms hold only one of the two commodities. Busetto et al.
(2017) proposed an alternative existence proof which is essentially based
on restrictions on endowments and preference of the atomless part of the
economy rather than on atoms. In particular, they kept all the assump-
tions made by Busetto et al. (2011) with the exception of their Assumption
4, which was replaced by a new restriction requiring that the set of com-
modities is strongly connected through the characteristics of traders in the
atomless part. The existence proof in Busetto et al. (2017) used a theo-
rem which shows that any sequence of prices corresponding to a sequence
of Cournot-Nash equilibria has a subsequence which converges to a strictly
positive price vector and it requires that each commodity is held by a subset
of the atomless part with positive measure. An appealing feature of our
existence result is that it allows a commodity to be held only by atoms.
In order to cover this case, we cannot directly use the price convergence
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theorem shown by Busetto et al. (2017) but we have to combine that proof
with the price convergence result proved by Dubey and Shubik (1978), which
holds for a strategic market game with a finite number of traders, i.e., for a
purely atomic exchange economy. This is one reason why our existence proof
is not just a two-commodity case of that provided by Busetto et al. (2017).
There is one more difference between the two results. A step in the proof of
both existence theorems consists in showing that the aggregate bid matrix,
obtained as the limit of a sequence of perturbed Cournot-Nash equilibria, is
irreducible. In Busetto et al. (2017), obtaining this result requires that the
two ordered pairs generated by the two traded commodities are connected
through traders’ characteristics. Here, instead, we require that only one of
the two ordered pairs be so connected.

In the second main theorem of the paper, we provide a characterization
of the Pareto optimality of Cournot-Nash allocations. The issue of Pareto
optimality in strategic market games was raised since the seminal paper
by Shapley and Shubik (1977). This first analysis was mainly an intuitive
discussion of Pareto optimality in the Edgeworth box. Then, more formal
results on this issue were obtained by Dubey (1980), Dubey et al. (1980),
Aghion (1985), Dubey and Rogawski (1990), among others. These results
were obtained using the approach to general equilibrium based on differen-
tial topology and hold generically. Our second theorem is a general result
obtained adding, to the same assumptions of the existence theorem, the fur-
ther restriction that both pairs of commodities are connected through the
characteristics of the same subset of traders. It states that a Cournot-Nash
allocation is Pareto optimal if and only if it is a Walras allocation, thereby
establishing a relationship among the Cournotian tradition of oligopoly, the
Walrasian tradition of perfect competition, and the Paretian analysis of op-
timality. Some examples computed by Codognato et al. (2015) provide
evidence that this characterization holds non-vacuously.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model. In section 3, we prove the existence of a Cournot-Nash
equilibrium. In Section 4, we characterize the Pareto optimality of Cournot-
Nash equilibria. In Section 5, we discuss the model. In Section 6, we draw
some conclusions and we sketch some further lines of research.
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2 Mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of
traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) <∞. This implies that the measure space
(T, T , µ) contains at most countably many atoms. Let T1 denote the set
of atoms and T0 the atomless part of T . We assume that µ(T1) > 0 and
µ(T0) > 0.1 A null set of traders is a set of measure 0. Null sets of traders are
systematically ignored throughout the paper. Thus, a statement asserted for
“each” trader in a certain set is to be understood to hold for all such traders
except possibly for a null set of traders. A coalition is a nonnull element of
T . The word “integrable” is to be understood in the sense of Lebesgue.

In the exchange economy, there are 2 different commodities. A com-
modity bundle is a point in R2

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → R2

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. There is a coalition S such that µ(S ∩ T ) > 0, µ(Sc ∩
T ) > 0, w1(t) > 0, w2(t) = 0, for each t ∈ S, w1(t) = 0, w2(t) > 0, for
each t ∈ Sc. Moreover, card(S ∩ T1) ≥ 2, whenever µ(S ∩ T0) = 0, and
card(Sc ∩ T1) ≥ 2, whenever µ(Sc ∩ T0) = 0.2

An allocation is an assignment x such that
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R2

+ → R, satisfying the following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B denote the Borel σ-algebra of R2
+. Moreover, let T

⊗
B denote

the σ-algebra generated by the sets E × F such that E ∈ T and F ∈ B.

Assumption 3. u : T × R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T

and for each x ∈ R2
+, is T

⊗
B-measurable.

In order to state our last assumption, we need a preliminary definition.
We say that commodities i, j stand in relation Q if there is a coalition T i

1The symbol 0 denotes the origin of R2
+ as well as the real number zero: no confusion

will result.
2card(A) denotes the cardinality of a set A.
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such that T i ⊂ {t ∈ T0 : wi(t) > 0, wj(t) = 0}, ut(·) is differentiable,
additively separable, i.e., ut(x) = vit(x

i) + vjt (x
j), for each x ∈ R2

+, and
dvjt (0)
dxj

= +∞, for each t ∈ T i.3 We can therefore state our last assumption
as follows.

Assumption 4. Commodities 1 and 2 or commodities 2 and 1 stand in
relation Q.

A price vector is a nonnull vector p ∈ R2
+. We say that a price vector p

is normalized if p ∈ ∆ where ∆ = {p ∈ R2
+ :

∑2
i=1 p

i = 1}.
Let X0 : T0 × R2

++ → P(R2
+) be a correspondence such that, for each

t ∈ T0 and for each p ∈ R2
++, X0(t, p) = argmax{ut(x) : x ∈ R2

+ and px ≤
pw(t)}. For each p ∈ R2

++, let
∫
T0

X0(t, p) dµ = {
∫
T0

x0(t, p) dµ : x0(·, p)
is integrable and x0(t, p) ∈ X0(t, p), for each t ∈ T0}. Finally, let Z0 :
R2

++ → P(R2) be a correspondence which associates with each p ∈ R2
++ the

Minkowski difference between the set
∫
T0

X0(t, p) dµ and the set {
∫
T0

w(t)

dµ}.4 According to Debreu (1982), let |x| =
∑2

i=1 |xi|, for each x ∈ R2,
and let d[0, V ] = infx∈V |x|, for each V ⊂ R2. The next proposition, which
we shall use in the proof of the existence theorem in Section 3, is based on
Property (iv) in Debreu (1982), p. 728.

