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In this paper, we consider a sequential bilateral oligopoly market which embodies
a �nite number of leaders and followers who compete on quantities. We de�ne a non-
cooperative equilibrium concept for this two-stage market game with complete and perfect
information, namely the Stackelberg-Nash equilibrium (SNE). Then, we study the exis-
tence of a SNE with trade. The existence proof requires some steps as this market game
displays a rich set of strategic interactions. In particular, to show the existence of a pure
strategy subgame perfect Nash equilibrium, we have to determine the conditions under
which there exist well de�ned continuously di¤erentiable best responses. Some examples
buttress the approach and discuss the assumptions made on the primitives.
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1. INTRODUCTION

The existence of noncooperative oligopoly equilibria in �nite strategic market
games has been widely studied under Cournot competition (Dubey and Shubik,
1978, Dubey, 1982, Sahi and Yao, 1989, Amir et al., 1990, and Peck and Shell, 1992).
An essential issue concerns the existence of a Cournot-Nash equilibrium with trade
(Cordella and Gabszewicz, 1998, Bloch and Ferrer, 2001, Giraud, 2003, Busetto and
Codognato, 2006, Dickson and Hartley, 2008). In this paper, we consider a two-stage
�nite market game with observable delays in which several leaders and followers
compete on quantities. We de�ne a noncooperative oligopoly equilibrium concept,
namely the Stackelberg-Nash equilibrium (SNE thereafter). The main objective is to
study the existence of a SNE. Some Stackelberg general equilibrium concepts have
already been de�ned and computed in simple �nite exchange economies (Julien and
Tricou, 2010, 2012, and Julien 2013). Nevertheless, these contributions provide no
existence proof. Thus, this paper is devoted to the existence of a non-autarkic pure
strategy subgame perfect-Nash equilibrium (SPNE), that is, a SNE with trade,
within the research program for strategic market games founded by Shubik (1973),
Shapley (1976), and Shapley and Shubik (1977).

1EconomiX, UPL, Université Paris Nanterre, CNRS, 200 avenue de la République, 92001 Nan-
terre, France. Tel. +33(1)40977543. E-mail: ludovic.julien@u-paris10.fr . A �rst version of this
manuscript entitled "Hierarchical competition and heterogeneous behavior in bilateral oligopoly
markets" was presented in the 6th workshop "Strategic Interactions and General Equilibrium" at
the University of Paris Nanterre in November 2015. A second version was presented at the Univer-
sity of Udine in October 2016, at the University of Strathclyde in November 2016, and in the 7th
workshop "Strategic Interactions and General Equilibrium" at the University of Paris Nanterre in
November 2016. I am grateful to F. Busetto, G. Codognato, S. Comino, G. de Feo, G. de Truchis,
A. Dickson, M. Gehrsitz, D. Levando, F. Pressacco, F. Prieur, and S. Tonin for their comments,
remarks and suggestions. The interdisciplinary Economics and Mathematics CNRS project PEPS
MoMIS is also gratefully acknowledged.
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To study the existence of a SNE with trade, we extend the exchange bilateral
oligopoly model introduced by Gabszewicz and Michel (1997), and explored notably
by Bloch and Ghosal (1997), Bloch and Ferrer (2001), Dickson (2005), Dickson and
Hartley (2008), and Amir and Bloch (2009). The bilateral oligopoly model is a two
commodity version of the strategic market game models (Shapley and Shubik, 1977,
Sahi and Yao, 1989, and Amir et al., 1990). In the bilateral oligopoly model each
trader has corner endowment but wants to consume both commodities. There is a
market price which aggregates the strategic supplies of all traders and allocates the
amounts traded to each market participant. Therefore, to build a sequential mar-
ket game with hierarchical competition, we consider a market with a �nite number
of heterogeneous traders. Heterogeneity does not stem only from the primitives,
i.e., from endowments and preferences, it merely relies on asymmetric behavior
which is peculiar to hierarchical competition. Thus, this hierarchical competition
is modeled within a two-stage game which embodies two simultaneous move sub-
games. There are strategic interactions on each side and between both sides of the
market: the leaders interact with the followers in the two-stage game, but the lead-
ers (followers) interact with each other in a simultaneous move game. Therefore,
there are two multiple leader-follower industries which are connected through trade.
Thus, this contribution constitutes a �rst endeavour to cast within a pure exchange
two-commodity framework the multiple leader-follower one industry game, which
is studied in particular by Sherali (1984), Yu and Wang (2008), and Julien (2017).
We assume that the timing of moves is given. In addition, information is assumed
to be complete and perfect. Thus, we look for pure strategy SPNE.
There are two main problems involved with the existence of a SNE with trade.

The �rst problem is related to the possibility of autarky. It is well known that
autarky is always a Nash equilibrium in �nite strategic market games with simulta-
neous moves (see, in particular, Cordella and Gabszewicz, 1998, Giraud, 2003, and
Busetto and Codognato, 2006). Therefore, autarky also holds in the simultaneous
move bilateral oligopoly game. Thus, we wonder whether autarky is a plausible
outcome in the sequential bilateral oligopoly model. It seems plausible to conjec-
ture that the no trade equilibrium is a possible outcome for the entire sequential
game, in which case neither leaders nor followers participate in exchange. But, is
it possible that exchange takes place in one subgame whereas autarky prevails in
the other subgame, in which case only the leaders or only the followers participate
in exchange on the market? An example given in Section 5 provides a positive
answer to this question. The second di¢ culty, which is speci�c to sequential non-
cooperative oligopoly games, concerns the existence of well de�ned best responses
(Julien, 2017). Indeed, in the basic one leader-one follower game, the best response
is determined, for any given strategy pro�le of the leader, as the solution to the
maximization of the follower�s payo¤. But in a game with at least two followers the
best responses could not be well-de�ned. Indeed, in the subgame between followers,
any follower�s optimal behavior consists in a decision mapping which depends upon
two kinds of arguments: the strategy pro�le of all leaders and the strategy pro�le of
all other followers. Thus, if these mappings were not mutually consistent, the best
responses could not be well-de�ned. This problem is illustrated with an example in
Section 5. In this paper, we provide a consistency condition to show the existence
of smooth best responses as well as the existence of a SNE with trade.
To the best of our current knowledge, Stackelberg competition has not yet been

studied in this way in noncooperative oligopoly. Groh (1999) proposes a bilateral
oligopoly market in which the leaders are sellers and the followers are buyers. The
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existence of a SPNE with trade is based on three restrictions: the utility function is
speci�c; each side of the market embodies only leaders or followers; with identical
traders within each side. Therefore, our contribution to the literature is threefold.
First, we consider a SNE concept for a market game in which utility functions are
not speci�c, and in which heterogeneous leaders compete with heterogeneous fol-
lowers within each side and between both sides of the market. The existence of a
SNE with trade requires notably that the utility functions be twice-continuously
di¤erentiable, strictly increasing and strictly quasi-concave, with, for some traders,
indi¤erence curves which are contained in the strict interior of the commodity space.
Second, the study of optimal behavior in subgames leads us to provide a character-
ization of the strategic equilibrium which brings into light a consistency criterion.
This criterion concerns the internal consistency of the system of equations which
determines the best responses. Our criterion gives some nondegeneracy su¢ cient
condition on the Jacobian determinant of the set of equations that de�nes implicitly
the followers�best responses. If our criterion holds, then the reduced form payo¤s
of leaders are well-de�ned. Therefore, the subgame between leaders may be studied.
Thus, the set of pure strategy subgame perfect equilibria in the �nite extensive form
game with observable delays is not empty. Third, our approach puts forward the
beliefs of leaders: by de�nition, in a SNE, the leaders know perfectly the reactions
of the followers. Indeed, the optimal behavior of leaders deserves careful study.
The main objective of the paper is to prove the existence of a SNE with trade.

