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Abstract—This paper studies a novel multi-access coded
caching (MACC) model where the topology between users and
cache nodes is a generalization of those already studied in
previous work, such as combinatorial and cross-resolvable design
topologies. Our goal is to minimize the worst-case transmission
load in the delivery phase from the server over all possible user
requests. By formulating the access topology as two classical
combinatorial structures, t-design and t-group divisible design,
we propose two classes of coded caching schemes for a flexible
number of users, where the number of users can scale linearly,
polynomially or exponentially with the number of cache nodes. In
addition, our schemes can unify most schemes for the shared link
network and unify many schemes for the multi-access network
except for the cyclic wrap-around topology.

Index Terms—Coded caching, multi-access networks, t-design,
t-group divisible design

I. INTRODUCTION

Caching can effectively shift traffic from peak to off-peak
times [1] by storing fractions of popular content in users’
local memories during peak traffic times, so that users can
be partially served from their local caches, thereby reducing
network traffic. The seminal work in [2] provided the so-
called coded caching framework, which managed to achieve
amazing coding gains that scale linearly with the total number
of participating users for a shared-link network. The authors
of [2] also proposed the first known scheme, referred to as
the Maddah-Ali and Niesen (MN) scheme. From this work in
[2], various works have been proposed for the original shared
link network model and also as many extended models, where
many of these works aimed at characterizing the optimal trade-
off between memory size and communication load. While the
mature literature on coded caching has explored a rich variety
of settings, some recent findings - which we discuss later -
have brought to the fore a powerful new way of exploiting a
modest number of caches. This new way, called multi-access
coded caching (MACC), is the subject of our work here. In this
paper we consider this MACC model, where cache contents
are stored at edge cache nodes in the network and users do
not have their own caches, as shown in Fig. 1. The MACC
model was originally proposed in [3] and it included a central
server with N equal-length files, K cacheless users, and Γ
cache nodes, where each user can access a subset of cache
nodes at negligible cost. The MACC process consists of two
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Fig. 1: Multiaccess coded caching system.

phases, namely the placement phase and the delivery phase. (i)
In the placement phase, each cache node places the equivalent
of M files into its memory, aware of the network topology
but without of knowledge of the users’ subsequent demands.
(ii) In the delivery phase, each user requests a signle file. All
the requests are done simultaneously, and we assume here
that each requested file is different than any other requested
file. According to the users’ demands and the contents cached
by the cache nodes, the server broadcasts to the users the
equivalent of R unites of files. The transmission is specifically
designed such that each user can recover its demand from
the broadcasted messages and the contents cached by its
connected cache nodes. The objective is to characterise the
trade-off between memory size M and the load R for the
worst-case where all the demands are different.

The MACC model was first considered with access topol-
ogy in [3], where each user can access L neighbouring
cache nodes in a cyclic wrap-around fashion. The authors
in [3] proposed a coloring-based coded caching scheme that
exploits the network topology. Under the one-dimensional
(1D) MACC model, several improved schemes (with lower
load or/and lower subpacketization) and converse bounds on
the load were proposed in [4]–[14]. In addition, some works
have extended 1D MACC to 2D MACC [13], [15]. Recently,
[16] introduced a very powerful new MACC topology which
proved to have stunning gains. In particular, [16] introduced
the so called combinatorial access topology which included Γ
cache nodes and

(
Γ
L

)
users where each L subset of cache nodes

is connected to a distinct user. A coded caching scheme was



proposed in [16], which was then proved in [17] to achieve
optimal load under the constraint of uncoded cache placement
where each cache node directly selects some library bits to
store. Another very interesting access topology considered in
the MACC literature is the cross-resolvable design in [11].

In fact the combinatorial access topology is equivalent to a
special t-design with t = L, which consists of a Γ-point set
X and family containing some subsets (referred to as blocks)
of X (See Lemma 4 in Section II-C). The cross-resolvable
design access topology is equivalent to a special t = L-GDD
which consists of X and its partitions and a family of blocks
(See Remark 2 in Section III). In addition, the number of
users equals the number of blocks. Furthermore it is well
known that by choosing the different values of t, the block
numbers of these two classes can scale linearly, polynomially
or exponentially with the number of cache nodes.

