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Introduction

Control charts have been widely used in manufacturing industries, as a powerful tool for the on-line monitoring of a process. Shewhart [START_REF] Shewhart | Quality Control Charts[END_REF] is considered as the pioneer of control charts, introducing schemes capable of monitoring relative large shifts in the process mean ( X chart) or the variability (R and S charts). Additionally, when shifts of small magnitude occur in the process parameters, Cumulative Sum (CUSUM, see Page in [START_REF] Page | Continuous Inspection Schemes[END_REF]) or Exponentially Weighted Moving Averge (EWMA, see Roberts in [START_REF] Roberts | Control Chart Tests Based on Geometric Moving Averages[END_REF]) charts are preferable due to their superiority in early shift detection. In general, in the design of conventional control charts as the ones mentioned above, it is assumed that the distribution of the observations collected over time is known, with the most common choice being that of normal distribution. However, in practice, either the assumption of, say, normal distribution is violated or practitioners do not want to use a specific distribution model for their process. As a result, designing schemes capable of monitoring shifts in the process without any knowledge of the observations' underlying distribution, has drawn the researchers' attention and led to nonparametric (or distribution-free) control charts. In particular, with regard to monitoring process location, nonparametric tests such as the Sign Test are used for detecting shifts in the process median without the knowledge of the distribution of the quality characteristic of interest (see, [START_REF] Amin | A Nonparametric Exponentially Weighted Moving Average Control Scheme[END_REF], [START_REF] Graham | A Nonparametric EWMA Sign Chart for Location Based on Individual Measurements[END_REF], [START_REF] Yang | A New Nonparametric EWMA Sign Control Chart[END_REF], [START_REF] Aslam | A New Exponentially Weighted Moving Average Sign Chart using Repetitive Sampling[END_REF], [START_REF] Riaz | A Sensitive Non-Parametric EWMA Control Chart[END_REF], [START_REF] Lu | An Extended Nonparametric Exponentially Weighted Moving Average Sign Control Chart[END_REF], [10]). Similarly, several nonparametric control charts have been introduced in the literature for detecting shifts in the process variability, such as Shewhart-type (see, [START_REF] Amin | Nonparametric Quality control Charts based on the Sign Statistic[END_REF], [START_REF] Murakami | A Nonparametric Control Chart Based on the Mood Statistic for Dispersion[END_REF], [START_REF] Das | A New Non-Parametric Control Chart for Controlling Variability[END_REF], [START_REF] Das | A Note on the Efficiency of Nonparametric Ccontrol Chart for Monitoring Process Variability[END_REF]) or EWMA and CUSUM schemes (see, [START_REF] Zou | Likelihood Ratio-Based Distribution-free EWMA Control Charts[END_REF], [START_REF] Chowdhury | Distribution-free Phase II CUSUM Control Chart for Joint Monitoring ofLocation and Scale[END_REF], [START_REF] Yang | A New Approach for Monitoring Process Variance[END_REF], [START_REF] Haq | A New Nonparametric EWMA Control Chart for Monitoring Process Variability[END_REF], [START_REF] Mukherjee | A Distribution-free Phase-II CUSUM Procedure for Monitoring Service Quality[END_REF]). For a comprehensive overview of existing univariate and multivariate nonparametric control charts the reader is advised to refer to [START_REF] Chakraborti | Nonparametric Control Charts: an Overview and Some Results[END_REF] and [START_REF] Chakraborti | Nonparametric (Distribution-Free) Control Charts: An Updated Overview and Some Result[END_REF].

With respect to the design of a phase II control chart, for Shewhart-type schemes, their Run Length (RL) properties, such as the Average Run Length (ARL) and the Standard Deviation Run Length (SDRL), are obtained by assuming that the random variable RL follows a geometric distribution. On the other hand, for EWMA and CUSUM-type schemes, their RL properties are usually computed using the Markov chain method of Brook and Evans in [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF]. However, as recent studies have shown (see, Wu et al. in [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] and Perdikis et al. in [START_REF] Perdikis | An EWMA Signed Ranks Control Chart with Reliable Run Length Performances[END_REF]), the method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] does not always provide a reliable approximation of the RL properties of a nonparametric EWMA or CUSUM control chart. More specifically, due to the discrete nature of the statistics whose values are monitored (for example the sign statistic), the method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] leads to unreliable results regarding the chart's in-control and out-of-control ARL values. As a solution to this problem, Castagliola et al. in [START_REF] Castagliola | An EWMA-Type Sign Chart With Exact Run Length Properties[END_REF], following the approach of Rakitzis et al. in [START_REF] Rakitzis | A New Memory-type Monitoring Technique for Count Data[END_REF]), proposed an EWMA-type scheme (denoted as the CEWMA SN chart) in which the charting statistic, at each sampling point is an integer, and by adding some simple modifications in the Markov chain method, it was possible to determine the exact in-and out-of-control ARL values. Additional studies based on the approach of [START_REF] Castagliola | An EWMA-Type Sign Chart With Exact Run Length Properties[END_REF] in [START_REF] Castagliola | An EWMA-Type Sign Chart With Exact Run Length Properties[END_REF] can also be found in [START_REF] Tang | A New Nonparametric Adaptive EWMA Control Chart with Exact Run Length Properties[END_REF] and [START_REF] Perdikis | An EWMA-type Chart based on Signed Ranks with Exact Run Length Properties[END_REF]. Recently, Wu et al. in [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF], proposed a new method, in which the initial discrete random variable to be monitored is turned into a continuous one, as a mixture of normally distributed random variables. Based on their findings, their proposed method, yields steady ARL values and it guarantees a reliable and accurate approximation of chart's RL properties.

In this work, we aim to present a new nonparametric control chart for monitoring the process variability. In particular, a generalization of the charting statistic used by Amin et al. in [START_REF] Amin | Nonparametric Quality control Charts based on the Sign Statistic[END_REF] will be introduced for the design of the proposed scheme and detailed guidelines to practitioners will be given regarding the chart's optimal design parameters. Additionally, we will provide a methodology that will guarantee the chart's exact RL properties. More specifically, as it will be proven in the following sections, the proposed control chart is distribution-free meaning that its statistical design does not require any knowledge about the underlying distribution and it has reliable and steady ARL values. This paper is organised as follows: In Section 2, a brief review on the theoretical properties of the nonparametric Shewhart chart, introduced by Amin et al. in [START_REF] Amin | Nonparametric Quality control Charts based on the Sign Statistic[END_REF], based on the Sign-type statistic for dispersion is presented and a general version of this statistic is suggested. Additionally, in Section 3, a modified EWMA chart based on the Sign statistic for monitoring shifts in the process variability is introduced and in Section 4, the efficiency of the method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] is tested for the compu-tation of the proposed chart's RL properties. In Section 5, a Kernel-based methodology is used in order to improve the proposed chart's in-and out-of-control RL properties. Moreover, in Section 6, the out-of-control performance of the proposed chart is investigated and its performance is compared with other schemes for monitoring process variability. Finally, in Section 7 an illustrative example is provided while in Section 8 conclusions along with suggestions for future research work are given.