To this end, we consider a slight perturbation of the market game as in Dubey and
Shubik (1978) when they show existence of non-autarkic Cournot-Nash equilibria.
The proof requires �ve steps. The �rst step is devoted to the study of optimal
behavior in each perturbed subgame. Thus, we study the optimal decision mappings
of followers (Propositions 1 and 2). Then, we show the existence of smooth best
responses. To this end, we consider the consistency of the system of equations
which determines such best responses. Hence, if the Jacobian matrix associated
with the equations which de�nes implicitly the best responses is of full rank, then
the strategy of any follower is a well de�ned continuously di¤erentiable function
of the sole strategy pro�le of leaders (Lemma 1). We also show the followers�
reactions are bounded (Proposition 3). Then, by considering the subgame between
leaders, and their reduced form payo¤s, we study the optimal decision mappings of
leaders (Proposition 4). In the second step, we prove the existence of a SNE of the
perturbed market game. To this end, we show the optimal behavior of traders are
mutually consistent in each perturbed subgame as well as in the entire perturbed
game (Lemma 2). In the third step, we show that there exist some uniform bounds
on the market price in a SNE of the perturbed game (Lemma 3). In the fourth step,
we prove the SNE of the perturbed game is non-autarkic (Lemma 4). Finally, in the
�fth step, we show that the SNE with trade is an equilibrium point of the market
game (Lemma 5). The continuous di¤erentiability of the utility functions and the
behavior of the indi¤erence curves near the boundary of the consumption sets play
a critical role. Thus, some examples illustrate the role played by the assumptions.
This inquiry reveals that the assumptions made on the utility functions provide a
set of su¢ cient conditions for the existence of a SNE with trade.
The remaining part of the paper is organized as follows. In section 2, we describe

the model. Section 3 is devoted to the existence of a SNE with trade. Section 4
provides some examples to discuss our assumptions and to buttress the working
of our approach. In section 5 we conclude. Section 6 contains an Appendix which
proves some intermediate results.
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2. THE MODEL

The model is described in four steps. First, we give the basic framework and �x
some notations. Second, we state some assumptions. Third, we describe the market
game associated with the exchange economy. Fourth, we de�ne the SNE.

2.1. Framework and notations

Consider an exchange economy, E , with two divisible homogeneous commodities
labeled X and Y . Let pX and pY be their unit prices. Traders are of two types,
namely 1 and 2, so the set of traders is partitioned into two subsets T1 and T2, with
T1 \ T2 = f?g. We assume 2 6 jT1j <1 and 2 6 jT2j <1, where jT j denotes the
cardinality of the set T . Traders who belong to T1 (resp. T2) are indexed by i (resp.
by j). We assume there are M1 leaders and N1 � M1 followers of type 1, with
T1 = f1; :::;M1;M1 + 1; :::; N1g. Likely, we have T2 = f1; :::;M2;M2 + 1; :::; N2g.
Then, M1 > 1 and N1 �M1 > 1. Likewise, M2 > 1 and N2 �M2 > 1.

In what follows, we adopt the following notational conventions. Vectors are in
bold and capital letters denote either sets or summations. Let z 2 Rn+. Then, z � 0
means zi > 0, i = 1; :::; n; z > 0 means there is some i such that zi > 0, with z 6= 0,
and z >> 0 means zi > 0 for all i, i = 1; :::; n. The transpose of z is denoted by
z0. Let zi > 0 be an action. An action pro�le is given by z = (z1; :::; zi; :::; zn), with
z � 0. In addition, let z�i = (z1; :::; zi�1; zi+1; :::; zn) be the action pro�le of all
traders but trader i. We sometimes consider Z �

Pn
i=1 zi, with Z�i �

P
�i 6=i

z�i =

Z � zi. Let A be a �nite set, with A = f1; :::;m; :::; ng. The restriction of A to a
subset of m elements is denoted by Am, with Am = Anfm + 1; :::; ng. The Carte-
sian product of sets Ai is denoted by

Q
i2I

Ai, where I = f1; :::; ng is the index set.

Moreover,
Q
i

Ai is the Cartesian product of all sets but i. Let f be a function de-

�ned by f : A � Rn ! B � R, with z 7�! f(z). The Cartesian product of a
set of functions f j(:), j = 1; :::;m, is denoted by �jf j(:). The partial derivative
of f with respect to zi at z = �z is @f

@zi
(�z), i = 1; :::; n. Likewise, when n = 1,

the derivative of f with respect to z at z = �z is df
dz (�z). The second-order partial

derivative of f with respect to zi at z = �z is denoted by @2f
(@zi)2

(�z) (by d2f
(dz)2 (�z)

when n = 1). The notation f � C2 means f is twice-continuously di¤erentiable.
A m dimensional vector function F is de�ned by F : A � Rn ! B � Rm, with
F(z) = (f1(z); :::; f2(z); :::; fm(z)). The notation z(e), where e 2 Rk, means that
each zi is a function of e, i = 1; :::; n. When m = 1, the gradient vector of f is

denoted by rf =
�
@f(z)
@z1

; :::; @f(z)@zi
; :::; @f(z)@zn

�
. The Jacobian matrix of F(z) with re-

spect to z at �z is denoted by JF(�z), with JF(�z) =
h
@(f1;:::;fj ;:::;fm)
@(z1;:::;;zi;:::;zn)

i
. With a slight

abuse of notation, let jJF(�z)j be the determinant of JF at �z. The Hessian matrix
of F(z) with respect to z at �z is denoted by HF(�z), with HF(�z) =

h
@2f

@zi@zj
(�z)
i
,

i; j = 1; :::; n. If A(m;n) is a matrix of dimension (m;n), then its transpose, which
we denote by A0

(m;n), is a matrix of dimension (n;m). Finally, when the distinction
matters, if we partition z in such a way z = (x;y), then JFx(�z) is the Jacobian
matrix of F(z) at �z when the di¤erentiation is partial and made with respect to x
only. Its determinant is jJFx(�z)j.
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2.2. Assumptions on endowments and preferences

We now provide two kinds of assumptions regarding the fundamentals (endow-
ments and preferences) for E . First, there are �xed initial endowments which satisfy
the following assumption.

Assumption 1. wi = (�i; 0), with �i > 0, for each i 2 T1, and wj = (0; �j),
with �j > 0, for each j 2 T2.

Assumption 1 is standard in the bilateral oligopoly model with a �nite number
of traders (Gabszewicz and Michel, 1997, Dickson and Hartley, 2008). Indeed, as
emphasized by Cordella and Gabszewicz (1998), it does not require the initial en-
dowments to be strictly in the interior of the commodity space (Amir et al., 1990),
or the traders sell their entire endowments (Shubik, 1973, Shapley, 1976).

Second, the preferences of each trader k are described by an utility function
uk : R2+ ! R, zk 7! uk(zk), with zk = (xk; yk), and where xk and yk are the
amounts of goods X and Y consumed by trader k, k = i; j. We make the following
set of assumptions, which we designate as Assumption 2.

Assumption 2. For all zk 2 R2+, the utility function uk satis�es:
2a. 8k, uk � C2(R2++);
2b. 8k, ruk(zk) >> 0, where ruk(zk) =

�
@uk(zk)
@xk

; @uk(zk)@yk

�
;

2c. 8k,
��A(2;2)�� =

�����
"
0 @uk

@xk
@uk
@yk

@2uk
(@xk)2

#����� < 0, ��A(3;3)�� =
����� 0 ruk
(ruk)0 Huk

����� > 0.
2d. there are at least one leader and one follower of each type for whom ruk(zk)

satis�es limzk!0ruk(zk) = (1;1).

Hypothesis (2a) says the utility functions are twice-continuously di¤erentiable
in the interior of the commodity space. And it includes the case of in�nite partial
derivatives along the boundary of the consumption set (see Kreps, 2012, p. 58).
(2b) and (2c) say the utility functions are strictly monotonic and strictly quasi-
concave. From (2d), the indi¤erence curves of (at least) two traders of each type
do not intersect the quantity axis. These assumptions are discussed in Section 4.

2.3. The market game

We introduce now the noncooperative game, namely �, associated with E . Let
Si and Sj be the strategy sets of traders i and j respectively, with:

Si = f(qi; bi) 2 R2+ : qi 6 �i and bi = 0g, i 2 T1 (1)

Sj = f(qj ; bj) 2 R2+ : qj = 0 and bj 6 �jg, j 2 T2. (2)

The quantity qi in (1) denotes the pure strategy of trader i 2 T1. The strategy
qi represents the amount of commodity X trader i 2 T1 sells in exchange for
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commodity Y . Similarly, bj is the pure strategy of trader j 2 T2. A strategy pro�le
is represented by the vector (q;b) = (q1; q2; :::; qN1 ; b1; b2; :::; bN2), with (q;b) 2Q
i2T1

Si �
Q
j2T2

Sj . Let q�i denote the strategy pro�le of all traders of type 1 but i.

The same holds for b�j . In addition, let qL and qF be respectively the strategy
pro�les of type 1 leaders and followers. The same holds for b, with b = (bL;bF ).
Given a price vector p = (pX ; pY ) and a feasible strategy pro�le (q;b), the

market clearing price pXpY (q;b) is determined according to the following mechanism:

pX
pY
(q;b) = f

B
Q , if B > 0 and Q > 0

0, otherwise,
(3)

where Q �
P
i2T1

qi is equal to
pY
pX
B, with B �

P
j2T2

bj .