According to the property of the t-design, i.e., any t-
subset of X is contained by a certain number of blocks,
here we apply the placement strategy of the MN scheme
into the t-design access topology, to obtain our scheme.
Interestingly, our scheme also covers the scheme in [16] as a
special case. Then according to the property of t-GDD, i.e.,
it has some partition of X , by applying an orthogonal array
(OA) placement strategy in the context of the t-GDD access
topology, we obtain the second proposed scheme. As a by-
product, it is also interesting to see that our schemes can also
work and unify some existing schemes for the original MN
shared-link caching network, where each user access its own
(single) cache. Furthermore by carefully calibrating our OA
and t-GDD structure, we can show that –with the exception of
the cyclic-wrap-around topology–most other existing schemes
and structures can be captured by our new unifying setting.

Notations: We assume that all sets are in an ordered
set; for a set V , we let V(j) represent the j-th element in the
ordering of V and let V(J ) = {V(j)|j ∈ J }. For any positive
integers a, b, t with a < b and t ≤ b, and any non-negative
set V , let [a, b] = {a, a+1, . . . , b}, especially [1, b] be shorten
by [b], and

(
[b]
t

)
= {V | V ⊆ [b], |V| = t}, i.e.,

(
[b]
t

)
is the

collection of all t-sized subsets of [b].

II. SYSTEM MODELS

In this section, we introduce the multiaccess caching model
studied in this paper. For the original MN caching model
in [2], and the MN caching scheme from the viewpoint of
placement delivery array (PDA) [18] are recalled. Then some
related combinatorial concepts are reviewed.

A. The original MN caching system and MN PDA

In the shared-link coded caching system [2], a server
containing N files with equal length in W = {W1, . . .,
WN} connects through an error-free shared link to K users in
{U1, U2, . . . , UK} with K ≤ N , and every user has a cache

which can store up to M files for 0 ≤M ≤ N . An F -division
(K,M,N) coded caching scheme contains two phases.

• Placement Phase. Each file is divided into F packets with
equal size,1 and then each user Uk where k ∈ [K] caches some
packets of each file, which is limited by its cache size M . Let
ZUk denote the cache contents at user Uk.

• Delivery Phase. Each user randomly requests one file
from the server. The requested file by user Uk is represented
by WdUk

, and the request vector by all users is denoted by
d = (dU1 , . . . , dUK ). According to the cached contents and
requests of all the users, the server transmits a broadcast
message including Sd packets to all users, such that each
user’s request can be satisfied.

In such system, the number of worst-case transmitted files
(a.k.a. load) over all possible requests is expected to be as
small as possible, which is defined as R = maxd∈[N ]K

Sd

F .

For the shared-link coded caching problem, the authors in
[18] proposed a class of solutions based on the concept of
placement delivery array (PDA) which is defined as follows.

Definition 1: ( [18]) For positive integers K,F,Z and S,
an F×K array P = (pj,k)j∈[F ],k∈[K], composed of a specific
symbol “ ∗ ” and S positive integers from [S], is called a
(K,F,Z, S) PDA if it satisfies the following conditions:

C1. The symbol “ ∗ ” appears Z times in each column;
C2. Each integer occurs at least once in the array;
C3. For any two distinct entries pj1,k1 and pj2,k2 , pj1,k1 =

pj2,k2 = s is an integer only if a.) j1 6= j2, k1 6= k2; and b.)
pj1,k2 = pj2,k1 = ∗.

Lemma 1: ( [18]) An F -division caching scheme for a
(K,M,N) caching system can be realized by a (K,F,Z, S)
PDA with M/N = Z/F and load R = S/F .

Finally let us briefly introduce the MN coded caching
scheme in [2] from the viewpoint of MN PDA, where the
resulting PDA is referred to as MN PDA. For any integer
t ∈ [K], a

(
K
t

)
×K array P = (pT ,k), T ∈

(
[K]
t

)
, k ∈ [K],

is defined by pT ,k = T ∪ {k} if k /∈ T , otherwise pT ,k = ∗
where the rows are labelled by all the subsets T ∈

(
[K]
t

)
.

