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Semiparametric estimation in elliptical
distributions

Stefano Fortunati

Abstract This chapter has the twofold aim of introducing in an intuitive and ac-
cessible manner the general framework of semiparametric inference and then of
showing how it can be fruitfully applied to the joint estimation of the location vector
and the covariance (or scatter) matrix of a set of elliptically distributed observa-
tions in the presence of an unknown density generator. A semiparametric model is
a set of probablity density functions (pdfs) parameterized by a finite-dimensional
parameter vector of interest and by an infinite-dimensional nuisance parameter, i.e.
a function, whose estimation is not strictly required. The presence of this additional
functional unknown will clearly lead to some performance losses in the estimation
of the finite-dimensional parameter vector of interest. The first goal of this chapter is
then to show how the classical estimation theory can be generalized in order to take
into account an infinite-dimensional nuisance term. In particular, the three building
blocks of the semiparametric theory , that are the Hilbert space of score vectors, the
nuisance tangent space and the related projection operator, will be introduced. By
means of these abstract concepts, we define the semiparametric counterpart of the
Fisher Information Matrix (FIM) and the related Semiparametric Efficiency Bound.
After having prepared the theoretical ground, the focus of the second part of the
chapter is on the application of the general semiparametric inference framework to
the joint estimation of the location vector and of the scatter matrix in Real Ellip-
tically Symmetric (RES) distributed random vectors. A closed form expression for
the semiparametric FIM and the related bound will be provided. We conclude the
chapter by presenting the class of the 𝑅-estimators of the scatter matrix.

Stefano Fortunati
Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-
sur-Yvette & DR2I-IPSA, 94200, Ivry sur Seine e-mail: stefano.fortunati@centralesupelec.fr
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2 Stefano Fortunati

1 Introduction

Let x1, . . . , x𝑛 be 𝑛 observation vectors collected from a random experiment and
let 𝑃0 (x1, . . . , x𝑛) be their (joint) “true” distribution admitting a (joint) “true” pdf
𝑝0 (x1, . . . , x𝑛). In this chapter we always assume that the observations are indepen-
dent and identically distributed (i.i.d.) random vectors, consequently the joint pdf can
be expressed as 𝑝0 (x1, . . . , x𝑛) =

∏𝑛
𝑖=1 𝑝0 (x𝑖). In the following, we indicate simply

as x ∼ 𝑝0 a generic random vector distributed according the (marginal) “true” pdf
𝑝0. Note that, in practice, the true pdf 𝑝0 is not fully a-priori known, then the main
task of any statistical procedure is to infer the missing knowledge on 𝑝0 from the
collected data. Inference methods rely then on the definition of a model, i.e. a set of
pdfs that are able to statistically characterize the data-generating process. The nature
of the model to be used depends on the available amount of a-priori information:
the more precise our knowledge of the real-word phenomenon is, the narrower the
model can be. The most commonly adopted models are the parametric ones.

As the name suggests, a parametric model P𝜽 is a set of pdfs parameterized only
by a finite-dimensional parameter vector 𝜽 ∈ Θ ⊆ R𝑞:

P𝜽
def
= {𝑝𝑋 (x|𝜽), 𝜽 ∈ Θ ⊆ R𝑞} .

If a parametric model is adopted, the information to be inferred from the observations
is summarized in the (finite-dimensional) parameter vector 𝜽 to be estimated. More
formally, if the true data pdf 𝑝0 (x) belongs to P𝜽 , this implies that there exists 𝜽0 ∈ Θ

such that 𝑝0 (x) = 𝑝𝑋 (x|𝜽0). However, in many practical applications, the available
a-priori knowledge about the data-generating process may result to be insufficient to
validate the chosen parametric model and we could run the risk that the true data pdf
𝑝0 does not belong to the assumed model P𝜽 . This model misspecification [6] will
lead to some performance degradation in the estimation of 𝜽 that may result to be
unacceptable. In this case, one may decide to rely on a more general non-parametric
model. A non-parametric model is a collection of pdfs that possibly satisfy some
functional constraints, i.e. the symmetry or the finiteness of their moments up to a
given order:

P𝑝
def
= {𝑝𝑋 (x) ∈ K} ,

where K is some constrained set of pdfs. If, on one hand, the generality of a non-
parametric model minimizes the risk of model misspecification, non-parametric
inference requires a large amount of homogeneous data that may be difficult (or even
impossible) to collect in some applications.

The semiparametric models have been then proposed in order to keep the inherent
finite-dimensinality of the parameters of interest without sacrificing the generality
of the statistical description of a data-generating process [39]. Specifically, a semi-
parametric model is a set of pdfs characterized by a finite-dimensional parameter
𝜽 ∈ Θ ⊆ R𝑞 along with some infinite-dimensional parameter, i.e. a function, 𝑔 ∈ G:

P𝜽,𝑔
def
= {𝑝𝑋 (x|𝜽 , 𝑔), 𝜽 ∈ Θ ⊆ R𝑞 , 𝑔 ∈ G} .
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A huge amount of practical inference problems can be described using this semi-
parametric formalism (see [39], [2], [29] and the reference therein). Here some
examples of remarcable importance for the signal processing community [5]:

1. Inference in Real Ellyptically Symmetric (RES) Distributions
As discussed in the Chapter 1, a random vector x ∈ R𝑚 is said to be RES-
distributed if it has a relevant pdf of the form:

𝑝𝑋 (x) = |𝚺 |−1/2𝑔((x − 𝝁)𝑇𝚺−1 (x − 𝝁)), (1)

where 𝑔 : R+ → R+ is called density generator. In almost all practical applications
involving the elliptical model, we are generally interested in the estimation of the
location vector 𝝁 ∈ R𝑚 and/or of the covariance/scatter matrix 𝚺 ∈ M where M
indicates the set of all the positive definite, Hermitian 𝑚 ×𝑚 matrices. Therefore,
the density generator 𝑔 can be considered as a nuisance function whose estimation
is not required. Note that, as discussed in Sec. 2.1 of the Chapter 1, 𝚺 ∈ M and
𝑔 ∈ G are not jointly indefinable. To avoid the scale ambiguity, we introduce the
symmetric and positive definite shape matrix as

V = 𝚺/𝑠(𝚺) ∈ M𝑠
def
= {V ∈ M|𝑠(V) = 1} ⊂ M (2)

where 𝑠 : M → R+ is a scalar homogeneous functional (see [15, 31], [10, Sec.
II]) and M𝑠 is a constrained smooth sub-manifold of M whose dimension is
dim(M𝑠) = dim(M) − 1. It is immediate to verify that the RES family can be
interpreted as a semiparametric model of the form:

P𝝁,V,𝑔
def
=

{
𝑝𝑋 (x) = |V|−1/2𝑔((x − 𝝁)𝑇V−1 (x − 𝝁)), (𝝁,V) ∈ Θ, 𝑔 ∈ G

}
, (3)

where Θ
def
= R𝑚 × M𝑠 . We will investigate the semiparametric elliptical model

extensively in the second part of the chapter.
2. Estimation with missing data Let z ≜ (x𝑇 , y𝑇 )𝑇 be a complete dataset, where:

• x is the observed (available) dataset.
• y is the unobservable (missing) dataset.

Suppose now that we want to estimate the value of a parameter vector 𝜽 ∈ Θ from
the observed dataset x when the pdf 𝑝𝑌 of the missing data y is unknown. Direct
application of the basic rules of conditional distributions allows one to express
the pdf 𝑝𝑋 of the observed dataset as:

𝑝𝑋 (x|𝜽) =
∫
Y
𝑝𝑋,𝑌 (x, y|𝜽)𝑑y =

∫
Y
𝑝𝑋 |𝑌 (x|y, 𝜽)𝑝𝑌 (y)𝑑y.

Consequently, the set of all the pdfs of the observed dataset x can be framed in a
semiparametric mixture model of the form [2, Sec. 4.5], [35]:

P𝜽, 𝑝𝑌
def
= {𝑝𝑋 (x|𝜽 , 𝑝𝑌 ), 𝜽 ∈ Θ, 𝑝𝑌 ∈ K} .
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3. Non-linear regression According to the amount of a-priori knowledge that we
have on the observation model, the non-linear regression can be conveniently
described using the semiparametric formalism:

x = 𝑓 (z, 𝜽) + 𝝐 ,

• 𝜽 ∈ Θ: parameter vector to be estimated,
• 𝑓 ∈ F : possibly unknown non-linear function,
• z: random vector with possibly unknown pdf 𝑝𝑍 ∈ K,
• 𝝐 : random noise with possibly unknown pdf 𝑝 𝜖 ∈ E

The set of all pdfs for x is a semiparametric model of the form [2, Sec. 4.3]:

P𝜽, 𝑓 , 𝑝𝑍 , 𝑝𝜖

def
= {𝑝𝑋 (x|𝜽 , 𝑓 , 𝑝𝑍 , 𝑝 𝜖 ), 𝜽 ∈ Θ, 𝑓 ∈ F , 𝑝𝑍 ∈ K, 𝑝 𝜖 ∈ E} .

4. Autoregressive processes (AR) Let us consider the AR(𝑝) process:

𝑥𝑛 =
∑︁𝑝

𝑖=1
\𝑖𝑥𝑛−𝑖 + 𝑤𝑛, 𝑛 ∈ (−∞,∞)

• 𝜽 ≜ [\1, . . . , \𝑝]: parameter vector to be estimated.
• 𝑤𝑛: i.i.d. innovations with pdf 𝑝𝑤 ∈ W.

The aim is to estimate 𝜽 from a vector x of autoregressive observations. Usu-
ally, a Gaussianity assumption is adopted for the innovation process {𝑤𝑛}. This
assumption however is generally hardly justifiable. One again, the semiparamet-
ric formalism provide us with a suitable framework to statistically describe this
problem. In fact, let x ∈ R𝑚 a vector of𝑚 observations from the above-mentioned
AR(𝑝). The set of all possible pdfs for x ∈ R𝑚 is a semiparametric model [18]:

P𝜽, 𝑝𝑤
def
= {𝑝𝑋 (x|𝜽 , 𝑝𝑤), 𝜽 ∈ Θ, 𝑝𝑤 ∈ W} .

Unlike the classical estimation theory, in semiparametric inference we need to
handle the presence of a nuisance function. The bridge allowing us to go from the
classical, “finite-dimensional”, estimation theory to the semiparametric one is the
general theory of Hilbert spaces.

2 Estimation and Hilbert spaces

The aim of this section is then to introduce the mathematical framework that will
allow us to handle the infinite-dimensional (functional) nuisance involved in a semi-
parametric model. We will proceed in two steps: firstly, we frame the classical
finite-dimensional estimation theory in the geometrical context of Hilbert spaces.
Secondly, we will extend these outcomes to the semiparametric framework. Our
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discussion will be tutorial in nature, but the reader can find the whole formal math-
ematical derivation in [2, Sec. 2 and 3] and in [35].

2.1 Background on Hilbert spaces, linear spans and projections

Defining the geometry of a problem means to specify (at least) two elements: the
linear vector space in which our problem is embedded and the related inner product.
This two concept can be formalized by the definition of Hilbert space [34, Ch. 4]:

Definition 1 A Hilbert space (H , ⟨·, ·⟩) is a real (or complex) inner product space
that is also a complete metric space with respect to the distance function | | · | | =

√︁
⟨·, ·⟩

induced by the inner product ⟨·, ·⟩.

The inner product allows us to define the concept of orthogonality. In particular,
two elements 𝑢, ℎ ∈ H are said to be orthogonal, denoted as 𝑢 ⊥ ℎ, iff ⟨𝑢, ℎ⟩ = 0.
They are called orthonormal if, in addition, | |𝑢 | | = | |ℎ | | = 1. The next theorem is a
key result for Hilbert spaces since it define the projection operator.

Theorem 1 (The Projection Theorem)
Let U be a closed subspace of an Hilbert space H . For any ℎ ∈ H , there exist a

unique 𝑢0 ∈ U such that (s.t.)

𝑢0 = argmin
𝑢∈U

| |ℎ − 𝑢 | |, ℎ ∈ H . (4)

Moreover, 𝑢0 ∈ U is uniquely determined by the orthogonality constraint

⟨ℎ − 𝑢0, 𝑢⟩ = 0, ∀𝑢 ∈ U. (5)

We indicate 𝑢0 = Π(ℎ|U) ∈ U as the projection of ℎ ∈ H onto the subspace
U ⊂ H and Π(·|U) the related projection operator.

Finding the projection of an element ℎ ∈ H onto a generic subspace U ⊂ H is,
in general, a non trivial task. However, there is a case of fundamental importance
for the subsequent development in which this projection can be explicitly derived.
In particular, let us build a vector v = (𝑣1, . . . , 𝑣𝑟 ) of 𝑟 arbitrary elements of H . Let
us define the linear span of v in H as:

U def
=

{
𝑢 ∈ H |𝑢 = a𝑇v : a is any vector in R𝑟

}
⊂ H . (6)

If {𝑣1, . . . , 𝑣𝑟 } are linearly independent, the linear span U is a finite-dimensional
linear subspace of H of dimension 𝑟. Moreover, it can be shown that the unique
orthogonal projection of an arbitrary element ℎ ∈ H onto U in (6) can be expressed
as [35, Sec. 2]:

Π(ℎ|U) =
〈
ℎ, v𝑇

〉 〈
v, v𝑇

〉−1 v, (7)
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where 〈
ℎ, v𝑇

〉 def
=

(
⟨ℎ, 𝑣1⟩ · · · ⟨ℎ, 𝑣𝑟 ⟩

)
∈ R1×𝑟 , (8)

〈
v, v𝑇

〉 def
=

©«
⟨𝑣1, 𝑣1⟩ · · · ⟨𝑣1, 𝑣𝑟 ⟩
...