The �nal allocations assign the following bundles for each type of traders:

8i 2 T1, zi = f

�
�i � qi; B

qj+Q�j
qi

�
, if pXpY > 0

(�i; 0), if
pX
pY
= 0,

(4)

8j 2 T2, zj = f

�
Q

bj+B�j
bj ; �j � bj

�
, if pYpX > 0

(0; �j), if
pY
pX
= 0.

(5)

The corresponding utility levels may be written as payo¤s:

�i(qi;q�i;b) = ui

�
�i � qi;

B

qj +Q�j
qi

�
, i 2 T1 (6)

�j(q; bj ;b�j) = uj

�
Q

bj +B�j
bj ; �j � bj

�
, j 2 T2. (7)

The �nite game � := fT; (Si; �i); (Sj ; �j)gj2T2i2T1 represents a two-stage game where
the players are the traders, the strategies are the supplies, and the payo¤s are the
utility levels they reach in the market outcome. This game displays two stages
of decisions and no discounting. We also assume the timing of positions is given.
Then, all leaders (followers) play only at stage 1 (2). In addition, traders meet
once and cannot make binding agreements. By precluding binding agreements, we
consider each trader acts independently and without communication with any of
the others. Thus, � is a two-stage hierarchical game with observable delays, which
embodies two simultaneous move subgames: one between the leaders, namely �L,
and one between the followers, namely �F . Indeed, the (M1 +M2) leaders play
a two-stage game with the (N1 �M1) + (N2 �M2) followers, but any leader (fol-
lower) plays with each other leader (follower) a simultaneous move game. Finally,
information is assumed to be complete and perfect. Information is perfect because
any leader perfectly knows the behavior of all followers, and, each follower�s infor-
mation set is a single decision node.2 In each decision node, any follower makes
an optimal choice, so sequential rationality prevails. As sequential rationality is
common knowledge, the game is solved by backward induction.

2 It is worth noticing that the entire game includes two partial games with strategic uncer-
tainty: �F is a simultaneous move subgame, and �L is a simultaneous move game. But the entire
(sub)game � is a sequential game with perfect information: every information set is a singleton,
and every node initiates a subgame. Followers perfectly know the optimal strategies of leaders,
and no trader makes a choice in two subgames.
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2.4. SNE: de�nition

To de�ne a SNE, we complete the description of the market game. To this end,
we de�ne some concepts which are related to the optimal behavior of traders in
each subgame.

Consider the subgame �F . For each (qL;bL), with (qL;bL) 2
M1Q
i=1

Si �
M2Q
j=1

Sj ,

the optimal decision mappings (ODM) of followers are de�ned as follows.

Definition 1. (ODM). Let �i :
Q

�i2T1
S�i �

Q
j2T2

Sj ! Si, with �i(q�i;b) =

fqi 2 Si : qi 2 argmax�i(qi;q�i;b)g, be follower i�s optimal decision mapping,
i = M1 + 1; :::; N1. Similarly, let  j :

Q
i2T1

Si �
Q

�j2T2
S�j ! Sj . with  j(q;b�j) =

fbj 2 Sj : bj 2 argmax�j(q; bj ;b�j)g, j =M2 + 1; :::; N2.

Let us notice this market game displays a rich set of strategic interactions.
Therefore, in contrast with the duopoly game the behavior of traders is more di¢ -
cult to handle. The ODM�s di¤er from best responses, whilst in the usual duopoly
game, the optimal decision of the follower always coincides with his best response
(Julien, 2017). But with several followers the best responses might be not well-
de�ned (see Example 3 in the Appendix). In Section 3 we provide a criterion to
show the existence of smooth best responses, which are de�ned as follows.

Definition 2. (BR). Let �i :
M1Q
i=1

Si�
M2Q
j=1

Sj ! Si, with qi = �i(q
L;bL), be the

best response of follower i, i = i =M1+1; :::; N1. Likewise, for all j =M2+1; :::; N2,

let 'j :
M1Q
i=1

Si �
M2Q
j=1

Sj ! Sj , with bj = 'j(q
L;bL).

Consider now the subgame �L. De�ne the function � :
M1Q
i=1

Si �
M2Q
j=1

Sj !

N1Q
i=M1+1

Si, with qF = �(qL;bL), and the function ' :
M1Q
i=1

Si�
M2Q
j=1

Sj !
N2Q

j=M2+1

Sj ,

with bF = '(qL;bL). Then, from (3), we deduce pXpY (q
L;�(qL;bL);bL;'(qL;bL)),

so we can de�ne, for each leader, the optimal decision mapping as the solution to
the maximization of her reduced form payo¤.

Definition 3. Let �i :
Q
�i 6=i

S�i �
M2Q
j=1

Sj ! Si, with �i(q
L
�i;b

L) = fqi 2

Si : qi 2 argmax�i(qi;qL�i;�(qi;qL�i;bL);bL;'(qi;qL�i;bL)g, be leader i�s opti-

mal decision mapping, i = 1; :::;M1. Likewise, let  j :
M1Q
i=1

Si�
Q
�j 6=j

S�j ! Sj , with

 j(q
L;bL�j) = fbj 2 Sj : bj 2 argmax�j(qL;�(qL; bj ;bL�j); bj;bL�j ;'(qL; bj ;bL�j)g,

j = 1; :::;M2.

Let us now consider the consistency of optimal behavior. The equilibrium of the
two-stage game � is a pure strategy SPNE, while the equilibria in both subgames �L
and �F are Nash equilibria. But such a SPNE is a Nash equilibrium (NE thereafter)
of each subgame of � (Selten, 1975).3

3 It requires the strategies of the leaders and the followers to constitute a NE of any subgame. In
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De�ne the function �L :
M1Q
i=1

Si �
M2Q
j=1

Sj !
M1Q
i=1

Si �
M2Q
j=1

Sj , with �L(qL;bL) =

�M1
i=1�i�

M2
j=1 j . A pure strategy NE of the subgame �L is a �xed point (~qL; ~bL)

of �L(qL;bL) such that no leader has an interest to deviate unilaterally from

her decision. In addition, consider �F . De�ne �F :
N1Q
i=1

Si �
N2Q
j=1

Sj !
N1Q

i=M1+1

Si �

N2Q
j=M2+1

Sj , with �F (~qL;qF ; ~bL;bF ) = �N1

i=M1+1
�i�N2

j=M2+1
 j . A pure strategy NE

of the subgame �F is a �xed point (~qF ; ~bF ) of �F such that no follower has an
interest to deviate unilaterally from his decision.
Finally, consider the NE of the entire game �. A pure strategy SPNE of the entire

game � is a �xed point (~qL; ~qF ; ~bL; ~bF ), with (~qF ; ~bF ) = (�(~qL; ~bL);'(~qL; ~bL)).
Therefore, at a SNE each leader (each follower) behaves optimally given her (his)
conjecture, and the choice s/he makes is consistent with this conjecture. The market
price (3) is given by pX

pY
(~q; ~b). Therefore, the allocations corresponding to (4)-(5) are

given by ~zi = zi(~qi;
pX
pY
(~qL; ~bL)), for i 2 T1, and ~zj = zj(~bj ; pXpY (~q; ~b)), for j 2 T2.

Finally, the payo¤s (6)-(7) are given by �i~qi; ~q�i; ~b) = ui(zi(~qi;
pX
pY
(~qi; ~q�i; ~b))) for

i 2 T1, and by �i(~q; ~bj ; ~b�j) = uj(zj(~bj ;
pX
pY
(~q; ~bj ; ~b�j))) for j 2 T2. Therefore, a

SNE is a noncooperative oligopoly equilibrium of � such that, on the one hand, the
markets clear, and on the other hand, in each step of the game, no trader wants to
deviate from her choice.

We are now able to de�ne formally a SNE for the market game �.