Proposition 1. Under Assumptions 1, 2, and 3, let {pn} be a sequence
of normalized price vectors such that pn � 0, for each n = 1, 2, . . ., which
converges to a normalized price vector p̄. Then, p̄1 = 0 and µ(Sc ∩ T0) > 0,
or, p̄2 = 0 and µ(S∩T0) > 0, imply that the sequence {d[0,Z0(pn)]} diverges
to +∞.

Proof. Let {pn} be a sequence of normalized price vectors such that pn �
0, for each n = 1, 2, . . ., which converges to a normalized price vector p̄.
Suppose that p̄1 = 0 and µ(Sc ∩ T0) > 0. Then, we have that p̄2 = 1.
But then, the sequence {d[0,X0(t, pn)]} diverges to +∞ as p̄2w2(t) > 0,
for each t ∈ Sc ∩ T0, by Lemma 4 in Debreu (1982), p. 721. Therefore,
{d[0,Z0(pn)]} diverges to +∞ as µ(Sc ∩ T0) > 0, by the argument used in
the proof of Property (iv) in Debreu (1982), p. 728. Suppose that p̄2 = 0 and
µ(S∩T0) > 0. Then, {d[0,Z0(pn)]} diverges to +∞, by using symmetrically

3In this definition, differentiability means continuous differentiability and is to be un-
derstood to include the case of infinite partial derivatives along the boundary of the
consumption set (for a discussion of this case, see, for instance, Kreps (2012), p. 58).

4For a discussion of the properties of the correspondences introduced above and their
proofs see, for instance, Debreu (1982), Section 4.
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the previous argument. Hence, p̄1 = 0 and µ(Sc ∩ T0) > 0, or, p̄2 = 0 and
µ(S ∩ T0) > 0, imply that the sequence {d[0,Z0(pn)]} diverges to +∞.

A Walras equilibrium is a pair (p,x), consisting of a price vector p and
an allocation x, such that px(t) = pw(t) and ut(x(t)) ≥ ut(y), for all y ∈
{x ∈ R2

+ : px = pw(t)}, for each t ∈ T . A Walras allocation is an allocation
x for which there exists a price vector p such that the pair (p,x) is a Walras
equilibrium.

Borrowing from Codognato et al. (2015), we introduce now the two-com-
modity version of the Shapley window model. A strategy correspondence is
a correspondence B : T → P(R4

+) such that, for each t ∈ T , B(t) = {(bij) ∈
R4

+ :
∑2

j=1 bij ≤ wi(t), i = 1, 2}. With some abuse of notation, we denote
by b(t) ∈ B(t) a strategy of trader t, where bij(t), i, j = 1, 2, represents the
amount of commodity i that trader t offers in exchange for commodity j.
A strategy selection is an integrable function b : T → R4

+, such that, for
each t ∈ T , b(t) ∈ B(t). Given a strategy selection b, we call aggregate
matrix the matrix B̄ such that b̄ij = (

∫
T bij(t) dµ), i, j = 1, 2. Moreover,

we denote by b \ b(t) the strategy selection obtained from b by replacing
b(t) with b(t) ∈ B(t) and by B̄ \ b(t) the corresponding aggregate matrix.

Consider the following three further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrix A is said to be irreducible if, for

every pair (i, j), with i 6= j, there is a positive integer k such that a
(k)
ij > 0,

where a
(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 2. A nonnegative square matrix A is said to be completely
reducible if, after a permutation of indices, it can be written in a block-
diagonal form such that each diagonal block is irreducible.

Definition 3. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ R2
++,

2∑
i=1

pib̄ij = pj(
2∑
i=1

b̄ji), j = 1, 2. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
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irreducible, and is equal to 0, otherwise. For each strategy selection b such
that p(b)� 0, we assume that the price vector p(b) is normalized.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
2∑
i=1

bji(t) +
2∑
i=1

bij(t)
pi

pj
, if p ∈ R2

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T .
Given a strategy selection b and the function p(b), traders’ final holdings

are determined according to this rule and consequently expressed by the
assignment

x(t) = x(t,b(t), p(b)),

for each t ∈ T .5 It is straightforward to show that this assignment is an
allocation.

We are now able to define a notion of Cournot-Nash equilibrium for this
reformulation of the Shapley window model (see Codognato and Ghosal
(2000) and Busetto et al. (2011)).

Definition 4. A strategy selection b̂ such that
¯̂
B is irreducible is a Cournot-

Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂ \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, b̂(t),
p(b̂)), for each t ∈ T , where b̂ is a Cournot-Nash equilibrium.

Finally, we introduce the same type of perturbation of the strategic mar-
ket game which was used by Sahi and Yao (1989) and Busetto et al. (2011)
to prove their existence theorems. Given ε > 0 and a strategy selection b,
we define the aggregate matrix B̄ε as the matrix such that b̄εij = (b̄ij + ε),
i, j = 1, 2. Clearly, the matrix B̄ε is irreducible. The interpretation is that
an outside agency places fixed bids of ε for each pair of commodities 1 and
2. Given ε > 0, we denote by pε(b) the function which associates, with each

5In order to save in notation, with some abuse we denote by x both the function x(t)
and the function x(t,b(t), p(b)).
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strategy selection b, the unique, up to a scalar multiple, price vector which
satisfies

2∑
i=1

pi(b̄ij + ε) = pj(
2∑
i=1

(b̄ji + ε), j = 1, 2. (2)

For each strategy selection b, we assume that the price vector pε(b) is nor-
malized.

Definition 5. Given ε > 0, a strategy selection b̂ε is an ε-Cournot-Nash
equilibrium if

ut(x(t, b̂ε(t), pε(b̂ε))) ≥ ut(x(t, b(t), pε(b̂ε \ b(t)))),

for each b(t) ∈ B(t) and for each t ∈ T .

3 Existence

In this section, we state and prove our first main theorem, establishing the
existence of a Cournot-Nash equilibrium for the two-commodity version of
the Shapley window model presented above.