The Interquantile Range Sign statistic for dispersion

Suppose that, at each sampling point t, a random sample {X t,1 , X t,2 , . . . , X t,n } of size n is collected, where X t,j , j = 1, 2, ..., n, follows an unknown continuous distribution with corresponding cumulative distribution function (c.d.f.) F X (x|σ). The parameter σ corresponds to the standard deviation of the distribution, that is the parameter of interest. It is assumed that σ = σ 0 when the process is in-control and σ = σ 1 = τ σ 0 when the process is out-of-control. The parameter τ reflects the shift magnitude in the process variability, i.e. τ ∈ (0, 1) corresponds to a decrease in the variability (usually associated to a process improvement) while τ ∈ (1, +∞) corresponds to an increase in the variability (usually associated to a process deterioration).

Let X p0/2 and X 1-p0/2 be the p 0 /2 and 1 -p 0 /2 quantiles of F X (x|σ 0 ), i.e. when the process is in-control, where p 0 ∈ (0, 1) is a parameter considered to be known (or pre-specified). By definition, X p0/2 and X 1-p0/2 are such that F X (X p0/2 |σ 0 ) = p 0 /2, F X (X 1-p0/2 |σ 0 ) = 1 -p 0 /2 and and we directly deduce that

p 0 = 1 -F X (X 1-p0/2 |σ 0 ) + F X (X p0/2 |σ 0 ).
When the process shifts from σ 0 to σ 1 , the corresponding probability is defined as

p 1 = 1 -F X (X 1-p0/2 |σ 1 ) + F X (X p0/2 |σ 1 ).
If σ 1 < σ 0 (decrease in the variability) then we have p 1 < p 0 and if σ 1 > σ 0 (increase in the variability) then we have p 1 > p 0 . Consequently, a shift from σ 0 to σ 1 in one direction is similar to a shift from p 0 to p 1 in the same direction. This suggests a simple distribution-free Shewhart-type Sign chart for monitoring shifts in the process variability based on the following statistic

SD t = n j=1 D t,j , where D t,j =      1, if X t,j < X p0/2 or X t,j > X 1-p0/2 0, if X t,j = X p0/2 or X t,j = X 1-p0/2 -1, if X p0/2 < X t,j < X 1-p0/2 .
Note that, due to the continuous nature of the variables to be monitored, the condition D t,j = 0 is not supposed to hold in practice. Similarly with the theoretical properties of the traditional Sign statistic for testing changes in the median, the SD t statistic belongs to {-n, -n + 2, . . . , n -2, n}. In addition, let us define the random variable A t = SDt+n 2 as the number of observations less than X p0/2 or larger than X 1-p0/2 . By definition, this random variable A t follows a binomial distribution Bin(n, p) with parameters n and p ∈ {p 0 , p 1 } (depending on whether the process is inor out-of-control). Therefore, we obtain the c.d.f. F SDt (s|n, p) of SD t with the help of the c.d.f. F Bin (•|n, p) of the Bin(n, p) as

F SDt (s|n, p) = F Bin s + n 2 |n, p , s ∈ {-n, -n + 2, . . . , n -2, n}.
In addition, the mean E(SD t ) and the variance V(SD t ) are given by

E(SD t ) = 2E(A t ) -n = n(2p -1), (1) V(SD t ) = 4V(A t ) = 4np(1 -p). (2) 
In general, in existing works related with nonparametric Shewhart schemes based on the Interquantile Range Sign statistic ( [START_REF] Amin | Nonparametric Quality control Charts based on the Sign Statistic[END_REF]), a fixed value of p 0 = 0.5 has being considered regardless of the shift magnitude to be detected. Pawar et al. in [START_REF] Pawar | A Nonparametric Control Chart for Process Variability Based on Quantiles[END_REF] proposed a nonparametric upper-sided Shewhart chart for dispersion, based on the SD t statistic where the value of p 0 is allowed to vary. During the design phase of their scheme, for different values of p 0 , they examined the chart's out-of-control performance. Note that, Pawar et al. [START_REF] Pawar | A Nonparametric Control Chart for Process Variability Based on Quantiles[END_REF] only considered values of τ > 1 (i.e., the case of increasing shifts in process variability). In this work, we aim to introduce an EWMA chart based on the SD t statistic and investigate the optimal value of p 0 for efficiently monitoring a process and detecting a specific shift (increase or decrease) of magnitude τ in the in-control variability σ 0 .

The D-SN EWMA chart for dispersion

The nonparametric EWMA chart based on the Sign statistic was originally introduced by Graham et al. in [START_REF] Graham | A Nonparametric EWMA Sign Chart for Location Based on Individual Measurements[END_REF] as a control scheme capable of detecting shifts in the process median. Using the Markov chain approach of Brook and Evans in [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF], they computed its optimal design parameters and presented its out-of-control performance under different continuous distributions. In this work, we will present an extended version of the Sign EWMA chart presented in [START_REF] Graham | A Nonparametric EWMA Sign Chart for Location Based on Individual Measurements[END_REF] for monitoring shifts in the process variability. In particular, based on the design of the standard Sign EWMA scheme introduced in [START_REF] Graham | A Nonparametric EWMA Sign Chart for Location Based on Individual Measurements[END_REF], instead of using the Sign statistic, we will use the SD t statistic, previously presented in Section 2, for monitoring shifts in the process dispersion.

Charting statistic and control limits

The plotting statistic for the two-sided EWMA chart based on the SD t statistic suggested in the previous Section (to be denoted as the D-SN EWMA chart) will be computed by the following recursive formula as:

Z t = λSD t + (1 -λ)Z t-1 , Z 0 = E 0 (SD t ), (3) 
with λ ∈ (0, 1] and E 0 (SD t ) is the in-control mean of SD t . For an indication of a shift in the process dispersion, a signal will be given if the value of the charting statistic Z t lies outside the interval [LCL, UCL] where LCL and UCL are the asymptotic (or steady-state) upper and lower control limits computed as:

LCL = E 0 (SD t ) -K V 0 (SD t ) × λ 2 -λ , UCL = E 0 (SD t ) + K V 0 (SD t ) × λ 2 -λ , (4) 
where K > 0 is a coefficient to be fixed. When the process is in-control, the corresponding in-control mean E 0 (SD t ) and variance V 0 (SD t ) of SD t are obtained by substituting p = p 0 in (1) and ( 2) respectively. Therefore, the control limits can be rewritten as:

LCL = n(2p 0 -1) -2K λnp 0 (1 -p 0 ) 2 -λ , UCL = n(2p 0 -1) + 2K λnp 0 (1 -p 0 ) 2 -λ .
It should be clarified that the values of the quantiles X p0/2 and X 1-p0/2 do not have any impact on the in-control design of the control chart. In particular, the determination of the control limits, and the pair (λ, K) only depend on the sample size n and the value of p 0 which is a value to be fixed by the practitioner (more details regarding the determination of this value are provided in the following Sections). Of course, we may argue the fact that the chart's operation during phase II requires the values of the quantiles to be known or at least estimated (during phase I), similarly to what happens with any parametric or nonparametric scheme. However, their values does not affect the chart's RL properties. Without loss of generality in the rest of this work, we assume that these quantiles are known.