. . .
...

⟨𝑣𝑟 , 𝑣1⟩ · · · ⟨𝑢𝑘 , 𝑣𝑟 ⟩

ª®®¬ ∈ R𝑟×𝑟 , (9)

that is assumed to be invertible.
Let us now take it a step further and define the space H𝑞

def
= H × · · · × H

as an Hilbert space obtained by the Cartesian product of 𝑞 copies of H whose
inner product is induced by the one of H . Specifically, let h = (ℎ1, · · · , ℎ𝑞)𝑇 and
w = (𝑤1, · · · , 𝑤𝑞)𝑇 be two vectors in H𝑞 . Then, the inner product of H𝑞 is given by
⟨h,w⟩ =

∑𝑞

𝑖=1 ⟨ℎ𝑖 , 𝑤𝑖⟩. This type of space is generally called 𝑞-replicating Hilbert
space. What about the linear span of H𝑞? Let v = (𝑣1, · · · , 𝑣𝑟 )𝑇 be a column vector
of 𝑟 arbitrary elements of H . The linear span of v in H𝑞 is given by [35, Sec. 2]:

U𝑞
def
=

{
u ∈ H𝑞 |u = Av : A is any matrix in R𝑞×𝑟

}
⊂ H𝑞 . (10)

If the entries of v are linearly independent, the dimension of U𝑞 is 𝑞 · 𝑟 . Moreover,
the projection of an arbitrary h ∈ H𝑞 onto the linear span U𝑞 in (10) is given by:

Π(h|U𝑞) =
〈
h, v𝑇

〉 〈
v, v𝑇

〉−1 v, (11)

〈
h, v𝑇

〉 def
=

©«
⟨ℎ1, 𝑣1⟩ · · · ⟨ℎ1, 𝑣𝑟 ⟩

...
. . .

...〈
ℎ𝑞 , 𝑣1

〉
· · ·

〈
ℎ𝑞 , 𝑣𝑟

〉 ª®®¬ ∈ R𝑞×𝑟 , (12)

and the matrix
〈
v, v𝑇

〉
is defined as in (9) and it is assumed to be invertible.

2.2 The Hilbert space H𝒒 of the 𝒒-variate random functions

In this subsection we introduce a replicating Hilbert space that plays a fundamental
role in the geometrical interpretation of the estimation theory. Let (X,𝔉, 𝑃𝑋) be a
probability space where the sample space X is a subset of R𝑚, 𝔉 is the Borel 𝜎-
algebra on X and 𝑃𝑋 is a probability measure. We assume that the related cdf 𝑃𝑋 (x)
admits a pdf 𝑝𝑋 (x) with respect to Lebesgue measure, s.t. 𝑑𝑃𝑋 (x) = 𝑝𝑋 (x)𝑑x.

LetH be the set of scalar random functions on the sample spaceX, i.e. ℎ : X → R
satisfying the following two properties:

1. Zero-mean: E(ℎ) =
∫
X ℎ(x)𝑑𝑃𝑋 (x) = 0

2. Finite variance: E(ℎ2) =
∫
X ℎ

2 (x)𝑑𝑃𝑋 (x) = 𝜎2
ℎ
< +∞

The (infinite-dimensional) linear space H can be endowed with the inner product:



Semiparametric estimation in elliptical distributions 7

⟨ℎ1, ℎ2⟩
def
= E(ℎ1ℎ2) =

∫
X
ℎ1 (x)ℎ2 (x)𝑑𝑃𝑋 (x), ∀ℎ1, ℎ2 ∈ H . (13)

Then, (H , ⟨·, ·⟩) is an Hilbert space and the squared norm associated to its inner
product in (13) is | |ℎ| |2 = E(ℎ2) = 𝜎2

ℎ
that is the variance of ℎ ∈ H .

We can now define the 𝑞-replicating Hilbert space H𝑞 = H×· · ·×H as the linear
space of the multivariate random functions h : X → R𝑞 endowed by the following
inner product induced by the one of H :

⟨h1, h2⟩
def
= E(h𝑇

1 h2) =
∑︁𝑞

𝑖=1
E(ℎ1,𝑖ℎ2,𝑖). (14)

From the replicating nature of H𝑞 , it is immediate to verify that every h ∈ H𝑞

satisfies the two properties:
1. Zero-mean: E(h) =

∫
X h(x)𝑑𝑃𝑋 (x) = 0

2. Finite variance: E(h𝑇h) = ⟨h, h⟩ = | |h| |2 < +∞.
Furthermore, since h is a 𝑞-variate random function, we can define its 𝑞×𝑞 covariance
matrix C(h) in the usual way as:

C(h) def
= E(hh𝑇 ) =

©«
E(ℎ1ℎ1) · · · E(ℎ1ℎ𝑞)

...
. . .

...

E(ℎ𝑞ℎ1) · · · E(ℎ𝑞ℎ𝑞)

ª®®¬ ∈ R𝑞×𝑞 . (15)

Let us investigate the geometrical structure of H𝑞 . In particular, we want to
derive an explicit expression of the orthogonal projection of a generic element h
into a linear span of H𝑞 . Following the discussion given in subsec. 2.1, let us define
v = (𝑣1, · · · , 𝑣𝑟 )𝑇 as a column vector of 𝑟 arbitrary element of H . Then, its linear
span U𝑞 is defined as in (10). Let us consider now the problem of finding the
orthogonal projection of an arbitrary element h ∈ H𝑞 onto U𝑞 , i.e. Π(h|U𝑞). From
the Projection Theorem (Theo. 1), we know that this projection is unique and it can
be explicitly written using (11) as:

Π(h|U𝑞) = E(hv𝑇 )E(vv𝑇 )−1v = E(hv𝑇 ) [C(v)]−1v. (16)

Let us now see how this general concepts on Hilbert space may provide an original
look on the classical (finite-dimensional) estimation theory.

2.3 Estimation in parametric models: a geometric interpretation

Let (X,𝔉, 𝑃𝑋) be the same probability space introduced in subsec. 2.2, and let 𝑃𝑋

and 𝑝𝑋 the related cdf and pdf, s.t. 𝑑𝑃𝑋 (x) = 𝑝𝑋 (x)𝑑x. Let us consider the following
parametric model:

P𝜽,𝜼
def
= {𝑝𝑋 (x|𝜽 , 𝜼), 𝜽 ∈ Θ ⊆ R𝑞 , 𝜼 ∈ Γ ⊆ R𝑟 } , (17)
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where the 𝑞-dimensional vector 𝜽 is the vector of the parameters of interest while
the 𝑟-dimensional vector 𝜼 is the vector of the nuisance parameters. In the rest of
this section, we always indicate the true parameter vectors as 𝜽0 and 𝜼0, and the
related true pdf and distribution as 𝑝0 (x) = 𝑝𝑋 (x|𝜽0, 𝜼0) and 𝑃0 (x), respectively.
Moreover, the expectation operator and the covariance matrix evaluated w.r.t. the
true pdf will be indicated as E0 (·) and C0 (·), respectively.

Let us start by defining a key ingredient in estimation theory: the score vector.
Definition 2 Let P𝜽,𝜼 be a parametric model as in (17). The score vector of the
parameters of interest s𝜽0 and the nuisance score vector s𝜼0 are defined, respectively,
as the 𝑞- and 𝑟-variate random functions s.t.:[

s𝜽0

]
𝑖

def
=

[
s𝜽 (x; 𝜽0, 𝜼0)

]
𝑖
=

[
∇𝜽 ln 𝑝𝑋 (x|𝜽0, 𝜼0)

]
𝑖
=
𝜕 ln 𝑝𝑋 (x|𝜽 , 𝜼0)

𝜕\𝑖

����
𝜽=𝜽0

, (18)

[
s𝜼0

]
𝑗

def
=

[
s𝜼 (x; 𝜽0, 𝜼0)

]
𝑗
=

[
∇𝜼 ln 𝑝𝑋 (x|𝜽0, 𝜼0)

]
𝑗
=
𝜕 ln 𝑝𝑋 (x|𝜽0, 𝜼)

𝜕[ 𝑗

����
𝜼=𝜼0

, (19)

where 𝑖 = 1, . . . , 𝑞 and 𝑗 = 1, . . . , 𝑟 . Under the usual regularity conditions (collected
in e.g. [23, sec. 6.2 and 6.3]) that allow for the order inversion between integral and
derivative operators, the score vectors are zero-mean random vectors:

E0 (s𝜽0 ) = 0, E0 (s𝜼0 ) = 0. (20)

Moreover, if | |s𝜽0 | | < ∞ and | |s𝜼0 | | < ∞, we can immediately deduce that the score
vectors belongs to two replicating Hilbert spaces of the type defined in subsec. 2.2:

s𝜽0 ∈ H𝑞 , s𝜼0 ∈ H𝑟 . (21)

This result allow us to use the geometric structure of H𝑞 and H𝑟 to our estimation-
oriented goal. First of all, we can note that the covariance matrix in (15) of s𝜽0 and s𝜼0
is nothing but the Fisher Information Matrices (FIMs) of the parameters of interest
and of the nuisance ones:

C0 (s𝜽0 ) = E0 (s𝜽0 s𝑇𝜽0
) def
= I𝜽0 C0 (s𝜼0 ) = E0 (s𝜼0 s𝑇𝜼0

) def
= I𝜼0 . (22)

For further reference, let us also introduce the cross-information matrices as:

I𝜽0𝜼0

def
= E0 (s𝜽0 s𝑇𝜼0

) =
[
E0 (s𝜼0 s𝑇𝜽0

)
]𝑇 def

= I𝑇𝜼0𝜽0
. (23)

Specifically, using the findings related to the projection operator onto the finite-
dimensional linear span of H𝑞 presented in subsec. (2.2), we can introduce two
fundamental concepts that will be extensively used in the rest of the chapter;
Definition 3 The nuisance tangent space. The linear span of H𝑞 spanned by the
entries of the nuisance score vector s𝜼0 , i.e.

T𝜼0

def
=

{
u ∈ H𝑞 |u = As𝜼0 : A is any matrix in R𝑞×𝑟

}
⊂ H𝑞 , (24)
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is called nuisance tangent space of the parametric model P𝜽,𝜼 at the true nuisance
parameter vector 𝜼0.

Definition 4 The efficient score vector s̄0 is defined as the residual of the score
vector of the parameters of interest s𝜽0 after projecting it onto the nuisance tangent
space T𝜼0 defined in (24) (see e.g. [2, Ch. 2]):

s̄(x; 𝜽0, 𝜼0) = s̄0
def
= s𝜽0 − Π(s𝜽0 |T𝜼0 ) = s𝜽0 − I𝜽0𝜼0 I−1

𝜼0
s𝜼0 . (25)

Note that, in the last equality, we used the explicit expression for the projection
operator given in (16) and the definition of the FIM and of the cross-information
matrix in (23). Consequently, the efficient FIM can be defined as:

Ī(𝜽0 |𝜼0)
def
= E0 (s̄0s̄𝑇0 ) = I𝜽0 − I𝜽0𝜼0 I−1

𝜼0
I𝑇𝜽0𝜼0

. (26)

2.3.1 Efficiency and Cramér-Rao inequality in parametric models

Score vectors and FIMs are the two building blocs of a well-known result in para-
metric models: the Cramér-Rao inequality. We show that this classical result can
be obtained in a different, yet equivalent way, by using the geometrical approach
previously introduced. Let P𝜽,𝜼 be a parametric model as in (17) and let I(𝜽0, 𝜼0)
be the joint FIM for the parameter vector of interest and for the nuisance one:

I(𝜽0, 𝜼0) =
(

I𝜽0 I𝜽0𝜼0
I𝑇𝜽0𝜼0

I𝜼0

)
. (27)

Suppose now to have a set of 𝑛 i.i.d. observations s.t. x𝑖 ∼ 𝑝0,∀𝑖 = 1, . . . , 𝑛. We
define as �̂�𝑛

def
= �̂� (x1, . . . , x𝑛) an estimator of 𝜽0 ∈ Θ in the presence of the nuisance

vector 𝜼0 ∈ Γ. Then, if �̂�𝑛 is unbiased, i.e. E0 (�̂�𝑛) = 0,∀𝑛, the following inequality
holds (see e.g. [23, Secs. 2.7 and 6.4]):

𝑛E0

(
(�̂�𝑛 − 𝜽0) (�̂�𝑛 − 𝜽0)𝑇

)
≥ CRB(𝜽0 |𝜼0), (28)

where CRB(𝜽0 |𝜼0) can be obtained from the joint FIM using the Matrix Inversion
Lemma [32]:

CRB(𝜽0 |𝜼0)
def
=

[
I𝜽0 − I𝜽0𝜼0 I−1

𝜼0
I𝑇𝜽0𝜼0

]−1
. (29)

It is immediate to verify that this classical result can be obtained by using the efficient
FIM defined in (26), i.e.