When randomly choosing two bijections from the sets
(

[K]
t

)
and

(
[K]
t+1

)
to the [

(
K
t

)
] and [

(
K
t+1

)
] respectively, the following

MN PDA and its achieved load can be obtained.
Lemma 2: (MN PDA [2]) For any positive integers K

and t with t < K, there exists a (K,
(
K
t

)
,
(
K−1
t−1

)
,
(
K
t+1

)
) PDA,

which gives a
(
K
t

)
-division (K,M,N) coded caching scheme

for original MN caching model with M/N = t/K and load
R = (K − t)/(t+ 1).

B. Multiaccess caching system

The (L, r,K,Γ,M,N) multiaccess coded caching problem
containing a server with a set of N equal-length files (de-
noted by W = {W1, . . . ,WN}), Γ cache nodes (denoted by

1In this paper, we only consider the uncoded cache placement.



C1, . . . , CΓ), and K ≤ N users (denoted by U1, . . . , UK).
Each cache-node has a memory size of M files where
0 ≤ M ≤ N/L. For any integers γ ∈ [Γ] and k ∈ [K],
let Cγ denote the user set each of which can access cache
node Cγ and Bk denote the cache node set each of which
can be accessed by user Uk. Assume that each cache node is
accessed by a different user set of size r and each user can
access a different cache node set of size L, i.e., both Cγ and
Bk are unique sets and |Cγ | = r and |Bk| = L for each γ ∈ [Γ]
and k ∈ [K]. So we have rΓ = LK. We call the above model
of a caching system as (L, r,K,Γ,M,N) coded caching
problem under access topology B = {Bk | k ∈ [K]}. An
F -division (L, r,K,Γ,M,N) coded caching scheme under
access topology B runs in two phases:

• Placement phase: Each file is divided into F packets of
equal size, and then each cache-node Cγ where γ ∈ [Γ],
directly caches some packets of each file, which is limited
by its cache size M . Let ZCγ denote the cache contents at
cache-node Cγ . The placement phase is also done without
knowledge of later requests. Each user Uk where k ∈ [K] can
retrieve the packets cached at the L cache-nodes of Bk. Let
ZUk denote the retrievable packets by user Uk.

• Delivery phase: Each user randomly requests one file.
According to the request vector d = (dU1

, dU2
, . . . , dUK ), the

cached packets in cache-nodes and access topology, the server
transmits Sd coded packets to all users, such that each user’s
request can be satisfied.

We aim to design a multiaccess coded caching scheme with
minimum worst-case load. For the sake of simplicity, we do
not distinguish the user Uk and its accessible cache node set
Bk unless otherwise stated. Then any fixed access topology
can be represented by an appropriate combinatorial structure.
In this paper we will discuss the heterogeneous access topolo-
gies from the view points of combinatorial design theory. In
the following we will introduce some classic combinatorial
concepts and their relationships.

C. t-design, GDD and OA

Definition 2: ( [19], Design) A design is a pair (X ,B)
such that the following properties are satisfied 1) X is a set of
elements called points, and 2) B is a collection of nonempty
subsets of X called blocks.

Definition 3: ( [20], t-design) Let Γ, K, L and t and λ
be five positive integers. A t-(Γ, L,K, λ)-design is a design
(X ,B) where X has Γ points and B has K blocks that satisfy
1) |B| = L for any B ∈ B, and 2) every t-subset of X is
contained in exactly λ blocks.

From Definition 3, we can obtain that the number of blocks
is K = λ

(
Γ
t

)/ (
L
t

)
≈ O (Γt) (Γ → ∞). In addition, each

point appears the same time in all blocks, which is r =
KL/Γ = λ

(
Γ−1
t−1

)
/
(
L−1
t−1

)
. So a t-(Γ, L,K, λ)-design is also

shorten as t-(Γ, L, λ)-design and written as t-(Γ, L,K, r, λ)-
design sometimes in this paper. A t-(Γ, L, λ)-design is also a

t′-(Γ, L, λt′) design where t′ ≤ t and λt′ = λ
(

Γ−t′
t−t′

)/ (
L−t′
t−t′

)
.

The 2-(Γ, L, λ) design is always called (Γ, L, λ) balanced
incomplete block design (in short BIBD).