RL properties

In order to obtain the RL properties of the proposed scheme, following the same design of a conventional EWMA chart (parametric or not), the "standard" method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] will be used and its robustness will be investigated. In particular, it is assumed that the operation of the EWMA control chart can be well represented through a discrete-time Markov chain where the control limit interval [LCL, UCL] is divided into 2m + 1 subintervals of width 2∆ where ∆ = UCL-LCL 4m+2 . Additionally, for each transient state j = {-m, . . . , 0, . . . m}, the corresponding j-th midpoint is defined as H j = LCL+UCL 2 + 2j∆. Then, the transition probability matrix P for the two-sided D-SN EWMA chart is computed as:

P = Q r 0 ⊺ 1 =              Q -m,-m . . . Q -m,-1 Q -m,0 Q -m,1 . . . Q -m,m r -m . . . . . . . . . . . . . . . . . . . . . Q -1,-m . . . Q -1,-1 Q -1,0 Q -1,1 . . . Q -1,m r -1 Q 0,-m . . . Q 0,-1 Q 0,0 Q 0,1 . . . Q 0,m r 0 Q 1,-m . . . Q 1,-1 Q 1,0 Q 1,1 . . . Q 1,m r 1 . . . . . . . . . . . . . . . . . . . . . Q m,-m . . . Q m,-1 Q m,0 Q m,1 . . . Q m,m r m 0 . . . 0 0 0 . . . 0 1             
where Q is the (2m + 1, 2m + 1) matrix of transient probabilities, 0 ⊺ = (0, 0, . . . , 0) and r = 1 -Q1. Let q = (q -m , . . . , q 0 , . . . , q m ) ⊺ be the (2m + 1, 1) vector of initial probabilities associated with the 2m + 1 transient states. In particular, this vector contains the probabilities that the charting statistic Z t starts in a given state. Therefore, we use q = (0, . . . , 1, . . . , 0) ⊺ where the value 1 at the m-th entry, corresponds to Z 0 = E 0 (SD t ) stating that the process starts at state m. That is, the initial value for the EWMA statistic in (3) is the in-control mean of SD t Finally, the transient probabilities, Q j,k are obtained as:

Q j,k = P(Z t is in state k|Z t-1 is in state j) = P(H k -∆ ≤ Z t ≤ H k + ∆|Z t-1 = H j ). (5) 
Using the definition of the charting statistic, Z t , defined in (3), and substituting into (5), the transient probabilities, Q j,k are equal to:

Q j,k = P (H k -∆ ≤ λSD t + (1 -λ)Z t-1 ≤ H k + ∆| Z t-1 = H j ) = P H k -∆ -(1 -λ)H j λ ≤ SD t ≤ H k + ∆ -(1 -λ)H j λ = F Bin Hk+∆-(1-λ)Hj λ + n 2 |n, p -F Bin Hk-∆-(1-λ)Hj λ + n 2 |n, p ,
where p ∈ {p 0 , p 1 }. It is clear that when p = p 0 we are referring to the in-control ARL and when p = p 1 we are referring to the out-of-control one.

Finally, for a sufficient large number of subintervals 2m + 1 the ARL and SDRL values can be accurately evaluated using the following classical formulas from the Markov chain theory (see, for instance [START_REF] Neuts | Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach[END_REF][START_REF] Latouche | Introduction to Matrix Analytic Methods in Stochastic Modeling[END_REF])

ARL = q ⊺ (I -Q) -1 1, SDRL = 2q ⊺ (I -Q) -2 Q1 + ARL(1 -ARL).

Numerical analysis

The investigation of the proposed chart's RL properties, will be examined under several symmetric and asymmetric distributions trying to cover a large variety of cases including heavily-tailed distributions. In particular, following the semi-parametric design presented by Castagliola et al. in [START_REF] Castagliola | The Shewhart Sign Chart with Ties: Performance and Alternatives, Distribution-Free Methods for Statistical Process Monitoring and Control[END_REF], the robustness of the chart's RL properties will be tested under a benchmark of 18 Johnson's type distributions.

Johnson Distributions

Generally, the c.d.f. F Z (. . .) of a Johnson's-type distribution with parameters a, b > 0, c and d > 0 is defined as:

• bounded on [c, c + d] (denoted as B in Table 1) with F Z (x) equal to:

F Z (x) = F N a + b ln x -c c + d -x , x ∈ [c, c + d]
• unbounded on (-∞, ∞) (denoted as U in Table 1) with F Z (x) equal to:

F Z (x) = F N a + b sinh -1 x -c d , x ∈ (-∞, ∞)
where F N (. . .) is the c.d.f. of the standard normal distribution.

In Table 1, 18 cases of the Johnson's family distributions are presented. Moreover, for each distribution, the corresponding values of the parameters a, b, c, d, have been selected in order to satisfy med(Z) = 0 (for the median) and σ(Z) = 1 (for the standard-deviation). The cases #1-#6 approximately match some well known symmetric distributions. In particular, case #1 is close to the Uniform distribution, case #2 is close to the Triangular distribution while case #3 almost corresponds to the Standard Normal distribution. Additionally, cases #4-#6 are close to the Student t distribution with 10, 6 and 5 degrees of freedom, respectively. Finally, the remaining 12 cases, under different values for the skewness γ 3 > 0 and kurtosis γ 4 > 0 aim to cover a large variety of asymmetric and heavily-tailed distributions. For more details, a graphical representation of these distribution is provided page 116 in [START_REF] Castagliola | The Shewhart Sign Chart with Ties: Performance and Alternatives, Distribution-Free Methods for Statistical Process Monitoring and Control[END_REF].

Effect of the number of subintervals

In this Section, we aim to investigate the effect of the number of subintervals in the RL properties of our proposed chart when the method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] is being used. Generally, in cases where the statistic to be monitored is a continuous one (for instance, in parametric EWMA control charts based on the X statistic), for a relatively large number of subintervals (say 2m + 1 ≈ 201), the method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] provides a reliable approximation of the chart's RL properties such as the ARL or the SDRL. However, recent studies have shown that, computing the RL properties of a nonparametric EWMA chart via the "conventional" method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] does not always guarantee an optimal design because the ARL and the SDRL values are strongly affected by the number of subintervals 2m + 1. For instance, Wu et al. [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] investigated the design of a distribution-free EWMA chart based on a Sign-type statistic and proved that the number of subintervals 2m + 1 significantly affects the ARL values. Additionally, Perdikis et al. [START_REF] Perdikis | An EWMA Signed Ranks Control Chart with Reliable Run Length Performances[END_REF] showed that in the design of an EWMA chart based on the Wilcoxon Signed Rank statistic, the ARL values are also affected by the number of subintervals. Based on our numerical analysis, the same behavior appears on the proposed scheme. More specifically, in Table 2(top), using the standard approach of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] the corresponding in-control ARL values are computed for different combinations of n = {12, 20} and p 0 = {0.3, 0.5, 0.6, 0.8}. The values of λ = 0.2 and K = 2.85 have been chosen only for illustration purposes. From Table 2 it can be clearly concluded that, regardless the value of n or p 0 , the ARL 0 is affected by the number of subintervals instead of converging to the exact value of the ARL as the number of subintervals increases.

As an example, if we take a closer look when (n = 12, p 0 = 0.3) the ARL ranges from 349.6 to 395.5 while the exact ARL, value approximated through a Monte Carlo simulation of 10 5 iterations, is around 382 (see bottom row denoted "sim").