Theorem 1. Under Assumptions 1, 2, 3, and 4, there exists a Cournot-
Nash equilibrium b̂.

Proof. The first step in the proof of Theorem 1 requires that we show the
existence of an ε-Cournot-Nash equilibrium. To this end, we use a result
already proved by Busetto et al. (2011) by applying the Kakutani-Fan-
Glicksberg theorem. It is stated in the following lemma.

Lemma 1. For each ε > 0, there exists an ε-Cournot-Nash equilibrium b̂ε.

Proof. See the proof of Lemma 3 in Busetto et al. (2011).

Then, we have to show that there exists the limit of a sequence of ε-
Cournot-Nash equilibria and that this limit is a Cournot-Nash equilibrium.
Let εn = 1

n , n = 1, 2, . . .. By Lemma 1, for each n = 1, 2, . . ., there is an

ε-Cournot-Nash equilibrium b̂εn . The next step consists in showing that any
sequence of normalized prices generated by the sequence of ε-Cournot-Nash
equilibria corresponding to the sequence {εn} has a convergent subsequence
whose limit is a strictly positive normalized price vector. In order to prove
this result, we cannot use the price convergence theorem proved by Busetto
et al. (2017) as the proof of this theorem requires that each commodity is
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held by a subset of the atomless part with positive measure whereas, in our
framework, one of the two commodities may be held only by atoms. There-
fore, we have to combine the price convergence proof provided by Busetto
et al. (2017) with another price convergence proof, proposed by Dubey and
Shubik (1978), which holds for a purely atomic exchange economy. To this
end, we need to introduce the following preliminary lemma, based on the
uniform monotonicity lemma proved by Dubey and Shubik (1978).

Lemma 2. Consider an atom τ ∈ T1 and a commodity j ∈ {1, 2}. For
each real number H > 0, there is a real number 0 < h(uτ (·), j,H) < 1,
depending on uτ (·), j, and H, such that if x ∈ R2

+, ‖x‖ ≤ H, y ∈ R2
+ and

‖y − x‖ ≤ h(uτ (·), j,H), then uτ (y + ej) > uτ (x).6

Proof. It is an immediate consequence of Lemma C (the uniform mono-
tonicity lemma) in Dubey and Shubik (1978) as uτ (·) is continuous and
strongly monotone, by Assumption 2.

We can now state and prove the price convergence lemma.

Lemma 3. Let {p̂εn} be a sequence of normalized prices such that {p̂εn} =
p(b̂εn) where b̂εn is an ε-Cournot-Nash equilibrium, for each n = 1, 2, . . ..
Then, there exists a subsequence {p̂εkn} of the sequence {p̂εn} which con-
verges to a normalized price vector p̂� 0.

Proof. Let {p̂εn} be a sequence of normalized prices such that {p̂εn} =
pεn(b̂εn), where b̂εn is an ε-Cournot-Nash equilibrium, for each n = 1, 2, . . ..
Then, there is a subsequence {p̂εkn} of the sequence {p̂εn} which converges
to a price vector p̂ ∈ ∆, as the unit simplex ∆ is a compact set. Consider
the case where µ(S ∩ T0) > 0 and µ(Sc ∩ T0) > 0. Suppose, without loss
of generality, that p̂1 = 0. Then, the sequence {d[0,Z0(p̂εkn )]} diverges to
+∞ as µ(Sc ∩ T0) > 0, by Proposition 1. We adapt now to our framework
the argument used by Busetto et al. (2017) to prove their Theorem 1. Let
x̂εn(t) = x(t, b̂εn(t), pεn(b̂εn)), for each t ∈ T , and for each n = 1, 2, . . ..
Then, x̂εn(t) ∈ X0(t, pεn), for each t ∈ T0, and for each n = 1, 2, . . ., by
the same argument used by Codognato and Ghosal (2000) to prove their
Theorem 2. But then, (

∫
T0

x̂εn(t) dµ −
∫
T0

w(t) dµ) ∈ Z0(p̂εn), for each
n = 1, 2, . . .. We have that∫

T0

x̂εn(t) dµ ≤
∫
T0

w(t) dµ+

∫
T1

w(t) dµ+ e1 + e2

6‖·‖ denotes the Euclidean norm and ej denotes the vector in Rl+ whose jth coordinate
is 1 and whose other coordinates vanish.
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as
∫
T x̂εn(t) dµ ≤

∫
T w(t) dµ+ εne

1 + εne
2, for each n = 1, 2, . . .. Then,∣∣∣∣∫

T0

x̂iεn(t) dµ−
∫
T0

wi(t) dµ

∣∣∣∣ ≤ ∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ+ 1

as −
∫
T1

wi(t) dµ − 1 ≤
∫
T0

x̂iεn(t) dµ ≤ 2
∫
T0

wi(t) dµ +
∫
T1

wi(t) dµ + 1,
i = 1, 2, for each n = 1, 2, . . .. But then,

2∑
i=1

∣∣∣∣∫
T0

x̂iεn(t) dµ−
∫
T0

wi(t) dµ

∣∣∣∣ ≤ 2∑
i=1

(∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ+ 1

)
,

for each n = 1, 2, . . .. Moreover, there exists an n0 such that

d[0,Z0(p̂εkn )] >
2∑
i=1

(∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ+ 1

)
,

for each n ≥ n0, as the sequence {d[0,Z0(p̂εkn )]} diverges to +∞. Then,

2∑
i=1

∣∣∣∣∫
T0

x̂iεkn (t) dµ−
∫
T0

wi(t) dµ

∣∣∣∣ > 2∑
i=1

(∫
T0

wi(t) dµ+

∫
T1

wi(t) dµ+ 1

)

as
∑2

i=1 |
∫
T0

x̂iεkn (t) dµ −
∫
T0

wi(t) dµ| ≥ d[0,Z0(p̂εkn )], for each n ≥ n0,

a contradiction. Therefore, we must have that p̂1 > 0. Consider the case
where µ(S ∩ T0) = 0 or µ(Sc ∩ T0) = 0. Suppose, without loss of generality,
that µ(S ∩ T0) = 0. Then, we have that µ(Sc ∩ T0) > 0 as µ(T0) > 0.
Moreover, there are at least two atoms τ, ρ ∈ S ∩ T1, by Assumption 1. We
have that p̂1 > 0, as µ(Sc∩T0) > 0, by the same argument used in the proof
of the previous case. In order to prove that p̂2 > 0, we now show that there
is a real number η > 0 such that

p̂2εn

p̂1εn
> η, (3)

for each n = 1, 2, . . .. To this end, we adapt to our framework the proof of
Lemma 2 in Dubey and Shubik (1978). In what follows, we shall use the fact
that (2) and the normalization rule imply straightforwardly that (3) holds
if and only if