Example 1: When Γ = 7 and L = 3, let X = {1, 2,
3, 4, 5, 6, 7} and B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7},
{5, 6, 1}, {6, 7, 2}, {7, 1, 3}}. Then (X ,B) is a 2-(7, 3, 1)
design, i.e., (7, 3, 1) BIBD by Definition 3.

Recently, P. Keevash in [21] and S. Glock et al., in [22]
respectively prove the existence conjecture for t-design, i.e.,
the following result.

Lemma 3 (The existence conjecture for t-design [21],
[22]): Given t, L and λ, there exists an integer Γ0(t, L, λ)
(which is a function of (t, L, λ)) such that for any Γ >
Γ0(t, L, λ), a t-(Γ, L, λ) design exists if and only if for any
0 ≤ i ≤ t− 1,

(
L−i
t−i
)

divides λ
(

Γ−i
t−i
)
.

The following special design, i.e., group divisible design,
is also useful in this paper.

Definition 4: ( [20], t-GDD) Let L, t, q and m be positive
integers with t ≤ L ≤ m. A (m, q, L, λ) group divisible t-
design (t-(m, q, L, λ) GDD) is a triple (X ,G,B) where 1) X
is a set of mq points, 2) G = {G1,G2, . . . ,Gm} is a partition
of X into m subsets each of which has size q (called groups),
and 3) B is a family of L-blocks of X such that every block
intersects every group in at most one point, and every t-subset
of points from t distinct groups belongs to exactly λ blocks.

We can obtain the number of blocks in B by Definition 4
K = λ

(
m
t

)
qt/
(
L
t

)
. Clearly the number of blocks in a t-design

is larger than that of a t-GDD for the same point set, block
size and index λ.

Definition 5: ( [11], Cross resolvable design) A design
(V,A) is called resolvable if the blocks of A can be partitioned
into parallel classes, say A1, A2, . . ., Am, each of which is
a set of blocks that partition the set of elements. (V,A) is
called t-cross resolvable if the intersection of any t blocks
drawn from any L distinct parallel classes has the same size
λt which is called t-th cross intersection number.

A t-cross resolvable design (V,A) is written as t- (v, k,Γ,
m,λt) resolvable design when |V| = v and A has Γ blocks
each of which has size k and has m parallel classes.

For any design (V,A), we regard the blocks A as points
and V as block set where A ∈ A is contained by x ∈ V if
and only if x ∈ A, then the obtained design (A,V) = (X ,B)
is called the dual design of (V,A). Clearly a design is a dual
design of its dual design.

Example 2: Let V = [4] and A = A1 ∪ A2 ∪ A3

where A1 = {A1 = {1, 3},A2 = {2, 4}}, A2 = {A3 =
{1, 2},A4 = {3, 4}} and A3 = {A5 = {1, 4},A6 = {2, 3}}.
It is easy to check that A1, A2 and A3 are three different
parallel classes. Furthermore the intersection of any two
blocks from different parallel classes contains exactly one
point. So by Definition 5, (V,A) is a t-(v, k,Γ,m, λt) = 2 =



(4, 2, 6, 3, 1) resolvable design. Then its dual design (X ,B)
where X = A and all the blocks are B = {{A1,A3,A5},
{A2,A3,A6}, {A1,A4,A6}, {A2,A4,A5}}. Define G =
{G1 = {1, 2}, G2 = {3, 4}, G3 = {5, 6}}. We can check
that (X ,G,B) is a t-(m, q,m, λ) = 2-(3, 2, 3, 1) GDD.

In fact any dual of a cross resolvable design is a GDD.
Lemma 4: The dual of a t-(v, k,Γ,m, λt) resolvable

design (V,A) is a t-(m, q,m, λt) GDD where q = v/k.

Finally the following concept is useful for our placement
strategy of our second class of schemes.

Definition 6: ( [19], OA) Let A be an F1 × m matrix
over [q] for positive integers F1, m, q ≥ 2, and s ≤ m.
A is an orthogonal array (OA) with strength s, denoted by
OAλ(F1,m, q, s), if every 1 × s row vector appears exactly
λ times in A|S for each S ∈

(
[m]
s

)
, where A|S represents

the column-wise sub-matrix of A including the columns with
indices in S.

