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ABSTRACT
The EWMA Sign control chart is a distribution-free scheme used for monitoring
shifts in the location parameter during process monitoring. In this work, we pro-
pose a modified Phase II EWMA chart based on a general Sign statistic, capable of
monitoring shifts in the process variability. Regarding the determination of the pro-
posed chart’s in- and out-of-control Run Length properties, Markov chain methods
are used in combination with a continuous transformation of the suggested general
Sign statistic. Our results show the power of the proposed method regarding the
proposed chart’s exact Run Length properties and its efficiency in detecting shifts
in the process variability.
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1. Introduction

Control charts have been widely used in manufacturing industries, as a powerful tool
for the on-line monitoring of a process. Shewhart [1] is considered as the pioneer
of control charts, introducing schemes capable of monitoring relative large shifts
in the process mean (X̄ chart) or the variability (R and S charts). Additionally,
when shifts of small magnitude occur in the process parameters, Cumulative Sum
(CUSUM, see Page in [2]) or Exponentially Weighted Moving Averge (EWMA, see
Roberts in [3]) charts are preferable due to their superiority in early shift detection.
In general, in the design of conventional control charts as the ones mentioned above,
it is assumed that the distribution of the observations collected over time is known,
with the most common choice being that of normal distribution. However, in practice,
either the assumption of, say, normal distribution is violated or practitioners do not
want to use a specific distribution model for their process. As a result, designing
schemes capable of monitoring shifts in the process without any knowledge of the
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observations’ underlying distribution, has drawn the researchers’ attention and led
to nonparametric (or distribution-free) control charts. In particular, with regard to
monitoring process location, nonparametric tests such as the Sign Test are used for
detecting shifts in the process median without the knowledge of the distribution of the
quality characteristic of interest (see, [4], [5], [6], [7], [8], [9], [10]). Similarly, several
nonparametric control charts have been introduced in the literature for detecting
shifts in the process variability, such as Shewhart-type (see, [11], [12], [13], [14]) or
EWMA and CUSUM schemes (see, [15], [16], [17], [18], [19]). For a comprehensive
overview of existing univariate and multivariate nonparametric control charts the
reader is advised to refer to [20] and [21].

With respect to the design of a phase II control chart, for Shewhart-type schemes,
their Run Length (RL) properties, such as the Average Run Length (ARL) and the
Standard Deviation Run Length (SDRL), are obtained by assuming that the random
variable RL follows a geometric distribution. On the other hand, for EWMA and
CUSUM-type schemes, their RL properties are usually computed using the Markov
chain method of Brook and Evans in [22]. However, as recent studies have shown (see,
Wu et al. in [23] and Perdikis et al. in [24]), the method of Brook and Evans [22] does
not always provide a reliable approximation of the RL properties of a nonparametric
EWMA or CUSUM control chart. More specifically, due to the discrete nature of the
statistics whose values are monitored (for example the sign statistic), the method of
Brook and Evans [22] leads to unreliable results regarding the chart’s in-control and
out-of-control ARL values. As a solution to this problem, Castagliola et al. in [25],
following the approach of Rakitzis et al. in [26]), proposed an EWMA-type scheme
(denoted as the CEWMA SN chart) in which the charting statistic, at each sampling
point is an integer, and by adding some simple modifications in the Markov chain
method, it was possible to determine the exact in- and out-of-control ARL values.
Additional studies based on the approach of Castagliola et al. (2019) in [25] can also
be found in [27] and [28]. Recently, Wu et al. in [23], proposed a new method, in
which the initial discrete random variable to be monitored is turned into a continuous
one, as a mixture of normally distributed random variables. Based on their findings,
their proposed method, yields steady ARL values and it guarantees a reliable and
accurate approximation of chart’s RL properties.

In this work, we aim to present a new nonparametric control chart for monitoring
the process variability. In particular, a generalization of the charting statistic used
by Amin et al. in [11] will be introduced for the design of the proposed scheme and
detailed guidelines to practitioners will be given regarding the chart’s optimal design
parameters. Additionally, we will provide a methodology that will guarantee the
chart’s exact RL properties. More specifically, as it will be proven in the following
sections, the proposed control chart is distribution-free meaning that its statistical
design does not require any knowledge about the underlying distribution and it has
reliable and steady ARL values.

This paper is organised as follows: In Section 2, a brief review on the theoretical
properties of the nonparametric Shewhart chart, introduced by Amin et al. in [11],
based on the Sign-type statistic for dispersion is presented and a general version of
this statistic is suggested. Additionally, in Section 3, a modified EWMA chart based
on the Sign statistic for monitoring shifts in the process variability is introduced and in
Section 4, the efficiency of the method of Brook and Evans [22] is tested for the compu-
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tation of the proposed chart’s RL properties. In Section 5, a Kernel-based methodology
is used in order to improve the proposed chart’s in- and out-of-control RL properties.
Moreover, in Section 6, the out-of-control performance of the proposed chart is inves-
tigated and its performance is compared with other schemes for monitoring process
variability. Finally, in Section 7 an illustrative example is provided while in Section 8
conclusions along with suggestions for future research work are given.

2. The Interquantile Range Sign statistic for dispersion

Suppose that, at each sampling point t, a random sample {Xt,1, Xt,2, . . . , Xt,n} of size
n is collected, where Xt,j , j = 1, 2, ..., n, follows an unknown continuous distribution
with corresponding cumulative distribution function (c.d.f.) FX(x|σ). The parameter
σ corresponds to the standard deviation of the distribution, that is the parameter of
interest. It is assumed that σ = σ0 when the process is in-control and σ = σ1 = τσ0
when the process is out-of-control. The parameter τ reflects the shift magnitude in
the process variability, i.e. τ ∈ (0, 1) corresponds to a decrease in the variability
(usually associated to a process improvement) while τ ∈ (1,+∞) corresponds to an
increase in the variability (usually associated to a process deterioration).

Let Xp0/2 and X1−p0/2 be the p0/2 and 1 − p0/2 quantiles of FX(x|σ0), i.e. when
the process is in-control, where p0 ∈ (0, 1) is a parameter considered to be known (or
pre-specified). By definition, Xp0/2 and X1−p0/2 are such that FX(Xp0/2|σ0) = p0/2,
FX(X1−p0/2|σ0) = 1− p0/2 and and we directly deduce that

p0 = 1− FX(X1−p0/2|σ0) + FX(Xp0/2|σ0).

When the process shifts from σ0 to σ1, the corresponding probability is defined as

p1 = 1− FX(X1−p0/2|σ1) + FX(Xp0/2|σ1).

If σ1 < σ0 (decrease in the variability) then we have p1 < p0 and if σ1 > σ0 (increase
in the variability) then we have p1 > p0. Consequently, a shift from σ0 to σ1 in one
direction is similar to a shift from p0 to p1 in the same direction. This suggests a
simple distribution-free Shewhart-type Sign chart for monitoring shifts in the process
variability based on the following statistic

SDt =

n∑
j=1

Dt,j ,

where

Dt,j =


1, if Xt,j < Xp0/2 or Xt,j > X1−p0/2
0, if Xt,j = Xp0/2 or Xt,j = X1−p0/2
−1, if Xp0/2 < Xt,j < X1−p0/2

.

Note that, due to the continuous nature of the variables to be monitored, the con-
dition Dt,j = 0 is not supposed to hold in practice. Similarly with the theoretical
properties of the traditional Sign statistic for testing changes in the median, the SDt
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statistic belongs to {−n,−n + 2, . . . , n − 2, n}. In addition, let us define the ran-
dom variable At = SDt+n

2 as the number of observations less than Xp0/2 or larger
than X1−p0/2. By definition, this random variable At follows a binomial distribution
Bin(n, p) with parameters n and p ∈ {p0, p1} (depending on whether the process is in-
or out-of-control). Therefore, we obtain the c.d.f. FSDt

(s|n, p) of SDt with the help of
the c.d.f. FBin(·|n, p) of the Bin(n, p) as

FSDt
(s|n, p) = FBin

(
s+ n

2
|n, p

)
, s ∈ {−n,−n+ 2, . . . , n− 2, n}.

In addition, the mean E(SDt) and the variance V(SDt) are given by

E(SDt) = 2E(At)− n = n(2p− 1), (1)

V(SDt) = 4V(At) = 4np(1− p). (2)

In general, in existing works related with nonparametric Shewhart schemes based
on the Interquantile Range Sign statistic ([11]), a fixed value of p0 = 0.5 has being con-
sidered regardless of the shift magnitude to be detected. Pawar et al. in [29] proposed
a nonparametric upper-sided Shewhart chart for dispersion, based on the SDt statistic
where the value of p0 is allowed to vary. During the design phase of their scheme, for
different values of p0, they examined the chart’s out-of-control performance. Note that,
Pawar et al.[29] only considered values of τ > 1 (i.e., the case of increasing shifts in
process variability). In this work, we aim to introduce an EWMA chart based on the
SDt statistic and investigate the optimal value of p0 for efficiently monitoring a process
and detecting a specific shift (increase or decrease) of magnitude τ in the in-control
variability σ0.