¯̂
b
εn

12 + εn
¯̂
b
εn

21 + εn
> η,
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for each n = 1, 2, . . .. Consider any n. We now prove that b̂εn12(τ) ≤
¯̂
b
εn
12
2

or b̂εn12(ρ) ≤
¯̂
b
εn
12
2 . Suppose, by way of contradiction, that b̂εn12(τ) >

¯̂
b
εn
12
2 and

b̂εn12(ρ) >
¯̂
b
εn
12
2 . Then, we have that b̂εn12(τ) + b̂εn12(ρ) >

¯̂
b
εn

12, a contradiction.

Therefore, we must have that b̂εn12(τ) ≤
¯̂
b
εn
12
2 or b̂εn12(ρ) ≤

¯̂
b
εn
12
2 . Suppose

that b̂εn12(τ) ≤
¯̂
b
εn
12
2 . Moreover, suppose that w1(τ) − b̂εn12(τ) ≥ w1(τ)

2 . Let

0 < γ < min{εn, w
1(τ)
2 , 2

¯̂
b
εn
12 +εn

¯̂
b
εn
21 +εn

} and let bγ(τ) = b̂εn(τ) + γe2. Then, we

have

x1(τ, bγ(τ), pεn(b̂εn \ bγ(τ)))− x1(τ, b̂εn(τ), pεn(b̂εn))

= (w1 − b̂εn12 − γ)− (w1 − b̂εn12)

= −γ,

and

x2(τ, bγ(τ), pεn(b̂εn \ bγ(τ)))− x2(τ, b̂εn(τ), pεn(b̂εn))

= (b̂εn12(τ) + γ)
¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn + γ
− b̂εn12(τ)

¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn

=
¯̂
b
εn

12 + εn − b̂εn12(τ)
¯̂
b
εn

12 + εn + γ

¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn
γ

>

¯̂
b
εn
12
2 + εn

2 + γ
2

¯̂
b
εn

12 + εn + γ

¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn
γ,

as b̂εn12(τ) ≤
¯̂
b
εn
12
2 and γ < εn. Then, we obtain

x2(τ, bγ(τ), pεn(b̂εn \ bγ(τ)))− x2(τ, b̂εn(τ), pεn(b̂εn)) >
1

2

¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn
γ. (4)

Let us define

z = −2
¯̂
b
εn

12 + εn
¯̂
b
εn

21 + εn
e1.

Then, we have the vector inequality

x(τ, bγ(τ), pεn(b̂εn \ bγ(τ)))

≥ x(τ, b̂εn(τ), pεn(b̂εn)) +
1

2

¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn
γ(z + e2), (5)

11



where the inequality is strict for the second component by (4). Let H =√
2 max{

∫
T w1(t) dµ+1,

∫
T w2(t) dµ+1} and let y = x(τ, b̂εn(τ), pεn(b̂εn))+

z. It is straightforward to verify that x(τ, b̂εn(τ), pεn(b̂εn)) ∈ R2
+ and

‖x(τ, b̂εn(τ), pεn(b̂εn))‖ ≤ H. Suppose that y ∈ R2
+ and ‖z‖ ≤ h(uτ (·), 2, H).

Then, by Lemma 2, we obtain that

uτ (x(τ, b̂εn(τ), pεn(b̂εn)) + z + e2) > uτ (x(τ, b̂εn(τ), pεn(b̂εn))).

But then, we have that

uτ (x(τ, b̂εn(τ), pεn(b̂εn))+
1

2

¯̂
b
εn

21 + εn
¯̂
b
εn

12 + εn
γ(z+e2)) ≥ uτ (x(τ, b̂εn(τ), pεn(b̂εn))),

as 0 < 1
2

¯̂
b
εn
21 +εn

¯̂
b
εn
12 +εn

γ < 1 and the function uτ (·) is quasi-concave, by Assumption

2. Therefore, it follows that

uτ (x(τ, bγ(τ), pεn(b̂εn \ bγ(τ)))) > uτ (x(τ, b̂εn(τ), pεn(b̂εn))),

as (5) holds strictly for its second component and uτ (·) is strongly monotone,
by Assumption 2, a contradiction. Thus, it must be that y /∈ R2

+ or ‖z‖ >
h(uτ (·), 2, H). Suppose that y /∈ R2

+. Then, it follows that

x1(τ, b̂εn(τ), pεn(b̂εn))− 2
¯̂
b
εn

12 + εn
¯̂
b
εn

21 + εn
< 0,

as y = x(τ, b̂εn(τ), pεn(b̂εn)) + z and x(τ, b̂εn(τ), pεn(b̂εn)) ∈ R2
+. But then,

it must be that
¯̂
b
εn

12 + εn
¯̂
b
εn

21 + εn
>

w1(τ)

4
,

as x1(τ, b̂εn(τ), pεn(b̂εn)) = w1(τ) − b̂εn12(τ) ≥ w1(τ)
2 . Suppose that ‖z‖ >

h(uτ (·), 2, H). Then, we have that

¯̂
b
εn

12 + εn
¯̂
b
εn

21 + εn
>
h(uτ (·), 2, H)

2
.

Suppose now that w1(τ) − b̂εn12(τ) < w1(τ)
2 . Then, we have that b̂εn12(τ) >

w1(τ)
2 . But then, it must be that

¯̂
b
εn

12 + εn
¯̂
b
εn

21 + εn
>

w1(τ)

2(
∫
T w2(t) dµ+ 1)

.

12



Let

α = min

{
w1(τ)

4
,
h(uτ (·), 2, H)

2
,

w1(τ)

2(
∫
T w2(t) dµ+ 1)

}
.