It is well known that F1 = λqs for any OAλ(F1,m, q, s)
and thus OAλ(F1,m, q, s) is sometimes written as
OAλ(m, q, s) for short [19]. The parameter λ is the
index of the orthogonal array. If λ is omitted, then it is
understood to be 1.

III. MAIN RESULTS

Firstly, by the MN placement strategy and t-design access
topology, we can obtain the following result.

Theorem 1 (Scheme via t-design): Assume that there
exists a t-(Γ, L, 1) design (X ,B) for some positive integers
Γ, L and t ≥ 2. For any positive integer M and N
satisfying that ΓM/N is an integer, we can obtain a (L, r =(

Γ−1
t−1

)
/
(
L−1
t−1

)
,K =

(
Γ
t

)
/
(
L
t

)
,Γ,M,N) coded caching scheme

under access topology B with memory ratio µ = M/N ,
subpacketization F =

(
Γ
µΓ

)(
L
t

)
and transmission load

R ≤
(

Γ
t+µΓ

)(
Γ
µΓ

)(
L
t

) − ∑µΓ−1
i=1

(
L
t+i

)(
Γ−L
µΓ−i

)(
L
t

)(
Γ
µΓ

) −
K
(

L
t+µΓ

)(
L
t

)(
Γ
µΓ

) (1)

�

By Lemma 3 and Theorem 1, we can obtain arbitrary t-
(Γ, L, λ) designs for any parameters t, Γ, L and λ when Γ
is large. Then by Theorem 1, we can obtain the (L, r =(

Γ−1
t−1

)
/
(
L−1
t−1

)
,K =

(
Γ
t

)
/
(
L
t

)
,Γ,M,N) multiaccess coded

caching scheme with memory ratio µ = M/N , subpacketi-
zation F =

(
Γ
µΓ

)(
L
t

)
and transmission load in (1) for any

parameters t, Γ, L and λ when Γ is large. So the following
investigation can be obtained.

Remark 1 (Flexible number of users): A careful obser-
vation of the number of blocks in a t-design reveals how
our scheme can be nicely calibrated to fit a broad range of
possible number of users. As one can readily conclude, this
number of users can scale both linearly, polynomially as well
as exponentially in the number of cache nodes Γ.

In addition, for any positive integers Γ and L there always
exists a L-(Γ, L,K =

(
Γ
L

)
, r =

(
Γ−1
L−1

)
, 1) design (X = [Γ],

B =
(

[Γ]
L

)
. Then the following statement can be obtained.

Remark 2: The combinatorial access topology proposed
in [23] is exactly the L-(Γ, L,K =

(
Γ
L

)
, r =

(
Γ−1
L−1

)
, 1) design

access topology. Then the obtained
(

Γ
µΓ

)
×
(

Γ
L

)
array Q in

(
(

Γ
L

)
,
(

Γ
µΓ

)
,
(

Γ
µΓ

)
−
(

Γ−L
µΓ

)
,
(

Γ
µΓ+L

)
) PDA which leads to a

(L, r =
(

Γ−1
L−1

)
,K =

(
Γ
L

)
,M,N) multiaccess coded caching

scheme based on combinatorial access topology with memory
ration µ = M

N , subpacketization F =
(

Γ
µΓ

)
and load R =(

Γ
µΓ+L

)
/
(

Γ
µΓ

)
. This scheme is exactly the scheme proposed in

[23], which was shown to be optimal under uncoded cache
placement and combinatorial access topology [17].

Secondly, using the OA placement strategy and t-GDD
access topology, we obtain the following result.

Theorem 2 (Scheme via t-GDD): For any positive in-
tegers m, q, L, t and s with 1 ≤ t ≤ L ≤ s ≤ m, if
there exists a t-(m, q, L, 1) GDD and OA(m, q, s), then the
following multiaccess schemes can be obtained.