3. The D-SN EWMA chart for dispersion

The nonparametric EWMA chart based on the Sign statistic was originally introduced
by Graham et al. in [5] as a control scheme capable of detecting shifts in the process
median. Using the Markov chain approach of Brook and Evans in [22], they computed
its optimal design parameters and presented its out-of-control performance under dif-
ferent continuous distributions. In this work, we will present an extended version of the
Sign EWMA chart presented in [5] for monitoring shifts in the process variability. In
particular, based on the design of the standard Sign EWMA scheme introduced in [5],
instead of using the Sign statistic, we will use the SDt statistic, previously presented
in Section 2, for monitoring shifts in the process dispersion.

3.1. Charting statistic and control limits

The plotting statistic for the two-sided EWMA chart based on the SDt statistic sug-
gested in the previous Section (to be denoted as the D-SN EWMA chart) will be
computed by the following recursive formula as:

Zt = λSDt + (1− λ)Zt−1, Z0 = E0(SDt), (3)
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with λ ∈ (0, 1] and E0(SDt) is the in-control mean of SDt. For an indication of a shift
in the process dispersion, a signal will be given if the value of the charting statistic
Zt lies outside the interval [LCL,UCL] where LCL and UCL are the asymptotic (or
steady-state) upper and lower control limits computed as:

LCL = E0(SDt)−K
√

V0(SDt)×
√

λ

2− λ
,

UCL = E0(SDt) +K
√

V0(SDt)×
√

λ

2− λ
, (4)

whereK > 0 is a coefficient to be fixed. When the process is in-control, the correspond-
ing in-control mean E0(SDt) and variance V0(SDt) of SDt are obtained by substituting
p = p0 in (1) and (2) respectively. Therefore, the control limits can be rewritten as:

LCL = n(2p0 − 1)− 2K

√
λnp0(1− p0)

2− λ
,

UCL = n(2p0 − 1) + 2K

√
λnp0(1− p0)

2− λ
.

It should be clarified that the values of the quantiles Xp0/2 and X1−p0/2 do not
have any impact on the in-control design of the control chart. In particular, the de-
termination of the control limits, and the pair (λ,K) only depend on the sample size
n and the value of p0 which is a value to be fixed by the practitioner (more details
regarding the determination of this value are provided in the following Sections). Of
course, we may argue the fact that the chart’s operation during phase II requires the
values of the quantiles to be known or at least estimated (during phase I), similarly to
what happens with any parametric or nonparametric scheme. However, their values
does not affect the chart’s RL properties. Without loss of generality in the rest of this
work, we assume that these quantiles are known.

3.2. RL properties

In order to obtain the RL properties of the proposed scheme, following the same design
of a conventional EWMA chart (parametric or not), the “standard” method of Brook
and Evans [22] will be used and its robustness will be investigated. In particular, it
is assumed that the operation of the EWMA control chart can be well represented
through a discrete-time Markov chain where the control limit interval [LCL,UCL] is
divided into 2m + 1 subintervals of width 2∆ where ∆ = UCL−LCL

4m+2 . Additionally, for
each transient state j = {−m, . . . , 0, . . .m}, the corresponding j-th midpoint is defined
as Hj =

LCL+UCL
2 + 2j∆. Then, the transition probability matrix P for the two-sided
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D-SN EWMA chart is computed as:

P =

(
Q r
0⊺ 1

)
=



Q−m,−m . . . Q−m,−1 Q−m,0 Q−m,1 . . . Q−m,m r−m
...

...
...

...
...

...
...

Q−1,−m . . . Q−1,−1 Q−1,0 Q−1,1 . . . Q−1,m r−1

Q0,−m . . . Q0,−1 Q0,0 Q0,1 . . . Q0,m r0
Q1,−m . . . Q1,−1 Q1,0 Q1,1 . . . Q1,m r1

...
...

...
...

...
...

...
Qm,−m . . . Qm,−1 Qm,0 Qm,1 . . . Qm,m rm

0 . . . 0 0 0 . . . 0 1


where Q is the (2m + 1, 2m + 1) matrix of transient probabilities, 0⊺ = (0, 0, . . . , 0)
and r = 1 − Q1. Let q = (q−m, . . . , q0, . . . , qm)

⊺ be the (2m + 1, 1) vector of initial
probabilities associated with the 2m + 1 transient states. In particular, this vector
contains the probabilities that the charting statistic Zt starts in a given state. There-
fore, we use q = (0, . . . , 1, . . . , 0)⊺ where the value 1 at the m-th entry, corresponds
to Z0 = E0(SDt) stating that the process starts at state m. That is, the initial value
for the EWMA statistic in (3) is the in-control mean of SDt Finally, the transient
probabilities, Qj,k are obtained as:

Qj,k = P(Zt is in state k|Zt−1 is in state j)

= P(Hk −∆ ≤ Zt ≤ Hk +∆|Zt−1 = Hj). (5)

Using the definition of the charting statistic, Zt, defined in (3), and substituting
into (5), the transient probabilities, Qj,k are equal to:

Qj,k = P(Hk −∆ ≤ λSDt + (1− λ)Zt−1 ≤ Hk +∆|Zt−1 = Hj)

= P

(
Hk −∆− (1− λ)Hj

λ
≤ SDt ≤

Hk +∆− (1− λ)Hj

λ

)
= FBin

(
Hk+∆−(1−λ)Hj

λ + n

2
|n, p

)
− FBin

(
Hk−∆−(1−λ)Hj

λ + n

2
|n, p

)
,

where p ∈ {p0, p1}. It is clear that when p = p0 we are referring to the in-control ARL
and when p = p1 we are referring to the out-of-control one.

Finally, for a sufficient large number of subintervals 2m + 1 the ARL and SDRL
values can be accurately evaluated using the following classical formulas from the
Markov chain theory (see, for instance [30,31])

ARL = q⊺(I−Q)−11,

SDRL =
√

2q⊺(I−Q)−2Q1+ARL(1−ARL).
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4. Numerical analysis

The investigation of the proposed chart’s RL properties, will be examined under sev-
eral symmetric and asymmetric distributions trying to cover a large variety of cases
including heavily-tailed distributions. In particular, following the semi-parametric de-
sign presented by Castagliola et al. in [32], the robustness of the chart’s RL properties
will be tested under a benchmark of 18 Johnson’s type distributions.

4.1. Johnson Distributions

Generally, the c.d.f. FZ(. . .) of a Johnson’s-type distribution with parameters a, b > 0,
c and d > 0 is defined as:

• bounded on [c, c+ d] (denoted as B in Table 1) with FZ(x) equal to:

FZ(x) = FN

(
a+ b ln

(
x− c

c+ d− x

))
, x ∈ [c, c+ d]

• unbounded on (−∞,∞) (denoted as U in Table 1) with FZ(x) equal to:

FZ(x) = FN

(
a+ b sinh−1

(
x− c

d

))
, x ∈ (−∞,∞)

where FN(. . .) is the c.d.f. of the standard normal distribution.

In Table 1, 18 cases of the Johnson’s family distributions are presented. Moreover,
for each distribution, the corresponding values of the parameters a, b, c, d, have been
selected in order to satisfy med(Z) = 0 (for the median) and σ(Z) = 1 (for the
standard-deviation). The cases #1−#6 approximately match some well known sym-
metric distributions. In particular, case #1 is close to the Uniform distribution, case
#2 is close to the Triangular distribution while case #3 almost corresponds to the
Standard Normal distribution. Additionally, cases #4−#6 are close to the Student t
distribution with 10, 6 and 5 degrees of freedom, respectively. Finally, the remaining
12 cases, under different values for the skewness γ3 > 0 and kurtosis γ4 > 0 aim to
cover a large variety of asymmetric and heavily-tailed distributions. For more details,
a graphical representation of these distribution is provided page 116 in [32].

4.2. Effect of the number of subintervals

In this Section, we aim to investigate the effect of the number of subintervals in the
RL properties of our proposed chart when the method of Brook and Evans [22] is
being used. Generally, in cases where the statistic to be monitored is a continuous
one (for instance, in parametric EWMA control charts based on the X̄ statistic), for
a relatively large number of subintervals (say 2m + 1 ≈ 201), the method of Brook
and Evans [22] provides a reliable approximation of the chart’s RL properties such

7



Table 1.: Benchmark of 18 Johnson’s type distributions.