Additionally, in Table 3 (top), using the same values for the parameters (λ, K), the out-of-control ARL values are presented for τ = 1.1, p 0 = 0.5 and n = 5 under the Benchmark of 18 Johnson's type distributions illustrated in Table 1. Similarly, in Table 4 (top) the corresponding ARL values are presented for τ = 0.9, p 0 = 0.5 and n = 5. Note that, τ = 1.1 corresponds to a small increase and τ = 0.9 corresponds to a small decrease in the variability. For each case, the corresponding out-of-control probabilities are computed as:

p 1 = 1 -F Z (X 1-p0/2 |a, b, τ c, τ d) + F Z (X p0/2 |a, b, τ c, τ d) (6) 
From Tables 3 (top) and 4 (top) we may conclude that a very similar pattern also occurs for the out-of-control ARL values regardless the underlying distribution. As a result, using the standard method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF], practitioners are not able to compute the exact in-and out-of-control ARL values of this chart and, as a consequence, they are not able to find a suitable pair of (λ, K) to guarantee the chart's optimal performance. 5. The D-SN-C EWMA chart for dispersion (The "continuousified" approach)

From the results presented in section 3, we noticed that the ARL values obtained with the classical method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF] may not always lead to steady results regarding the design of an EWMA chart based on the SD t statistic. The primary goal is to design an EWMA scheme for dispersion in which the ARL values will remain unaffected by the number of subintervals. Wu et al. [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] proposed the "continuousify" method, which suggests the transformation of any discrete charting statistic into a continuous one; the transformed statistic is a mixture of weighted Normal r.v. In particular, they showed that this transformation not only improves significantly the chart's RL properties but it also enables practitioners to optimize the chart's parameters in order to achieve in-control ARL value exactly equal to the desired one (say 370.4). Recently, many authors used this method for the design of several nonparametric EWMA control charts and they proved the superiority of the "continuousify" method (see [START_REF] Wu | Design of Attribute EWMA Type Control Charts with Reliable Run Length Performance[END_REF], [START_REF] Perdikis | The EWMA Sign Chart Revisited: Performance and Alternatives Without and With Ties[END_REF]). As a consequence, motivated by these results in the related literature, we will use this technique for the design of our proposed chart (to be denoted as the D-SN-C EWMA chart). Let X t , t = 1, 2, . . . be a sequence of i.i.d. discrete random variables, each of them defined on Ψ = {ψ 1 , ψ 2 , . . .} with corresponding p.m.f. function f X (ψ|θ) where θ denotes the vector of parameters. As stated in [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF], X can be transformed into a new continuous random variable (denoted as X * t ), defined as a mixture of normally distributed random variables Y * t where, for each ψ t ∈ Ψ, Y * t ∼ N (ψ t , h). Then, the corresponding p.m.f. f X * (x|θ) and c.d.f. F X * (x|θ) of X * t will be computed as:

f X * (x|θ) = ψ∈Ψ f X (ψ|θ)f N (x|ψ, h), F X * (x|θ) = ψ∈Ψ f X (ψ|θ)F N (x|ψ, h),
where f N (x|ψ, h) and F N (x|ψ, h) are the p.d.f. and c.d.f. of the Normal (ψ, h) distribution, respectively, where h > 0 is the "continuousified" parameter and it is a value to be fixed. For more details regarding the definition or similar applications of the "continuousify"method the reader is refereed to [START_REF] Wu | Design of Attribute EWMA Type Control Charts with Reliable Run Length Performance[END_REF], [START_REF] Perdikis | The EWMA Sign Chart Revisited: Performance and Alternatives Without and With Ties[END_REF]. For our proposed "continuousified" two-sided Sign EWMA chart for dispersion instead of using SD t , a new continuous statistic will be used, denoted as SD * t . Since the domain in which SD t is defined is Ψ = {-n, -n + 2, . . . , n -2, n}, the statistic SD t will be transformed into:

SD * t =                            SD * t,-n ∼ N(-n, h), if SD t = -n SD * t,-n+2 ∼ N(-n + 2, h), if SD t = -n + 2 . . . . . . SD * t,0 ∼ N(0, h), if SD t = 0 . . . . . . SD * t,n-2 ∼ N(n -2, h), if SD t = n -2 SD * t,n ∼ N(n, h), if SD t = n .
Additionally, the c.d.f. F SD * t (s|n, p) of SD * t will be defined for s ∈ R and will be equal to

F SD * t (s|n, p) = ψ∈Ψ f Bin ψ + n 2 |n, p F N (s|ψ, h). (7) 
Finally, as for the computation of the mean and variance of SD * t , following the definitions of the mean and variance of a continuous random variable, it can be easily proven that (see, Appendix):

E(SD * t ) = E(SD t ), (8) 
V(SD * t ) = V(SD t ) + h 2 (9) 
Regarding the charting statistic of the proposed two-sided D-SN-C EWMA chart, it will be simply defined as:

Z * t = λSD * t + (1 -λ)Z * t-1 , Z * 0 = E 0 (SD * t ). ( 10 
)
Lastly, in the expressions presented in (4), if we substitute the mean and variance by the equations ( 8) and ( 9), the new control limits LCL and UCL, denoted as LCL * and UCL * respectively, of our proposed scheme will be:

LCL * = n(2p 0 -1) -K λ(4np 0 (1 -p 0 ) + h 2 ) 2 -λ , (11) 
UCL * = n(2p 0 -1) + K λ(4np 0 (1 -p 0 ) + h 2 ) 2 -λ . ( 12 
)
In order to verify the efficiency of the proposed chart in terms of its stability for the computation of the ARL values, in Tables 2 and3 (bottom), besides the ARL values already obtained by the classical method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF], the corresponding ARL values obtained via the "continuousify" method are presented. For the in-control case (Table 2), we may conclude that, regardless the values of n and p 0 , the use of the continuous transformation in the discrete statistic to be monitored, provides a great improvement. More specifically, for every combination of (n, p 0 ), the corresponding ARL values become stable really quickly even for small values of 2m+1 ≈ 51. Similarly with the in-control cases, from Tables 3 and4, it can be concluded that the advantages of the "continuousify" method are also present in the out-of-control cases. In particular, for all the 18 distributions, the ARL values without the "continuousify" method are not stable and depend on the number of subintervals. On the other hand, by using the continuous transformation the ARL values become stable and seem to be unaffected by the number of subintervals. Regarding the value of the "continuousify" parameter h, as it has already been shown in [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] and [START_REF] Perdikis | An EWMA Signed Ranks Control Chart with Reliable Run Length Performances[END_REF], as soon as this parameter is not too small or not too large (say h ≈ 0.2) the results are not seriously affected. In Table 5, for different combinations of the sample size, n ∈ {7, 13, 18, 22}, and a pre-specified probability, p 0 ∈ {0.4, 0.5, 0.6, 0.7, 0.8}, the corresponding in-control ARL values of the D-SN-C EWMA chart are presented for h ∈ {0.1, 0.15, . . . , 0.3}. Based on the results from Table 5 it is clear that h does not significantly affect the results as only some minor differences exist in the first decimal place for small values of 2m + 1. As a result, setting a value of h = 0.2 is suggested. It should be noted that from Tables 3 and4 we may see that the ARL values obtained with the "continuousify" method are a bit larger than those obtained by simulation. This is logical as the control limits obtained with the "continuousify" method are a bit larger than those obtained without the "continuousify" method due to the extra term h. This is the price to pay in order to obtain reliable ARL values.