• When L = t and s = m − 1, there exists a (Γ =
mq, K =

(
m
t

)
qt,M,N) coded caching scheme under the

t-(m, q, t, 1) GDD and OA(m, q,m − 1) placement with
M
N = 1

q , subpacketization F = qm−1 and transmission load
R = (q − 1)t;

• When L = t and s + t = m, there exists a (Γ =
mq,K =

(
m
t

)
qt,M,N) coded caching scheme under the t-

(m, q, t, 1) GDD and OA(m, q, s) placement with M
N = 1

q ,
subpacketization F = qs and transmission load R = qt − 1;

• When s = m, there exists a (Γ = mq,K =
(
m
t

)
qt/
(
L
t

)
,

M,N) coded caching scheme under the t-(m, q, L, 1) GDD
and OA(m, q,m) placement with M

N = 1
q , subpacketization

F = qm
(
L
t

)
and transmission load R = (q − 1)t/

(
L
t

)
.

Finally it is worth noting that similarly we can also use
t-(Γ, L, λ) design and t-(m, q, L, λ) GDD access topology to
construct the multiaccess coded caching schemes. Due to the
space of this paper we omit it.

IV. SKETCH OF THE PROPOSED SCHEME IN THEOREM 1

Let us consider an (L, r,K,Γ,M,N) = (3, 3, 7, 7, 1, 7)
coded caching scheme under the t-(Γ, L,K, λ) = 2-(7, 3, 7, 1)
design (X ,B) (in Example 1) access topology. Then we have
µΓ = 1 and

(
L
t

)
=
(

3
2

)
= 3.

By using the MN scheme and the 2-(7, 3, 7, 1) design, we
first divide each file into 7 packets with equal size, i.e., for
each n ∈ [7], Wn = (Wn,D)D∈([7]

1 ), and further divide each
packet into 3 subpackets with equal size, i.e., for each n ∈ [N ]
and D ∈

(
[7]
1

)
, Wn,D = (W Tn,D)T ∈([3]

2 ). Let us introduce our
main idea by constructing three arrays C, U, and Q.

Definition 7 ( [4]): • An
(

Γ
µΓ

)(
L
t

)
×K node-placement

array C consists of star and null, where F and K represent



TABLE I: Three arrays

(a) Node-placement array C.

Subpackets Cache node set X
D, T C1C2C3C4C5C6C7

{1}, {1, 2} ∗
{2}, {1, 2} ∗
{3}, {1, 2} ∗
{4}, {1, 2} ∗
{5}, {1, 2} ∗
{6}, {1, 2} ∗
{7}, {1, 2} ∗
{1}, {1, 3} ∗
{2}, {1, 3} ∗
{3}, {1, 3} ∗
{4}, {1, 3} ∗
{5}, {1, 3} ∗
{6}, {1, 3} ∗
{7}, {1, 3} ∗
{1}, {2, 3} ∗
{2}, {2, 3} ∗
{3}, {2, 3} ∗
{4}, {2, 3} ∗
{5}, {2, 3} ∗
{6}, {2, 3} ∗
{7}, {2, 3} ∗

(b) User-retrieve array U.

Subpackets User set B
D, T U124U235U346U457U561U672U713

{1}, {1, 2} * * *
{2}, {1, 2} * * *
{3}, {1, 2} * * *
{4}, {1, 2} * * *
{5}, {1, 2} * * *
{6}, {1, 2} * * *
{7}, {1, 2} * * *
{1}, {1, 3} * * *
{2}, {1, 3} * * *
{3}, {1, 3} * * *
{4}, {1, 3} * * *
{5}, {1, 3} * * *
{6}, {1, 3} * * *
{7}, {1, 3} * * *
{1}, {2, 3} * * *
{2}, {2, 3} * * *
{3}, {2, 3} * * *
{4}, {2, 3} * * *
{5}, {2, 3} * * *
{6}, {2, 3} * * *
{7}, {2, 3} * * *

(c) User-retrieve array Q.