case γ3 γ4 type a b c d
1 0 -1.2 B 0 0.64646 -1.81530 3.63060
2 0 -0.6 B 0 1.39830 -3.10970 6.21950
3 0 0 U 0 100 0 100
4 0 1 U 0 2.3212 0 2.10940
5 0 3 U 0 1.6104 0 1.31180
6 0 6 U 0 1.3493 0 1
7 2 4.3 B 1.7464 0.69076 -0.48932 6.6213
8 2 6.1 B 3.3279 1.227 -1.0016 16.088
9 2 7.9 U -4.85600 1.8044 -1.41900 0.19332
10 2 10.8 U -1.0444 1.432 -0.65538 0.82361
11 2 16.7 U -0.52977 1.2093 -0.33154 0.73314
12 2 25.5 U -0.34371 1.0892 -0.2023 0.63054
13 5 39.9 B 3.3715 0.74593 -0.27094 25.150
14 5 52.6 B 5.2193 0.98134 -0.47316 97.043
15 5 65.3 U -4.01870 1.0864 -0.56652 0.02806
16 5 86 U -0.75701 0.98744 -0.32033 0.37954
17 5 128.7 U -0.43187 0.90797 -0.18538 0.37543
18 5 192.1 U -0.29868 0.85558 -0.12122 0.34029

as the ARL or the SDRL. However, recent studies have shown that, computing the
RL properties of a nonparametric EWMA chart via the “conventional” method of
Brook and Evans [22] does not always guarantee an optimal design because the ARL
and the SDRL values are strongly affected by the number of subintervals 2m+ 1. For
instance, Wu et al. [23] investigated the design of a distribution-free EWMA chart
based on a Sign-type statistic and proved that the number of subintervals 2m + 1
significantly affects the ARL values. Additionally, Perdikis et al. [24] showed that
in the design of an EWMA chart based on the Wilcoxon Signed Rank statistic, the
ARL values are also affected by the number of subintervals. Based on our numerical
analysis, the same behavior appears on the proposed scheme. More specifically, in
Table 2(top), using the standard approach of Brook and Evans [22] the corresponding
in-control ARL values are computed for different combinations of n = {12, 20} and
p0 = {0.3, 0.5, 0.6, 0.8}. The values of λ = 0.2 and K = 2.85 have been chosen only
for illustration purposes. From Table 2 it can be clearly concluded that, regardless
the value of n or p0, the ARL0 is affected by the number of subintervals instead of
converging to the exact value of the ARL as the number of subintervals increases.
As an example, if we take a closer look when (n = 12, p0 = 0.3) the ARL ranges
from 349.6 to 395.5 while the exact ARL, value approximated through a Monte Carlo
simulation of 105 iterations, is around 382 (see bottom row denoted “sim”).

Additionally, in Table 3 (top), using the same values for the parameters (λ,K),
the out-of-control ARL values are presented for τ = 1.1, p0 = 0.5 and n = 5 under
the Benchmark of 18 Johnson’s type distributions illustrated in Table 1. Similarly, in
Table 4 (top) the corresponding ARL values are presented for τ = 0.9, p0 = 0.5 and
n = 5. Note that, τ = 1.1 corresponds to a small increase and τ = 0.9 corresponds
to a small decrease in the variability. For each case, the corresponding out-of-control
probabilities are computed as:

p1 = 1− FZ(X1−p0/2|a, b, τc, τd) + FZ(Xp0/2|a, b, τc, τd) (6)

From Tables 3 (top) and 4 (top) we may conclude that a very similar pattern also
occurs for the out-of-control ARL values regardless the underlying distribution. As
a result, using the standard method of Brook and Evans [22], practitioners are not
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able to compute the exact in- and out-of-control ARL values of this chart and, as a
consequence, they are not able to find a suitable pair of (λ,K) to guarantee the chart’s
optimal performance.

5. The D-SN-C EWMA chart for dispersion (The “continuousified”
approach)

From the results presented in section 3, we noticed that the ARL values obtained with
the classical method of Brook and Evans [22] may not always lead to steady results
regarding the design of an EWMA chart based on the SDt statistic. The primary goal
is to design an EWMA scheme for dispersion in which the ARL values will remain
unaffected by the number of subintervals. Wu et al. [23] proposed the “continuousify”
method, which suggests the transformation of any discrete charting statistic into a
continuous one; the transformed statistic is a mixture of weighted Normal r.v. In
particular, they showed that this transformation not only improves significantly the
chart’s RL properties but it also enables practitioners to optimize the chart’s param-
eters in order to achieve in-control ARL value exactly equal to the desired one (say
370.4). Recently, many authors used this method for the design of several nonpara-
metric EWMA control charts and they proved the superiority of the “continuousify”
method (see [33],[34]). As a consequence, motivated by these results in the related lit-
erature, we will use this technique for the design of our proposed chart (to be denoted
as the D-SN-C EWMA chart).
Let Xt, t = 1, 2, . . . be a sequence of i.i.d. discrete random variables, each of them de-
fined on Ψ = {ψ1, ψ2, . . .} with corresponding p.m.f. function fX(ψ|θ) where θ denotes
the vector of parameters. As stated in [23], X can be transformed into a new contin-
uous random variable (denoted as X∗

t ), defined as a mixture of normally distributed
random variables Y ∗

t where, for each ψt ∈ Ψ, Y ∗
t ∼ N(ψt, h). Then, the corresponding

p.m.f. fX∗(x|θ) and c.d.f. FX∗(x|θ) of X∗
t will be computed as:

fX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)fN(x|ψ, h),

FX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)FN(x|ψ, h),

where fN(x|ψ, h) and FN(x|ψ, h) are the p.d.f. and c.d.f. of the Normal (ψ, h) distri-
bution, respectively, where h > 0 is the “continuousified” parameter and it is a value
to be fixed. For more details regarding the definition or similar applications of the
“continuousify”method the reader is refereed to [33],[34]. For our proposed “contin-
uousified” two-sided Sign EWMA chart for dispersion instead of using SDt, a new
continuous statistic will be used, denoted as SD∗

t . Since the domain in which SDt is
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defined is Ψ = {−n,−n+ 2, . . . , n− 2, n}, the statistic SDt will be transformed into:

SD∗
t =



SD∗
t,−n ∼ N(−n, h), if SDt = −n

SD∗
t,−n+2 ∼ N(−n+ 2, h), if SDt = −n+ 2

...
...

SD∗
t,0 ∼ N(0, h), if SDt = 0

...
...

SD∗
t,n−2 ∼ N(n− 2, h), if SDt = n− 2

SD∗
t,n ∼ N(n, h), if SDt = n

.

Additionally, the c.d.f. FSD∗
t
(s|n, p) of SD∗

t will be defined for s ∈ R and will be equal
to

FSD∗
t
(s|n, p) =

∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p

)
FN(s|ψ, h). (7)

Finally, as for the computation of the mean and variance of SD∗
t , following the

definitions of the mean and variance of a continuous random variable, it can be easily
proven that (see, Appendix):

E(SD∗
t ) = E(SDt), (8)

V(SD∗
t ) = V(SDt) + h2 (9)

Regarding the charting statistic of the proposed two-sided D-SN-C EWMA chart,
it will be simply defined as:

Z∗
t = λSD∗

t + (1− λ)Z∗
t−1, Z

∗
0 = E0(SD

∗
t ). (10)

Lastly, in the expressions presented in (4), if we substitute the mean and variance
by the equations (8) and (9), the new control limits LCL and UCL, denoted as LCL∗

and UCL∗ respectively, of our proposed scheme will be:

LCL∗ = n(2p0 − 1)−K

√
λ(4np0(1− p0) + h2)

2− λ
, (11)

UCL∗ = n(2p0 − 1) +K

√
λ(4np0(1− p0) + h2)

2− λ
. (12)

In order to verify the efficiency of the proposed chart in terms of its stability for the
computation of the ARL values, in Tables 2 and 3 (bottom), besides the ARL values
already obtained by the classical method of Brook and Evans [22], the corresponding
ARL values obtained via the “continuousify” method are presented. For the in-control
case (Table 2), we may conclude that, regardless the values of n and p0, the use of the
continuous transformation in the discrete statistic to be monitored, provides a great
improvement. More specifically, for every combination of (n, p0), the corresponding
ARL values become stable really quickly even for small values of 2m+1 ≈ 51. Similarly
with the in-control cases, from Tables 3 and 4, it can be concluded that the advantages
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of the “continuousify” method are also present in the out-of-control cases. In particular,
for all the 18 distributions, the ARL values without the “continuousify” method are
not stable and depend on the number of subintervals. On the other hand, by using the
continuous transformation the ARL values become stable and seem to be unaffected
by the number of subintervals. Regarding the value of the “continuousify” parameter
h, as it has already been shown in [23] and [24], as soon as this parameter is not too
small or not too large (say h ≈ 0.2) the results are not seriously affected. In Table 5,
for different combinations of the sample size, n ∈ {7, 13, 18, 22}, and a pre-specified
probability, p0 ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, the corresponding in-control ARL values of the
D-SN-C EWMA chart are presented for h ∈ {0.1, 0.15, . . . , 0.3}. Based on the results
from Table 5 it is clear that h does not significantly affect the results as only some
minor differences exist in the first decimal place for small values of 2m+1. As a result,
setting a value of h = 0.2 is suggested. It should be noted that from Tables 3 and 4
we may see that the ARL values obtained with the “continuousify” method are a bit
larger than those obtained by simulation. This is logical as the control limits obtained
with the “continuousify” method are a bit larger than those obtained without the
“continuousify” method due to the extra term h. This is the price to pay in order to
obtain reliable ARL values.

6. Optimization of the D-SN-C EWMA chart

In this section we aim to investigate how the value of p0 (i.e. the value that needs to
be fixed during the design phase of the chart) affects the chart’s out-of-control perfor-
mance. In particular, we will investigate the impact of varying values of p0 (instead of
being set to p0 = 0.5) under different shift magnitudes and underlying distributions.
In Table 6 the chart’s out-of-control performance is presented for p0 ∈ {0.1, 0.5, 0, 7}
for the distributions listed in Table 1. For illustration purposes the values of the design
parameters are randomly selected and equal to (λ = 0.2,K = 2.75, n = 10, h = 0.2).
From the results presented in Table 6 it is clear that the initial value of p0 significantly
affects the chart’s out-of-control performance. For instance, when τ = 0.25, for every
case, the minimum ARL1 is reached when p0 = 0.7. On the other hand, when τ = 2,
the minimum ARL1 is reached when p0 = 0.1. As a consequence, different initial
values for p0 lead to different results. It is clear that, depending on the shift magnitude
to be detected, the initial value of p0 affects the chart’s out-of-control performance.