CRB(𝜽0 |𝜼0) = Ī(𝜽0 |𝜼0)−1. (30)

This result allow us to provide an intuitive explanation of the efficient score vector
in (25): s̄0 is able to characterize the information that the parametric model P𝜽,𝜼

has on the parameter vector of interest 𝜽0 ∈ Θ when a additional nuisance term
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is present. This fact is of crucial importance since, unlike the classical, “matrix-
oriented”, derivation of the Cramér-Rao inequality, the one based on the efficient
score vector and the related efficient FIM does not require the nuisance term to
be finite-dimensional. Then, it may be extended to the semiparametric context, as
we will see in the next section. Before moving on, let us answer to the following
question: is there any estimator of 𝜽0 ∈ Θ able to achieve the CRB(𝜽0 |𝜼0), at least
asymptotically in 𝑛? Under some regularity condition on the parametric model (see
e.g. [23, sec. 6.1 and 6.2]), the Maximum Likelihood (ML) estimator is a good
candidate. By indicating with

𝐿𝑛 (𝜽 , 𝜼)
def
=

∑︁𝑛

𝑖=1
ln 𝑝𝑋 (x𝑖 |𝜽 , 𝜼) (31)

the joint likelihood function of a set of 𝑛 i.i.d. observations, the joint ML estimator
(�̂�𝑀𝐿,𝑛, �̂�𝑀𝐿,𝑛) can be expressed as [23, sec. 6.2]:

𝐿𝑛 (�̂�𝑀𝐿,𝑛, �̂�𝑀𝐿,𝑛) = max {𝐿𝑛 (𝜽 , 𝜼); 𝜽 ∈ Θ, 𝜼 ∈ Γ} (32)

Moreover, under the regularity conditions listed in e.g. [23, Secs. 6.2 and 6.3],
the ML estimator �̂�𝑀𝐿,𝑛 of the parameter vector of interest 𝜽0 satisfies the two
following, well-known, properties:

P1
√
𝑛-consistency:

√
𝑛(�̂�𝑀𝐿,𝑛 − 𝜽0) = 𝑂𝑃𝑋

(1).1
P2Asymptotic normality and efficiency:

√
𝑛(�̂�𝑀𝐿,𝑛 − 𝜽0) ∼

𝑛→∞
N

(
0,CRB(𝜽0 |𝜼0)

)
.

We note in passing that, when the ML estimator in (32) exists and it is unique, it
can be expressed as the solution of the following non-linear system of score-based
estimating equations:{

𝑛−1/2 ∑𝑛
𝑖=1 s𝜽 (x𝑖; 𝜽 , 𝜼)

��
𝜽=�̂�𝑆,𝑛 ,𝜼=�̂�𝑆,𝑛

= 0,
𝑛−1/2 ∑𝑛

𝑖=1 s𝜼 (x𝑖; 𝜽 , 𝜼)
��
𝜽=�̂�𝑆,𝑛 ,𝜼=�̂�𝑆,𝑛

= 0, (33)

where s𝜽 and s𝜼 are the score vectors defined in (18) and (19), respectively
Even if it is the most popular, the ML estimator in (32) is not the only one having

the desired properties P1 and P2. Without rigorously listing the required regularity
conditions, in the following provide two other

√
𝑛-consistent (P1) and efficient (P2)

estimators:

• Efficient score-based estimating equations: Let 𝜼★𝑛 = 𝜼★𝑛 (𝜽0) be a sub-optimal,√
𝑛-consistent but not necessarily efficient, estimator of the nuisance parameter

vector 𝜼0. Note that, 𝜼★𝑛 may depend on the true parameter vector 𝜽0. For further
reference, we indicate 𝜼★𝑛 as a preliminary estimator. Then, we can define �̂�𝐸𝑆,𝑛

as the estimator of the parameter vector of interest 𝜽0 obtained as the solution of
the following estimating equations:

1 Let 𝑥𝑙 be a sequence of random variables. Then 𝑥𝑙 = 𝑂𝑃𝑋
(1) if for any 𝜖 > 0, there exists a

finite 𝑁 > 0 and a finite 𝐿 > 0, s.t. Pr { |𝑥𝑙 | > 𝑁 } < 𝜖 , ∀𝑙 > 𝐿 (stochastic boundedness).
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𝑛−1/2
∑︁𝑛

𝑖=1
s̄(x𝑖; 𝜽 , 𝜼★𝑛 (𝜽))

���
𝜽=�̂�𝐸𝑆,𝑛

= 0, (34)

where s̄(x; 𝜽 , 𝜼) is the efficient score vector given in (25). Under the “neces-
sary” regularity conditions [35, Ex. 3.2], it can be proved that �̂�𝐸𝑆,𝑛 satisfies the
properties P1 and P2.

• One-step estimators: Suppose that, to find an approximate solution of the estimat-
ing equations in (34), we use the first (one-step) iteration of the Newton-Raphson
method as:

�̃�𝐸𝑆,𝑛 = �̃� −
[
J(�̃� , 𝜼★𝑛 (�̃�))

]−1
Δ𝑛 (�̃� , 𝜼★𝑛 (�̃�)), (35)

where �̃� is the starting point of the Newton-Raphson iteration applied to the
function given in (34) and called efficient central sequence:

Δ(x1, . . . , x𝑛; 𝜽 , 𝜼) = Δ𝑛 (𝜽 , 𝜼)
def
= 𝑛−1/2

∑︁𝑛

𝑖=1
s̄(x𝑖; 𝜽 , 𝜼), (36)

whose Jacobian matrix is given by:

J(𝜽 , 𝜼★𝑛 (𝜽))
def
= ∇𝑇

𝜽

[
Δ𝑛 (𝜽 , 𝜼★𝑛 (𝜽))

]
= 𝑛−1/2

∑︁𝑛

𝑖=1
∇𝑇
𝜽 s̄(x𝑖; 𝜽 , 𝜼★𝑛 (𝜽)). (37)

In his seminal and fundamental works [21],[22, Ch. 6] Le Cam showed that it is
possible to construct an efficient one-step estimator �̂�𝑂𝑃,𝑛, inspired by the Newton-
Raphson iteration in (35), as:

�̂�𝑂𝑃,𝑛 = 𝜽★𝑛 + 𝑛−1/2 [
C(𝜽★𝑛 , 𝜼★𝑛)

]−1
Δ𝑛 (𝜽★𝑛 , 𝜼★𝑛), (38)

where 𝜽★𝑛 is a preliminary,
√
𝑛-consistent but possibly not efficient, estimator of the

parameter vector of interest 𝜽0 and:

C(𝜽★𝑛 , 𝜼★𝑛) =
1
𝑛

[∑︁𝑛

𝑖=1
s̄(x𝑖 , 𝜽★𝑛 , 𝜼★𝑛)s̄(x𝑖 , 𝜽★𝑛 , 𝜼★𝑛)𝑇

]
, (39)

is the sample estimate of the efficient FIM Ī(𝜽0 |𝜼0) in (26). 2 Remarkably, Le Cam
showed that the estimator �̂�𝑂𝑃,𝑛 in (38) satisfies the properties P1 and P2 (see e.g.
[2, Theo. 2 in Sec. 2.5 and Theo. 1 in Sec. 7.8]).

We are now ready to generalize these results to the semiparametric framework.

2.4 Extension to Semiparametric Models

Let (X,𝔉, 𝑃𝑋) be the same probability space defined in sec. 2.3. We have already
defined in sec. 1 a semiparametric model as:

2 To link this result with the Jacobian matrix of the efficient central sequence in (37), we can note
that, under the necessary regularity conditions, Ī(𝜽0 |𝜼0 ) = E0 (s̄0 s̄𝑇0 ) = −E0 (∇𝑇

𝜽0
s̄0 ) .
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P𝜽,𝑔
def
= {𝑝𝑋 (x|𝜽 , 𝑔), 𝜽 ∈ Θ ⊆ R𝑞 , 𝑔 ∈ G} . (40)

where 𝜽 ∈ Θ is 𝑞-dimensional vector of the parameters of interest, while 𝑔 ∈ G is
a nuisance function. Following the notation introduced before, we denote the true
“semiparametric vector” as (𝜽0, 𝑔0) ∈ Θ×G, and consequently the true pdf is denoted
as 𝑝0 (x) = 𝑝𝑋 (x|𝜽0, 𝑔0). From an abstract, “Hilbert space-based” standpoint, there
are no conceptual differences between the definition of a parametric model in (17)
and the one of a semiparametric model in (40). In particular, both the parametric
and the semiparametric models can be considered as a family of pdfs indexed by a
vector belonging to some parameter space. In the case of parametric models, such a
parameter space is a finite-dimensional space obtained as the Cartesian product of
two finite-dimensional spaces, (𝜽𝑇 , 𝜼𝑇 )𝑇 ∈ Θ × Γ ⊆ R𝑞 × R𝑟 , i.e. the space of the
parameters of interest Θ and the nuisance parameter space Γ. In the semiparametric
case, the parameter space is the Cartesian product of the finite-dimensional space of
the parameters of interest Θ and an infinite-dimensional set G of nuisance functions,
i.e. (𝜽 , 𝑔) ∈ Θ × G. Even if, from a conceptual standpoint, there is no difference
between parametric and semiparametric models, we cannot directly apply the tools
developed in the parametric framework to the semiparametric one because of the
infinite-dimensional nature of the nuisance parameter 𝑔 ∈ G. To develop an inference
theory for semiparametric models, we need to generalize the concepts of efficient
score vector in the presence of infinite dimensional nuisance parameters.

The link between parametric and semiparametric inference is the concept of
parametric sub-model of a semiparametric model. Formally, the i-th parametric
sub-model of P𝜽,𝑔 is defined as [35, Sec. 4.2], [2, Sec. 3.1],[18, Sec. 2.2]: 3

P𝜽,a𝑖
def
= {𝑝𝑋 (x|𝜽 , a𝑖 (·, ·, 𝜼)), 𝜽 ∈ Θ ⊆ R𝑞 , 𝜼 ∈ Γ𝑖 ⊆ R𝑟𝑖 } , where: (41)

a𝑖 :X × Θ × Γ𝑖 → G
𝜼 ↦→ a𝑖 (x, 𝜽 , 𝜼),

(42)

is a known function parametrized by a vector of unknown parameters. In particular,
for every 𝑖 ∈ I, P𝜽,a𝑖 in (41) is a parametric model of the form already defined in
(17) satisfying the following three conditions [35, Sec. 4.2]:

C0) a𝑖 : X × Θ × Γ𝑖 → G is a smooth parametric map ∀𝑖 ∈ I,
C1) P𝜽,a𝑖 ⊆ P𝜽,𝑔, ∀𝑖 ∈ I,
C2) 𝑝0 (x) ∈ P𝜽,a𝑖 , i.e. ∀𝑖 ∈ I there exists a vector (𝜽𝑇0 , 𝜼𝑇0 )

𝑇 ∈ Θ×Γ𝑖 ⊆ R𝑞 ×R𝑟𝑖
such that 𝑝𝑋 (x|𝜽0, a𝑖 (·, ·, 𝜼0)) = 𝑝𝑋 (x|𝜽0, 𝑔0).

Condition C1 tells us that all the pdfs that compose each possible parametric
submodel P𝜽,a𝑖 must belong to the semiparametric model P𝜽,𝑔 as well. Moreover,
Condition C2 highlights the fact that each parametric submodel P𝜽,a𝑖 must contain
the “true” data pdf, i.e. there must exist a parameter vector 𝜼0 ∈ Γ𝑖 such that
𝑝𝑋 (x|𝜽0, a𝑖 (·, ·, 𝜼0)) = 𝑝0 (x) for every 𝑖 ∈ I. It must be stressed that, unlike a

3 Note that the notation 𝑝𝑋 (x |𝜽, a𝑖 ( ·, ·, 𝜼) ) indicates that the pdf 𝑝𝑋 is a composition of two
functions, i.e. 𝑤 and a𝑖 , such that 𝑝𝑋 (x |𝜽, a𝑖 ( ·, ·, 𝜼) ) = (𝑤 ◦ a𝑖 ) (x, 𝜽, 𝜼) = 𝑤(x, 𝜽, a𝑖 (x, 𝜽, 𝜼) ) .
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classical parametric model, a parametric sub-model is only an artificial tool that is
exploited to develop the semiparametric theory but that cannot be directly used for
data analysis. In fact, since we do not know the true data pdf 𝑝0, we cannot explicitly
build a set of parametric sub-models satisfying the condition C2.

Roughly speaking, using a parametric sub-model P𝜽,a𝑖 in place of P𝜽,𝑔 we are
actually approximating the infinite-dimensional parameter 𝑔 ∈ G with the func-
tion a𝑖 (x, 𝜽 , 𝜼), parameterized by the finite-dimensional nuisance parameter vector
𝜼 ∈ Γ𝑖 ⊆ R𝑟𝑖 whose dimension 𝑟𝑖 depends on the particular choice of a𝑖 . This
approximation may be made finer and finer by choosing a sequence of function
a𝑖 (x, 𝜽 , 𝜼) ∈ G that converges to 𝑔 ∈ G. The way to generalize the classical theory
developed for parametric models to semiparametric framework should now be more
clear: we could exploit the outcomes obtained in a sequence of (artificial) parametric
sub-models {P𝜽,a𝑖 }𝑖∈𝐼 to obtain a generalization of the concept of nuisance tangent
space and efficient score function.

Let us start by providing a semiparametric generalization of nuisance tangent
space. In this chapter, we define the semiparametric nuisance tangent space accord-
ing to the definition given in [29] and [35, Sec. 4.4], while a more general (but more
abstract) definition is given in [2, Sec. 3.2], [1] and [37, Ch. 25]. At first, let us recall
that the Hilbert space H𝑞 of the 𝑞-variate, zero-mean, random functions is a metric
space with (squared) distance given by | |h1 − h2 | |2 = E0 ((h1 − h2)𝑇 (h1 − h2)). The
notion of convergence adopted in the following is based on this definition of distance.