Subpackets User set B
D, T U124U235U346U457U561U672U713

{1}, {1, 2} * 123 134 145 * 167 *
{2}, {1, 2} * * 234 245 256 * 127
{3}, {1, 2} 123 * * 345 356 367 *
{4}, {1, 2} * 234 * * 456 467 147
{5}, {1, 2} 125 * 345 * * 567 157
{6}, {1, 2} 126 236 * 456 * * 167
{7}, {1, 2} 127 237 347 * 567 * *
{1}, {1, 3} * 125 136 147 * 126 *
{2}, {1, 3} * * 236 247 125 * 237
{3}, {1, 3} 134 * * 347 135 236 *
{4}, {1, 3} * 245 * * 145 246 347
{5}, {1, 3} 145 * 356 * * 256 357
{6}, {1, 3} 146 256 * 467 * * 367
{7}, {1, 3} 147 257 367 * 157 * *
{1}, {2, 3} * 135 146 157 * 127 *
{2}, {2, 3} * * 246 257 126 * 123
{3}, {2, 3} 234 * * 357 136 237 *
{4}, {2, 3} * 345 * * 146 247 134
{5}, {2, 3} 245 * 456 * * 257 135
{6}, {2, 3} 246 356 * 567 * * 136
{7}, {2, 3} 247 357 467 * 167 * *

the subpacketization of each subfile and the number of cache-
nodes, respectively. The entry located at the position (j, k)
in C is star if and only if the kth cache-node caches the jth

packet of each Wn where n ∈ [N ].

• An
(

Γ
µΓ

)(
L
t

)
× K user-retrieve array U consists of star

and null, where F and K represent the subpacketization of
each subfile and the number of users, respectively. The entry
at the position (j, k) in U is star if and only if the kth user
can retrieve the jth packet of each Wn where n ∈ [N ].

• An
(

Γ
µΓ

)(
L
t

)
× K user-delivery array Q consists of

{∗} ∪ [S], where F , K and the stars in Q have the same
meaning as F , K of U and the stars in U, respectively. Each
integer represents a multicast message, and S represents the
total number of transmitted multicast messages. �

1) Construction of node-placement array C: By the place-
ment strategy MN scheme, the packets cached by cache nodes
can be written as ZC1

= {W {1,2}n,{1} , W
{1,3}
n,{1} , W

{2,3}
n,{1} |n ∈ [7]},

ZC2 = {W {1,2}n,{2} ,W
{1,3}
n,{2} ,W

{2,3}
n,{2} |n ∈ [7]}, ZC3

= {W {1,2}n,{3} ,

W
{1,3}
n,{3} ,W

{2,3}
n,{3} |n ∈ [7]},ZC4 = {W {1,2}n,{4} ,W

{1,3}
n,{4} ,W

{2,3}
n,{4} |

n ∈ [7]}, ZC5
= {W {1,2}n,{5} , W

{1,3}
n,{5} , W

{2,3}
n,{5} |n ∈ [7]}, ZC6

= {W {1,2}n,{6} , W
{1,3}
n,{6} , W

{2,3}
n,{6} |n ∈ [7]} and ZC7

= {W {1,2}n,{7} ,

W
{1,3}
n,{7} , W

{2,3}
n,{7} | n ∈ [7]}. We can see that each cache node

caches 7 × 3 = 21 subpackets, i.e., one file. By Definition
7, a 21 × 7 node-placement array C which represents the
subpackets cached by the cache nodes is given in Table Ia.

2) Construction of user-retrieve array U: By the 2-
(7, 3, 7, 1) design (X ,B) where B = {{1, 2, 4}, {2, 3, 5},
{3, 4, 6}, {4, 5, 6}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}}, the users UB
where B ∈ B can retrieve the following subpackets,