Optimization of the D-SN-C EWMA chart

In this section we aim to investigate how the value of p 0 (i.e. the value that needs to be fixed during the design phase of the chart) affects the chart's out-of-control performance. In particular, we will investigate the impact of varying values of p 0 (instead of being set to p 0 = 0.5) under different shift magnitudes and underlying distributions. In Table 6 the chart's out-of-control performance is presented for p 0 ∈ {0.1, 0.5, 0, 7} for the distributions listed in Table 1. For illustration purposes the values of the design parameters are randomly selected and equal to (λ = 0.2, K = 2.75, n = 10, h = 0.2). From the results presented in Table 6 it is clear that the initial value of p 0 significantly affects the chart's out-of-control performance. For instance, when τ = 0.25, for every case, the minimum ARL 1 is reached when p 0 = 0.7. On the other hand, when τ = 2, the minimum ARL 1 is reached when p 0 = 0.1. As a consequence, different initial values for p 0 lead to different results. It is clear that, depending on the shift magnitude to be detected, the initial value of p 0 affects the chart's out-of-control performance.

Ideally, when a priori information for the sample's underlying distribution is known, practitioners are able to optimize the vector (λ, K, p 0 ) for a given shift magnitude τ . Nevertheless, this is a strict assumption and it is rarely hold in practice. Moreover, let us keep in mind that the primary motivation of using a nonparametric control chart is the fact that any knowledge of the sample's distribution is not needed. Consequently, in order to provide a practical implementation and general guidelines to practitioners regarding the "optimal" value of p 0 an extensive numerical analysis will be performed for different distributions. In particular, the out-of-control performance of the proposed chart will be examined under the benchmark of the 18 Johnson's type distributions listed in Table 1, for different sample sizes and shifts in the process variability. As already stated, we want to investigate, for a variety of distributions, the impact of p 0 to the chart's optimal out-of-control performance. All the computations regarding the in-control and the out-of-control performance of the chart as well as the determination of the charts' design parameters were made via the Markov chain method of Brook and Evans [START_REF] Brook | An Approach to the Probability Distribution of CUSUM Run Length[END_REF], in combination with the "continusify" method of Wu et al. [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] as presented in section 5. The knowledge of the underlying distribution for the out-of-control case is needed only for computing the probability p 1 (see equation ( 6)) which is associated with the shift magnitude τ . The motivation for this analysis is to examine, for different type of distributions (symmetric/asymmetric), how the optimal value of p 0 varies and to provide guidelines to practitioners about how to select the value of this parameter. This is something that has not been investigated so far in the literature. All the computations have been performed in R [START_REF] Core | R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing[END_REF], on a computer with an Intel(R) Core(TM) i7-7500U CPU. No additional packages have been used except those in the base R edition. The source code is available to the reader upon request. Finally, regarding the optimization procedure, for each distribution, the following steps based on a simple but efficient grid search method have been followed.

• Step 1: First we have to define the domain of where the design parameters p 0 and λ will be defined during the searching algorithm. In general, for EWMA schemes, large (small) values of λ are preferable for detecting large (small) shifts in the process variability. So it is logical to define λ ∈ {0.05, 0.1, . . . , 0.95}. As for the candidate values of p 0 of course we may argue with the fact that p 0 could take any value in the interval (0, 1). However, without loss of generality, it can be simplified by letting p 0 take only a discrete set of values; say p 0 ∈ {0.05, 0.15, . . . , 0.95}. This discretisation (which can be regarded as a 'grid search') is justified by the fact that, in practice, only easy-to-manage values of p 0 are meant to be used (for instance, p 0 = 0.5 in the original definition of the sign statistic, as already remarked). • Step 2: For each combination of p 0 and λ, we have to properly define the value of K in order to satisfy a desired in-control ARL equal to ARL 0 = 370.4 . In particular, for every combination of p 0 ∈ {0.05, 0.15, . . . , 0.95} and λ ∈ {0.05, 0.1, . . . , 0.95}, using the "continusify" method of Wu et al. [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] as presented in section 5 we compute the corresponding value for K under the condition that ARL 0 = 370.4 by setting the number of sub-intervals to be equal to 2m + 1 = 151. Note that, the number 2m + 1 = 151 has been chosen in order to not be too large but large enough to guarantee the stability of the results. Of course, practitioners can also set any value for 2m + 1 > 151. • Step 3: Lastly, we should find the optimal values of p 0 , λ, K, which minimise the out-of-control ARL for a given shift magnitude. In particular, for each shift τ ∈ {0.25, 0.5, 0.75, 0.95, 1.25, 1.5, 1.75, 1.95, 2}, among all the combinations of (p 0 , λ, K) computed in Step 2, the optimal vector of (p * 0 , λ * , K * ) is chosen which gives the smallest out-of-control ARL at a specific shift τ .

In Tables 7 and8 the optimal combinations of (λ * , K * ) (first line of each block) are presented, along with the corresponding out-of-control ARL values (second line) and the corresponding pairs of (p * 0 , p 1 ) (third line) for n = 10 (Table 7) and n = 20 (Table 8). It should be clarified that p * 0 defines the suggested quantiles for the test for dispersion (i.e., the test statistic SD t ) for a specific value of τ . Also, it is related to the in-control case (i.e. when p = p * 0 we are referring to an in-control process while when, p ̸ = p * 0 the process is out-of-control). Our conclusions are the following: • For large decreases in the process variability (e.g., τ = 0.25), it can be seen that, for p * 0 > 0.6, the corresponding out-of-control ARL values are ARL 1 ≈ 1. On the other hand, for large increases (τ = 2), small values for p * 0 are preferable. For instance, from Table 7 it can be seen that, when τ = 0.25, the optimal value of p 0 is p * 0 ≥ 0.7. On the other hand, p * 0 = 0.1 for large increases (i.e. τ = 2). • For moderate decreases in the variability (such as τ = 0.5 or 0.75), from Table 7 we may see that p * 0 takes values between 0.3 and 0.6. On the other hand, for moderate increases in the variability (τ = 1.5 or 1.75), the optimal value of p 0 is p * 0 ≤ 0.2 for all the cases. • Finally, for small decreases (such as τ = 0.95) or increases (τ = 1.25) the optimal value of p 0 ranges from 0.05 to 0.25. • Similarly, from Table 8 we may see that all the above statements are also valid for n = 20.

From the results presented above, it can be concluded that as the value of τ increases then the optimal value for p 0 decreases. As a general guideline to practitioners, we advise to use p 0 ≈ 0.2 for a monitoring scheme that aims at the quick detection of small increases/decreases. For moderate shifts, we suggest p 0 ≈ 0.6. Finally, setting p 0 ≈ 0.1 and p 0 ≈ 0.7 can be considered as a reasonable choice for detecting large decreases and increases respectively in the process variability.