Thus, we have that
p̂2εn

p̂1εn
> α.

Suppose that b̂εn12(ρ) ≤
¯̂
b
εn
12
2 . Let

β = min

{
w1(ρ)

4
,
h(uρ(·), 2, H)

2
,

w1(ρ)

2(
∫
T w2(t) dµ+ 1)

}
.

Thus, by the same argument used in the previous case, we have that

p̂2εn

p̂1εn
> β.

Let η = min{α, β}. Therefore, we can conclude that

p̂2εn

p̂1εn
> η,

for each n = 1, 2, . . .. Consider the sequence {p̂εkn}. From (3), we obtain
that

p̂2εkn > ηp̂1εkn ,

for each n = 1, 2, . . .. Then, we obtain that

p̂2 > ηp̂1,

as the sequence {p̂εkn} converges to p̂. But then, we have that p̂2 > 0 as
η > 0 and p̂1 > 0. Hence, having considered all possible cases, we can
conclude that p̂� 0.

We now follow the argument used by Busetto et al. (2017) to prove
their Theorem 2. In the next part of the proof, we apply a generalization
of the Fatou lemma in several dimensions provided by Artstein (1979). By
Lemma 1, there is an ε-Cournot-Nash equilibrium b̂εn , for each n = 1, 2, . . ..

The fact that the sequence { ¯̂
B
εn
} belongs to the compact set {(bij) ∈ R4

+ :

bij ≤
∫
T wi(t) dµ, i, j = 1, 2} and the sequence {p̂εn}, where p̂εn = pεn(b̂εn),

belongs to the unit simplex ∆, for each n = 1, 2, . . ., implies that there is a

subsequence { ¯̂
B
εkn} of the sequence { ¯̂

B
εn
} which converges to an element

13



of the set {(bij) ∈ R4
+ : bij ≤

∫
T wi(t) dµ, i, j = 1, 2} and a subsequence

{p̂εkn} of the sequence {p̂εn} which converges to a price vector p̂ ∈ ∆, with
p̂� 0, by Lemma 3. Since the sequence {b̂εkn} satisfies the assumptions of
Theorem A in Artstein (1979), by this theorem there is a function b̂ such
that b̂(t) is a limit point of the sequence {b̂εkn (t)}, for each t ∈ T , and such

that the sequence { ¯̂
B
εkn} converges to

¯̂
B. Moreover, p̂ and

¯̂
B satisfy (1) as

p̂εkn and
¯̂
B
εkn
εkn

satisfy (2), for each n = 1, 2, . . ., the sequence {p̂εkn} converges

to p̂, the sequence { ¯̂
B
εkn} converges to

¯̂
B, and the sequence {εkn} converges

to 0. Then, the matrix
¯̂
B is completely reducible, by Lemma 1 in Sahi and

Yao (1989), as p̂ � 0. We want now to prove that
¯̂
B must be irreducible.

Suppose, without loss of generality, that commodities 2 and 1 stand in the

relation Q. We now show that
¯̂
b21 > 0. Suppose that

¯̂
b21 = 0. Then, we

have that
∫
T 2 b̂21(t) dµ = 0 as µ(T 2) > 0. Consider a trader τ ∈ T 2. We can

suppose that b̂21(τ) = 0 as we ignore null sets. Since b̂(τ) is a limit point of
the sequence {b̂εkn (τ)}, there is a subsequence {b̂εhkn (τ)} of this sequence
which converges to b̂(τ). Let x̂εn(τ) = x(τ, b̂εn(τ), pεn(b̂εn)), for each n =
1, 2, . . ., and x̂(τ) = x(τ, b̂(τ), p̂). Then, the subsequence {x̂εhkn (τ)} of the
sequence {x̂εn(τ)} converges to x̂(τ) as the sequence {b̂εhkn (τ)} converges
to b̂(τ) and the sequence {p̂εhkn } converges to p̂, with p̂

εhkn � 0, for each
n = 1, 2, . . ., and p̂� 0. But then, it must be that x̂1(τ) = 0 as b̂21(τ) = 0
and x̂(τ) ∈ X0(τ, p̂) as x̂

εhkn (τ) ∈ X0(τ, p̂
εhkn ), for each n = 1, 2, . . ., and

the correspondence X0(τ, ·) is upper hemicontinuous, by the argument used

in Debreu (1982), p. 721. Therefore, we have that ∂uτ (x̂(τ))
∂x1

= +∞ as 2 and

1 stand in the relation Q and ∂uτ (x̂(τ))
∂x1

≤ λp̂1, by the necessary conditions
of the Kuhn-Tucker theorem. Moreover, it must be that x̂2(τ) = w2(τ) > 0
as uτ (·) is strongly monotone, by Assumption 2, and p̂w(τ) > 0. Then,
∂uτ (x̂(τ))

∂x2
= λp̂2, by the necessary conditions of the Kuhn-Tucker theorem.

But then, ∂uτ (x̂(τ))
∂x2

= +∞ as λ = +∞, contradicting the assumption that

uτ (·) is continuously differentiable. Therefore, we can conclude that
¯̂
b21 > 0.

Then, we must also have that
¯̂
b12 > 0 as

¯̂
B is completely reducible. But

then,
¯̂
B is irreducible. Consider a trader τ ∈ T1. The matrix

¯̂
B \ b(τ) is

irreducible as
¯̂
b21 \ b(τ) > 0, by the previous argument. Consider a trader

τ ∈ T0. The matrix
¯̂
B \ b(τ) is irreducible as

¯̂
B =

¯̂
B \ b(τ). Then, the

matrix
¯̂
B \ b(t) is irreducible, for each t ∈ T . But then, from the same

argument used by Busetto et al. (2011) in their existence proof (Cases 1
and 3), it follows that ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b(t), p(b̂\b(t)))), for each
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b(t) ∈ B(t) and for each t ∈ T . Hence, b̂ is a Cournot-Nash equilibrium.