Ideally, when a priori information for the sample’s underlying distribution is
known, practitioners are able to optimize the vector (λ,K, p0) for a given shift
magnitude τ . Nevertheless, this is a strict assumption and it is rarely hold in practice.
Moreover, let us keep in mind that the primary motivation of using a nonparametric
control chart is the fact that any knowledge of the sample’s distribution is not
needed. Consequently, in order to provide a practical implementation and general
guidelines to practitioners regarding the “optimal” value of p0 an extensive numerical
analysis will be performed for different distributions. In particular, the out-of-control
performance of the proposed chart will be examined under the benchmark of the 18
Johnson’s type distributions listed in Table 1, for different sample sizes and shifts
in the process variability. As already stated, we want to investigate, for a variety
of distributions, the impact of p0 to the chart’s optimal out-of-control performance.
All the computations regarding the in-control and the out-of-control performance of
the chart as well as the determination of the charts’ design parameters were made
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via the Markov chain method of Brook and Evans [22], in combination with the
”continusify” method of Wu et al. [23] as presented in section 5. The knowledge of
the underlying distribution for the out-of-control case is needed only for computing
the probability p1 (see equation (6)) which is associated with the shift magnitude
τ . The motivation for this analysis is to examine, for different type of distributions
(symmetric/asymmetric), how the optimal value of p0 varies and to provide guidelines
to practitioners about how to select the value of this parameter. This is something
that has not been investigated so far in the literature. All the computations have
been performed in R [37], on a computer with an Intel(R) Core(TM) i7-7500U CPU.
No additional packages have been used except those in the base R edition. The source
code is available to the reader upon request. Finally, regarding the optimization
procedure, for each distribution, the following steps based on a simple but efficient
grid search method have been followed.

• Step 1: First we have to define the domain of where the design parameters p0 and
λ will be defined during the searching algorithm. In general, for EWMA schemes,
large (small) values of λ are preferable for detecting large (small) shifts in the
process variability. So it is logical to define λ ∈ {0.05, 0.1, . . . , 0.95}. As for the
candidate values of p0 of course we may argue with the fact that p0 could take any
value in the interval (0, 1). However, without loss of generality, it can be simplified
by letting p0 take only a discrete set of values; say p0 ∈ {0.05, 0.15, . . . , 0.95}.
This discretisation (which can be regarded as a ’grid search’) is justified by the
fact that, in practice, only easy-to-manage values of p0 are meant to be used
(for instance, p0 = 0.5 in the original definition of the sign statistic, as already
remarked).

• Step 2: For each combination of p0 and λ, we have to properly define the
value of K in order to satisfy a desired in-control ARL equal to ARL0 = 370.4
. In particular, for every combination of p0 ∈ {0.05, 0.15, . . . , 0.95} and λ ∈
{0.05, 0.1, . . . , 0.95}, using the ”continusify” method of Wu et al. [23] as pre-
sented in section 5 we compute the corresponding value for K under the condi-
tion that ARL0 = 370.4 by setting the number of sub-intervals to be equal to
2m + 1 = 151. Note that, the number 2m + 1 = 151 has been chosen in order
to not be too large but large enough to guarantee the stability of the results. Of
course, practitioners can also set any value for 2m+ 1 > 151.

• Step 3: Lastly, we should find the optimal values of p0, λ,K, which minimise
the out-of-control ARL for a given shift magnitude. In particular, for each shift
τ ∈ {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95, 2}, among all the combinations of
(p0, λ,K) computed in Step 2, the optimal vector of (p∗0, λ

∗,K∗) is chosen which
gives the smallest out-of-control ARL at a specific shift τ .

In Tables 7 and 8 the optimal combinations of (λ∗,K∗) (first line of each block)
are presented, along with the corresponding out-of-control ARL values (second line)
and the corresponding pairs of (p∗0, p1) (third line) for n = 10 (Table 7) and n = 20
(Table 8). It should be clarified that p∗0 defines the suggested quantiles for the test for
dispersion (i.e., the test statistic SDt) for a specific value of τ . Also, it is related to the
in-control case (i.e. when p = p∗0 we are referring to an in-control process while when,
p ̸= p∗0 the process is out-of-control). Our conclusions are the following:

• For large decreases in the process variability (e.g., τ = 0.25), it can be seen that,
for p∗0 > 0.6, the corresponding out-of-control ARL values are ARL1 ≈ 1. On the
other hand, for large increases (τ = 2), small values for p∗0 are preferable. For
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instance, from Table 7 it can be seen that, when τ = 0.25, the optimal value of
p0 is p∗0 ≥ 0.7. On the other hand, p∗0 = 0.1 for large increases (i.e. τ = 2).

• For moderate decreases in the variability (such as τ = 0.5 or 0.75), from Table 7
we may see that p∗0 takes values between 0.3 and 0.6. On the other hand, for
moderate increases in the variability (τ = 1.5 or 1.75), the optimal value of p0
is p∗0 ≤ 0.2 for all the cases.

• Finally, for small decreases (such as τ = 0.95) or increases (τ = 1.25) the optimal
value of p0 ranges from 0.05 to 0.25.

• Similarly, from Table 8 we may see that all the above statements are also valid
for n = 20.

From the results presented above, it can be concluded that as the value of τ increases
then the optimal value for p0 decreases. As a general guideline to practitioners, we
advise to use p0 ≈ 0.2 for a monitoring scheme that aims at the quick detection of
small increases/decreases. For moderate shifts, we suggest p0 ≈ 0.6. Finally, setting
p0 ≈ 0.1 and p0 ≈ 0.7 can be considered as a reasonable choice for detecting large
decreases and increases respectively in the process variability.

6.1. Performance comparisons

In Table 9 the out-of-control performance of the D-SN-C EWMA chart is compared
with three parametric Shewhart-type control charts for monitoring the process
variability for n ∈ {5, 20, 30} under the normal distribution. In particular, the
D-SN-C EWMA chart is compared with the modified R and S charts proposed by
Zhang in [36] and an enhanced R chart proposed by Khoo and Lim in [35]. For
each case, the proposed chart is optimized as explained in Section 6 assuming a
normal distribution. It can be clearly seen that, regardless the sample size or the
shift magnitude τ , the D-SN-C EWMA chart has the best performance among its
competitors. It should be noted that, for small to moderate decreases (0.5 < τ < 0.9)
or increases (1.1 < τ < 1.5), the proposed chart’s corresponding ARL1 values, are
significantly smaller, compared with its parametric counterparts. For instance, for
n = 20, and τ = 0.9 the ARL1 values for the Zhang’s R and S charts and Khoo and
Lim’s R chart are 188.04, 174.67 and 232.12, respectively, while for the proposed chart
it is ARL1 = 26.21. Similarly, when τ = 1.1 the ARL1 values for the Zhang’s R and S
chart and Khoo and Lim’s R chart are 127.59, 78.82 and 139.9, respectively, while for
the proposed chart it is ARL1 = 24.47. As a result, the D-SN-C EWMA chart, can be
considered as an efficient choice for monitoring small shifts in the process variance.

Additonally, we compared the performance of the proposed chart with the non-
parametric Shewhart-type chart based on the interquantile sign statistic (to be
denoted as Shewhart S-SD chart) as introduced by Pawar at al. in [29], under different
cases of the Johnson-type distributions introduced above. For both schemes (Shewhart
and EWMA), for a given member from the family of Johnson’s distributions, we
optimised each chart in terms of the value p0 and computed the quantity

ARLEWMA
1 −ARLSh

1

ARLSh
1

× 100% (13)

where ARLSh
1 (resp. ARLEWMA

1 ) is the out-of-control performance, in terms of ARL,
of the Shewhart S-SD (resp. D-SN-C EWMA) chart, at a given shift in process
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variability. These differences are presented in Table 10 for n = 20. From the results in
Table 10 we deduce that the proposed EWMA chart outperforms the Shewhart S-SD
chart, regardless the sample size, the shift magnitude or the underlying distribution..
Practically speaking, for large increases (τ > 2) or decreases (τ → 0) in the process
variability, these two schemes have similar performance but for small shifts the
D-SN-C chart is clearly superior.

Furthermore, except for comparisons with the Shewhart chart of Pawar et al.
in [29], we provide next, comparisons with another competitive nonparametric
EWMA chart for monitoring the process variability, Specifically, we compare the
proposed EWMA chart with the EWMA chart of Yang and Arnold in [17], which is
based on the arcsin transformation. We will refer to this chart as the AC-EWMA
chart. The out-of-control performance of the AC-EWMA chart is derived by using
the same setup as the authors did in [17] (see, Table 9 in [17], page, 2758) assuming
Standard Normal and Double Exponential distributions. For the design parameters of
the proposed D-SN-C EWMA chart, we set λ = 0.2,K = 2.855 and p0 = 0.2. We have
to note that the choice of p0 = 0.2 is based on the results presented in Section 6. In
particular, we showed that, for a symmetric underlying distribution, setting p0 ≈ 0.2
significantly improves the ability of the chart to detect small to moderate shifts in
the process dispersion. From Table 11, we may see that the proposed chart has better
performance regardless the shift magnitude and, therefore, it should be considered as
an effective scheme to detect shifts in the process variability.