Definition 5 The semiparametric nuisance tangent space T𝑔0 of P𝜽,𝑔 at 𝑔0 is
defined as the closure 4 of the union of all the nuisance tangent spaces

T𝜼0,𝑖

def
= {u ∈ H𝑞 |u = C𝑖s𝜼0,𝑖 : C𝑖 is any matrix in R𝑞×𝑟𝑖 } ⊂ H𝑞 (43)

of the parametric submodels {P𝜽,a𝑖 }𝑖∈𝐼 ⊆ P𝜽,𝑔. Specifically, T𝑔0 ⊆ H𝑞 is the space
of all 𝑞-variate, zero-mean, random functions u ∈ H𝑞 for which there exists a
sequence {C𝑖s𝜼0,𝑖 }𝑖∈𝐼 such that | |u − C𝑖s𝜼0,𝑖 | | → 0, where, according to (19), s𝜼0,𝑖 =

∇𝜼 ln 𝑝𝑋 (x|𝜽0, a𝑖 (·, ·, 𝜼0)) ∈ H𝑟𝑖 is the nuisance score vector of the parametric
sub-model P𝜽,a𝑖 [35, Sec. 4.4],[1],[29]. Using this definition, the semiparametric
nuisance tangent space can be simply indicated as:

T𝑔0 =
⋃

{P𝜽 ,a𝑖 }𝑖∈𝐼

T𝜼0,𝑖 ⊆ H𝑞 . (44)

Note that, the closure of a union of linear spaces doesn’t need to be linear, in
general. However, as discussed in [1, Assumption S] and [35, Sec. 4.4, Remark
5]), T𝑔0 is a 𝑞-replicating Hilbert space in the vast majority of the non-pathological
semiparametric models. The closure and the linearity of T𝑔0 guarantee the existence
and the uniqueness of the projection operator Π(·|T𝑔0 ) through Theorem 1. However,
unlike its parametric counterpart in (24), the semiparametric nuisance tangent space

4 The closure A of a set A is defined as the smallest closed set that contains A, or equivalently,
as the set of all elements in A together with all the limit points of A.
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is generally an infinite-dimensional linear space. Consequently, a general, closed
form expression for Π(·|T𝑔0 ) is no longer available.

In the wake of what we have done in sec. 2.3 for a parametric model involving a
finite-dimensional nuisance vector, let us try to define the semiparametric counterpart
of the efficient score vector in (25). To this end, we need tree ingredients: the
score vector of the parameters of interest s𝜽0 , the semiparametric nuisance tangent
space T𝑔0 and the related projection operator Π(·|T𝑔0 ). We have already defined
T𝑔0 and Π(·|T𝑔0 ) in Definition 5, while s𝜽0 is defined exactly as in (18) for the
parametric case where we need to substitute the finite-dimensional nuisance vector
𝜼0 with the nuisance function 𝑔0, i.e. s𝜽0 = ∇𝜽 ln 𝑝𝑋 (x|𝜽0, 𝑔0). Consequently, the
semiparametric efficient score vector s̄0 is defined as the residual of the score
vector of the parameters of interest s𝜽0 after projecting it onto the semiparametric
nuisance tangent space T𝑔0 :

s̄(x; 𝜽0, 𝑔0) = s̄0
def
= s𝜽0 − Π(s𝜽0 |T𝑔0 ). (45)

Moreover, the related efficient semiparametric FIM (SFIM) can be defined as:

Ī(𝜽0 |𝑔0)
def
= E0 (s̄0s̄𝑇0 ). (46)

It is immediate to verify that the previous two definitions are perfectly in line
with the one given in Definition 4 for the parametric case. However, it is important
to stress again here that, unlike the parametric case, a general explicit expression for
Π(·|T𝑔0 ) is not available when T𝑔0 is infinite-dimensional and it has to be calculated
on a case-by-case basis. We will come back on this central point ahead in the section.

2.4.1 Semiparametric efficiency and related bound

The definition of the semiparametric efficient score vector and the related efficient
SFIM provided in (45) and (46) lead us directly to the generalization of the Cramér-
Rao inequality to the semiparametric framework. The following theorem stating it
can be found in [35, Theo. 4.1] and [38, Theo. 4.2]. A more abstract and general
formulation can be found in [1], [2, Sec. 3.4] and [37, Ch. 25].

Theorem 2 The Semiparametric Cramér-Rao Bound (SCRB) for the estimation of
the finite-dimensional vector 𝜽0 ∈ Θ in the semiparametric model P𝜽,𝑔 is given by:

SCRB(𝜽0 |𝑔0)
def
= sup

{P𝜽 ,a𝑖 }

[
E0 (s̄0,𝑖 s̄𝑇0,𝑖)

]−1
=

[
E0 (s̄0s̄𝑇0 )

]−1
=

[
Ī(𝜽0 |𝑔0)

]−1
, (47)

where {P𝜽,a𝑖 }𝑖∈𝐼 is the set of all possible parametric sub-models of P𝜽,𝑔, as defined
in (41). Moreover, s̄0,𝑖 indicates the efficient score vector of the i-th parametric sub-
model that, according to (25), is given by s̄0 = s𝜽0 −Π(s𝜽0 |T𝜼0,𝑖 ) where T𝜼0,𝑖 is defined
in (43). Finally, s̄0 and Ī(𝜽0 |𝑔0) are the semiparametric efficient score vector and
the efficient SFIM defined in (45) and (46), respectively.
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The proof is long and non-trivial, and we left the interesting reader to check it in e.g.
[35, Theo. 4.1] and [38, Theo. 4.2]. Here, we limit ourselves to two observations:

• The definition of the semiparametric efficient score vector, of the efficient SFIM
and of the related SCRB provided in (45), (46) and (47) are formally equivalent
to their parametric counterparts given in (25), (26) and (30). Only the definition
of the nuisance tangent space and of the related projection operator changes. This
is due to the fact that the abstract Hilbert space-based framework introduced in
sec. 2.2 is able to handle in a unified way both finite- and infinite-dimensional
parameter vectors.

• From (47), the SCRB(𝜽0 |𝑔0) in P𝜽,𝑔 is defined as the supremum of all the
CRB(𝜽0 |𝜼0,𝑖) in each parametric sub-models {P𝜽,a𝑖 }𝑖∈𝐼 . This confirm the in-
tuition that a semiparametric model contains less information on the parameter
vector of interest 𝜽0 ∈ Θ then any of its possible parametric sub-models.

The following two points, closely linked to the semiparametric efficiency bound,
must now be discussed:

Q1 Which is the class of estimators to which the SCRB(𝜽0 |𝑔0) applies?
Q2 Is there any estimator able to achieve it?

Even if of crucial importance, answering to this two question is not a trivial task
and they are the subject of intensive studies in statistics. Here, without any claim
of completeness, we will try to provide some general hints leaving to the interested
reader the task of further investigating the topic.

Regarding the first question, we can start by observing that we are looking for a
class of estimators able to estimate the finite-dimensional parameter vector 𝜽0 ∈ Θ

without assuming any knowledge on the nuisance function 𝑔0 ∈ G. In other words,
a semiparametric estimator should be robust with respect to the lack of a complete
specification of the functional form of the pdf of the observed dataset {x1, . . . , x𝑛}.
As shown in [2, Sec. 2.2 and Ch. 7], [35, Ch.3], [33, Ch. 4] and the references therein,
this concept can formalized in the class of regular and asymptotically linear (RAL)
estimators [2, Sec. 2.2 and Ch. 7]. It is worth mentioning that all the robust 𝑀-,
𝑆-, 𝐿-, 𝑅- estimators belong to this class [33]. Specifically, a semiparametric RAL
estimator �̂�𝑛

def
= �̂� (x1, . . . , x𝑛) of the finite-dimensional parameter vector 𝜽0 ∈ Θ

from a set of 𝑛 i.i.d. data {x1, . . . , x𝑛} satisfy the following two properties:

1.
√
𝑛-consistency:

√
𝑛(�̂�𝑛 − 𝜽0) = 𝑂𝑃𝑋

(1),
2. Asymptotically normality:

√
𝑛(�̂�𝑛 − 𝜽0) ∼

𝑛→∞
N(0,𝚵(𝜽0, 𝑔0)).

Consequently, the following inequality holds [2, Ch. 2 and 3]:

𝚵(𝜽0, 𝑔0) ≥ SCRB(𝜽0 |𝑔0). (48)

This answer to the first point Q1.
Let us now move to the question Q2: is it possible to characterize the RAL

estimator with the lowest error covariance matrix, i.e. the one that achieve the semi-
parametric lower bound (this means to have en equality in (48))? Roughly speaking,
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here we are looking for the semiparametric counterpart of the ML estimator dis-
cussed in sec. 2.3.1. This “one million dollars question” is still largely open and
many fundamental aspect remain unresolved. Here, we limit ourselves to provide
a very preliminary and informal sketch of answer. Basically, an efficient semipara-
metric estimator can be built by using the one-step procedure that we introduced for
parametric models in sec. 2.3.1. We can note in fact that the one-step estimator in
(38) is the only one among the four efficient estimators presented in sec. 2.3.1 that
does not require the finite-dimensionality of the nuisance parameter space and then
it may be generalized to semiparametric models [2, Ch. 7], [18], [37, Ch. 25].

Suppose to have at our disposal two preliminary, sub-optimal (
√
𝑛-consistent but

not necessarily efficient) estimators, say 𝜽★𝑛 and 𝑔★𝑛 , of the parameter vector of interest
𝜽0 ∈ Θ and of the nuisance function 𝑔0 ∈ G. An asymptotically efficient, one-step
estimator �̂�𝑂𝑃,𝑛 of 𝜽0 ∈ Θ can then be obtained as [2, Th. 1, Sec. 7.8]:

�̂�𝑂𝑃,𝑛 = 𝜽★𝑛 + 𝑛−1/2 [
C(𝜽★𝑛 , 𝑔★𝑛 )

]−1
Δ𝑛 (𝜽★𝑛 , 𝑔★𝑛 ), (49)

where, the efficient central sequence is given by:

Δ(x1, . . . , x𝑛; 𝜽★𝑛 , 𝑔★𝑛 ) = Δ𝑛 (𝜽★𝑛 , 𝑔★𝑛 )
def
= 𝑛−1/2

∑︁𝑛

𝑖=1
s̄(x𝑖; 𝜽★𝑛 , 𝑔★𝑛 ). (50)

Since s̄0 depends on the true value of the parameter vector of interest 𝜽0 and on the
true nuisance function 𝑔0, in the definition of the central sequence we exploit the term
s̄(·, 𝜽★𝑛 , 𝑔★𝑛 ) where 𝜽0 and 𝑔0 are substituted with their two

√
𝑛-consistent preliminary

estimates 𝜽★ and 𝑔★. Moreover, the matrix C(𝜽★𝑛 , 𝑔★𝑛 ) represents the sample estimate
of the efficient SFIM Ī(𝜽0 |𝑔0) = E0 (s̄0s̄𝑇0 ) in (46) and can be expressed as:

C(𝜽★𝑛 , 𝑔★𝑛 ) =
1
𝑛

[∑︁𝑛

𝑖=1
s̄(x𝑖 , 𝜽★𝑛 , 𝑔★𝑛 )s̄(x𝑖 , 𝜽★𝑛 , 𝑔★𝑛 )𝑇

]
. (51)

According to [2, Theo.1 and Cor. 1], it can be show that, “under suitable regularity
conditions”, �̂�𝑂𝑃,𝑛 in (49) satisfy the following properties:

1.
√
𝑛-consistency:

√
𝑛(�̂�𝑜𝑝,𝑛 − 𝜽0) = 𝑂𝑃𝑋

(1),
2. Asymptotic normality and efficiency:

√
𝑛(�̂�𝑜𝑝,𝑛 − 𝜽0) ∼

𝑛→∞
N(0, SCRB(𝜽0 |𝑔0)).

It is worth stressing that the two preliminary estimators, even if sub-optimal, needs
to be

√
𝑛-consistent. While it is not difficult to derive

√
𝑛-consistent estimators for

the finite-dimensional parameter 𝜽0, this may be a critical point for the functional
estimator 𝑔★ whose rate of convergence is generally slower than

√
𝑛 [37, Sec. 25.8].

This may strongly limit the exploitability of semiparametric one-step estimator of
the form in (49). As recently pointed out in [18], there may be some rank-based
alternative procedure allowing us to avoid the need of the non-parametric

√
𝑛-

consistent estimator of the nuisance function 𝑔 ∈ G. We will further discuss this
point in sec. 3.3 for the case of elliptical distributions.
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2.4.2 Calculation of the projection operator 𝚷(·|T𝒈0)

Before moving to the second part of the chapter, let us discuss one last fundamental
point. All the previous results on semiparametric estimation rely on the definition
of the semiparametric efficient score vector s̄0 in (45), which, in turn, is based on
the calculation of the projection operator Π(·|T𝑔0 ). Even if Π(·|T𝑔0 ) is formally
well-defined, i.e. it always exists and it is unique, its direct calculation could be
involved and sometime impossible to obtain in closed form. Fortunately, many
semiparametric models of interest for practical estimation problems are characterized
by some additional regularity or/and invariance properties that could be exploited
to derive Π(·|T𝑔0 ). Specifically, in this subsection, we analyze the case in which the
projection operator can be evaluated as a conditional expectation. As we will see in
the second part of the chapter, this methodology will be readily applied to obtain the
projection operator in the semiparametric model of the elliptical distributions.

In section 2.2, we defined H𝑞 as the Hilbert space of the 𝑞-variate, zero-mean,
random functions on the probability space (X,𝔉, 𝑃𝑋) with inner product given in
(14) as ⟨h1, h2⟩ = E(h𝑇

1 h2). Let us now introduce 𝔇(x) ⊆ 𝔉 as the sub-sigma
algebra in 𝔉 generated by some (possibly multivariate) transformation 𝑑 of the
random vector x, such that 𝐷 = 𝑑 (x). As shown in e.g. [20, Ch. 23] and [2, App.
3], the set of all the 𝑞-variate, zero-mean, random functions on the probability space
(X,𝔇(x), 𝑃𝑋) is a closed linear subsapce, say D, of the Hilbert space H𝑞 ⊇ D.
Consequently, according to Theorem 1, the projection of a generic element h ∈ H𝑞

onto the linear subspace D, i.e. Π(h|D) exists and it is unique.
The question that we aim at answering here is: is there any relation between the

projection operator Π(·|D) and the conditional expectation E(·|𝔇(x)) = E(·|𝐷)?
To this end, let us provide a geometrical definition of the conditional expectation
(see [20, Ch. 23] and [2, App. 3] for a more formal discussion).