Performance comparisons

In Table 9 the out-of-control performance of the D-SN-C EWMA chart is compared with three parametric Shewhart-type control charts for monitoring the process variability for n ∈ {5, 20, 30} under the normal distribution. In particular, the D-SN-C EWMA chart is compared with the modified R and S charts proposed by Zhang in [START_REF] Yhang | Improved R and S Control Charts for Monitoring the Process Variance[END_REF] and an enhanced R chart proposed by Khoo and Lim in [START_REF] Khoo | An Improved R (range) Control Chart for Monitoring the Process Variance[END_REF]. For each case, the proposed chart is optimized as explained in Section 6 assuming a normal distribution. It can be clearly seen that, regardless the sample size or the shift magnitude τ , the D-SN-C EWMA chart has the best performance among its competitors. It should be noted that, for small to moderate decreases (0.5 < τ < 0.9) or increases (1.1 < τ < 1.5), the proposed chart's corresponding ARL 1 values, are significantly smaller, compared with its parametric counterparts. For instance, for n = 20, and τ = 0.9 the ARL 1 values for the Zhang's R and S charts and Khoo and Lim's R chart are 188.04, 174.67 and 232.12, respectively, while for the proposed chart it is ARL 1 = 26.21. Similarly, when τ = 1.1 the ARL 1 values for the Zhang's R and S chart and Khoo and Lim's R chart are 127.59, 78.82 and 139.9, respectively, while for the proposed chart it is ARL 1 = 24.47. As a result, the D-SN-C EWMA chart, can be considered as an efficient choice for monitoring small shifts in the process variance.

Additonally, we compared the performance of the proposed chart with the nonparametric Shewhart-type chart based on the interquantile sign statistic (to be denoted as Shewhart S-SD chart) as introduced by Pawar at al. in [START_REF] Pawar | A Nonparametric Control Chart for Process Variability Based on Quantiles[END_REF], under different cases of the Johnson-type distributions introduced above. For both schemes (Shewhart and EWMA), for a given member from the family of Johnson's distributions, we optimised each chart in terms of the value p 0 and computed the quantity

ARL EWMA 1 -ARL Sh 1 ARL Sh 1 × 100% (13) 
where ARL Sh 1 (resp. ARL EWMA 1

) is the out-of-control performance, in terms of ARL, of the Shewhart S-SD (resp. D-SN-C EWMA) chart, at a given shift in process variability. These differences are presented in Table 10 for n = 20. From the results in Table 10 we deduce that the proposed EWMA chart outperforms the Shewhart S-SD chart, regardless the sample size, the shift magnitude or the underlying distribution.. Practically speaking, for large increases (τ > 2) or decreases (τ → 0) in the process variability, these two schemes have similar performance but for small shifts the D-SN-C chart is clearly superior. Furthermore, except for comparisons with the Shewhart chart of Pawar et al. in [START_REF] Pawar | A Nonparametric Control Chart for Process Variability Based on Quantiles[END_REF], we provide next, comparisons with another competitive nonparametric EWMA chart for monitoring the process variability, Specifically, we compare the proposed EWMA chart with the EWMA chart of Yang and Arnold in [START_REF] Yang | A New Approach for Monitoring Process Variance[END_REF], which is based on the arcsin transformation. We will refer to this chart as the AC-EWMA chart. The out-of-control performance of the AC-EWMA chart is derived by using the same setup as the authors did in [START_REF] Yang | A New Approach for Monitoring Process Variance[END_REF] (see, Table 9 in [START_REF] Yang | A New Approach for Monitoring Process Variance[END_REF], page, 2758) assuming Standard Normal and Double Exponential distributions. For the design parameters of the proposed D-SN-C EWMA chart, we set λ = 0.2,K = 2.855 and p 0 = 0.2. We have to note that the choice of p 0 = 0.2 is based on the results presented in Section 6. In particular, we showed that, for a symmetric underlying distribution, setting p 0 ≈ 0.2 significantly improves the ability of the chart to detect small to moderate shifts in the process dispersion. From Table 11, we may see that the proposed chart has better performance regardless the shift magnitude and, therefore, it should be considered as an effective scheme to detect shifts in the process variability.

An illustrative example

In this section, an example with two different scenarios is presented, in order to show a practical Phase II implementation of the operation of the proposed D-SN-C EWMA chart. The datasets for each scenario, which have been originally introduced in [START_REF] Castagliola | Monitoring Process Variability using EWMA[END_REF], are presented in Table A1 and plotted in Figures 2 and3, respectively. Both datasets consists of 30 subgroups of size n = 5 where the first 20 subgroups are the same for both scenarios and are randomly generated from the N(20, 0.1) distribution. Moreover, the last 10 subgroups in Figure 2 are generated from the N(20, 0.2) distribution while the last 10 subgroups in Figure 3 are generated from the N(20, 0.05) distribution.

Let us consider a realistic situation, from the point of view of a practitioner, in which we do not have any a priori information regarding the underlying distribution nor the in-control values of the mean and variance for both cases. We only have at our disposal a reference in-control sample of size n = 30 and we are interested in monitoring increases (first scenario) and decreases (second scenario) in the process variability. Before we proceed to the phase II implementation of the control chart our primary goal is to:

• determine the value of p 0 as well as the value of the pair (λ, K) • estimate the quantiles X p0/2 and X 1-p0/2 .

From the histogram presented in Figure 1 we may see that the in-control reference sample is bell-shaped. Additionally, from the numerical analysis presented in Section 6, we conclude that, for symmetric distributions (or equivalently for cases with light asymmetry), setting p 0 ≈ 0.05 and λ ∈ [0.2, 0.5] can be considered as a reasonable choice for detecting moderate increases in the process variability. Similarly for monitoring a moderate decrease in the process variability setting p 0 ≈ 0.45 and λ ≈ 0.2 can be considered as a reasonable choice. As a consequence, for the current scenarios, the vector of parameters (p * 0 , λ * , K * ) for detecting an increase in the process dispersion is chosen to be (p * 0 = 0.05, λ * = 0.25, K * = 3.424) with the corresponding control limits LCL * = -5.789, UCL * = -3.212 computed using [START_REF] Amin | Nonparametric Quality control Charts based on the Sign Statistic[END_REF] and [START_REF] Murakami | A Nonparametric Control Chart Based on the Mood Statistic for Dispersion[END_REF] presented in Section 5 where the value of the "continuousify" parameter is set to h = 0.2. Similarly, for detecting a decrease in the process dispersion we choose the vector (p * 0 = 0.5, λ * = 0.25, K * = 2.823) and the control limits are equal to LCL * = -2.395, UCL * = 2.395.

Regarding the determination of the quantiles of interest for each scenario the simplest way is to estimate them from the reference sample through the inverse of its empirical distribution. In particular, for p 0 = 0.5 the estimates of the X p0/2 and X 1-p0/2 are equal to X0. [START_REF] Castagliola | An EWMA-Type Sign Chart With Exact Run Length Properties[END_REF] 4, it can be seen that the proposed chart can efficiently detect the increase in the process variability at the 25th sampling point. Similarly, for the second scenario, which corresponds to a decrease in the process variability (Figure 5), we may see that the D-SN-C EWMA chart also detects this shift at the 25th sampling point. 