7. An illustrative example

In this section, an example with two different scenarios is presented, in order to show
a practical Phase II implementation of the operation of the proposed D-SN-C EWMA
chart. The datasets for each scenario, which have been originally introduced in [38],
are presented in Table A1 and plotted in Figures 2 and 3, respectively. Both datasets
consists of 30 subgroups of size n = 5 where the first 20 subgroups are the same for
both scenarios and are randomly generated from the N(20, 0.1) distribution. Moreover,
the last 10 subgroups in Figure 2 are generated from the N(20, 0.2) distribution
while the last 10 subgroups in Figure 3 are generated from the N(20, 0.05) distribution.

Let us consider a realistic situation, from the point of view of a practitioner,
in which we do not have any a priori information regarding the underlying distribu-
tion nor the in-control values of the mean and variance for both cases. We only have
at our disposal a reference in-control sample of size n = 30 and we are interested in
monitoring increases (first scenario) and decreases (second scenario) in the process
variability. Before we proceed to the phase II implementation of the control chart our
primary goal is to:

• determine the value of p0 as well as the value of the pair (λ,K)
• estimate the quantiles Xp0/2 and X1−p0/2.

From the histogram presented in Figure 1 we may see that the in-control reference
sample is bell-shaped. Additionally, from the numerical analysis presented in Section
6, we conclude that, for symmetric distributions (or equivalently for cases with light
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asymmetry), setting p0 ≈ 0.05 and λ ∈ [0.2, 0.5] can be considered as a reasonable
choice for detecting moderate increases in the process variability. Similarly for
monitoring a moderate decrease in the process variability setting p0 ≈ 0.45 and
λ ≈ 0.2 can be considered as a reasonable choice. As a consequence, for the current
scenarios, the vector of parameters (p∗0, λ

∗,K∗) for detecting an increase in the
process dispersion is chosen to be (p∗0 = 0.05, λ∗ = 0.25,K∗ = 3.424) with the
corresponding control limits LCL∗ = −5.789, UCL∗ = −3.212 computed using (11)
and (12) presented in Section 5 where the value of the “continuousify” parameter
is set to h = 0.2. Similarly, for detecting a decrease in the process dispersion we
choose the vector (p∗0 = 0.5, λ∗ = 0.25,K∗ = 2.823) and the control limits are equal
to LCL∗ = −2.395, UCL∗ = 2.395.

Regarding the determination of the quantiles of interest for each scenario the
simplest way is to estimate them from the reference sample through the inverse of
its empirical distribution. In particular, for p0 = 0.5 the estimates of the Xp0/2 and

X1−p0/2 are equal to X̂0.25 = 19.96594 (the theoretical values assuming normality

is 19.8651) and X̂0.75 = 20.0928 (the theoretical value assuming normality is
20.1349). Similarly, for p0 = 0.05 the estimates of the Xp0/2 and X1−p0/2 are equal to

X̂0.025 = 19.8436 and X̂0.975 = 20.2296. (the theoretical values assuming normality
are 19.60801 and 20.39199).

Finally, the corresponding values of SDt, SD∗
t and Z∗

t are presented in Table
12. From Figure 4, it can be seen that the proposed chart can efficiently detect the
increase in the process variability at the 25th sampling point. Similarly, for the second
scenario, which corresponds to a decrease in the process variability (Figure 5), we
may see that the D-SN-C EWMA chart also detects this shift at the 25th sampling
point.

0

1

2

3

4

19.8 19.9 20.0 20.1 20.2

Reference sample

Figure 1.: Histogram of the reference sample

8. Conclusions

In this paper, we introduced a nonparamteric EWMA control chart based on a
general extension of the Sign statistic, called as the D-SN-C EWMA chart, for
monitoring shifts in the process variability. For the computation of the chart’s RL
properties, the “continuousify” method of Wu et al. [23] has been used, ensuring
that the ARL values can be accurately and effectively calculated. Additionally, the
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Figure 3.: Dataset for the second example

chart’s out-of-control performance has been examined under a benchmark of 18
Johnson’s type distributions covering a wide range of symmetric and asymmetric
distributions. Based on our results, when the value of the in-control parameter p0 is
optimized (instead of being pre-defined), the chart’s out-of-control performance is
significantly improved; more precisely, values of p0 ≈ 0.2 are found to be preferable
for small decreases (τ ≈ 0.95) or increases (τ ≈ 1.25). Additionally, for large decreases
(τ ≈ 0.25) or increases (τ ≈ 2) in the process variability, large (p0 ≈ 0.7) or small
values (p0 ≈ 0.05) of p0 are respectively the optimal ones. As a consequence, the
proposed chart can be considered as a reliable technique which provides to the
practitioners robust information regarding its in- and out-of-control RL properties.

The current work can be extended in several directions. In particular, the “con-
tinuousify” method could be applied in EWMA schemes where other nonparametric
statistics are considered such as the Mann-Whitney, or the Ansari-Bradley statistics.
Additionally, it would also be interesting to examine the performance of the proposed
EWMA chart based on the general Sign statistic under the presence of ties in the pop-
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Figure 4.: The D-SN-C EWMA chart for the Phase II data presented in Figure 2
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Figure 5.: The D-SN-C EWMA chart for the Phase II data presented in Figure 3

ulation. Finally, the method of Wu et al. [23] could be extended in distribution-free
EWMA charts designed for monitoring bivariate processes.
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Appendix

Let EN (X) = µ and VN (X) = h2 denote the mean and variance of a random variable,
X, from a Normal distribution. Then the mean of SD∗

t , is computed as:

E(SD∗
t ) =

∫ ∞

−∞
s× fSD∗

t
(s|n, p1)ds

=

∫ ∞

−∞
s×

∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p1

)
× fN(s|ψ, h)ds

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
×
∫ ∞

−∞
s× fN(s|ψ, h)ds

]

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
× EN (s)

]

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
× ψ

]
= E(SDt)

Similarly, using the fact that E(SD∗
t ) = E(SDt) the variance of SD∗

t is computed as:

V(SD∗
t ) = E (SD∗

t )
2 −

(
E(SD∗

t )
)2

=

∫ ∞

−∞
s2 × fSD∗

t
(s|n, p1)ds−

(
E(SD∗

t )
)2

=

∫ ∞

−∞
s2 ×

∑
ψ∈Ψ

[
fSD

(
ψ + n

2
|n, p1

)
× fN(s|ψ, h)

]
ds−

(
E(SDt)

)2
=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
×
∫ ∞

−∞
s2 × fN(s|ψ, h)ds

]
−
(
E(SDt)

)2
=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
× EN (s

2)

]
−
(
E(SDt)

)2
=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
×
(
VN (s) + (EN (s))

2
)]

−
(
E(SDt)

)2
=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p1

)
×
(
h2 + ψ2

)]
−
(
E(SDt)

)2
= h2 ×

∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p1

)
+
∑
ψ∈Ψ

ψ2 × fBin

(
ψ + n

2
|n, p1

)
−
(
E(SDt)

)2
= h2 + E(SDt)

2 −
(
E(SDt)

)2
= h2 +V(SDt).
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Table A1.: Phase II samples of t = 1, 2, . . . 20 subgroups of size n = 5
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Table 2.: In-control values of ARL for the D-SN EWMA and D-SN-C EWMA charts
when λ = 0.2, K = 2.85 and h = 0.2 under different combinations of (n, p0).
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Table 3.: ARL1 values as a function of the number of subintervals 2m+1 for the two-
sided D-SN EWMA chart (top) and two-sided D-SN-C EWMA chart (bottom) with
h = 0.2 when λ = 0.2, K = 2.85, n = 5 and τ = 1.1 for the #1−#18 distributions
listed in Table 1.
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Table 4.: ARL1 values as a function of the number of subintervals 2m+1 for the two-
sided D-SN EWMA chart (top) and two-sided D-SN-C EWMA chart (bottom) with
h = 0.2 when λ = 0.2, K = 2.85, n = 5 and τ = 0.9 for the #1−#18 distributions
listed in Table 1
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Table 5.: ARL0 values of the two-sided D-SN-C EWMA chart for λ = 0.2, K = 2.85
and for fixed values of h = {0.1, 0.15, . . . , 0.3} and different combinations of (n, p0).
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Table 6.: ARL1 values for λ = 0.2,K = 2.75, n = 10, h = 0.2 under the benchmark of
the 18 Johnson distributions for different shifts using p0 = {0.1, 0.5, 0, 7}
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Table 7.: Out-of-control performance for the proposed chart along with the correspond-
ing optimal parameters for n = 10

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0
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(0.25,0.107)

(0.05,2.481)
106.13

(0.15,0.125)

(0.15,2.93)
7.11

(0.05,0.139)

(0.3,3.349)
2.92

(0.05,0.231)

(0.3,3.349)
1.93

(0.05,0.313)

(0.3,3.349)
1.59

(0.05,0.369)

(0.3,3.349)
1.53

(0.05,0.382)

#3

(0.65,2.88)
1.05

(0.6,0.0359)

(0.4,2.89)
3.07

(0.5,0.177)

(0.1,2.691)
10.99

(0.3,0.167)

(0.05,2.483)
131.57

(0.25,0.22)

(0.1,2.722)
10.33

(0.05,0.116)

(0.25,3.244)
3.97

(0.05,0.191)