Definition 6 Let h ∈ H𝑞 and u ∈ D ⊆ H𝑞 be two 𝑞-variate, zero-mean, random
functions on the probability spaces (X,𝔉, 𝑃𝑋) and (X,𝔇(x), 𝑃𝑋) with 𝔇(x) ⊆ 𝔉.
Moreover, let 𝐷 be a random vector defined on the sub-sigma algebra 𝔇(x).Then
the conditional expectation E(h|𝐷) is the unique element in D, s.t.:

⟨h − E(h|𝔇(x)), u⟩ = E((h − E(h|𝐷))𝑇u) = 0, ∀u ∈ D ⊆ H𝑞 (52)

It is immediate to verify that the definition of conditional expectation given in (52)
is exactly equal to the one of the orthogonal projection given in (5) of Theorem 1
that define the projection operator. As a consequence, we have the desired relation:

Π(·|D) = E(·|𝐷). (53)

Why should this relation help us? The answer is that, in some semiparametric
model of interest, the semiparametric nuisance tangent space i) has some invari-
ance structure with respect to a given group of transformations and ii) it admits a
characterization through the sub-sigma algebras generated by the maximal invariant
statistic of the relevant group of transformation [24]. As we will see in the next
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section, the semiparametric model of the elliptical distributions belongs to the class
of semiparametric models satisfying these two requirements.

3 Semiparametric estimation in Real Elliptically Symmetric
(RES) Distributions

The second part of the chapter is dedicated to the application of the general semi-
parametric theory previously introduced to the problem of the joint estimation of
the location vector and of the scatter matrix of a set of elliptically distributed real
observations in the presence of an unknown density generator. An exhaustive pre-
sentation of the class of RES distributions can be found in the Chapter 1 where a
comprehensive list of definitions, properties and examples (together with the relevant
notation and nomenclature) is provided. Here we limit ourselves to recall only some
fundamental points that will be extensively used in the rest of this section.

We start by recalling here the definition of spherically distributed random vector
(see the Definition 2 in the Chapter 1). Let x𝑠 ∈ R𝑚 be a real-valued random vector
and let O be the set of all the orthogonal transformations such that:

O ∋ 𝑂 : R𝑚 → R𝑚

x𝑠 ↦→ 𝑂 (x𝑠) = Ox𝑠 ,
(54)

for any orthogonal matrix O, i.e for any O ∈ R𝑚×𝑚 such that O𝑇O = OO𝑇 = I𝑚.
Then, xs is said to be spherically distributed if its distribution is invariant to any
orthogonal transformations O ∈ O:

x𝑠 =𝑑 Ox𝑠 (55)

As a consequence of the properties already given in the Definition 2 of the Chapter 1,
the set of spherically distributed random vectors admits a maximal invariant statistic
w.r.t. O. For completeness, we recall here the definition of maximal invariant statistic
[24, Ch. 6]. Let D = {𝑑} be a group of one-to-one transformations on a sample space
X and let 𝑇 an invariant statistic such that 𝑇 (x) =𝑑 𝑇 (𝑑 (x)), ∀x ∈ X and ∀𝑑 ∈ D.
Then, 𝑇 is a maximal invariant statistic on X w.r.t. D if 𝑇 (x1) =𝑑 𝑇 (x2) implies
that x1 =𝑑 𝑑 (x2), ∀x1, x2 ∈ X and ∀𝑑 ∈ D. Let us now go back to the spherically
distributed random vectors. From the stochastic representation given in sec. 2.2 of
the Chapter 1, we have:

x𝑠 =𝑑

√
Qu =𝑑 Ru, R = | |x𝑠 | | (56)

where Q ∼ 𝑝Q (𝑞) (the second-order modular variate) and R ∼ 𝑝R (𝑟) (the modular
variate), have pdfs given in eq. (13) of the Chapter 1. The random vector u ∼ U(R𝑆𝑚)
is uniformly distributed on the real unit sphere of dimension𝑚−1 and, consequently,
| |u| | = 1, E(u) = 0 and E(uu𝑇 ) = 𝑚−1I𝑚. Moreover, Q and u (or R and u) are
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independent. As a direct consequence, we have that | |x𝑠 | |2 and x𝑠/| |x𝑠 | | (=𝑑 u) are
independent as well.

The stochastic representation in (56) provides us with a one-to-one mapping
between a spherically distributed vector x𝑠 and a couple (R, u). Moreover, for any
couple of spherically distributed random vectors x𝑠 and y𝑠 we have that:

| |x𝑠 | | =𝑑 | |y𝑠 | | ⇒ x𝑠 =𝑑 Oy𝑠 , ∀O ∈ O, (57)

whereO is the group of the orthogonal transformations defined in (54). Consequently,
according to the definition previously provided, 𝑅 = | |x| | is a maximal invariant
statistic for the set of spherically distributed random vectors.

3.1 The RES distributions as a semiparametric group model

A semiparametric group model is a statistical model generated by the action of a
group of transformations, say A, on a random vector x that is distributed according
to a given class of distributions [2, Sec. 4.2]. As we will show in the following, this
abstract definition fits with the RES distributions class. Note that, all the subsequent
results can be obtained for the class of the circular Complex Elliptically Symmetric
(C-CES) distribution as well. The interested reader can found the details in [7].

Definition 7 Let 𝝁 ∈ R𝑚 be a real vector and let 𝚺 ∈ M be a positive-definite,
symmetric matrix such that 𝚺 = TT𝑇 . Among all the possible T we always choose
T = 𝚺1/2. Let us define the group A of the affine transformations 𝛼𝝁,𝚺 (·) s.t.:

A ∋ 𝛼𝝁,𝚺 (·) : R𝑚 → R𝑚, ∀𝝁 ∈ R𝑚,∀𝚺 ∈ M
R𝑚 ∋ y ↦→ 𝛼𝝁,𝚺 (y) = 𝝁 + 𝚺1/2y.

(58)

Note that the neutral element of the group A is given by 𝛼𝑒 (·) = 𝛼0,I𝑚 (·) while the
inversion operator is 𝛼−1

𝝁,𝚺 (·) = 𝚺−1/2 (· − 𝝁).

From the stochastic representation provided in eq. (7) of sec. 2.2 of the Chapter 1,
we can readily deduce that the set of RES distributions is closed under the action of
the group A on the set of the spherically distributed random vectors. In particular,
we have that:

x =𝑑 𝛼𝝁,𝚺 (x𝑠) =𝑑 𝝁 + 𝚺1/2x𝑠 =𝑑 𝝁 +
√
Q𝚺1/2u =𝑑 𝝁 + R𝚺1/2u. (59)

Moreover, by noticing that the Jacobian of the inverse operator 𝛼−1
𝝁,𝚺 (·) is |J(𝛼−1

𝝁,𝚺) | =
|𝚺−1/2 | = |𝚺 |−1/2, in the absolutely continuous case, we can deduce the pdf 𝑝𝑋 of any
RES-distributed random vector x from the one of the relevant spherically distributed
random vector x𝑠 given in eq. (4) of sec. 2.2 of the Chapter 1 as 𝑝(x𝑠) = 𝑔( | |x𝑠 | |2):

RES𝑚 (𝝁,𝚺, 𝑔) = 𝑝𝑋 (x; 𝝁,𝚺, 𝑔) = |𝚺 |−1/2𝑔( | |𝛼−1
𝝁,𝚺 (x) | |

2), (60)
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that is in line with the expression given in (1) in sec. 1. Finally, in order to avoid the
scale ambiguity between the scatter matrix 𝚺 and the density generator 𝑔, we rewrite
𝑝(x; 𝝁,𝚺, 𝑔) as function of the shape matrix V = 𝚺/𝑠(𝚺) ∈ M𝑠 already defined in
(2). Finally, the set of RES distribution can be cast as a semiparametric group model
where the finite-dimensional parameter space is given by: 5

Θ
def
= {𝜽 ∈ R𝑞−1 |𝜽 = (𝝁𝑇 , 𝑣(V)𝑇 )𝑇 ; 𝝁 ∈ R𝑚,V ∈ M𝑠}, (61)

where 𝑞 = 𝑚(𝑚 + 3)/2 and the “-1” is due to the fact that dim(M𝑠) = dim(M) − 1
as discussed in sec. 1. For further reference, we introduce the “unconstrained” finite-
dimensional parameter space as:

Θ𝑢
def
= {𝜽𝑢 ∈ R𝑞 |𝜽 = (𝝁𝑇 , 𝑣(V)𝑇 )𝑇 ; 𝝁 ∈ R𝑚,V ∈ M}, (62)

The infinite-dimensional parameter space is given by the set G ∋ 𝑔 of all the
possible density generators. Note that, for technical reasons, we always assume
that the set G is made up of all the density generators satisfying the following two
additional properties: 1) the limit lim𝑡→+∞ 𝑡𝑚/2𝑔(𝑡) exists and 2)

∫ ∞
0 𝑡𝑚/2𝑔(𝑡)𝑑𝑡 < ∞

that corresponds to impose 𝐸{𝑄} < ∞.
The semiparametric model that we are going to consider in the following is:

P𝝁,V,𝑔
def
=

{
𝑝𝑋 (x) = |V|−1/2𝑔( | |𝛼−1

𝝁,V (x) | |
2), (𝝁𝑇 , 𝑣(V)𝑇 ) ∈ Θ, 𝑔 ∈ G

}
. (63)

In the following, we will indicate as 𝜽0 = (𝝁𝑇
0 , 𝑣(V0)𝑇 )𝑇 ∈ Θ the true finite-

dimensional vector of interest that we need to estimate and as 𝑔0 ∈ G the true
nuisance function. Consequently, the true but unknown, data pdf is 𝑝0 (x) =

|V0 |−1/2𝑔0 ( | |𝛼−1
𝝁0 ,V0

(x) | |2). After having formally placed the set of the RES dis-
tributions in the semiparametric framework, in the next two sections we will first
evaluate the semiparametric Cramér-Rao Bound (SCRB), defined in Theorem 2, for
the joint estimation of the location vector 𝝁0 and the shape matrix V0. Secondly, a
class of one-step estimators of V0 of the type given in (49) will be presented.

3.2 The Semiparametric Cramér-Rao Bound for RES distributions

The derivation of a SCRB for estimation problems involving elliptical data has been
firstly investigated by Bickel in [3], where a bound for the estimation of the inverse
of the scatter matrix has been derived. Further discussion and analysis related to the
joint estimation of 𝝁 and V have been also presented in [2, Sec. 4.2 and sec. 6.3].
More recently, in a series of papers [14, 13, 15, 16, 31, 30], Hallin, Paindaveine

5 The operator 𝑣(A) indicates the 𝑚(𝑚 + 1)/2-dimensional vector of the entries of the lower
(or upper) sub-matrix of a symmetric A. This notation has been adopted in order to keep the
consistency with the Chapter 1. Note however that in our previous publications (see e.g. [7, 8, 10])
it was expressed as vecs( ·) .
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and their coauthors exploited an original semiparametric generalization of the Le
Cam’s theory on Local Asympotical Normal (LAN) families of distributions [18] to
derive optimal inference algorithms on elliptically distributed data. However, even
if profound and of crucial importance, the work of Hallin and Paindavaine requires
a strong knowledge of the Le Cam’s theory, and this falls outside the scope of this
chapter. Our aim here is to show how the geometrical concepts previously introduced
can be applied in a concrete problem as the joint estimation of 𝝁 and V in elliptical
data. To this end, we will basically follow the line of reasoning proposed in [2, Secs.
4.2 and 6.3], along with the results in [8, 7].

As stated in Theorem 2, the basic ingredient that we need to derive the SCRB
if the efficient score vector s̄𝑢,0 = s𝜽𝑢,0 − Π(s𝜽𝑢,0 |T𝑔0 ) that, in turn, depends on the
score vector of the parameters of interest s𝜽𝑢,0 , the semiparametric nuisance tangent
space T𝑔0 and the related projection operator Π(·|T𝑔0 ).

3.2.1 Step 1: Calculation of s𝜽𝒖,0

According to Definition 2, the score vector s𝜽𝑢,0 of the “unconstrained” parameters
of interest 𝜽𝑢,0 = (𝝁𝑇

0 , 𝑣(V0)𝑇 )𝑇 ∈ Θ𝑢 in (62) can be expressed as:

s𝜽𝑢,0 = ∇𝜽 ln 𝑝𝑋 (x|𝜽0, 𝑔0) =
(

s𝝁0 (x)
s𝑣(V0 ) (x)

)
, 𝜽0 ∈ Θ𝑢 (64)

where:
s𝝁0 = ∇𝝁 ln 𝑝𝑋 (x|𝝁0,V0, 𝑔0), (65)

s𝑣(V0 ) = ∇𝑣(V) ln 𝑝𝑋 (x|𝝁0,V0, 𝑔0). (66)

By using the equality:

𝑄0 = | |𝛼−1
𝝁0 ,V0

(x) | |2 = (x − 𝝁0)𝑇V−1
0 (x − 𝝁0) =𝑑 Q, (67)

through direct calculation [27, Ch. 8], [8], we have

s𝝁0 = −2𝜓0 (𝑄0)V−1
0 (x − 𝝁0) =𝑑 −2

√
Q𝜓0 (Q)V−1/2

0 u, (68)

where the last two equalities follow directly from the Stochastic Representation of a
RES vector given in (59) and

𝜓0 (𝑡)
def
=

1
𝑔0 (𝑡)

𝑑𝑔0 (𝑡)
𝑑𝑡

. (69)

Moreover, after some matrix calculation, we get [8]:
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s𝑣(V0 ) = −D𝑇
𝑚

(
1
2

vec(V−1
0 ) + 𝜓0 (𝑄0)

(
V−1

0 ⊗ V−1
0

)
vec((x − 𝝁0) (x − 𝝁0)𝑇 )

)
=𝑑 −D𝑇

𝑚

(
1
2

vec(V−1
0 ) + Q𝜓0 (Q)

(
V−1/2

0 ⊗ V−1/2
0

)
vec(uu𝑇 )

)
,

(70)

where, as before, the last two equalities follow from (59) while D𝑚 is the
𝑚2 × 𝑚(𝑚 + 1)/2 duplication matrix that is implicitly defined by the equality
D𝑚𝑣(A) = vec(A) for any 𝑚 × 𝑚 symmetric matrix A [25, 26].