4 Optimality

In this section, we study the Pareto optimality properties of a Cournot-
Nash allocation for the two-commodity version of the Shaley window model.
Shapley and Shubik (1977) first raised the question of the Pareto optimal-
ity features of Cournot-Nash allocations in the context of the prototypical
strategic market games they proposed in that work. Nevertheless, their anal-
ysis was mainly based on examples drawn in an Edgeworth box. Then, some
more general results about the Pareto optimality properties of Cournot-
Nash allocations of strategic market games were obtained, both for exchange
economies with a finite number of traders and with an atomless continuum
of traders, by Dubey (1980), Dubey et al. (1980), Aghion (1985), Dubey
and Rogawski (1990), among others. Their theorems were obtained in a
framework of differential topology and hold generically.7 Here, we extend
the Pareto optimality analysis to our mixed version of the Shapley window
model and we obtain a general result which characterizes Pareto optimal
Cournot-Nash allocations as Walras allocations. To this end, we need to
introduce the following further definitions. An allocation x is said to be
individually rational if ut(x(t)) ≥ ut(w(t)), for each t ∈ T . An alloca-
tion x is said to be Pareto optimal if there is no allocation y such that
ut(y(t)) > ut(x(t)), for each t ∈ T . An efficiency equilibrium is a pair (p,x),
consisting of a price vector p and an allocation x, such that ut(x(t)) ≥ ut(y),
for all y ∈ {x ∈ R2

+ : px = px(t)}, for each t ∈ T . Moreover, we need to
impose the following assumption.

Assumption 4′. There is a coalition T̄ , with T̄ ⊂ T0, such that ut(·) is

differentiable, additively separable, and
dvjt (0)
dxj

= +∞, j = 1, 2, for each
t ∈ T̄ .

It is straightforward to verify that Assumption 4′ is stricter than As-
sumption 4 as Assumption 4′ implies Assumption 4 but the converse does
not hold. This restriction is needed to guarantee that, at a Pareto optimal
Cournot-Nash allocation, Cournot-Nash equilibrium prices are equal, up to
a scalar multiple, to efficiency equilibrium prices.

7For a discussion of this literature, see Giraud (2003), p. 359 and p. 365.
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We can now state and prove our optimality theorem, which establishes an
equivalence between the set of Pareto optimal Cournot-Nash allocations and
the set of Cournot-Nash allocations, whenever the latter are also Walrasian.

Theorem 2. Under Assumptions 1, 2, 3, and 4′, let b̂ be a Cournot-Nash
equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, x̂ is Pareto optimal if and only if the pair (p̂, x̂) is a Walras equilib-
rium.

Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that x̂ is Pareto optimal. We
adapt to our framework the argument used by Shitovitz (1973) to prove the
corollary to his Lemma 2. It is straightforward to verify that x̂ is individually
rational. Let Ĝ→ P(R2) be a correspondence such that Ĝ(t) = {x− x̂(t) :
x ∈ R2

+ and ut(x) > ut(x̂(t))}, for each t ∈ T . Moreover, let
∫
T Ĝ(t) dµ =

{
∫
T ĝ(t) dµ : ĝ(t) is integrable and ĝ(t) ∈ Ĝ(t), for each t ∈ T}. The set
{x ∈ R2

+ : ut(x) ≥ ut(x̂)} is convex as ut(·) is quasi-concave, by Assumption

2, for each t ∈ T1. Then, it is straightforward to verify that the set Ĝ(t)
is convex, for each t ∈ T1. But then,

∫
T Ĝ(t) dµ is convex, by Theorem 1

in Shitovitz (1973). We now prove that 0 /∈
∫
T Ĝ(t) dµ. Suppose that 0 ∈∫

T Ĝ(t) dµ. Then, there is an assignment y such that ut(y(t)) > ut(x̂(t)), for
each t ∈ T , which is an allocation as

∫
T y(t) dµ =

∫
T x̂(t) dµ =

∫
T w(t) dµ.

But then, x̂ is not Pareto optimal, a contradiction. Therefore, it must be
that 0 /∈

∫
T Ĝ(t) dµ. Then, there exists a vector p̃ such that p̃ ∈ R2, (p̃ 6= 0),

and p̃
∫
T Ĝ(t) dµ ≥ 0, by the supporting hyperplane theorem. But then, the

pair (p̃, x̂) is an efficiency equilibrium, by Lemma 2 in Shitovitz (1973). We
have that x̂(t) ∈ X0(t, p̂), by the same argument used by Codognato and
Ghosal (2000) to prove their Theorem 2, for each t ∈ T0. Consider a trader
τ ∈ T̄ and suppose that either x̂1(t) = 0 or x̂2(t) = 0. Then, the necessary
Kuhn-Tucker conditions lead, mutatis mutandis, to the same contradiction
as in the proof of our Theorem 1, by Assumption 4′. But then, we have that
x̂(t)� 0. Therefore, it must be that

∂ut(x̂(t))
∂x1

∂ut(x̂(t))
∂x2

=
p̂1

p̂2
,

for each t ∈ T̄ . It must also be that

∂ut(x̂(t))
∂x1

∂ut(x̂(t))
∂x2

=
p̃1

p̃2
,

16



as the pair (p̃, x̂) is an efficiency equilibrium, for each t ∈ T̄ . Then, there
exists a real number θ > 0 such that p̂1 = θp̃1 and p̂2 = θp̃2. But then, x̂ is
such that p̂x̂(t) = p̂w(t) and ut(x̂(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : p̂x =
p̂w(t)}, for each t ∈ T . Therefore, the pair (p̂, x̂) is a Walras equilibrium.
Suppose now that the pair (p̂, x̂) is a Walras equilibrium. Then, x̂ is Pareto
optimal, by the first fundamental theorem of welfare economics. Hence, x̂
is Pareto optimal if and only if the pair (p̂, x̂) is a Walras equilibrium.

We study now the relationship between the set of Cournot-Nash alloca-
tions, the core, and the set of Walras allocations.

We say that an allocation y dominates an allocation x via a coalition S
if ut(y(t)) > ut(x(t)), for each t ∈ S, and

∫
S y(t) dµ =

∫
S w(t) dµ. The core

is the set of all allocations which are not dominated via any coalition. The
following corollary is a straightforward consequence of Theorem 2.