(0.3,3.349)
2.43

(0.05,0.262)

(0.3,3.349)
1.92

(0.05,0.314)

(0.3,3.349)
1.83

(0.05,0.327)

#4

(0.7,2.876)
1.11

(0.6,0.057)

(0.4,2.89)
3.34

(0.5,0.193)

(0.1,2.695)
12.22

(0.35,0.221)

(0.05,2.49)
145.23

(0.3,0.27)

(0.15,2.829)
12.77

(0.1,0.176)

(0.2,2.929)
5.01

(0.1,0.252)

(0.3,3.349)
2.97

(0.05,0.228)

(0.3,3.349)
2.27

(0.05,0.276)

(0.3,3.349)
2.15

(0.05,0.287)

#5

(0.65,2.88)
1.19

(0.6,0.078)

(0.4,2.89)
3.62

(0.5,0.208)

(0.1,2.695)
13.44

(0.35,0.229)

(0.05,2.486)
156.8

(0.35,0.327)

(0.1,2.697)
15.23

(0.15,0.231)

(0.2,2.929)
5.86

(0.1,0.235)

(0.4,3.239)
3.51

(0.1,0.299)

(0.4,3.239)
2.64

(0.1,0.345)

(0.4,3.239)
2.49

(0.1,0.356)

#6

(0.7,2.876)
1.25

(0.6,0.092)

(0.35,2.889)
3.81

(0.55,0.268)

(0.1,2.689)
14.3

(0.4,0.281)

(0.05,2.486)
164.51

(0.35,0.328)

(0.1,2.697)
16.93

(0.15,0.225)

(0.2,2.88)
6.47

(0.15,0.296)

(0.4,3.096)
3.92

(0.15,0.359)

(0.4,3.239)
2.93

(0.1,0.327)

(0.4,3.239)
2.75

(0.1,0.337)

#7

(0.75,3.052)
1.11

(0.75,0.183)

(0.65,2.88)
1.93

(0.6,0.194)

(0.2,2.832)
5.6

(0.35,0.136)

(0.05,2.487)
40.16

(0.1,0.062)

(0.25,3.244)
3.52

(0.05,0.205)

(0.3,3.349)
1.99

(0.05,0.306)

(0.35,3.434)
1.55

(0.05,0.376)

(0.35,3.434)
1.38

(0.05,0.4195)

(0.35,3.434)
1.35

(0.05,0.429)

#8

(0.7,3.039)
1.08

(0.75,0.164)

(0.65,2.867)
2.54

(0.5,0.143)

(0.15,2.783)
8.71

(0.3,0.145)

(0.05,2.481)
98.21

(0.15,0.124)

(0.2,3.107)
6.47

(0.05,0.146)

(0.3,3.349)
2.85

(0.05,0.235)

(0.3,3.349)
1.98

(0.05,0.307)

(0.3,3.349)
1.66

(0.05,0.355)

(0.3,3.349)
1.6

(0.05,0.366)

#9

(0.95,2.848)
1.1

(0.7,0.118)

(0.4,2.89)
2.86

(0.5,0.162)

(0.1,2.691)
10.01

(0.3,0.158)

(0.05,2.489)
117.81

(0.2,0.175)

(0.15,2.93)
8.27

(0.05,0.129)

(0.3,3.349)
3.39

(0.05,0.210)

(0.3,3.349)
2.22

(0.05,0.280)

(0.3,3.349)
1.81

(0.05,0.329)

(0.3,3.349)
1.74

(0.05,0.340)

#10

(0.65,2.88)
1.19

(0.6,0.077)

(0.4,2.89)
3.43

(0.5,0.199)

(0.1,2.695)
12.6

(0.35,0.224)

(0.05,2.49)
148.82

(0.3,0.277)

(0.15,2.829)
13.88

(0.1,0.172)

(0.2,2.929)
5.35

(0.1,0.245)

(0.4,3.239)
3.22

(0.1,0.311)

(0.4,3.239)
2.46

(0.1,0.359)

(0.4,3.239)
2.33

(0.1,0.370)

#11

(0.65,2.88)
1.28

(0.6,0.097)

(0.35,2.889)
3.8

(0.55,0.267)

(0.1,2.689)
14.28

(0.4,0.280)

(0.05,2.49)
164.24

(0.4,0.378)

(0.1,2.697)
17.08

(0.15,0.224)

(0.2,2.88)
6.51

(0.15,0.295)

(0.4,3.096)
3.95

(0.15,0.358)

(0.4,3.239)
2.96

(0.1,0.325)

(0.4,3.239)
2.78

(0.1,0.335)

#12

(0.7,3.039)
1.34

(0.75,0.266)

(0.35,2.889)
4.04

(0.55,0.278)

(0.1,2.694)
15.3

(0.45,0.334)

(0.05,2.49)
172.13

(0.4,0.379)

(0.1,2.695)
18.96

(0.2,0.278)

(0.2,2.88)
7.28

(0.15,0.284)

(0.25,2.939)
4.37

(0.15,0.344)

(0.4,3.096)
3.27

(0.15,0.387)

(0.4,3.096)
3.08

(0.15,0.397)

#13

(0.75,3.052)
1.13

(0.75,0.194)

(0.65,2.88)
2

(0.6,0.201)

(0.2,2.832)
6.11

(0.35,0.148)

(0.05,2.487)
48.37

(0.1,0.066)

(0.25,3.244)
3.95

(0.05,0.191)

(0.3,3.349)
2.19

(0.05,0.283)

(0.3,3.349)
1.71

(0.05,0.346)

(0.3,3.349)
1.52

(0.05,0.384)

(0.3,3.349)
1.48

(0.05,0.393)

#14

(0.75,3.052)
1.1

(0.75,0.179)

(0.5,2.886)
2.35

(0.55,0.175)

(0.15,2.783)
7.65

(0.3,0.132)

(0.05,2.487)
78.08

(0.1,0.07)

(0.25,3.244)
5.31

(0.05,0.162)

(0.3,3.349)
2.58

(0.05,0.252)

(0.3,3.349)
1.89

(0.05,0.318)

(0.3,3.349)
1.63

(0.05,0.361)

(0.3,3.349)
1.58

(0.05,0.370)

#15

(0.75,3.052)
1.09

(0.75,0.175)

(0.5,2.886)
2.46

(0.55,0.185)

(0.15,2.783)
8.21

(0.3,0.139)

(0.05,2.487)
89.88

(0.1,0.07)

(0.2,3.107)
5.91

(0.05,0.153)

(0.3,3.349)
2.74

(0.05,0.241)

(0.3,3.349)
1.96

(0.05,0.309)

(0.3,3.349)
1.67

(0.05,0.3528)

(0.3,3.349)
1.62

(0.05,0.362)

#16

(0.75,3.052)
1.28

(0.75,0.250)

(0.35,2.889)
3.78

(0.55,0.2664)

(0.1,2.694)
14.17

(0.45,0.328)

(0.05,2.490)
162.79

(0.4,0.378)

(0.1,2.695)
17.22

(0.2,0.283)

(0.2,2.880)
6.6

(0.15,0.294)

(0.4,3.096)
4

(0.15,0.357)

(0.4,3.096)
3.01

(0.15,0.401)

(0.4,3.096)
2.84

(0.15,0.411)

#17

(0.7,3.039)
1.39

(0.75,0.279)

(0.35,2.886)
4.23

(0.6,0.340)

(0.1,2.694)
16.21

(0.45,0.338)

(0.05,2.487)
178.51

(0.45,0.430)

(0.1,2.696)
20.93

(0.25,0.329)

(0.2,2.855)
8.07

(0.2,0.339)

(0.3,2.940)
4.83

(0.2,0.398)

(0.4,3.096)
3.64

(0.15,0.370)

(0.4,3.096)
3.42

(0.15,0.380)

#18

(0.7,3.039)
1.45

(0.75,0.293)

(0.35,2.886)
4.49

(0.6,0.3495)

(0.1,2.689)
17.31

(0.5,0.393)

(0.05,2.487)
185.84

(0.45,0.430)

(0.05,2.49)
22.91

(0.3,0.379)

(0.2,2.855)
8.92

(0.2,0.330)

(0.25,2.905)
5.27

(0.2,0.3867)

(0.35,2.971)
3.96

(0.2,0.426)

(0.35,2.971)
3.74

(0.2,0.436)
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Table 8.: Out-of-control performance for the proposed chart along with the correspond-
ing optimal parameters for n = 20

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

#1

(0.65,2.948)
1

(0.35,0)

(0.65,2.948)
1

(0.35,0)

(0.4,2.949)
2.35

(0.25,0.018)

(0.05,2.487)
15.84

(0.05,0.014)

(0.5,3.4)
1.73

(0.05,0.233)

(0.55,3.445)
1.1

(0.05,0.364)

(0.45,3.357)
1.02

(0.05,0.457)

(0.5,3.4)
1

(0.05,0.514)

(0.5,3.4)
1

(0.05,0.526)

#2

(0.65,2.948)
1

(0.35,0)

(0.7,2.937)
1.38

(0.4,0.0613368)

(0.25,2.888)
5.3

(0.25,0.107)

(0.05,2.489)
58.21

(0.1,0.0792381)

(0.25,3.075)
4.31

(0.05,0.139)

(0.5,3.4)
1.75

(0.05,0.231)