Parametric Cramér-Rao bound If the density generator 𝑔0 is known, the FIM
for the estimation of 𝜽𝑢,0 = (𝝁𝑇

0 , 𝑣(V0)𝑇 )𝑇 ∈ Θ𝑢, can be obtained as a block matrix
of the form:

I(𝜽𝑢,0) = E0 (s𝜽𝑢,0 s𝑇𝜽𝑢,0 ) =
(

C0 (s𝝁0 ) 0
0𝑇 C0 (s𝑣(V0 ) )

)
, (71)

that is in line with the one provided in eqs. (88) and (89) of sec. 6.2 of the Chapter
1. Through direct calculation, it is easy to verify that:

C0 (s𝝁0 ) = 4𝑚−1E(Q𝜓2
0 (Q))V−1

0 , (72)

C0 (s𝑣(V0 ) ) = D𝑇
𝑚

(
𝑎1vec(V−1

0 )vec(V−1
0 )𝑇 + 𝑎2V−1

0 ⊗ V−1
0

)
D𝑚 (73)

𝑎1 =
𝑎2
2

− 1
4
, (74)

𝑎2 =
2E(Q2𝜓2

0 (Q))
𝑚(𝑚 + 2) . (75)

Finally, the CRB on the estimation of 𝜽0 = (𝝁𝑇
0 , 𝑣(V0)𝑇 )𝑇 ∈ Θ in (61) with the

constraint on the shape 𝑠(V0) = 1 can be obtained by using the same procedure
discussed in [28]. Specifically, let us define the Jacobian of the constraint as J𝑠 (V) =
∇𝑣(V0 ) (𝑠(V0) − 1) and U(V0) ≡ UV0 as the matrix whose columns form a basis for
an orthonormal null space of J𝑠 (V0). Then, the Constrained CRB (CCRB) for the
estimation of 𝜽0 ∈ Θ when the density generator in known is given by:

CCRB(𝜽0) = ©«
𝑚

4E(Q𝜓2
0 (Q) ) V0 0

0𝑇 UV0

(
U𝑇

V0
C0 (s𝑣(V0 ) )UV0

)−1
U𝑇

V0

ª®¬ . (76)

Note that the block-diagonal structure of I(𝜽𝑢,0) in (71) implies that not knowing
the mean value 𝝁0 does not have any impact on the asymptotic performance in the
estimation of the shape matrix V0 and vice versa.

3.2.2 Step 2: Calculation of the projection 𝚷(s𝜽𝒖,0 |T𝒈0)

Let us now move to the crucial step of the evaluation of the projection Π(s𝜽𝑢,0 |T𝑔0 )
of s𝜽𝑢,0 in (64) onto the semiparametric nuisance tangent space T𝑔0 at the true, but
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unknown, density generator 𝑔0. To this end, we apply a fundamental property of the
semiparametric group model discussed in [2, Sec. 4.2, Lemma 3]:
Lemma 1 Let A be the group defined in (58). Let T𝑔0 and S𝑔0 be the semiparametric
nuisance tangent spaces of the RES and of the spherically symmetric distributions at
the true density generator 𝑔0, respectively. Then, T𝑔0 can be obtained from S𝑔0 as:

T𝑔0 =

{
u ∈ H𝑞

���u = v ◦ 𝛼−1
𝝁0 ,V0

: v ∈ S𝑔0 ⊆ H𝑞

}
, (77)

where ◦ indicates the composition of functions. Moreover, the projection of the score
vector of the parameters of interest s𝜽𝑢,0 ∈ H𝑞 on T𝑔0 can be expressed as:

Π(s𝜽𝑢,0 |T𝑔0 ) = Π(s𝜽𝑢,0 ◦ 𝛼𝝁0 ,V0 |S𝑔0 ) ◦ 𝛼−1
𝝁0 ,V0

. (78)

Intuitively, Lemma 1 can be explained as follows. The set of spherically symmetric
distributions is characterized by the neutral element 𝛼𝑒 (·) = 𝛼0,I𝑚 (·) of the group
A in (58). We can derive the semiparametric nuisance tangent space S𝑔0 and the
related projection operator Π(·|S𝑔0 ) at 𝛼𝑒, then we can translate them in the true
RES distribution 𝑝0 characterized by an affine transformation 𝛼𝝁0 ,V0 by means of
the relations (77) and (78).

The following theorem, whose proof is reported in Appendix, provide us with
an explicit expression of the semiparametric nuisance tangent space S𝑔0 of the
spherically symmetric distribution at 𝑔0.
Theorem 3 Let P𝑔 be the non-parametric model of the spherically symmetric pdfs:

P𝑔
def
=

{
𝑝𝑋 (x) = 𝑔( | |x| |2), 𝑔 ∈ G

}
(79)

Its semiparametric nuisance tangent space S𝑔0 = L × . . . × L is a 𝑞-replicating
Hilbert space such that:

S𝑔0 = {u ∈ H𝑞 |u = (𝑙1, 𝑙2, . . . , 𝑙𝑞)𝑇 , 𝑙 𝑗 ∈ L, 𝑗 = 1, . . . , 𝑞}, (80)

L = {𝑙 ∈ H |𝑙 (x) = 𝑙 (Ox),∀O ∈ O} = {𝑙 ∈ H |𝑙 (x) = 𝑙 ( | |x| |)} , (81)

where O is the group of orthogonal transformations defined in (54).
As shown in (57), | |x| | = 𝑅 is a maximal invariant statistic for the set of spherically

distributed random vectors. Then, following the discussion previously given in sec.
2.4.2, the set L in (81) can be equivalently characterized as the set of the univariate
random functions defined on the probability space (X,𝔇(x), 𝑃𝑋), where 𝔇(x) ⊆ 𝔉

is the sub-sigma algebra generated by the modular variate | |x| | = 𝑅. Then, as a
consequence of the Definition 6 (see also [2, Sec. 6.3]), we have that the projection
onto S𝑔0 can be expressed as a conditional expectation w.r.t. the modular variate 𝑅:

Π(h|S𝑔0 ) = E(h|𝑅), ∀h ∈ H𝑞 . (82)

Finally, the desired Π(s𝜽0 |T𝑔0 ) can by obtained by combining the results in (78)
and in (82). Specifically, after involved but standard calculation (see [8] for all the
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details), we get:

Π(s𝜽𝑢,0 |T𝑔0 ) =
(

Π(s𝝁0 |T𝑔0 )
Π(s𝑣(V0 ) |T𝑔0 )

)
, (83)

where:
Π(s𝝁0 |T𝑔0 ) =𝑑 −2

√
Q𝜓0 (Q)V−1/2

0 E(u) = 0, (84)

Π(s𝑣(V0 ) |T𝑔0 ) =𝑑 −D𝑇
𝑚

(
1
2
+ 1
𝑚
Q𝜓0 (Q)

)
vec(V−1

0 ). (85)

Note that, eq. (84) tells us that the score vector of the location vector s𝝁0 is
orthogonal to the nuisance tangent space T𝑔0 :

Π(s𝝁0 |T𝑔0 ) = 0 ⇒ s𝝁0 ⊥ T𝑔0 . (86)

This implies that the missing a-priori knowledge of the true density generator 𝑔0
does not have any (asymptotic) impact on the performance of an estimator of the
location vector 𝝁0 [11].

3.2.3 Step 3: Calculation of the efficient SFIM Ī(𝜽𝒖,0 |𝒈0) and of SCRB(𝜽0 |𝒈0)

By subtracting (83) from (64), the semiparametric efficient score vector in (45) can
be evaluated as:

s̄𝑢,0 = s𝜽𝑢,0 − Π(s𝜽𝑢,0 |T𝑔0 ) =
(

s̄𝝁0
s̄𝑣(V0 )

)
=

(
−2

√
Q𝜓0 (Q)V−1/2

0 u
−D𝑇

𝑚Q𝜓0 (Q)
(
V−1/2

0 ⊗ V−1/2
0 vec(uu𝑇 ) − 1

𝑚
vec(V−1

0 )
) )
.

(87)

Let us now introduce the matrix

Π⊥
vec(I𝑚 ) = I𝑚2 − 𝑚−1vec(I𝑚)vec(I𝑚)𝑇 . (88)

as the orthogonal projection matrix on the orthogonal complement of span(vec(I𝑚)),
and the matrix NV0 as

NV0
def
=

(
V−1/2

0 ⊗ V−1/2
0

)
Π⊥

vec(I𝑚 ) . (89)

Then, the semiparametric efficient score vector s̄𝑣(V0 ) can be expressed as:

s̄𝑣(V0 ) =𝑑 −D𝑇
𝑚Q𝜓0 (Q)NV0 vec(uu𝑇 ). (90)

We can now explicitly evaluate the efficient SFIM Ī(𝜽0 |𝑔0) as [8]:

Ī(𝜽𝑢,0 |𝑔0) = E0 (s̄𝑢,0s̄𝑇𝑢,0) =
(

C0 (s̄𝝁0 ) 0
0𝑇 C0 (s̄𝑣(V0 ) )

)
, (91)
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where, as for the FIM in (71), the semiparametric efficient cross information matrix
E0 (s̄𝝁0 s̄𝑇

𝑣(V0 ) ) is nil. From the previous results and through some algebra, we get:

C0 (s̄𝝁0 ) = C0 (s𝝁0 ) = 4𝑚−1E(Q𝜓2
0 (Q))V−1

0 , (92)

C0 (s̄𝑣(V0 ) ) = 𝑎2D𝑇
𝑚

(
V−1

0 ⊗ V−1
0 − 1

𝑚
vec(V−1

0 )vec(V−1
0 )𝑇

)
D𝑚

= 𝑎2D𝑇
𝑚

[(
V−1/2

0 ⊗ V−1/2
0

)
Π⊥

vec(I𝑚 )

(
V−1/2

0 ⊗ V−1/2
0

)]
D𝑚

= 𝑎2D𝑇
𝑚NV0 N𝑇

V0
D𝑚.

(93)

where 𝑎2 is given in (75). Note also that in the second inequality we use the fact that
the projection matrix Π⊥

vec(I𝑚 ) is idempotent and that V0 is symmetric. It is impor-
tant to highlight that the block-diagonal structure of the efficient SFIM Ī(𝜽𝑢,0 |𝑔0)
implies that the estimate of the location vector 𝝁0 and of the shape matrix V0 are
asymptotically decorrelated. Consequently, for the estimation of V0 we may center
the data by means of any

√
𝑛-consistent estimator of 𝝁0 without any (asymptotic)

impact on the estimation performance of V0 [11]. Note that this result can also be
obtained by using the semiparametric Le Cam theory as shown in [14, 13].

We are finally able to state the desired result: an explicit expression of the Semi-
parametric Cramér-Rao Bound for the estimation of 𝜽0 = (𝝁𝑇

0 , 𝑣(V0)𝑇 )𝑇 ∈ Θ in
RES-distributed data with the constraint on the shape 𝑠(V0) = 1. By introducing
the matrix U(V0) ≡ UV0 as we did in (76), the constrained SCRB(𝜽0 |𝑔0) can be
expressed as:

CSCRB(𝜽0 |𝑔0) =©«
𝑚

4E(Q𝜓2
0 (Q) ) V0 0

0𝑇 𝑚(𝑚+2)
2E(Q2𝜓2

0 (Q) ) UV0

(
U𝑇

V0
D𝑇

𝑚NV0 N𝑇
V0

D𝑚UV0

)−1
U𝑇

V0

ª®¬ .
(94)

We note, in passing, that the corresponding bounds for C-CES distributed ob-
servation can be found in [7] along with the semiparametric generalization of the
celebrated Slepian-Bangs formula.

Let us close the chapter by answering to this fundamental question: Is it possible
to derive a RAL estimator of the shape matrix V0 able to achieve the CSCRB(𝜽0 |𝑔0)?