Conclusions

In this paper, we introduced a nonparamteric EWMA control chart based on a general extension of the Sign statistic, called as the D-SN-C EWMA chart, for monitoring shifts in the process variability. For the computation of the chart's RL properties, the "continuousify" method of Wu et al. [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] has been used, ensuring that the ARL values can be accurately and effectively calculated. Additionally, the Johnson's type distributions covering a wide range of symmetric and asymmetric distributions. Based on our results, when the value of the in-control parameter p 0 is optimized (instead of being pre-defined), the chart's out-of-control performance is significantly improved; more precisely, values of p 0 ≈ 0.2 are found to be preferable for small decreases (τ ≈ 0.95) or increases (τ ≈ 1.25). Additionally, for large decreases (τ ≈ 0.25) or increases (τ ≈ 2) in the process variability, large (p 0 ≈ 0.7) or small values (p 0 ≈ 0.05) of p 0 are respectively the optimal ones. As a consequence, the proposed chart can be considered as a reliable technique which provides to the practitioners robust information regarding its in-and out-of-control RL properties.

The current work can be extended in several directions. In particular, the "continuousify" method could be applied in EWMA schemes where other nonparametric statistics are considered such as the Mann-Whitney, or the Ansari-Bradley statistics. Additionally, it would also be interesting to examine the performance of the proposed EWMA chart based on the general Sign statistic under the presence of ties in the pop- 3 Finally, the method of Wu et al. [START_REF] Wu | A Distribution-free EWMA Control Chart for Monitoring Time-Between-Events-and-Amplitude Data[END_REF] could be extended in distribution-free EWMA charts designed for monitoring bivariate processes.

Appendix

Let E N (X) = µ and V N (X) = h 2 denote the mean and variance of a random variable, X, from a Normal distribution. Then the mean of SD * t , is computed as:

E(SD * t ) = ∞ -∞ s × f SD * t (s|n, p 1 )ds = ∞ -∞ s × ψ∈Ψ f Bin ψ + n 2 |n, p 1 × f N (s|ψ, h)ds = ψ∈Ψ f Bin ψ + n 2 |n, p 1 × ∞ -∞ s × f N (s|ψ, h)ds = ψ∈Ψ f Bin ψ + n 2 |n, p 1 × E N (s) = ψ∈Ψ f Bin ψ + n 2 |n, p 1 × ψ = E(SD t )
Similarly, using the fact that E(SD * t ) = E(SD t ) the variance of SD * t is computed as: 

V(SD * t ) = E (SD * t ) 2 -E(SD * t ) 2 = ∞ -∞ s 2 × f SD * t (s|n, p 1 )ds -E(SD * t ) 2 = ∞ -∞ s 2 × ψ∈Ψ f SD ψ + n 2 |n, p 1 × f N (s|ψ, h) ds -E(SD t ) 2 = ψ∈Ψ f Bin ψ + n 2 |n, p 1 × ∞ -∞ s 2 × f N (s|ψ, h)ds -E(SD t ) 2 = ψ∈Ψ f Bin ψ + n 2 |n, p 1 × E N (s 2 ) -E(SD t ) 2 = ψ∈Ψ f Bin + n 2 |n, p 1 × V N (s) + (E N (s)) 2 -E(SD t ) 2 = ψ∈Ψ f Bin ψ + n 2 |n, p 1 × h 2 + ψ 2 -E(SD t ) 2 = h 2 × ψ∈Ψ f Bin ψ + n 2 |n, p 1 + ψ∈Ψ ψ 2 × f Bin ψ + n 2 |n, p 1 -E(SD t ) 2 = h 2 + E (SD t ) 2 -E(SD t ) 2 = h 2 + V(SD t ).
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 1 Figure 1.: Histogram of the reference sample
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 3 Figure 2.: Dataset for the first example
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 4 Figure 4.: The D-SN-C EWMA chart for the Phase II data presented in Figure 2
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 5 Figure 5.: The D-SN-C EWMA chart for the Phase II data presented in Figure 3
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 6 : ARL 1 values for λ = 0.2, K = 2.75, n = 10, h = 0.2 under the benchmark of the 18 Johnson distributions for different shifts using p 0 = {0.1, 0.5,

  Out-of-control performance of the D-SN-C EWMA chart versus several parametric control charts when the underling distribution is the Normal for n = {5, 20, 30} Zhang's R Chart Zhang's S Chart Khoo and Lim's R Chart D-SN-C EWMA Chart τ n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n

Table 1 .

 1 : Benchmark of 18 Johnson's type distributions.

	case γ3	γ4	type	a	b	c	d
	1	0	-1.2	B	0	0.64646 -1.81530 3.63060
	2	0	-0.6	B	0	1.39830 -3.10970 6.21950
	3	0	0	U	0	100	0	100
	4	0	1	U	0	2.3212	0	2.10940
	5	0	3	U	0	1.6104	0	1.31180
	6	0	6	U	0	1.3493	0	1
	7	2	4.3	B	1.7464	0.69076 -0.48932 6.6213
	8	2	6.1	B	3.3279	1.227	-1.0016	16.088
	9	2	7.9	U	-4.85600 1.8044 -1.41900 0.19332
	10	2	10.8	U	-1.0444	1.432	-0.65538 0.82361
	11	2	16.7	U	-0.52977 1.2093 -0.33154 0.73314
	12	2	25.5	U	-0.34371 1.0892	-0.2023 0.63054
	13	5	39.9	B	3.3715	0.74593 -0.27094 25.150
	14	5	52.6	B	5.2193	0.98134 -0.47316 97.043
	15	5	65.3	U	-4.01870 1.0864 -0.56652 0.02806
	16	5	86	U	-0.75701 0.98744 -0.32033 0.37954
	17	5 128.7	U	-0.43187 0.90797 -0.18538 0.37543
	18	5 192.1	U	-0.29868 0.85558 -0.12122 0.34029

  = 19.96594 (the theoretical values assuming normality is 19.8651) and X0.75 = 20.0928 (the theoretical value assuming normality is 20.1349). Similarly, for p 0 = 0.05 the estimates of the X p0/2 and X 1-p0/2 are equal to X0.025 = 19.8436 and X0.975 = 20.2296. (the theoretical values assuming normality are 19.60801 and 20.39199). Finally, the corresponding values of SD t , SD * t and Z * t are presented in Table 12. From Figure

Table A1 .

 A1 : Phase II samples of t = 1, 2, . . . 20 subgroups of size n = 5 .028 19.950 19.889 19.941 20.020 20.101 20.022 20.049 20.169 20.099 19.978 20.135 19.878 20.130 20.010 20.086 19.888 20.000 19.885 2 20.115 20.129 19.900 20.043 19.996 20.072 20.109 20.009 20.013 19.808 19.923 20.052 20.011 19.917 20.120 20.096 20.124 19.931 19.974 20.107 3 19.990 19.954 19.940 20.003 20.009 20.182 19.846 20.018 20.110 20.110 20.045 20.038 19.911 19.925 20.124 19.906 20.140 19.903 20.078 20.004 4 20.022 20.080 20.133 19.800 19.853 20.132 20.198 20.047 19.893 20.029 19.985 20.097 19.913 19.988 19.801 20.108 20.057 20.003 20.135 20.067