Definition 4. (SNE). A N1 + N2-tuple (~q; ~b), consisting of a strategy pro-
�le (~qL; ~qF ; ~bL; ~bF ) = (~q1:::; ~qM1

; ~qM1+1:::; ~qN1
; ~b1; :::;~bM2

;~bM2+1; :::;
~bN2

), with ~qi =
�i(~q

L; ~bL), i =M1+1; :::; N1, and ~bj = 'j(~q
L; ~bL), j =M2+1; :::; N2, constitutes

a Stackelberg-Nash equilibrium of � if:
a. 8i 2 fM1 + 1; :::; N1g, �i(~qi; ~q�i; ~b))) > �i(qi; ~q�i; ~b))), for all qi 2 Si;
b. 8j 2 fM2 + 1; :::; N2g, �j(~q; ~bj ; ~b�j))) > �j(~q; bj ; ~b�j), for all bj 2 Sj ;
c. 8i 2 f1; :::;M1g, �i(~qi; ~qL�i;�(~qi; ~qL�i; ~bL); ~bL;'(~qi; ~qL�i; ~bL)) >

ui(qi; ~q
L
�i;�(qi; ~q

L
�i;
~bL); ~bL;'(qi; ~q

L
�i;
~bL)), for all �(qL; ~bL) 2

N1Q
i=M1+1

Si and

all '(qL; ~bL) 2
N2Q

j=M2+1

Sj ;

d. 8j 2 f1; :::;M2g, uj(~qL;�(~qL; ~bj ; ~bL�j); ~bj ; ~bL�j ;'(~q
L
; ~bj ; ~b

L
�j)) >

uj(~q
L;�(~qL; bj ; ~b

L
�j); bj ;

~bL�j ;'(~q
L
; bj ; ~b

L
�j)), for all �(~q

L;bL)) 2
N1Q

i=M1+1

Si

and all '(~qL;bL) 2
N1Q

i=M1+1

Sj , for all bj 2 Sj .

addition, it is a SPNE without empty threats: it rules out incredible threats by the followers. The
reason is the strategy of any follower is optimal for any supply set by the leaders. The followers
can set their own supplies according to any possible function of the quantities set by the leaders,
with the belief that the leaders will not counter-react. Similarly, the leaders expect the follower
to conform to the decisions given by their best responses.
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3. EXISTENCE OF A SNE WITH TRADE

Let us now consider the existence of a SNE with trade. It is well known that
the autarkic equilibrium is always a NE in simultaneous move strategic market
games (see, in particular, Cordella and Gabszewicz, 1998, Giraud, 2003, Busetto
and Codognato, 2006). The next example, which is borrowed from Cordella and
Gabszewicz (1998), illustrates this feature in the sequential game.

Example 1. (Autarkic SNE). Let jT1j = jT2j = 2. Assumption 1 is �i = 1, for
each i 2 T1, and �j = 1, for each j 2 T2. Assumption 2 is ui(xi; yi) = xi + yi,
i 2 T1, and ui(xi; yi) = xi + yi, j 2 T2, with  2 (0; 1), so (2d) does not hold.
The unique competitive equilibrium is given by p� = 1 and z�i = (0; 1), i 2 T1,
and z�j = (1; 0), j 2 T2. In addition, the Cournot-Nash equilibrium strategies are

given by (q̂1; q̂2; b̂1; b̂2) = (0; 0; 0; 0). Consider now the SNE. The followers�ODM are

�2(q1; q2; b1) = �b1+
q

1
 b1(q1 + q2) and  2(q1; b1; b2) = �q1+

q
1
 (b1 + b2)q1. The

best responses are given by �(q1; b1) =
(1�2)b1+

p
(1�4)(b1)2+4b1q1
2 and '(q1; b1) =

(1�2)q1+
p
(1�4)(q1)2+4b1q1
2 . Then, the leaders� SNE strategies are ~q1 = 0 and

~b1 = 0. Accordingly, the strategies of followers are �(0; 0) = 0 and '(0; 0) = 0.
Then, the only SNE is the trivial equilibrium (~q1; ~q2; ~b1;~b2) = (0; 0; 0; 0).

Therefore, if one leader is making a positive supply, the other leader by deviating
and making a positive supply can generate a subgame where at least one side of the
market is making a null supply. No leader/follower �nds it pro�table to participate
in exchange because no other leader/follower does. For any trader, the strategic
advantage from trading, whichever is the stage of the game, is o¤set by the strategic
advantage of reducing her supply to manipulate the market price. Nevertheless, we
are able to state the following theorem.

Theorem 1. (Existence of a SNE with trade). Consider the market game �,
and let Assumptions 1 and 2 be satis�ed. Then, there exists a Stackelberg-Nash
equilibrium with trade.

Proof. The approach of the proof is as follows. We consider a slight perturbation
of the market game � which is used by Dubey and Shubik (1978) for their existence
proof. Therefore, consider a perturbed game �� in which some outside agency puts
a �xed quantity � > 0 of the two commodities on each side of the market. Given
� > 0, the price (3) of �� is now given by:�

pX
pY

��
=
B+ �

Q+ �
. (8)

The allocations and payo¤s are ~zi;� = zi;�(~qi;�; (
pX
pY
)�(~q�; ~b�)) and ��i(~qi;�; ~q�i;�; ~b�))

for i 2 T1, and ~zj;� = zj;�(~bj;�; (pXpY )
�(~q�; ~b�) and ��j(~q�; ~bi;�; ~b�i;�)) for j 2 T2. The

proof obtains by following �ve main steps. First, we study the optimal behavior
of traders in each perturbed subgames. Second, we show the optimal behavior
are mutually consistent (existence of a �-SNE). Third, we show the market price
is bounded in a �-SNE. Fourth, we show the existence of an �-SNE with trade.
Finally, we consider the sequence of �-SNE�s with trade, and show the SNE is an
equilibrium point of �, a Nash equilibrium which is robust to slight perturbation
of the market game.
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Let us �rst de�ne formally the concept of �-SNE.

Definition 5. (�-SNE). For all � > 0, a N1+N2-tuple (~qL� ; ~q
F
� ; ~b

L
� ; ~b

F
� ) of fea-

sible strategies (~q1;�:::; ~qM1;�; ~qM1+1;�:::; ~qN1;�;
~b1;�; :::;~bM2;�;

~bM2+1;�; :::;
~bN2;�), with

~qi;� = ��i(~q
L
� ; ~b

L
� ), i = M1 + 1; :::; N1, and ~bj;� = '�j(~q

L
� ; ~b

L
� ), j = M2 + 1; :::; N2,

constitutes a Stackelberg-Nash equilibrium of �� if like in De�nition 4, conditions
a., b., c. and d. hold, but where �i is replaced by ��i for i 2 f1; :::; N1g, and �j is
replaced by ��j for j 2 f1; :::; N2g respectively.

To show the existence of an �-SNE (with trade) we need some intermediate
results. First, we consider the behavior of traders in the perturbed game ��.
Consider the perturbed subgame ��F . For any given strategy pro�le of the lead-

ers, the program of follower i consists in maximizing his payo¤ ��i(qi;�;q�i;�;b�; �)
given by (6). The next proposition echoes De�nition 1.

Proposition 1. Let the utility functions uk satisfy Assumption 2. Then, for all
� > 0, the mappings ��i :

Q
�i2T1

S�i �
Q
j2T2

Sj � R++ ! Si, with ��i(q�i;�;b�; �), i =

M1+1; :::; N1, and
Q
i2T1

S�i�
Q

�j2T2
Sj�R++ ! Sj, with  �j(q�;b�j;�; �), j =M2+

1; :::; N2 are well de�ned, point-valued (functions) and continuously di¤erentiable.

Proof. See Appendix A.

The next proposition provides monotonicity properties about followers�ODM.

Proposition 2. Let �� = (��M1+1; :::; �
�
N1
) and  � = ( �M2+1; :::;  

�
N2
) be re-

spectively (N1 �M1) and (N2 �M2) dimensional vector functions. Consider the

Jacobian matrices J��
qF�

(�q�; �b�) =
h
@��(:)
@qF�

i
and J �

bF�

(�q�; �b�) =
h
@ �(:)
@bF�

i
. Then,

�I << J��
qF�

(�q�; �b�) � I, where I is the (N1 � M1; N1 � M1) unit matrix, and

�I << J �

bF�

(�q�; �b�) � I, where I is the (N2 � M2; N2 � M2) unit matrix. In

addition, J��
bF�

(�q�; �b�) =
h
@��(:)
@bF�

i
2 (�I; I), and J �

qF�

(�q�; �b�) =
h
@ �(:)
@qF�

i
2 (�I; I),

where the Is are (N1 �M1; N2 �M2) and (N2 �M2; N1 �M1) unit matrices.

Proof. See Appendix B.