ZU124 = {W {1,2}
n,{1} ,W

{1,3}
n,{1} ,W

{2,3}
n,{1} ,W

{1,2}
n,{2} ,W

{1,3}
n,{2} ,W

{2,3}
n,{2} ,

W
{1,2}
n,{4} ,W

{1,3}
n,{4} ,W

{2,3}
n,{4} |n ∈ [7]},

ZU235 = {W {1,2}
n,{2} ,W

{1,3}
n,{2} ,W

{2,3}
n,{2} ,W

{1,2}
n,{3} ,W

{1,3}
n,{3} ,W

{2,3}
n,{3} ,

W
{1,2}
n,{5} ,W

{1,3}
n,{5} ,W

{2,3}
n,{5} |n ∈ [7]},

ZU346 = {W {1,2}
n,{3} ,W

{1,3}
n,{3} ,W

{2,3}
n,{3} ,W

{1,2}
n,{4} ,W

{1,3}
n,{4} ,

W
{2,3}
n,{4} ,W

{1,2}
n,{6} ,W

{1,3}
n,{6} ,W

{2,3}
n,{6} |n ∈ [7]}

ZU457 = {W {1,2}
n,{4} ,W

{1,3}
n,{4} ,W

{2,3}
n,{4} ,W

{1,2}
n,{5} ,W

{1,3}
n,{5} ,W

{2,3}
n,{5} ,

W
{1,2}
n,{7} ,W

{1,3}
n,{7} ,W

{2,3}
n,{7} |n ∈ [7]},

ZU561 = {W {1,2}
n,{5} ,W

{1,3}
n,{5} ,W

{2,3}
n,{5} ,W

{1,2}
n,{6} ,W

{1,3}
n,{6} ,

W
{2,3}
n,{6} ,W

{1,2}
n,{1} ,W

{1,3}
n,{1} ,W

{2,3}
n,{1} |n ∈ [7]},

ZU672 = {W {1,2}
n,{6} ,W

{1,3}
n,{6} ,W

{2,3}
n,{6} ,W

{1,2}
n,{7} ,W

{1,3}
n,{7} ,W

{2,3}
n,{7} ,

W
{1,2}
n,{2} ,W

{1,3}
n,{2} ,W

{2,3}
n,{2} |n ∈ [7]},

ZU713 = {W {1,2}
n,{7} ,W

{1,3}
n,{7} ,W

{2,3}
n,{7} ,W

{1,2}
n,{1} ,W

{1,3}
n,{1} ,W

{2,3}
n,{1} ,

W
{1,2}
n,{3} ,W

{1,3}
n,{3} ,W

{2,3}
n,{3} |n ∈ [7]}.

By Definition 7, we have a 21 × 7 user-retrieve array U to
represent the packets retrieved by the users in Table Ia.

3) Construction of user-delivery array Q: For each row
label (D, T ) and column label B, if D ∩ B = ∅ we put
the subset D ∪ B(T ) into the entry U((D, T ),B) to the
user-delivery array Q. So in this example we can obtain the
21× 7 user-delivery array Q which is listed in Table Ic. We
can check that there are exactly S =

(
Γ

t+µΓ

)
− K

(
L

t+µΓ

)
=(

7
2+1

)
− 7 ×

(
3

2+1

)
= 35 − 7 = 28, and the obtained Q is

a (7, 21, 9, 28) PDA which leads to a (7,M ′, N) shared link
coded caching scheme with M ′/N = 3/7, subpacketization
21 and transmission load 28/21 = 4/3 by Lemma 1. The
overall coded caching gain is K(F−Z)/S = 7×4×3/28 = 3.
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[15] E. Ozfatura and D. Gündüz, “Mobility-aware coded storage and deliv-
ery,” IEEE Transactions on Communications, vol. 68, no. 6, pp. 3275–
3285, 2020.

[16] P. N. Muralidhar, D. Katyal, and B. S. Rajan, “Maddah-ali-niesen
scheme for multi-access coded caching,” in 2021 IEEE Information
Theory Workshop (ITW), 2021, pp. 1–6.

[17] F. Brunero and P. Elia, “Fundamental limits of combinatorial multi-
access caching,” IEEE Transactions on Information Theory, vol. 69,
no. 2, pp. 1037–1056, 2023.

[18] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Transactions
on Information Theory, vol. 63, no. 9, pp. 5821–5833, 2017.

[19] D. R. Stinson, Combinatorial designs: constructions and analysis.
Springer, NY, 2004.

[20] C. Colbourn and J. Dinitz, “Handbook of combinatorial designs,” in
Chapman, Hall/CRC, 2006, vol. 42.

[21] P. Keevash, “The existence of designs,” arXiv: 1401.3665, Jan. 2014.
[22] A. L. Stefan Glock, Daniela Kuhn and D. Osthus, “The existence of

designs via iterative absorption,” arXiv: 1611.06827, Feb. 2016.
[23] P. N. Muralidhar, D. Katyal, and B. S. Rajan, “Maddah-ali-niesen

scheme for multi-access coded caching,” IEEE Information Theory
Workshop (ITW), 2021.