	Subgroup	First 20 subgroups for both examples	X t,j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	1 20.083 205 19.995 20.049 19.976 20.113 19.906 20.099 19.905 19.962 19.857 19.913 19.852 20.031 19.781 20.058 19.962 19.891 20.111 19.878 19.885 20.197	Last 10 subgroups for example 1 (Figure 2)	X t,j 21 22 23 24 25 26 27 28 29 30	1 19.843 20.038 20.077 20.031 19.650 20.265 20.028 20.162 20.000 20.544	2 20.142 19.709 20.046 20.190 19.396 20.085 20.139 19.949 20.093 19.865	3 19.757 19.872 20.154 19.903 19.969 20.201 19.824 19.859 19.901 19.857	4 20.184 20.016 20.083 19.669 19.955 20.238 19.779 20.395 19.836 20.262	5 20.178 20.205 20.248 20.049 20.102 20.048 19.824 19.615 19.918 19.838	Last 10 subgroups for example 2 (Figure 3)	X t,j 21 22 23 24 25 26 27 28 29 30	1 20.044 20.044 20.097 20.049 20.018 19.994 19.957 20.044 20.047 19.942	2 20.046 20.037 19.859 20.001 20.003 20.038 20.009 19.969 20.051 19.975	3 20.058 19.966 19.983 20.085 20.076 20.001 20.018 20.009 19.931 20.041	4 20.104 20.046 19.944 19.986 20.087 20.016 20.071 20.090 19.974 20.008	5 19.969 19.998 19.979 20.018 20.070 19.996 19.939 20.055 20.015 19.973

Table 2 .

 2 : In-control values of ARL for the D-SN EWMA and D-SN-C EWMA charts when λ = 0.2, K = 2.85 and h = 0.2 under different combinations of (n, p 0 ).

Table 3 .

 3 : ARL 1 values as a function of the number of subintervals 2m + 1 for the twosided D-SN EWMA chart (top) and two-sided D-SN-C EWMA chart (bottom) with h = 0.2 when λ = 0.2, K = 2.85, n = 5 and τ = 1.1 for the #1-#18 distributions listed in Table1.

	D-SN EWMA chart

Table 4 .

 4 : ARL 1 values as a function of the number of subintervals 2m + 1 for the twosided D-SN EWMA chart (top) and two-sided D-SN-C EWMA chart (bottom) with h = 0.2 when λ = 0.2, K = 2.85, n = 5 and τ = 0.9 for the #1-#18 distributions listed in Table1

	D-SN EWMA chart

Table 5 .

 5 : ARL 0 values of the two-sided D-SN-C EWMA chart for λ = 0.2, K = 2.85 and for fixed values of h = {0.1, 0.15, . . . , 0.3} and different combinations of (n, p 0 ).

	(n, p0) = (15, 0.6)	h	0.1 0.15 0.2 0.25 0.3	376.4 376.8 377.1 377.2 377.2	380.7 378.9 378.2 378.1 378.0
	(n, p0) = (13, 0.5)	h	0.1 0.15 0.2 0.25 0.3	408.8 404.4 403.4 403.2 403.1	402.5 403.9 404.1 404.1 404.0
	(n, p0) = (7, 0.4)	h	0.1 0.15 0.2 0.25 0.3	380.2 379.8 379.7 379.7 379.6	380.7 380.6 380.6 380.5 380.4
			2m + 1	51	61

  .[START_REF] Castagliola | Monitoring Process Variability using EWMA[END_REF] 17.99 21.50 9.50 8.99 8.83 20.68 27.42 31.79 0.2 3.00 5.05 6.38 7.54 8.83 9.91 4.66 5.05 5.78 8.22 10.14 11.51 5.12 4.94 5.05 10.74 13.44 15.10 .20 10.52 10.75 11.01 11.22 8.93 9.99 10.27 10.75 11.16 11.44 9.06 9.65 9.81 10.98 11.61 11.97

	3.16	2.01	1.50		9.86		2.64	2.59
		2.00	1.44		9.23		2.42	2.45
		2.00 2.00 2.00 2.00 2.00	1.37 1.21 1.15 1.14 1.32		8.79 4.82 5.67 5.91 8.14		2.20 1.42 1.48 1.50 2.06	2.33 1.87 1.91 1.92 2.23
		0.5 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	0.7 1.00 1.02 1.09 1.16 1.23 1.29 1.16 1.09 1.08 1.20 1.30	τ = 0.75	8.28 8.30 130.5 0.1 4.95 6.25 8.67 11.22 14.28 17.01 7.46 7.79 4.79 6.48 7.05 7.48 7.94 8.33 4.63 6.18 6.63 7.54	0.7 9.11 10τ = 2	2.03 1.72 1.88 2.01 1.32 1.48 1.55 1.80 0.1 1.12 1.42 1.58	2.22 2.08 2.03 2.13 2.21 1.79 1.90 1.94 0.2 1.57 1.95 1.84	0.5 2.96 3.14

Table 12 .

 12 : Values of SD t , SD * t , Z * t of each subgroups for the two scenarios

		scenario plotted in Figure 4	scenario plotted in Figure 5
	Subgroup SD t	SD * t	Z * t	SD t	SD * t	Z * t
	1	-5	-5.023	-4.631	-3	-3.148	-0.787
	2	-5	-4.784	-4.669	-1	-0.777	-0.785
	3	-5	-4.816	-4.706	3	2.522	0.042
	4	-3	-2.952	-4.267	1	1.375	0.375
	5	-5	-5.137	-4.485	1	0.747	0.468
	6	-5	-5.047	-4.625	1	1.078	0.621
	7	-5	-5.130	-4.752	5	5.146	1.752
	8	-5	-4.806	-4.765	-3	-2.942	0.578
	9	-5	-5.109	-4.851	1	0.944	0.670
	10	-3	-3.271	-4.456	3	3.107	1.279
	11	-5	-4.958	-4.581	1	1.182	1.255
	12	-5	-4.820	-4.641	-3	-3.028	0.184
	13	-3	-2.773	-4.174	3	3.020	0.893
	14	-5	-5.028	-4.388	1	1.037	0.929
	15	-3	-2.857	-4.005	5	5.050	1.959
	16	-5	-5.274	-4.322	3	3.345	2.306
	17	-5	-5.194	-4.540	1	0.893	1.952
	18	-5	-5.212	-4.708	3	2.997	2.214
	19	-5	-4.823	-4.737	-1	-1.235	1.351
	20	-5	-4.951	-4.790	1	0.448	1.126
	21	-1	-0.563	-3.733	-3	-3.037	0.085
	22	-3	-3.125	-3.581	-5	-4.742	-1.122
	23	-3	-3.179	-3.481	1	1.081	-0.571
	24	-3	-2.744	-3.296	-5	-5.418	-1.783
	25	-1	-0.938	-2.707	-5	-4.948	-2.574
	26	-1	-0.996	-2.279	-5	-5.247	-3.242
	27	1	0.907	-1.483	-1	-1.121	-2.712
	28	-1	-0.683	-1.283	-5	-5.285	-3.355
	29	-3	-3.576	-1.856	-3	-3.095	-3.290
	30	1	1.194	-1.093	-3	-3.178	-3.262

0.5463 0.5411 0.5398 0.5388 0.5378 0.5371 0.5449 0.5414 0.5404 0.5386 0.5371 0.5362 0.5440 0.5422 0.5417 0.5374 0.5355 0.5344
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 Table 7.: Out-of-control performance for the proposed chart along with the corresponding optimal parameters for n = 10