Followers interact in a simultaneous move game. Thus, the followers optimal
decisions must be consistent to solve the game. By "consistent" we mean that the
best responses (see De�nition 2) can be deduced from the collection of optimal
decision mappings. It is worth noticing that the best responses might not exist (see
Example 3). To introduce our criterion de�ne the function ��i :

Q
i2T1

Si �
Q
j2T2

Sj �

R++ ! Si, with ��i(q�;b�) := qi;� � ��i(q
L
� ;q

F
�i;�; ;b

L
� ;b

F
� ; �), i = M1 + 1; :::; N1,

and the function 	�j :
Q
i2T1

Si �
Q
j2T2

Sj � R++ ! Sj , with 	�j(b�;q�) := bj;� �

 �j(q
L
� ;q

F
� ;b

L
� ;b

F
�j;�; �), j = M2 + 1; :::; N2, � > 0. This set of functions will be

useful to build the system of equations that will implicitly de�ne the best responses.

Let �� :
Q
i2T1

Si �
Q
j2T2

Sj � R++ !
N1Q

i=M1+1

Si �
N2Q

j=M2+1

Sj the (N1 �M1) + (N2 �

M2)-dimensional vector function de�ned by�� = (��M1+1
; :::;��N1

; 	�M2+1
; :::;	�N2

).
Consider the (N1�M1)+(N2�M2)-dimensional vector equation ��(q�;b�; �) = 0.
These (N1 � M1) + (N2 � M2) equations taken together consist in a system of
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(N1�M1)+(N2�M2) simultaneous equations with (N1�M1)+(N2�M2) unknowns
(qF� ;b

F
� ) and M1 + M2 parameters (qL� ;b

L
� ). This system de�nes implicitly (at

least locally) best responses. Let (�qL� ; �q
F
� ; �b

L
� ; �b

F
� ) be an interior point of

Q
i2T1

Si �Q
j2T2

Sj , so the identity ��(qL� ;q
F
� (q

L
� ;b

L
� );b

L
� ;b

F
� (q

L
� ;b

L
� )) � 0 holds in an open

neighborhood of (�qL� ; �q
F
� ; �b

L
� ; �b

F
� ). Implicit partial di¤erentiation with respect to

(bL� ;q
L
� ) of this identity leads to:

J��
(qF� ;bF� )

(�q�; �b�):A� = �B�, for each " > 0, (9)

where J��

(qF� ;bF� )
(�q�; �b�) is the ((N1�M1)+(N2�M2); (N1�M1)+(N2�M2))matrix

formed by all partial derivatives of �� with respect to (qF� ;b
F
� ) at (�q

L
� ; �q

F
� ; �b

L
� ; �b

F
� ),

and A� and B� are matrices of dimension ((N1 �M1) + (N2 �M2);M1 +M2) (see
Appendix C). The next lemma says that the solution to (9), if it exists, determines
the best responses.

Lemma 1. If
���J��

(qF� ;bF� )
(�q"; �b")

��� 6= 0, then, for all " > 0, there exist well de�ned
functions ��i :

M1Q
i=1

Si �
M2Q
j=1

Sj � R++ ! Si, with bi;� = ��i(q
L
� ;b

L
� ; �), i = M1 +

1; :::; N1, and '�j :
M1Q
i=1

Si �
M2Q
j=1

Sj � R++ ! Sj, with qj;� = '�j(q
L;bL; �), j =M2 +

1; :::; N2. Moreover, ��i � C1, i =M1 + 1; :::; N1, and '�j � C1, j =M2 + 1; :::; N2.

Proof. See Appendix C.

Lemma 1 gives a su¢ cient condition for the existence of continuous di¤erentiable
best responses: the Jacobian of ��(:) is a linear map which is invertible. It is worth
noticing that, as the perturbed best responses are di¤erentiable, then, for all � > 0,
the vector function (��(:; �);'�(:; �)) is di¤erentiable. The next proposition gives
some bounds on the optimal responses of followers.

Proposition 3. Let �� = (��M1+1
; :::; ��N1

) and '� = ('�M2+1
; :::; '�N2

) be (N1�
M1) and (N2�M2) dimensional vector functions. Consider J��

qL�

(�q�; �b�) =
h
@��(:)
@qL�

i
and J'�

qL�

(�q�; �b�) =
h
@'�(:)
@qL�

i
. Then, J��

qL�

(�q�; �b�) 2 [�I3; I3) and J'�
qL�

(�q�; �b�) � 0,
where I3 is the (N1�M1;M1) unit matrix and 0 is the (N2�M2;M1) zero matrix.
In addition, J'�

bL�

(�q�; �b�) 2 [�I4; I4) and J��
bL�

(�q�; �b�) � 0, where I4 and 0 are of
dimension (N2 �M2;M2) and (N1 �M1;M2) respectively.

Proof. See Appendix D.

Consider now the subgame ��L. Each leader knows how the market price is af-

fected by the followers�reactions. Indeed, let �� :
M1Q
i=1

Si�
M2Q
j=1

Sj�R++ !
N1Q

i=M1+1

Si,

with qF� = ��(qL� ;b
L
� ; �), and let '

� :
M1Q
i=1

Si �
M2Q
j=1

Sj � R++ !
N2Q

j=M2+1

Sj , with

bF� = '�(qL� ;b
L
� ; �). In particular, �

�(qL� ;b
L
� ; �) � C1 and '�(qL� ;bL� ; �) � C1.

Therefore, pX
pY
((qL� ;�

�(qL� ;b
L
� ; �);b

L
� ;'

�(qL� ;b
L
� ; �))) � C1. Then, leader i maxi-

mizes her reduced payo¤ ��i(qi;�;q
L
�i;�;�

�(qi;�;q
L
�i;�;b

L
� ; �);b

L
� ;'

�(qi;�;q
L
�i;�;b

L
� ; �).

The next proposition states the existence of ODM for leaders (see De�nition 3).
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Proposition 4. Let the utility functions uk satisfy Assumption 2. Then, for

all � > 0, the mappings ��i :
Q
�i 6=i

S�i �
M2Q
j=1

Sj � R++ ! Si, with ��i(qL�i;�;bL� ; �),

i = 1; :::;M1, and  
�
j :

M1Q
i=1

Si �
Q

�j=1
S�j � R++ ! Sj, with  �j(qL� ;bL�j;�; �), j =

1; :::;M2, are well de�ned, point-valued (functions) and continuously di¤erentiable.

Proof. See Appendix E.

We are now able to state the existence of an �-SNE.

Lemma 2. (Existence of �-SNE). Consider ��, and let Assumptions 1 and 2 be
satis�ed. Then, for all � > 0, there exists an "-Stackelberg-Nash equilibrium of ��.

Proof. We have to show that the optimal strategic behavior are mutually con-
sistent, i.e., there is a pure strategy SPNE for the entire perturbed game �", which
constitutes a NE of each perturbed subgame ��L and �

�
F . We �rst show that �

�
L has

a NE. To this end, de�ne the function ��L :
M1Q
i=1

Si�
M2Q
j=1

Sj �R++ !
M1Q
i=1

Si�
M2Q
j=1

Sj ,

with ��L(q
L
� ;b

L
� ; �) = �M1

i=1�
�
i�M2

j=1 
�
j , where �

�
i , i = 1; :::;M1, and  

�
j , j = 1; :::;M2,

are well-de�ned functions from Proposition 3 (see Appendix E). The function ��L is
a continuous function (as the product of continuous functions ��i , i = 1; :::;M1, and
 �j , j = 1; :::;M2, from Proposition 4) over a compact and convex subset of Euclid-
ean space (as the product of compact and convex sets Si, i = 1; :::;M1, and Sj , j =
1; :::;M2). Then, by the Brouwer Fixed Point Theorem, the function ��L admits a
�xed point, namely (~qL� ; ~b

L
� ), which is a NE of �

�
L. Now, we show �

�
F has a NE. De-

�ne��F :
N1Q
i=1

Si�
N2Q
j=1

Sj�R++ !
N1Q

i=M1+1

Si�
N2Q

j=M2+1

Sj , with��F (q
L
� ;q

F
� ;b

L
� ;b

F
� ) =

�N1

i=M1+1
��i�N2

j=M2+1
 �j , where �

�
i , i =M1+1; :::; N1, and  

�
j , j =M2+1; :::; N2, are

known to exist from Proposition 1. Fix (~qL� ; ~b
L
� ). The function �

�
F (q

L
� ;q

F
� ;b

L
� ;b

F
� )

is continuous on
Q
i

Si�
Q
j

Sj , a compact and convex set of Euclidean space. Then,

it has a �xed point, namely (~qF� ; ~b
F
� ), which is a NE of �

�
F . Finally, from Lemma

1, for all � > 0, we can de�ne (qF� ;b
F
� ) = (�

�(qL� ;b
L
� ; �);'

�(qL� ;b
L
� ; �)). If (~q

L
� ; ~b

L
� )

is a �xed point, then, by using Lemma 1, and by continuity of ��(:) and '�(:),
we deduce (~qF� ; ~b

F
� ) = (��(~qL� ; ~b

L
� ; �);'

�(~qL� ; ~b
L
� ; �)) is a �xed point of �

�
F , for all

� > 0: Then, (~qL" ; ~q
F
" ; ~b

L
" ; ~b

F
" ) is a �xed point of �

�.