(0.6,3.49)
1.22

(0.05,0.313)

(0.55,3.445)
1.09

(0.05,0.369)

(0.55,3.445)
1.07

(0.05,0.382)

#3

(0.7,2.947)
1

(0.35,0)

(0.7,2.931)
1.67

(0.45,0.130)

(0.2,2.847)
6.46

(0.3,0.167)

(0.05,2.49)
76.22

(0.2,0.177)

(0.2,2.966)
6.28

(0.05,0.116)

(0.5,3.4)
2.38

(0.05,0.191)

(0.5,3.4)
1.48

(0.05,0.263)

(0.55,3.445)
1.22

(0.05,0.314)

(0.55,3.445)
1.18

(0.05,0.327)

#4

(0.7,2.931)
1

(0.45,0.01)

(0.7,2.93)
1.86

(0.5,0.193)

(0.15,2.793)
7.22

(0.35,0.221)

(0.05,2.49)
87.22

(0.25,0.227)

(0.2,2.888)
7.76

(0.1,0.176)

(0.5,3.181)
3

(0.1,0.252)

(0.5,3.4)
1.78

(0.05,0.228)

(0.55,3.445)
1.39

(0.05,0.276)

(0.55,3.445)
1.33

(0.05,0.287)

#5

(0.75,2.927)
1

(0.5,0.034)

(0.7,2.93)
2.06

(0.5,0.208)

(0.15,2.792)
7.9

(0.4,0.276)

(0.05,2.489)
96.79

(0.3,0.278)

(0.2,2.867)
9.22

(0.15,0.231)

(0.3,3.004)
3.54

(0.1,0.235)

(0.55,3.21)
2.07

(0.1,0.299)

(0.55,3.21)
1.59

(0.1,0.345)

(0.55,3.21)
1.52

(0.1,0.356)

#6

(0.75,2.927)
1.01

(0.5,0.045)

(0.7,2.931)
2.19

(0.55,0.268)

(0.15,2.792)
8.4

(0.4,0.281)

(0.05,2.489)
103.28

(0.35,0.328)

(0.15,2.802)
10.28

(0.15,0.225)

(0.3,2.946)
3.92

(0.15,0.296)

(0.55,3.21)
2.32

(0.1,0.282)

(0.55,3.21)
1.75

(0.1,0.327)

(0.55,3.21)
1.66

(0.1,0.337)

#7

(0.85,2.969)
1

(0.7,0.146)

(0.7,2.937)
1.19

(0.6,0.194)

(0.35,2.92)
3.25

(0.35,0.136)

(0.05,2.487)
22.66

(0.05,0.022)

(0.5,3.4)
2.1

(0.05,0.205)

(0.55,3.445)
1.25

(0.05,0.306)

(0.55,3.445)
1.08

(0.05,0.376)

(0.5,3.4)
1.04

(0.05,0.419)

(0.5,3.4)
1.03

(0.05,0.429)

#8

(0.75,2.927)
1

(0.5,0.034)

(0.75,2.927)
1.38

(0.5,0.143)

(0.25,2.888)
5.09

(0.25,0.103)

(0.05,2.489)
53.13

(0.1,0.078)

(0.25,3.075)
3.94

(0.05,0.146)

(0.5,3.4)
1.71

(0.05,0.235)

(0.55,3.445)
1.25

(0.05,0.307)

(0.5,3.4)
1.12

(0.05,0.355)

(0.5,3.4)
1.1

(0.05,0.366)

#9

(0.75,2.927)
1

(0.5,0.030)

(0.75,2.927)
1.53

(0.5,0.162)

(0.2,2.847)
5.84

(0.3,0.158)

(0.05,2.49)
66.68

(0.15,0.127)

(0.2,2.966)
5.02

(0.05,0.129)

(0.5,3.4)
2.03

(0.05,0.210)

(0.5,3.4)
1.37

(0.05,0.280)

(0.6,3.49)
1.17

(0.05,0.329)

(0.5,3.4)
1.15

(0.05,0.340)

#10

(0.7,2.931)
1

(0.55,0.054)

(0.7,2.93)
1.93

(0.5,0.1991)

(0.15,2.793)
7.44

(0.35,0.224)

(0.05,2.489)
90.67

(0.3,0.277)

(0.2,2.867)
8.4

(0.15,0.236)

(0.3,3.004)
3.23

(0.1,0.245)

(0.55,3.21)
1.91

(0.1,0.311)

(0.55,3.445)
1.49

(0.05,0.260)

(0.55,3.445)
1.42

(0.05,0.270)

#11

(0.7,2.931)
1.01

(0.55,0.071)

(0.7,2.931)
2.19

(0.55,0.267)

(0.15,2.792)
8.38

(0.4,0.280)

(0.05,2.489)
103.09

(0.35,0.328)

(0.15,2.799)
10.32

(0.2,0.284)

(0.3,2.946)
3.94

(0.15,0.295)

(0.45,3.038)
2.34

(0.15,0.358)

(0.55,3.21)
1.77

(0.1,0.325)

(0.55,3.21)
1.67

(0.1,0.335)

#12

(0.75,2.929)
1.02

(0.55,0.083)

(0.65,2.939)
2.34

(0.6,0.332)

(0.15,2.792)
9.02

(0.4,0.286)

(0.05,2.489)
110.36

(0.4,0.379)

(0.15,2.799)
11.48

(0.2,0.278)

(0.35,2.953)
4.39

(0.2,0.350)

(0.45,3.038)
2.58

(0.15,0.344)

(0.65,3.038)
1.97

(0.2,0.453)

(0.65,3.038)
1.86

(0.2,0.463)

#13

(0.8,3.001)
1

(0.75,0.194)

(0.7,2.937)
1.22

(0.6,0.201)

(0.35,2.92)
3.56

(0.35,0.148)

(0.05,2.489)
27.16

(0.1,0.066)

(0.5,3.4)
2.37

(0.05,0.191)

(0.55,3.445)
1.35

(0.05,0.283)

(0.55,3.445)
1.13

(0.05,0.346)

(0.5,3.4)
1.07

(0.05,0.384)

(0.5,3.4)
1.06

(0.05,0.393)

#14

(0.6,2.959)
1

(0.7,0.1459)

(0.75,2.929)
1.3

(0.55,0.175)

(0.3,2.911)
4.46

(0.3,0.132)

(0.05,2.489)
42.1

(0.1,0.074)

(0.45,3.357)
3.24

(0.05,0.162)

(0.5,3.4)
1.56

(0.05,0.252)

(0.55,3.445)
1.21

(0.05,0.318)

(0.6,3.49)
1.1

(0.05,0.361)

(0.5,3.4)
1.09

(0.05,0.370)

#15

(0.65,2.948)
1

(0.65,0.111)

(0.75,2.929)
1.36

(0.55,0.185)

(0.25,2.885)
4.81

(0.3,0.139)

(0.05,2.489)
48.16

(0.1,0.076)

(0.25,3.075)
3.62

(0.05,0.153)

(0.5,3.4)
1.65

(0.05,0.241)

(0.55,3.445)
1.24

(0.05,0.309)

(0.55,3.445)
1.12

(0.05,0.3529)

(0.55,3.445)
1.1

(0.05,0.362)

#16

(0.75,2.929)
1.02

(0.55,0.083)

(0.65,2.939)
2.16

(0.6,0.32)

(0.15,2.792)
8.34

(0.4,0.280)

(0.05,2.489)
102.38

(0.35,0.328)

(0.15,2.799)
10.4

(0.2,0.283)

(0.3,2.946)
4

(0.15,0.294)

(0.45,3.038)
2.37

(0.15,0.357)

(0.55,3.21)
1.8

(0.1,0.321)

(0.55,3.21)
1.71

(0.1,0.331)

#17

(0.7,2.937)
1.04

(0.6,0.130)

(0.65,2.939)
2.47

(0.6,0.340)

(0.15,2.792)
9.57

(0.45,0.338)

(0.05,2.489)
116.03

(0.4,0.380)

(0.1,2.697)
12.65

(0.25,0.329)

(0.3,2.927)
4.86

(0.2,0.339)

(0.45,3.038)
2.89

(0.15,0.329)

(0.6,3.028)
2.14

(0.2,0.440)

(0.6,3.028)
2.02

(0.2,0.450)

#18

(0.95,2.876)
1.05

(0.65,0.181)

(0.45,2.935)
2.65

(0.6,0.349)

(0.15,2.792)
10.25

(0.45,0.343)

(0.05,2.489)
123.14

(0.4,0.381)

(0.1,2.698)
13.75

(0.3,0.379)

(0.3,2.918)
5.33

(0.25,0.391)

(0.4,2.971)
3.16

(0.2,0.386)

(0.6,3.028)
2.34

(0.2,0.426)

(0.6,3.028)
2.2

(0.2,0.436)
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Table 9.: Out-of-control performance of the D-SN-C EWMA chart versus several para-
metric control charts when the underling distribution is the Normal for n = {5, 20, 30}

Zhang’s R Chart Zhang’s S Chart Khoo and Lim’s R Chart D-SN-C EWMA Chart

τ n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20

0.1 1.04 1.00 1.00 1.03 1.00 1.00 1.14 1.00 1.00

(0.7,2.951)
1

(0.7,0)

(0.75,2.846)
1

(0.5,0)

(0.65,2.948)
1

(0.35,0)