3.3 The rank-based 𝑹-estimators of the shape matrix

Semiparametric efficient estimators of the finite-dimensional parameter vector 𝜽0 ∈
Θ in the presence of a nuisace function 𝑔 ∈ G has been already introduced in
sec. 2.4.1. In particular, we saw that the semiparametric one-step estimators in (49)
have the remarkable property to be asymptotically semiparametric efficient RAL
estimators. In this section, we will specialize the general theory presented in sec.
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2.4.1 to the estimation of the shape matrix V0 ∈ M𝑠 from a set of 𝑛 i.i.d. observations
{x1, . . . , x𝑛}, in the presence of an unknown density generator 𝑔0 ∈ G. In order to
keep the discussion as clear as possible, in the following we assume the location
vector is nil, i.e. 𝝁 = 0. Then, the finite-dimensional parameter to be estimated is
simply given by V0 ∈ M𝑠 . This reduction of the parameter space can be done without
loss of generality, since as already discussed in sec. 3.2.2, the score vector of 𝝁 is
orthogonal to the nuisance tangent space, i.e. Π(s𝝁0 |T𝑔0 ) = 0. Consequently, when
𝝁 ≠ 0 we could always center the data by means of any

√
𝑛-consistent estimator �̂�𝑛

without any (asymptotic) impact on the estimation of V0 ∈ M𝑠 [11]. However, in
order to have a good finite-sample performance, we suggest to use a

√
𝑛-consistent

and robust location estimator as the one proposed in [19]. A further reduction of the
parameter space can be done by choosing, among all the possible constraints of the
shape matrix, the one that forces its first top-left element to be equal to 1:

V0,1 = 𝚺0/[𝚺0]11 ⇒ 𝑠(V0,1) = [V0,1]11 = 1. (95)

Note that, in the following we will use the subscript 1, i.e. A1 to indicate that the
generic matrix A satisfies the constraint in (95), that is [A]11 = 1. To notice the
impact that this choice has on the definition of the parameter space, let us start by
introducing some useful notation. Let A be an 𝑚 × 𝑚 symmetric matrix, then 𝑣(A)
is implicitly defined as 𝑣(A) = [[A]11, 𝑣(A)⊤]⊤. 6 Moreover, if [A]11 = 0, then M𝑛

is the (𝑚(𝑚 + 1)/2 − 1) × 𝑚2 matrix s.t. M⊤
𝑚𝑣(A) = vec (A). Note that M⊤

𝑚 can be
obtained from the duplication matrix D𝑚 by removing its first column. Consequently,
the finite-dimensional parameter vector to estimate is given by:

𝜽0 = 𝑣(V1,0) ∈ Θ ⊆ R𝑚(𝑚+1)/2−1, [V0,1]11 = 1. (96)

For ease of readability, let us recall here the expression of a semiparametric
one-step estimator given in (49) as:

�̂�𝑜𝑝,𝑛 = 𝜽★𝑛 + 𝑛−1/2 [
C(𝜽★𝑛 , 𝑔★𝑛 )

]−1
Δ𝑛 (𝜽★𝑛 , 𝑔★𝑛 ),

and try to list the ingredient that we need to implement it for our estimation problem:

1. A
√
𝑛-consistent preliminary estimator 𝜽★𝑛 of the constrained shape matrix. A

good candidate for 𝜽★𝑛 is the celebrated Tyler 𝑀-estimator [36] given in sec. 6.4
of the Chapter 1, since it is proven to be

√
𝑛-consistent under any (unknown)

density generator. We indicate this estimator as V★
1,𝑛, where the subscript “1”

remember us that the constraint in (95) needs to be imposed.
2. The efficient central sequence Δ𝑛 (V★

1,𝑛, 𝑔
★
𝑛 ). By specializing the definition of

semiparametric efficient score vector for V0 given in (90) to the parameter space
(96), we have that [10]:

s̄𝑣(V1,0 ) =𝑑 −Q𝜓0 (Q)KV1,0 vec(uu𝑇 ). (97)

6 Note that, in our previous publications (see e.g. [7, 8, 10]), 𝑣( ·) was expressed as vecs( ·)
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where, for notation simplicity, we define the matrix

KV1,0
def
= M𝑚

(
V−1/2

1,0 ⊗ V−1/2
1,0

)
Π⊥

vec(I𝑚 ) , (98)

Consequently, the efficient central sequence can be expressed as:

Δ𝑛 (V★
1,𝑛, 𝑔

★
𝑛 ) = −𝑛−1/2KV★

1,𝑛

𝑛∑︁
𝑖=1

𝑄★
𝑖 𝜓

★
𝑛 (𝑄★

𝑖 )vec(u★
𝑖 (u★

𝑖 )𝑇 ), (99)

where, from the stochastic representation in (56) and (59), we have:

𝑄★
𝑖 = x𝑇𝑖 [V★

1,𝑛]
−1x𝑖 , u★

𝑖 = [𝑄★
𝑖 V★

1,𝑛]
−1/2x𝑖 , (100)

and, from (69), 𝜓★
𝑛 (𝑡) = 1

𝑔★𝑛 (𝑡 )
𝑑𝑔★𝑛 (𝑡 )

𝑑𝑡
, where 𝑔★𝑛 (𝑡) is a

√
𝑛-consistent non-

parametric estimator of the density generator 𝑔0 ∈ G.
3. An estimate C(V★

1,𝑛, 𝑔
★
𝑛 ) of the efficient SFIM Ī(𝜽0 |𝑔0) evaluated in (93). From

its definition provided in (51) and from the previous results, we have that:

C(V★
1,𝑛, 𝑔

★
𝑛 ) = 𝑎★𝑛KV★

1,𝑛
K𝑇

V★
1,𝑛
, (101)

where 𝑎★𝑛 is a
√
𝑛-consistent estimator of the term 𝑎2 =

2E(Q2𝜓2
0 (Q) )

𝑚(𝑚+2) in (75).

By taking a careful look at the previous list of ingredients, it is immediate to realize
that the critical point for the implementation of this semiparametric efficient estimator
is the derivation of

√
𝑛-consistent estimators for the density generator 𝑔★𝑛 (𝑡) and for

the two related quantities 𝜓★
𝑛 (𝑡) and 𝑎★𝑛 . As discussed in sec. 2.4.1, finding a non-

parametric estimator able to converge at the
√
𝑛-rate is a difficult, or even impossible,

task. What can we do then? Is there any other way out? Fortunately, a positive
answer to this question has been recently found by Hallin, Oja and Paindaveine
in their seminal work [13]. Even if of great importance, their results strongly rely
on an invariance-based extension of the semiparametric Le Cam theory discussed
in [18], whose explanation falls outside the scope of this paper. Here, we limit
ourselves to a provides only some hints, without any claim of completeness nor of
mathematical rigor. The groundbreaking idea proposed in [13] is the use of a rank-
based approximation Δ̃𝑛 (V★

1,𝑛) [12], [37, Ch. 13] (hence the name of 𝑅-estimator) of
the efficient central sequence Δ𝑛 (V★

1,𝑛, 𝑔
★
𝑛 ) that does not require any non-parametric

estimator 𝑔★𝑛 of the density generator 𝑔0 ∈ G.
By letting the interested reader to discover the technical details and the proofs

in [13, 10], in the following we will provide the necessary tools to implement
an 𝑅-estimator of the shape matrix. At first, we need to introduce the concept of
ranks. To this end, let us order the 𝑛 “preliminary estimated” modular variates
{𝑄★

1 , 𝑄
★
2 , · · ·𝑄

★
𝑛 , } in (100) in an ascending way as 𝑄★

𝑛(1) < 𝑄
★
𝑛(2) < . . . < 𝑄★

𝑛(𝑛) .
Then, the rank 𝑟★

𝑖
of 𝑄★

𝑖
is its position index in the ordered sequence [37, Ch. 13].

Let us now introduce the following two rank-based functionals:
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1. The 𝑔★𝑛 -free approximation of the efficient central sequence. By using, as be-
fore, the Tyler 𝑀-estimator as the

√
𝑛-consistent preliminary estimator of the

constrained shape matrix in (95), i.e. V★
1,𝑛, the semiparametric efficient central

sequence Δ𝑛 (𝜽★𝑛 , 𝑔★𝑛 ) in (99) can be approximated as:

�̃�(V★
1 ) = 𝑛

−1/2KV★
1

𝑛∑︁
𝑖=1

𝐾

(
𝑟★
𝑖

𝑛 + 1

)
vec(u★

𝑖 (u★
𝑖 )𝑇 ), (102)

where 𝑟★
𝑖

is the rank of 𝑄★
𝑖

, already defined in (100) along with u★
𝑖

. The function
𝐾 : (0, 1) → R+ belongs to the set K of continuous, square integrable functions
that can be expressed as the difference of two monotone increasing functions [13].
Here, due to its “optimality property” (see [30] for some additional discussion)
we use the van der Waerden function:

𝐾𝑣𝑑𝑊 (𝑡) def
= Φ−1

𝐺 (𝑡), (103)

where Φ−1
𝐺

indicates the inverse cumulative distribution function of a 𝜒2-
distributed random variable with 𝑚 degrees of freedom.

2. The 𝑔★𝑛 -free approximation of 𝑎2 in (75). As proved in [13], a
√
𝑛-consistent,

𝑔★𝑛 -free, estimator of 𝑎2 =
2E(Q2𝜓2

0 (Q) )
𝑚(𝑚+2) is given by:

�̂�𝑛 =
| |𝚫(V★

1 + 𝑛−1/2H0) − �̃�(V★
1 ) | |

| |KV★
1
K𝑇

V★
1
𝑣(H0) | |

, (104)

where H0 is a “small perturbation”, symmetric, matrix such that [H0]11 = 0.
Following [10], we set H0 = (G + G𝐻 )/2 where [G]𝑖 𝑗 ∼ CN(0, 𝜐2), [G]11 =

0 and 𝜐 is an hyper-parameter that has to be small enough to guarantee that
V̂★

1 + 𝑛−1/2H0 remains a positive-definite matrix. Consequently, we have that a
𝑔★𝑛 -free approximation of the efficient SFIM can be obtained as:

C̃(V̂★
1,𝑛) = �̂�𝑛KV★

1,𝑛
K𝑇

V★
1,𝑛
. (105)

Finally, by putting all the previous results together, we have that a (almost)
semiparametric efficient one-step 𝑅-estimator of the shape matrix is given by:

𝑣(V̂𝑅,1,𝑛) = 𝑣(V★
1,𝑛) + 𝑛

−1/2 [C̃(V★
1,𝑛)]

−1�̃�(V★
1 )

= 𝑣(V★
1,𝑛) +

1
𝑛�̂�𝑛

[
KV★

1,𝑛
K𝑇

V★
1,𝑛

]−1
KV★

1

𝑛∑︁
𝑖=1

𝐾

(
𝑟★
𝑖

𝑛 + 1

)
vec(u★

𝑖 (u★
𝑖 )𝑇 ).

(106)

As shown in [13], 𝑣(V̂𝑅,1,𝑛) is a RAL estimator of V1,0 satisfying the following
properties:

1.
√
𝑛-consistent:

√
𝑛(𝑣(V̂𝑅,1,𝑛 − V0)) = 𝑂𝑃𝑋

(1),
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2. Asymptotically normal:
√
𝑛(𝑣(V̂𝑅,1,𝑛 − V0)) ∼

𝑛→∞
N(0,𝚽(V0, 𝑔0, 𝐾)).

It is worth highlighting that its asymptotic error covariance matrix 𝚽(𝜽0, 𝑔0, 𝐾)
depends on the choice of the rank-based function 𝐾 along with the true shape
matrix V1,0 and the true density generator 𝑔0 ∈ G. Moreover, due to the constrained
parameter space in (96), induced by the specific choice of the constraint in (95), the
efficiency inequality in (48) can be explicitly expressed as:

𝚽(V0, 𝑔0, 𝐾) ≥ CSCRB(V0 |𝑔0) =
𝑚(𝑚 + 2)

2E(Q2𝜓2
0 (Q))

[
KV1,0 K𝑇

V1,0

]−1
. (107)

Before moving to the simulation results, some comments are in order:

• The 𝑅-estimator in (106) has been generalized to the case of Complex Elliptically
Symmetric distributed data in [10, 11, 9] where an investigation of its robustness
properties has been also performed.

• Building upon the seminal results in [13, Prop. 3.1], in [11] the complex-valued
𝑅-estimator has been recast in a matrix form able to be more efficient in terms of
numerical calculation.

• The Matlab and Python codes related to the implementation of the different
versions of the 𝑅-estimator can be found in [4].

• If we want to constraint the estimated shape matrix with a criterion different from
the one in (95), we can just re-normalize the estimated shape matrix as:

V̂𝑅,𝑠,𝑛 = V̂𝑅,1,𝑛/𝑠(V̂𝑅,1,𝑛), (108)

without any impact on the asymptotic properties of [15]. However, it must be
noted that generally the non-asymptotic, finite-sample estimation performance
may be impacted by this re-scaling.

3.3.1 Finite-sample performance of 𝑹-estimators

In this subsection, we compare, through numerical simulation, the estimation per-
formance of the Tyler 𝑀-estimator with the one of the 𝑅-estimator in (106). The
main aim is to quantify the efficiency losses described by the inequality (107) in a
finite-sample regime, i.e. when the number of observations is finite. To this end, we
generate a set of zero-mean i.i.d. 𝑡-distributed data whose distribution is described in
sec. 5.2 of the Chapter 1. The scatter matrix is assumed to have a Toeplitz structure
[𝚺0]𝑖 𝑗 = 𝜌 |𝑖− 𝑗 | , 𝑖, 𝑗 = 1, . . . , 𝑚 where 𝜌 = 0.8 and 𝑚 = 8. The performance index,
used to compare the Tyler and the 𝑅 estimators is the following:

Y𝜑
def
=

E0

(
𝑣(V̂𝜑,1,𝑛 − V1,0)𝑣(V̂𝜑,1,𝑛 − V1,0)𝑇

)
𝐹
, (109)

where 𝜑 = {𝑇𝑦𝑙𝑒𝑟, 𝑅} indicates the particular estimator under test, V1,0 = 𝚺0/[𝚺0]11
and | |A| |2

𝐹
= tr(A𝑇A) is the Frobenius norm of matrix A. This Mean Square Error
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(MSE) index will be compared with the CCRB in (76) and with the CSCRB in (107).
Note that the scalars 𝑎1 and 𝑎2 (in (74) and (75) respectively), needed to define the
bounds, can be evaluated, for the 𝑡-distribution, as [8]:

𝑎1 = − 1
2(𝑚 + 2 + a) , 𝑎2 =

2E(Q2𝜓2
0 (Q))

𝑚(𝑚 + 2) =
a + 𝑚

2(𝑚 + 2 + a) . (110)

Finally, for the CCRB in (76) and the (107), the following indices will be reported:

Y𝐶𝐶𝑅𝐵 = | |CCRB(V0) | |𝐹 , Y𝐶𝑆𝐶𝑅𝐵 = | |CCRB(V0 |𝑔0) | |𝐹 . (111)

We present the behavior of the MSE indices and of the bounds as function of the
number of i.i.d. observations 𝑛 in Fig. 1 and as function of the degrees of freedom a

of the 𝑡-distribution in Fig. 2. We recall, in passing, that when a → 0+, the data tend
to be extremely heavy-tailed, while when a → +∞, the 𝑡-distribution collapse into
the Gaussian one.