The next lemma concerns the existence of bounds on market price in an �-SNE.

Lemma 3. Assume there are at least one leader and one follower of each type.
Then, in an �-SNE, there exist uniform bounds �1 > 0 and �2 > 0 such that:

8� > 0, �1 <
�
pX
pY

��
< �2, with

�
pX
pY

��
=
B+ �

Q+ �
. (10)

Proof. See Appendix F.

The following lemma is related to the existence of an �-SNE with trade.

Lemma 4. (Existence of �-SNE with trade). Consider ��, and let Assumptions
1 and 2 be satis�ed. Then, for all � > 0, there exists an "-SNE with trade of ��.
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Proof. We have to show that there are non trivial equilibrium strategies in each
stage, i.e., there exist lower and upper uniform bounds on equilibrium bids such
that there are at least one leader and one follower of the �rst type (resp. second
type) for whom 0 < ~qi;� < �i (resp. 0 < ~bj;� < �j).
Follower i. Consider the payo¤ given by (6). Let ��i(q

L
� ;b

L
� ; �) 2 Si. We have

to show that there are q
¯
i; �qi 2 Si such that 0 < q

¯ i
6 ��i(~q

L
� ; ~b

L
� ; �) 6 �qi < �i, for at

least one i, i =M1+1; :::; N1. Fix the strategies of all other traders in equilibrium.
Follower i�s marginal payo¤ may be written (see (A2) in Appendix A):

@��i
@qi;�

= �@ui
@xi

+ (
pX
pY
)�

Q�i;� + "

qi;� +Q�i;� + "

@ui
@yi

, for all � > 0. (11)

From Proposition 1, there exists ��i(q
L
" ;q

F
�i;";b"; �) > 0, i = M1 + 1; :::; N1. In

addition, from Lemma 1, there exists qi;� = ��i(q
L
� ;b

L
� ; �) > 0, i = M1 + 1; :::; N1.

Then, in equilibrium we have ~qi;� = ��i(~q
L
� ; ~b

L
� ; �) > 0, i = M1 + 1; :::; N1. Let

MRSiX=Y =
@ui=@xi
@ui=@yi

, so (11) may be written:

@��i
@qi;�

=
@ui
@yi

�
(
pX
pY
)� �MRSiX=Y

�
, for all � > 0. (12)

Consider the case ��i(~q
L
� ; ~b

L
� ; �) >b¯ i > 0. As (pXpY )

� > �1 and
Q�i;�+"

qi;�+Q�i;�+"
6 1,

then (12) may be written:

@��i
@qi;�

>
@ui
@yi

(�1 �MRSiX=Y ), for all � > 0. (13)

From (2a)-(2c), we deduce
@MRSiX=Y

@qi;�
> 0. Assume ��i(:; �) = 0. Then, from

(2d), limqi;�!0MRSiX=Y = 0, so (12) becomes @��i
@qi;�

> @ui
@yi

�1. But, from (2d), we

have limbi;�!0
@ui
@yi

= limyi!0
@ui
@yi

= 1, so we deduce @��i
@qi;�

> 1. A contradiction.

Therefore, there must be q
¯
i > 0, with q

¯
i = ��i(q

¯
L
�
;b
¯
L
� ; �) and q

¯
i 2 Si, such that

(
@MRSiX=Y

@qi;�
)jqi;�=q

¯ i
= �1. As (

@��i
@qi;�

)jqi;�=q
¯ i
> 0, then for all ��i(:; �) 2 Si, we have

��i(:; �) >q
¯
i > 0. Then, ��i(:; �) > 0, so �i;� = 0 in (A2), for at least one i 2

f1; :::;M1g. Likewise, 0 <b¯ j 6 '�j :; �), j =M2 + 1; :::; N2.

Consider now the case qi;� 6 �qi < �i. As (
pX
pY
)� < �2 and

Q�i;�+"
qi;�+Q�i;�+"

6 1, then:

@��i
@qi;�

<
@ui
@yi

(�2 �MRSiX=Y ), for all � > 0. (14)

From (2a)-(2c),
@MRSiX=Y

@qi;�
> 0. In addition, from (2d), limqi;�!0MRSiX=Y = 0

and limqi;�!�i MRSiX=Y = 1. Then, there is �qi < �i, with �qi = ���i(:; �) and

���i(:; �) 2 Si, such that (
@MRSiX=Y

@qi;�
)jqi;�=�qi = �2. Then, from (14), ( @�

�
i

@qi;�
)jqi;�=�qi < 0,

where ��i is strictly concave in qi;� on [0; �i]. Then, for all ~qi;" 2 Si, we get ~qi;" 6 �qi,
so �i;� = 0 in (A2). But, then, '

�
i(:; �) 6 �qi < �i for at least one follower i.

Leader i. Fix the strategies of all other leaders in equilibrium. Leader i�s mar-
ginal payo¤ may be written:

@��i
@qi;�

=
@ui
@yi

�
(
pX
pY
)���MRSiX=Y

�
, for all � > 0. (15)
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where � � 1 � (1 + ��)
~qi;�

~qi;�+~Q�i;�+�
+ ��

~qi;�
~B�+�

, with � 2 [0; 1], is the inverse of the
markup (see (E2) in Appendix E).
Consider the case ~qi;" >q

¯
i > 0. As (

pX
pY
)� > �1 and � 6 1, then (15) is

@��i
@qi;�

>

@ui
@yi
(�1 �MRSiX=Y ), for all � > 0. From (2a)-(2c),

@MRSiX=Y
@qi;�

> 0. Assume ~qi;� = 0.

Then, � = 1, and, from (2d), limqi;�!0MRSiX=Y = 0, so (15) is @��i
@qi;�

> @ui
@yi

�1.

But, from (2d), limqi;�!0
@ui
@yi

= limyi!0
@ui
@yi

= 1, so @��i
@qi;�

> 1. A contradiction.

Therefore, there is q
¯
i > 0, with q

¯
i 2 Si, such that (

@MRSiX=Y
@qi;�

)jqi;�=q
¯ i
= �1. As

(
@��i
@qi;�

)jqi;�=q
¯ i
> 0, then for all ~qi;� 2 Si, ~qi;� > q

¯ i
> 0. Then, ~qi;� > 0, so �i;� = 0 in

(E2), for at least one i 2 f1; :::;M1g.
The proof of 0 <b

¯ j
6 bj 6 ~bj;� < �j for at least one j 2 f1; :::; N2g, follows the

same steps as the one provided for type 1 traders.

Finally, we show the SNE is an equilibrium point (EP), which we now de�ne.

Definition 6. (EP). A Stackelberg-Nash equilibrium (~q; ~b) is an equilibrium
point of � if there exist sequences f�ng1n=1 and f(~q�n ; ~b�n)g

1
n=1 such that:

i. �n > 0 and limn!1 f�ng = 0;
ii. (~q�n ; ~b�n) is a Nash equilibrium of ��n ;
iii. limn!1f(~q�n ; ~b�n)g = (~q; ~b).

Lemma 5. (SNE is an EP). Consider the market game �, and let Assumptions
1 and 2 be satis�ed. Then, the SNE with trade is an equilibrium point of �.

Proof. Consider a sequence f�ng such that limn!1 f�ng = 0. Pick a sequence
f(~qi;�n ; ~bj;�n)g, i 2 T1, j 2 T2, n = 1; 2; :::. Consider the subgame ��nL . From Lemma
4, we know that, for at least one leader of each type, we have q

¯
i 6 ~qi;�n 6 �qi,

i 2 f1; :::;M1g, and b¯ j 6
~bj;�n 6 �bj , j 2 f1; :::;M2g, for n = 1; 2; :::. Thus, the

sequence f(~qi;�n ; ~bj;�n)g is de�ned over a compact set. Then, from the Bolzano-
Weierstrass Theorem (see Corollary 4.7, p. 25 in Aliprantis et al. (1998)), there ex-
ists a subsequence f(~qi;�kn ; ~bj;�kn )g which converges to a limit point (~qj ; ~bi), where
q
¯
i 6 ~qi 6 �qi, i 2 f1; :::;M1g, and b¯ j 6

~bj 6 �bj , j 2 f1; :::;M2g, from Lemma
4. As the payo¤ functions of the leaders are strictly concave (see Appendix D),
they are continuous, so (~qi; ~bj) is an EP of �L. Consider now the subgame ��nF .
From Lemma 1, there exist qi;� = ��i(q

L
� ;b

L
� ; �), for all i = M1 + 1; :::; N1, and

bj;� = '�j(q
L
� ;b

L
� ; �), for all j = M2 + 1; :::; N2. Consider the sequence of best re-

sponses f��ni (qL�n ;b
L
�n ; �n);'

�n
j (q

L
�n ;b

L
�n ; �n)g, n = 1; 2; :::, which are de�ned over

compact sets. Let (~qL�kn ;
~bL�kn ; �kn) be a NE with trade of the subgame ��knL .