0.2 2.66 1.00 1.00 2.62 1.00 1.00 4.22 1.01 1.00

(0.65,2.958)
1.27

(0.7,0.05)

(0.65,2.881)
1

(0.6,0.008)

(0.65,2.948)
1

(0.35,0)

0.3 8.58 1.23 1.00 8.45 1.14 1.00 15.13 1.46 1.00

(0.6,2.958)
2.14

(0.7,0.199)

(0.65,2.881)
1.2

(0.6,0.080)

(0.75,2.935)
1

(0.4,0.005)

0.4 23.08 2.53 1.08 22.62 2.27 1.01 41.19 3.57 1.15

(0.5,2.787)
3.31

(0.5,0.091)

(0.7,2.861)
1.85

(0.5,0.091)

(0.75,2.929)
1.11

(0.45,0.058)

0.5 51.96 6.75 1.71 51.79 6.14 1.34 90.55 10.45 2.04

(0.3,2.827)
5.24

(0.55,0.231)

(0.4,2.886)
3.06

(0.5,0.177)

(0.7,2.932)
1.67

(0.45,0.130)

0.6 101.99 19.12 4.20 103.07 17.71 3.10 173.87 30.56 5.55

(0.15,2.764)
8.28

(0.45,0.208)

(0.3,2.892)
4.88

(0.45,0.2080)

(0.45,2.935)
2.82

(0.4,0.160)

0.7 181.22 52.19 13.60 185.49 49.66 10.58 288.14 79.70 18.89

(0.1,2.684)
13.89

(0.35,0.181)

(0.05,2.123)
7.83

(0.35,0.181)

(0.25,2.884)
4.73

(0.35,0.181)

0.8 301.02 134.53 50.44 307.97 129.11 42.94 433.69 189.02 68.61

(0.05,2.482)
26.12

(0.3,0.195)

(0.05,2.123)
13.34

(0.35,0.242)

(0.15,2.797)
9.27

(0.25,0.150)

0.9 423.90 308.45 188.04 444.64 300.21 174.67 520.23 373.87 232.12

(0.05,2.482)
80.41

(0.3,0.249)

(0.05,2.123)
34.88

(0.35,0.299)

(0.05,2.491)
26.21

(0.2,0.154)

1.05 266.38 258.73 248.50 263.01 225.27 187.23 268.00 260.36 250.36

(0.05,2.467)
124.63

(0.05,0.061)

(0.05,2.207)
81.34

(0.25,0.273)

(0.05,2.49)
64.72

(0.1,0.117)

1.1 172.68 148.12 127.59 157.38 120.29 78.82 182.01 160.40 139.97

(0.05,2.467)
57.26

(0.05,0.074)

(0.05,2.207)
36.6

(0.25,0.295)

(0.1,2.701)
24.47

(0.1,0.134)

1.15 110.96 87.26 66.21 99.95 63.97 35.54 123.02 98.38 76.27

(0.05,2.467)
33.61

(0.05,0.088)

(0.1,2.738)
21.65

(0.05,0.088)

(0.15,2.85)
13.36

(0.05,0.088)

1.2 73.80 52.27 37.91 64.13 12.57 18.32 84.63 62.24 44.01

(0.05,2.467)
22.88

(0.05,0.1023985)

(0.1,2.738)
14.22

(0.05,0.102)

(0.15,2.85)
8.66

(0.05,0.102)

1.3 35.50 22.35 14.32 30.48 14.99 6.72 44.69 28.29 17.77

(0.1,2.84)
12.99

(0.05,0.1316303)

(0.15,2.935)
8.03

(0.05,0.131)

(0.2,2.966)
4.86

(0.05,0.131)

1.4 19.61 11.53 7.11 16.85 7.76 3.43 25.91 15.27 8.86

(0.1,2.84)
8.87

(0.05,0.16150788)

(0.25,3.255)
5.39

(0.05,0.161)

(0.45,3.358)
3.27

(0.05,0.161)

1.5 12.23 6.89 4.17 10.49 4.74 2.20 16.70 9.27 5.20

(0.15,3.105)
6.65

(0.05,0.19131831)

(0.25,3.255)
3.99

(0.05,0.191)

(0.5,3.4)
2.38

(0.05,0.191)

1.6 8.30 4.63 2.78 7.20 3.26 1.64 11.89 6.26 3.49

(0.2,3.288)
5.28

(0.05,0.2205657)

(0.3,3.356)
3.16

(0.05,0.220)

(0.5,3.4)
1.88

(0.05,0.220)

1.8 4.70 2.62 1.68 1.80 2.01 1.20 7.00 3.60 2.07

(0.25,3.424)
3.75

(0.05,0.27619046)

(0.3,3.356)
2.28

(0.05,0.276)

(0.55,3.445)
1.39

(0.05,0.276)

2 3.17 1.84 1.28 2.87 1.51 1.07 4.85 2.49 1.53

(0.25,3.424)
2.95

(0.05,0.32707178)

(0.3,3.356)
1.83

(0.05,0.327)

(0.55,3.445)
1.18

(0.05,0.327)

3 1.41 1.07 1.00 1.35 1.03 1.00 2.03 1.25 1.04

(0.3,3.536)
1.64

(0.05,0.51352518)

(0.8,3.756)
1.15

(0.05,0.513)

(0.5,3.4)
1

(0.05,0.513)
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Table 10.: Performance comparisons between the Shewhart and EWMA Sign charts
for dispersion when n = 20 using (13)

case τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0
1 32.90 -80.88 -77.24 -70.16 -45.00 -25.53 -21.05 -15.33
2 3.51 -79.62 -65.92 -64.73 -40.19 -18.29 -14.44 -6.71
3 -14.29 -79.92 -59.70 -64.97 -43.44 -18.15 -10.04 1.03
4 39.46 -79.93 -79.22 -72.06 -47.43 -27.41 -22.01 -15.97
5 -0.41 -79.28 -64.57 -64.06 -40.54 -16.48 -12.69 -4.65
6 -22.19 -80.09 -57.02 -66.05 -46.22 -21.05 -11.97 -0.46
7 37.93 -79.43 -81.17 -73.16 -48.49 -28.64 -22.84 -16.44
8 -29.65 -80.37 -54.84 -67.48 -49.64 -25.30 -15.65 -3.27
9 -35.89 -79.89 -52.17 -68.64 -52.85 -30.71 -21.13 -8.66

Table 11.: Performance comparisons in terms of the ARL1 values between the AC-
EWMA and D-SN-C EWMA charts for when n = 10

D-SN-C EWMA AC-EWMA D-SN-C EWMA AC-EWMA

τ Normal Double Exponential

1 370.4 370.50 370.4 370.50
1.2 17.64 46.52 30.69 18.50
1.4 6.62 12.06 10.62 17.10
1.6 4.25 7.60 6.30 16.10
1.8 3.28 5.42 4.61 9.80
2 2.77 4.37 3.74 5.30
2.2 2.47 3.76 3.22 4.80
2.4 2.26 3.38 2.87 4.40
2.6 2.12 3.13 2.63 3.70
2.8 2.01 2.97 2.45 3.40
3 1.93 2.85 2.31 3.10
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Table 12.: Values of SDt, SD
∗
t , Z

∗
t of each subgroups for the two scenarios

scenario plotted in Figure 4 scenario plotted in Figure 5

Subgroup SDt SD∗
t Z∗

t SDt SD∗
t Z∗

t

1 -5 -5.023 -4.631 -3 -3.148 -0.787
2 -5 -4.784 -4.669 -1 -0.777 -0.785
3 -5 -4.816 -4.706 3 2.522 0.042
4 -3 -2.952 -4.267 1 1.375 0.375
5 -5 -5.137 -4.485 1 0.747 0.468
6 -5 -5.047 -4.625 1 1.078 0.621
7 -5 -5.130 -4.752 5 5.146 1.752
8 -5 -4.806 -4.765 -3 -2.942 0.578
9 -5 -5.109 -4.851 1 0.944 0.670
10 -3 -3.271 -4.456 3 3.107 1.279
11 -5 -4.958 -4.581 1 1.182 1.255
12 -5 -4.820 -4.641 -3 -3.028 0.184
13 -3 -2.773 -4.174 3 3.020 0.893
14 -5 -5.028 -4.388 1 1.037 0.929
15 -3 -2.857 -4.005 5 5.050 1.959
16 -5 -5.274 -4.322 3 3.345 2.306
17 -5 -5.194 -4.540 1 0.893 1.952
18 -5 -5.212 -4.708 3 2.997 2.214
19 -5 -4.823 -4.737 -1 -1.235 1.351
20 -5 -4.951 -4.790 1 0.448 1.126
21 -1 -0.563 -3.733 -3 -3.037 0.085
22 -3 -3.125 -3.581 -5 -4.742 -1.122
23 -3 -3.179 -3.481 1 1.081 -0.571
24 -3 -2.744 -3.296 -5 -5.418 -1.783
25 -1 -0.938 -2.707 -5 -4.948 -2.574
26 -1 -0.996 -2.279 -5 -5.247 -3.242
27 1 0.907 -1.483 -1 -1.121 -2.712
28 -1 -0.683 -1.283 -5 -5.285 -3.355
29 -3 -3.576 -1.856 -3 -3.095 -3.290
30 1 1.194 -1.093 -3 -3.178 -3.262
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