The first thing to note is that the distance between Y𝐶𝐶𝑅𝐵 and Y𝐶𝑆𝐶𝑅𝐵 quantifies
the efficiency loss due to the missing knowledge of the density generator (parametric
vs. semiparametric estimation). This distance does not goes to zero as 𝑛 goes to
infinity and it increases as a → +∞, i.e. when the observation are less heavy-tailed.
This result remains true for any RES distributions (not only for the 𝑡-distribution)
[13, 15]. Let us now focus on the performance of the Tyler and 𝑅-estimators. Both of
them are semiparametric in nature since they does not require the a priori knowledge
of the density generator characterizing the data generating process. If we compare
their MSE indices, i.e. Y𝑇𝑦𝑙𝑒𝑟 and Y𝑅, as function of 𝑛 as in Fig. 1, we can notice
a small performance improvement of the 𝑅-estimator with respect to the Tyler’s
one. The benefit of the 𝑅-estimator are more evident if we evaluate Y𝑇𝑦𝑙𝑒𝑟 and Y𝑅 as
function of the degrees of freedom a (the non-Gaussianity parameter) as in Fig. 2. As
expected, the constrained Tyler 𝑀-estimator has a MSE index that is constant with
respect to a. On the other hand, the 𝑅-estimator tends to be adaptive with respect to
the changing value of a. Unfortunately, it fails to be semiparametric efficient, i.e. it
is not able to achieve the CSCRB in (107). There are three main reasons for this:

• As discussed in sec. 3.3, the 𝑅-estimator relies on the estimation of the term 𝑎2 in
(75). The estimator �̂�𝑛 given in (104) is

√
𝑛-consistent but not optimal in the MSE

sense. Then, to improve the global performance of an 𝑅-estimator, we should
look for a “better” estimator of 𝑎2 in (75).

• As shown in (107), the asymptotic error covariance matrix 𝚽(V0, 𝑔0, 𝐾) depends
of the choice of the rank function 𝐾 . A natural question is then: would it be
possible to find the optimal function 𝐾 that minimize the error covariance under
any density generator? Even if a preliminary answer to this question has been
provided in [30], this problem is still open.

• Regarding the Fig. 2, it must be noted that Y𝑅 is evaluated in a finite-sample regime
(𝑛 = 3𝑚) and not in asymptotic conditions needed to guarantee the optimality of
the semiparametric estimator in (106). Moreover, it is worth underling that in this
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non-asymptotic regime, the constraint in (108) that we choose to put of the scatter
matrix may have an impact on the MSE of the related shape matrix estimator.
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Fig. 1 MSE indices and bounds as function of the number of observations 𝑛 (a = 5, 𝑚 = 8).
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Fig. 2 MSE indices and bounds as function of the degrees of freedom a of the 𝑡-distribution
(𝑛 = 3𝑚, 𝑚 = 8).
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4 Conclusions

The aim of this chapter was to firstly provide the reader with a general and tutorial
in nature introduction about the estimation problem in semiparametric models. All
the necessary mathematical tools have been presented along with some fundamental
results as the Semiparametric Efficiency Bound. In the second part, we showed
how to apply the general framework to the semiparametric estimation of the shape
matrix of RES-distributed data in the presence of an unknown density generator.
Specifically, the Constrained Semiparametric Cramér-Rao Bound (CSCRB) for the
joint estimation of the location vector and of the shape matrix has been proposed
together with a rank-based 𝑅-estimator of the shape matrix. Here we focused only
on the RES case, but the interested reader can find the generalization of all the above
mentioned results to CES-distributed data in [7, 10, 11, 9, 4]. We note in passing the
the semiparametric version of the celebrated Slepian-Bangs formula has also been
derived in [7]. Despite the large amount of works already done in the field of the
semiparametric statistics, some crucial problem still merit our effort to rich a fully
satisfactory solution. Here we limit ourselves to cite the ones related to the RES
distributions:

• As previously discussed, the derivation of a (at least asymptotically) semiparamet-
ric efficient estimator is still an open problem. Even if the 𝑅-estimator proposed
by Hallin, Oja and Paidaveine in [13] has represented a breakthrough, we still
have room for improvement as shown in Figs. 1 and 2.

• In some application, we are more interested in a direct estimation of the eigenspace
of the shape matrix instead of the shape matrix itself. Would it be possible
then to derive some semiparametric efficient estimators of the eigenvectors and
eigenvalues of the shape matrix for elliptically distributed data? This problem has
been recently addressed in [16, 17] but further works need to be done in order to
have an exploitable practical estimator.
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Appendix: proof of Theorem 3

In this Appendix, we provide the proof of Theorem 3. Before starting the proof, it is
worth recalling here that the Hilbert space H is the set of scalar random functions
on the sample space X, i.e. ℎ : X → R satisfying the following two properties:

1. Zero-mean: E(ℎ) =
∫
X ℎ(x)𝑝𝑋 (x)𝑑x = 0

2. Finite variance: E(ℎ2) =
∫
X ℎ

2 (x)𝑝𝑋 (x)𝑑x = 𝜎2
ℎ
< +∞
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Proof : The proof follows the one discussed in [35, Theo. 4.4]. Let as start by
defining the generic i-th parametric sub-model of the non-parametric model P𝑔 in
(79) as

Pa𝑖

def
= {𝑝𝑋 (x|𝜼) = a𝑖 ( | |x| |, 𝜼), 𝜼 ∈ Γ𝑖 ⊆ R𝑟𝑖 } , where: (112)

where, according to de definition of parametric sub-model in sec. 2.4:

• a𝑖 : X × Γ𝑖 → G is a smooth parametric map ∀𝑖 ∈ I,
• Let 𝑔0 be the true density generator, then ∃𝜼0 ∈ Γ𝑖 , s.t. a𝑖 ( | |x| |, 𝜼0) = 𝑔0 ( | |x| |2).

According to the definition in (43), the i-th nuisance tangent space of Pa𝑖 in (112)
is given by:

T𝜼0,𝑖

def
= {u ∈ H𝑞 |u = C𝑖s𝜼0,𝑖 : C𝑖 is any matrix in R𝑞×𝑟𝑖 } ⊂ H𝑞 (113)

where the nuisance score vector is expressed as:

s𝜼0,𝑖 ≡ s𝜼0,𝑖 ( | |x| |) = ∇𝜼a𝑖 ( | |x| |, 𝜼0). (114)

From the standard properties of the score vectors, we have that :

E0 ( [s𝜼0,𝑖 ] 𝑗 ) = 0 E0 ( [s𝜼0,𝑖 ]
2
𝑗 ) < +∞ ⇒ [s𝜼0,𝑖 ] 𝑗 ∈ L (115)

then s𝜼0,𝑖 ∈ S𝑔0 . Consequently:

T𝜼0,𝑖 ⊆ S𝑔0 , ∀𝑖 ∈ I, (116)

that is, all the nuisance tangent spaces T𝜼0,𝑖 of any possible parametric sub-model
Pa𝑖 are contained in S𝑔0 .

To complete the proof, we now need to prove that any element in S𝑔0 can be
expressed as an element of some parametric submodel T𝜼0,𝑖 . Let star by choosing an
arbitrary element h( | |x| |) of S𝑔0 , that is a zero-mean 𝑞-variate random function with
finite variance. As parametric sub-model, we choose the following one:

Pa = {𝑝𝑋 (x|𝜼) = a( | |x| |, 𝜼), 𝜼 ∈ Γ ⊆ R𝑞} , where: (117)

a( | |x| |, 𝜼) = 𝑔0 ( | |x| |2)
(
1 + 𝜼𝑇h( | |x| |)

)
, (118)

and 𝜼 ∈ Γ ⊆ R𝑞 is sufficiently small to guarantee that (1 + 𝜼𝑇h( | |x| |)) ≥ 0 ∀x,
and then 𝑝𝑋 (x|𝜼) = a( | |x| |, 𝜼) ≥ 0. Moreover, from the definition of h( | |x| |) as an
element of S𝑔0 , we have that:∫

𝑝𝑋 (x|𝜼)𝑑x =

∫
𝑔0 ( | |x| |2)𝑑x + 𝜼𝑇

∫
h( | |x| |)𝑔0 ( | |x| |2)𝑑x

= 1 + 𝜼𝑇E0 (h( | |x| |)) = 1 + 0 = 1,
(119)

then 𝑝𝑋 (x|𝜼) = a( | |x| |, 𝜼) represents a proper pdf. For this specific parametric
sub-model, we have that the nuisance score vector is given by:
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s𝜼0 = ∇𝜼a( | |x| |, 𝜼0) = ∇𝜼

[
𝑔0 ( | |x| |2)

(
1 + 𝜼𝑇h( | |x| |)

)] ���
𝜼=𝜼0=0

= h( | |x| |). (120)

Finally, if we pose C𝑖 equal to the identity matrix I in the nuisance tangent space
(113) (also given in (43)), from (120), we immediately have that any arbitrary element
h( | |x| |) of S𝑔0 can be expressed as en element of the nuisance tangent space of the
parametric model in (117). This concludes the proof, i.e. S𝑔0 is the semiparametric
nuisance tangent space of the set of the spherically symmetric distributions.
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12. Hájek, J.: Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math.
Statist. 39(2), 325–346 (1968)

13. Hallin, M., Oja, H., Paindaveine, D.: Semiparametrically efficient rank-based inference for
shape II. Optimal R-estimation of shape. The Annals of Statistics 34(6), 2757–2789 (2006)

14. Hallin, M., Paindaveine, D.: Semiparametrically efficient rank-based inference for shape I.
Optimal rank-based tests for sphericity. The Annals of Statistics 34(6), 2707–2756 (2006)

15. Hallin, M., Paindaveine, D.: Parametric and semiparametric inference for shape: the role of the
scale functional. Statistics & Decisions 24(3), 327–350 (2009)

16. Hallin, M., Paindaveine, D., Verdebout, T.: Optimal rank-based testing for principal compo-
nents. The Annals of Statistics 38(6), 3245–3299 (2010)

17. Hallin, M., Paindaveine, D., Verdebout, T.: Efficient r-estimation of principal and common
principal components. Journal of the American Statistical Association 109(507), 1071–1083
(2014)

18. Hallin, M., Werker, B.J.M.: Semi-parametric efficiency, distribution-freeness and invariance.
Bernoulli 9(1), 137–165 (2003)



Semiparametric estimation in elliptical distributions 35

19. Hettmansperger, T.P., Randles, R.H.: A practical affine equivariant multivariate median.
Biometrika 89(4), 851–860 (2002)

20. Jacod, J., Protter, P.: Probability Essentials. Springer series in statistics (2004)
21. Le Cam, L.: Locally asymptotically normal families of distributions. In: Univ. California Publ.

Statist., vol. 3, pp. 37–98 (1960)
22. LeCam, L., L.Yang, G.: Asymptotics in Statistics: Some Basic Concepts, 2 edn. Berlin,

Germany: Springer series in statistics (2000)
23. Lehmann, E.L.: Theory of Point Estimation. John Willey and Sons Inc., New York. (1983)
24. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer Texts in Statistics

(2004)
25. Magnus, J.R., Neudecker, H.: The commutation matrix: Some properties and applications. The

Annals of Statistics 7(2), 381–394 (1979)
26. Magnus, J.R., Neudecker, H.: The elimination matrix: Some lemmas and applications. SIAM

Journal on Algebraic Discrete Methods 1(4), 422–449 (1980)
27. Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and

Econometrics, 3 edn. (1999)
28. Moore, T.J., Kozick, R.J., Sadler, B.M.: The constrained Cramér–Rao bound from the per-

spective of fitting a model. IEEE Signal Processing Letters 14(8), 564–567 (2007). DOI
10.1109/LSP.2006.891316

29. Newey, W.K.: Semiparametric efficiency bounds. Journal of Applied Econometrics 5(2),
99–135 (1990)

30. Paindaveine, D.: A Chernoff-Savage result for shape:on the non-admissibility of pseudo-
Gaussian methods. Journal of Multivariate Analysis 97(10), 2206 – 2220 (2006)

31. Paindaveine, D.: A canonical definition of shape. Statistics & Probability Letters 78(14), 2240
– 2247 (2008)

32. Petersen, K.B., Pedersen, M.S.: The matrix cookbook (2012). URL
http://www2.imm.dtu.dk/pubdb/p.php?3274. Version 20121115

33. Rieder, H.: Robust Asymptotic Statistics. Springer series in statistics (1994)
34. Rudin, W.: Real and Complex Analysis, 1 edn. McGraw-Hill (1987)
35. Tsiatis, A.: Semiparametric Theory and Missing Data. Springer series in statistics (2006)
36. Tyler, D.E.: A distribution-free M-estimator of multivariate scatter. The Annals of Statistics

15(1), 234–251 (1987)
37. van der Vaart, A.W.: Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic

Mathematics. Cambridge University Press (1998)
38. Vermeulen, K.: Semiparametric efficiency. Ph.D. thesis, Universiteit Gent (2011)
39. Wellner, J.A.: Semiparametric models: Progress and problems. In: ISI (ed.) Bulletin of the

International Statistical Institute, 4, vol. 51 (1985)