Then, there is a subsequence f��kni (~qL�kn ;
~bL�kn ; �kn); '

�kn
j (~qL�kn ;

~bL�kn ; �kn)g such that
limn!1f��kni (~qL�kn ;

~bL�kn ; �kn);'
�kn
j (~qL�kn ;

~bL�kn ; �kn)g = f�i(~q
L; ~bL);'j(~q

L; ~bL)g as
limn!1f��kni (:; �kn);'

�kn
j (:; �kn)g = f�i(:);'j(:)g. But f�i(~qL; ~bL);'j(~qL; ~bL)g =

(~qi; ~bj). In addition, from Lemma 4, we haveq
¯
i 6 ~qi 6 �qi , i 2 fM1 + 1; :::; N1g,

and b
¯ j
6 ~bj 6 �bj , j 2 fM2 + 1; :::; N2g. By continuity of the payo¤ functions of

the followers (see Appendix A), we deduce (~qi; ~bj) is an EP of �F . As (~qF ; ~bF ) =
(�(~qL; ~bL);'(~qL; ~bL)), then (~qL; ~qF ; ~bL; ~bF ) is an interior pure strategy SPNE of
�. Then, the SNE with trade is an EP of �, which means there exists a strategy
pro�le (~q; ~b), which is a non autarkic SNE of �.
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4. DISCUSSION: SOME EXAMPLES

We provide some examples to buttress the working of our approach as well as to
discuss the assumptions made on the utility functions and the role they play in the
proof of the existence Theorem. We discuss three properties: the di¤erentiability,
the strict quasi-concavity and the behavior of the indi¤erence curves along the
boundary of the consumption sets. Example 1 computes a SNE when Assumption
2 is satis�ed. Example 2 illustrates that (2c) is not necessary. Example 3 illustrates
existence failure. Example 4 shows a SNE may exist even if (2a), (2c) and (2d)
do not hold for some traders. In each case, we also compute the Cournot-Nash
equilibrium (CNE) supplies and the competitive equilibrium (CE) supplies. In all
examples Assumption 1 is �i = 1, for each i 2 T1, and �j = 1, for each j 2 T2.

4.1. A SNE under Assumption 2

Let jT1j = jT2j = 4, with two leaders and two followers of each type. Assumption
2 is given by:

uk(xk; yk) = xk:yk, k = i; j, i; j = 1; 2. (16)

The CE supplies are given by (q�1 ; q
�
2 ; q

�
3 ; q

�
4) = (

1
2 ;

1
2 ;

1
2 ;

1
2 ) and (b

�
1; b

�
2; b

�
3; b

�
4) =

( 12 ;
1
2 ;

1
2 ;

1
2 ). In addition, the CNE supplies are given by (q̂1; q̂2; q̂3; q̂4) = (

1
3 ;

1
3 ;

1
3 ;

1
3 )

and (b̂1; b̂2; b̂3; b̂4) = ( 13 ;
1
3 ;

1
3 ;

1
3 ).

Let us now compute the SNE. The ODM (see De�nition 1) are given by:

�3(q1; q2; q4) = �(q1 + q2 + q4) +
p
(q1 + q2 + q4)2 + (q1 + q2 + q4) (17)

�4(q1; q2; q3) = �(q1 + q2 + q3) +
p
(q1 + q2 + q3)2 + (q1 + q2 + q3) (18)

 3(b1; b2; b4) = �(b1 + b2 + b4) +
p
(b1 + b2 + b4)2 + (b1 + b2 + b4) (19)

 4(b1; b2; b3) = �(b1 + b2 + b3) +
p
(b1 + b2 + b3)2 + (b1 + b2 + b3). (20)

Let �i(q1; q2; q3; q4) := qi � �i(q1; q2; :), i = 3; 4, and 	j(b1; b2; b3; b4) := bj �
 j(b1; b2; :), j = 3; 4. The Jacobian corresponding to (9) is given by:

J�(qF;bF )
=

2664
1 g 0 0
h 1 0 0
0 0 1 g0

0 0 h0 1

3775 , (21)

where g � 1� q1+q3+
1
2p

(q1+q3)2+q1+q3
, h � 1� q1+q2+

1
2p

(q1+q2)2+q1+q2
, g0 �,1� b1+b3+

1
2p

(b1+b3)2+b1+b3

and h0 � 1� b1+b2+
1
2p

(b1+b2)2+b1+b2
. We get

���J�(qF;bF )

��� = (1�gh)(1�g0h0) 6= 0 as gh 6= 1
and g0h0 6= 1. Then, Lemma 1 holds, and the best responses are given by:
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�i(q1; q2) =
1

6
� 1
3
(q1 + q2) +

r
1

3
(q1 + q2)2 + 2(q1 + q2) +

1

4
, i = 3; 4 (22)

'j(b1; b2) =
1

6
� 1
3
(b1 + b2) +

1

3

r
(b1 + b2)2 + 2(b1 + b2) +

1

4
, j = 3; 4. (23)

In the second step, any leader maximizes her reduced payo¤:

max
(1� qi):qi

1
3 +

1
3 (q1 + q2) +

2
3

q
(q1 + q2)2 + 2(q1 + q2) +

1
4

, i = 1; 2 (24)

max
bj :(1� bj)

1
3 +

1
3 (b1 + b2) +

2
3

q
(b1 + b2)2 + 2(b1 + b2) +

1
4

, j = 1; 2: (25)

The �rst and second-order conditions yield the unique solution ~qi = 0:421907,
i = 1; 2, and ~bj = 0:421907, j = 1; 2. From (22)-(23), we deduce (~q3; ~q4) = (~b3;~b4) =
(0:427986; 0:427986). The SNE supplies are given by the strategy pro�les:

(~q1; ~q2; ~q3; ~q4) = (0:421907; 0:421907; 0:427986; 0:427986) (26)

(~b1;~b2;~b3;~b4) = (0:421907; 0:421907; 0:427986; 0:427986) . (27)

4.2. The boundary conditions

We assume jT1j = jT2j = 2. The utility functions of traders are given by:

ui(xi; yi) = ixi + yi, i 2 (0; 1) i = 1; 2 (28)

uj(xj ; yj) = xj :yj , j = 1; 2. (29)

The CE supplies are given by (q�1 ; q
�
2) = ( 12 ;

1
2 ) and (b

�
1; b

�
2) = ( 12 ;

1
2 ). In ad-

dition, if 1 6= 2, the CNE supplies are (q̂1; q̂2) = (23
2

(1+2)
2 ;

2
3

1
(1+2)

2 ) and

(b̂1; b̂2) = (
1
3 ;

1
3 ), while if 1 = 2, then (q̂1; q̂2) = (

1
6 ;

1
6 ) and (b̂1; b̂2) = (

1
3 ;

1
3 ).

Let us now compute the SNE. The ODM are given by:

�2(q1; b1; b2) = �q1 +

s
b1 + b2
2

q1 (30)

 2(b1) = �b1 +
p
(b1)2 + b1. (31)

Let �2(q1; q2; b1; b2) := q2+ q1�
q

b1+b2
2

q1 and 	2(q1) := b2+ b1�
p
(b1)2 + b1.

The Jacobian is given by:

J�(qF ;bF )
=

"
1 � 1

2

q
q1

(b1+b2)

0 1

#
. (32)

We have
���J�(qF ;bF )

��� = 1. Then, the best responses are given by:
16



�(q1; b1) = �q1 +
s
1

2

p
(b1)2 + b1q1 (33)

'(b1) = �b1 +
p
(b1)2 + b1. (34)

Then, some computations yield the SNE supplies:

(~q1; ~q2) =

 p
2
p
97 + 62

48

2
(1)

2
;

p
2
p
97 + 62

24

1

1

�
1� 1

2

2
1

�!
(35)

(~b1;~b2) =

 p
97� 5
12

;
5�

p
97 +

p
2
p
97 + 62

12

!
. (36)

It is worth noticing that there is a SNE with trade even if some traders have
linear preferences. But there is at least one trader (here the leader of type 2 and
the follower of type 2) who has never zero demand for her "own" commodity: the
indi¤erence curves of the traders who initially own commodity Y do not intersect the
axis. In addition, it can be checked that if the leaders had linear utility functions,
while followers had Cobb-Douglas utility functions, then there would be a SNE
with trade. But if traders of the same type had preferences represented by the
same linear utility function, then the SNE would be autarkic (see Cordella and
Gabszewicz, 1998).