Corollary 1. Under Assumptions 1, 2, 3, and 4′, let b̂ be a Cournot-Nash
equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, x̂ is in the core if and only if the pair (p̂, x̂) is a Walras equilibrium.

Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that x̂ is in the core. Then, x̂
is Pareto optimal. But then, the pair (p̂, x̂) is a Walras equilibrium, by
Theorem 2. Suppose that the pair (p̂, x̂) is a Walras equilibrium. Then, x̂
is in the core, by the same argument used by Aumann (1964) in the proof
of his main theorem. Hence, x̂ is in the core if and only if the pair (p̂, x̂) is
a Walras equilibrium.

The next proposition provides a characterization of Pareto optimal Cour-
not-Nash allocations. To prove it, we use a result obtained in Codognato et
al. (2015) which provides a necessary and sufficient condition for a Cournot-
Nash allocation to be a Walras allocation. This characterization result re-
quires the following assumption.

Assumption 5. ut : R2
+ → R is differentiable, for each t ∈ T1.

Our characterization of Pareto Optimal Cournot-Nash allocations is the
following.

Proposition 2. Under Assumptions 1, 2, 3, 4′, and 5, let b̂ be a Cournot-
Nash equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, x̂ is Pareto optimal if and only if x̂1(t) = 0 or x̂2(t) = 0, for each
t ∈ T1.
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Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that x̂ is Pareto optimal. Then,
the pair (p̂, x̂) is a Walras equilibrium, by Theorem 2. But then, x̂1(t) = 0
or x̂2(t) = 0, for each t ∈ T1, by Theorem 4 in Codognato et al. (2015).
Suppose that x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T1. Then, the pair (p̂, x̂) is
a Walras equilibrium, by Theorem 4 in Codognato et al. (2015). But then,
x̂ is Pareto optimal, by Theorem 2. Hence, x̂ is Pareto optimal if and only
if x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T1.

The following corollary provides a characterization of Cournot-Nash al-
locations which are in the core.

Corollary 2. Under Assumptions 1, 2, 3, 4′, and 5, let b̂ be a Cournot-
Nash equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, x̂ is the core if and only if x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T1.

Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that x̂ is in the core. Then, x̂
is Pareto optimal. But then, x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T1, by
Proposition 2. Suppose that x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T1. Then
the pair (p̂, x̂) is a Walras equilibrium, by Theorem 4 in Codognato et al.
(2015). But then, x̂ is in the core, by the same argument used by Aumann
(1964) in the proof of his main theorem.

Examples 6, 7, 8, and 9 in Codognato et al. (2015) show that Theorem
2, Proposition 2, and Corollaries 1 and 2 hold non-vacuously.

5 Discussion of the model

This section is devoted to a discussion of some issues related to the existence
and optimality of Cournot-Nash equilibria.

It is straightforward to show, using Theorem 5 in Codognato et al.
(2015), that, in our mixed bilateral oligopoly framework, under Assump-
tions 1, 2, and 3, the set of Cournot-Nash allocations of the Shapley window
model coincides with the set of the Cournot-Nash allocations of the model
with commodity money proposed by Dubey and Shubik (1978) and of its
generalization to complete markets proposed by Amir et al. (1990). There-
fore, all the results obtained in this paper also hold for these models. Let
us further discuss now some features of the models in this class, when con-
sidered in a bilateral oligopoly framework, and their relationships with the
results obtained in this paper.
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Busetto et al. (2017) considered a mixed version of the Shapley window
model for exchange economies with any finite number of commodities and,
in their Theorem 2, they proved the existence of a Cournot-Nash equilib-
rium. In this paper, we have considered a bilateral oligopoly version of the
model analyzed by Busetto et al. (2017). Nevertheless, our existence result,
Theorem 1, is not just a two-commodity case of Theorem 2 in Busetto et al.
(2017). While Assumptions 2 and 3 are the same in Busetto et al. (2017)
and here, Assumptions 1 and 4 differ. Let us analyze in more detail the
difference between the two versions of Assumptions 1 and 4 and the role
they play in the two existence proofs.

To be applied to our bilateral framework, Assumption 1 in Busetto et
al. (2017) could be restated as follows.

Assumption 1′. There is a coalition S such that µ(S∩T ) > 0, µ(Sc∩T ) >
0, w1(t) > 0, w2(t) = 0, for each t ∈ S, w1(t) = 0, w2(t) > 0, for each
t ∈ Sc. Moreover,

∫
T0

w(t) dµ� 0.

It is clear that if an initial assignment w satisfies Assumption 1′, then
it also satisfies our Assumption 1. Assumption 1′ rules out the cases where
µ(S∩T0) = 0 or µ(Sc∩T0) = 0, that is those in which only the atoms hold one
of the two commodities. Therefore, the price convergence theorem proved by
Busetto et al. (2017), their Theorem 1, that holds only under Assumption
1′, cannot be used in the proof of our existence theorem. In order to cover
the case where one of the two commodities is held only by atoms, we have
proved a price convergence lemma which combines the argument used by
Busetto et al. (2017) in the proof of their Theorem 1 with another argument
used by Dubey and Shubik (1978) in the proof of their convergence result
for the purely atomic case, their Lemma 2. Moreover, we had to extend
the proof of Dubey and Shubik (1978), which holds under the assumption of
concave utility functions, to cover the case of quasi-concave utility functions,
as required by our Assumption 2.

Assumption 4 in Busetto et al. (2017) imposes a relation between com-
modities, their relation C, which is equivalent, in our bilateral model, to
our relation Q. It requires that the set of commodities is strongly connected
through traders’ characteristics and it could be restated, in the bilateral
framework, as follows.

Assumption 4′′. Commodities 1 and 2 and commodities 2 and 1 stand in
relation Q.

It is clear that Assumption 4′′ implies our Assumption 4 but the converse
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does not hold. Therefore, in order to show the irreducibility of the matrix
¯̂
B,

in the proof of Theorem 1, bilateral oligopoly allows us to impose condition
Q only for one of the two ordered pairs generated by commodities 1 and 2.

Therefore, we can conclude that our existence theorem holds under less
restrictive conditions than the existence theorem in Busetto et al. (2017).

Let us consider a further point. So far we have kept the assumption that
µ(T1) > 0 and µ(T0) > 0. Suppose first that µ(T1) = 0. We obtain this way
an atomless bilateral framework. The next proposition shows the existence
of a Cournot-Nash equilibrium in this context by adapting to this case the
equivalence result proved by Codognato and Ghosal (2000).

Proposition 3. Let µ(T1) = 0. Under Assumptions 1, 2, 3, and 4, there
exists a Cournot-Nash equilibrium b̂.

Proof. Under Assumptions 1, 2, 3, and 4, there exists a Walras equilib-
rium (p̂, x̂), by Theorem 9 in Debreu (1982), which is a generalization of an
existence theorem for exchange economies with an atomless continuum of
traders proved by Aumann (1966). Then, there exists a strategy selection
b̂ such that p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T , which is a
Cournot-Nash equilibrium, by the argument used by Codognato and Ghosal
(2000) to prove their Theorem 2, replacing their Assumption 4, which re-
quires that the set of commodities is a net, with our Assumption 4.

Suppose now that µ(T0) = 0. We obtain this way a purely atomic bilat-
eral framework. Then, it is possible to adapt to this context the existence
result proved by Bloch and Ferrer (2001). To this end, we have to introduce
the following restrictions of our Assumptions 2 and 5, respectively.

Assumption 2′. ut : R2
+ → R is continuous, strongly monotone, and

strictly concave, for each t ∈ T1.

Assumption 5′. ut(·) is differentiable, additively separable, and
dvjt (0)
dxj

=
+∞, j = 1, 2, for each t ∈ T1.

We can then state the existence result proved by Bloch and Ferrer (2001).

Proposition 4. Let µ(T0) = 0. Under Assumptions 1, 2′, 3, and 5′, there
exists a Cournot-Nash equilibrium b̂.

Proof. We have that card(S ∩ T1) ≥ 2 and card(Sc ∩ T1) ≥ 2 as µ(T0) = 0,
by Assumption 1. Then, there exists a Cournot-Nash equilibrium b̂, by the
same argument used by Bloch and Ferrer (2001) to prove their Proposition 2,
which can also be extended to the case where T1 contains countably infinite
atoms by means of the product topology.
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It could be worth investigating if Proposition 4 holds under weaker
assumptions.8

We have already noticed, in Section 4, that Assumption 4′ is more re-
strictive than Assumption 4. We leave for further research a possible answer
to the question whether Theorem 2 holds under less restrictive or alternative
assumptions.

There is a relationship also between our work and the paper by Dubey
and Rogawski (1990). These authors showed that, for strategic market
games with a finite number of traders, Cournot-Nash equilibria are generi-
cally not Pareto optimal in utility functions. In future work, we could verify
if this result would hold in our bilateral oligopoly framework as it would im-
ply, by Theorem 2, that the “probability” that a Cournot-Nash allocation
is a Walras allocation is null.

Finally, let us notice that, in Section 2, we have provided a definition
of a Cournot-Nash equilibrium referring explicitly to irreducible matrices.
This definition applies only to active Cournot-Nash equilibria according to
the definition of Sahi and Yao (1989). Nevertheless, in the Shapley window
model, as in all other strategic market games, the strategy selection b̂ such
that b̂(t) = 0, for each t ∈ T , is a Cournot-Nash equilibrium, usually called
trivial equilibrium. This raises the question whether, under Assumptions
1-4, the allocation corresponding to the trivial Cournot-Nash equilibrium,
namely the initial assignment w, may be Pareto optimal. The following
proposition provides a negative answer to this question.

Proposition 5. Under Assumptions 1, 2, 3, and 4, the allocation w is not
Pareto optimal.

Proof. Suppose that w is Pareto optimal. Then, there exists a price vector p̃
such that the pair (p̃,w) is an efficiency equilibrium, by the same argument
used in the proof of Theorem 2. But then, the pair (p̃,w) is a Walras
equilibrium. Therefore, for commodities which stand in the relation Q, the
necessary Kuhn-Tucker conditions lead to the same contradiction as in the
proof of Theorem 1. Hence, the allocation w is not Pareto optimal.

8It would also be worth comparing the existence proof provided by Bloch and Ferrer
(2001) with that given by Dickson and Hartley (2008), based on another approach to
bilateral oligopoly.

21



6 Conclusion

In Theorem 1, we have shown the existence of a Cournot-Nash equilibrium
for the mixed bilateral oligopoly version of the Shapley window model first
analyzed by Codognato et al. (2015). Then, in Theorem 2, we have proved
that a Cournot-Nash allocation is Pareto optimal if and only if it is a Wal-
ras allocation. The proof of this theorem is crucially based on a corollary
in Shitovitz (1973), showing that the first and second welfare theorem still
hold in mixed exchange economies. In their main theorem, Codognato et al.
(2015) proved that, under a further differentiability assumption on atoms’
utility functions, the condition which characterizes the nonempty intersec-
tion of the sets of Walras and Cournot-Nash allocations requires that each
atom demands a null amount of one commodity. Combining this result
with our Theorem 2 we have obtained, as a proposition, a characteriza-
tion of the optimality property of Cournot-Nash equilibria, which requires
that at a Pareto optimal Cournot-Nash equilibrium each atom demands a
null amount of one commodity. Recasting antitrust analysis in the bilateral
oligopoly framework, we could use these results in further research as a first
step to analyze competition policy in a general equilibrium framework.

In the previous section, we have already stressed that the results we have
obtained for the bilateral version of the Shapley window model also hold for
other prototypes of strategic market games in the line inspired by Shapley
and Shubik (1977). Moreover, we have pointed out some issues connected
with existence and Pareto optimality which in our opinion deserve to be
considered for future research. A further question we propose to answer in
forthcoming work is if the results obtained in this paper hold for another type
of strategic market game, that is the one with fiat money first introduced
by Postlewaite and Schmeidler (1978) and further analyzed by Peck et al.
(1992), Koutsougeras and Ziros (2008), Koutsougeras (2009), among others.
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