4.3. No SNE

Let jT1j = jT2j = 2. The utility functions are given by:

ui(xi; yi) = min
�
xi;
p
(yi)2 + 1

�
, i = 1; 2 (37)

uj(xj ; yj) = min(
p
(xi)2 + 1; yj), j = 1; 2. (38)

The CE supplies are given by (q�1 ; q
�
2) = (0; 0) and (b

�
1; b

�
2) = (0; 0) (so autarky

is Pareto optimal). In addition, the CNE supplies are given by (q̂1; q̂2) = (0; 0) and
(b̂1; b̂2) = (0; 0).
Let us now compute the SNE. The ODM are given by:

�2(q1; b1; b2) = �q1 + (b1 + b2) (39)

 2(q1; q2; b1) = �b1 + (q1 + q2). (40)

Let �2(q1; q2; b1; b2) := q2+q1�(b1+b2) and	2(q1; q2; b1; b2) := b2+b1�(q1+q2).
The Jacobian corresponding to (9), namely J�(qF ;bF )

=
h
@(�2;	2)
@(qF ;bF )

i
, is given by:

J�(qF ;bF )
=

�
1 �1
�1 1

�
. (41)

As
���J�(qF ;bF )

��� = 0 there are no best responses. Whilst optimal decision map-

pings exist, best responses are not de�ned. Therefore, the hierarchical game cannot
be �solved�, i.e., there is no SNE. The reason why there are no best responses stems
from the fact that the utility functions are not (continuously) di¤erentiable. While
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the optimal decision mappings vary continuously with all the strategies, the is sys-
tem (39)-(40) has no solution, and then no linear approximation of this system
makes possible the determination of best response mappings. Nevertheless, as the
next example illustrates, the (continuous) di¤erentiability of all the utility functions
is not necessary.

4.4. SNE without A2

We assume jT1j = jT2j = 2. The utility functions are given by:

uk(xk; yk) = min fxk; ykg , k = i; j, i; j = 1 (42)

uk(xk; yk) = xk + yk, k = i; j, i; j = 2. (43)

The CE supplies are given by (q�1 ; q
�
2) =

�
1
2 ;

1
2

�
and (b�1; b

�
2) =

�
1
2 ;

1
2

�
. In addition,

the CNE supplies are given by (q̂1; q̂2) = (0; 0) and (b̂1; b̂2) = (0; 0).
Let us now compute the SNE. The ODM are given by:

�2(q1; b1; b2) = �q1 +
p
(b1 + b2)q1 (44)

 2(q1; q2; b1) = �b1 +
p
b1(q1 + q2). (45)

Let �2(q1; q2; b1; b2) := q2+ q1�
p
(b1 + b2)q1 and 	2(q1; q2; b1; b2) := b2+ b1�p

b1(q1 + q2). The Jacobian is given by:

J�(qF ;bF )
=

24 1 � 1
2

q
q1

b1+b2

� 1
2

q
b1

q1+q2
1

35 . (46)

We get
���J�(qF ;bF )

��� = 1� 1
4

q
b1q1

(b1+b2)(q1+q2)
6= 0. The best responses are:

�(q1; b1) =

p
(4b1 � 3q1)q1 � q1

2
(47)

'(q1; b1) =

p
(4q1 � 3b1)b1 � b1

2
. (48)

Then, some computations lead to the unique SNE strategy pro�le:

(~q1; ~q2) =

�
1

2
; 0

�
(49)

(~b1;~b2) =

�
1

2
; 0

�
. (50)

Therefore, a SNE with trade may exist even if Assumptions (2a), (2c) and (2d)
are not satis�ed for all traders, so Assumption 2 must not necessary hold for all
traders. In addition, it is worth noticing that the symmetric CNE is autarkic,
whilst the SNE is non-autarkic. This example illustrates a feature which is speci�c
to a two-stage game setting: it allows trade in the subgame between leaders whilst
there is no trade in the subgame between followers, and thereby in the entire game
betweeen leaders and followers. Such a situation could be called a "partial trade
equilibrium" or a "partial autarkic equilibrium".
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5. CONCLUSION

This paper constitutes an attempt to extend the simultaneous move bilateral
market game with two commodities and corner endowments. To this end, we con-
sider a two-stage market game of complete and perfect information with a �nite
number of traders. As it provides a richer set of strategic interactions, the existence
of a noncooperative equilibrium is more di¢ cult to handle with. One salient feature
of the model stems from the fact that the existence of a Nash equilibrium for the
entire game also depends on whether optimal decision mappings of followers are
consistent. Lemma 1 provides a criterion to show the existence of best responses,
and thereby to show the existence of a SNE with trade.
The main conclusions of the paper may be stated as follows. First, the failure of

existence of a SNE stems from the fact that the system of equations which de�nes
implicitly the best responses has not �xed point. Under Assumptions 1 and 2 such
a system of equations is always consistent. Second, Assumptions 2 constitutes a set
of su¢ cient conditions to guarantee the existence of a SNE with trade.
Further theoretical issues could be explored. First, the existence of a SNE should

be extended to the case of best response correspondences. Second, the endogeneiza-
tion of the order of moves should be undertaken. Third, further generalizations
could consider a game with more than two stages, and/or an exchange economy
with a number of commodities larger than two.

6. APPENDIX

Within this Appendix, we prove some intermediate results needed to prove the
Theorem. Appendices A to E deal with the optimal behavior of traders. Appendix
A (resp. D) is devoted to the characterization of the optimal decision mappings of
followers (resp. leaders). Appendix B concerns the monotonicity properties of such
mappings. Appendix C shows the existence of best responses. Appendix E show
the reactions of followers are bounded. Appendix F shows the price is bounded in

an �-SNE. To save notations, let p� �
�
pX
pY

�"
.

6.1. Appendix A: Proof of Proposition 1

Consider a follower of type 1 (the same holds for a follower of type 2). First,
we show the mapping �i;"(q�i;";b"; �) is well de�ned. The program of follower i
consists in maximizing ��i(qi;";q�i;";b"; �), a continuous function, with respect to
qi;" subject to qi;" 2 [0; �i], a nonempty and compact convex set. Then, from the
Weierstrass Theorem, the set argmaxf��i(qi;�;q�i;�;b�; �) : qi;" 2 Sig is nonempty,
so there exists �i;" :

Q
�i2T1

S�i �
Q
j2T2

Sj ! Si, with qi;" = �i;"(q�i;";b"; �), i =

M1 + 1; :::; N1, � > 0. To characterize his optimal behavior, for all " > 0, let
L�i(qi;�;q�i;�;b�;�i;�; �i;�; ") := ��i(qi;";q�i;";b"; �)+�i;�qi;� + �i;�(�i � qi;�) be the
Lagrangian, where �i;� > 0 and �i;� > 0 are the Kuhn-Tucker multipliers. Then, for
all " > 0, and given (q�i;�;b�) 2

Q
�i2T1

S�i �
Q
j2T2

Sj , follower i�s optimal decision,

i.e., �i;"(q
L
" ;q

F
�i;";b"; �), is the solution to:

maxL�i(:; ") = ui

�
�i � qi;�;

B� + "

qi;� +Q�i;� + "
bi;�

�
+ �i;�qi;� + �i;�(�i � qi;�). (A1)
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For all � > 0, the Kuhn-Tucker conditions may be written:

@L�i
@qi

= �@ui
@xi

+ p�
Q�i;� + "

qi;� +Q�i;� + "

@ui
@yi

+ �i;� � �i;� = 0 (A2)

�i;� > 0, qi;� > 0, with �i;�qi;� = 0
�i;� > 0, (�i � qi;�) > 0, with �i;�(�i � qi;�) = 0, i =M1 + 1; :::; N1.

We have either ��i(q
L
" ;q

F
�i;";b"; �) = 0 or �

�
i(q

L
" ;q

F
�i;";b"; �) > 0. Therefore, if

qi;" > 0, then �i;� = 0, where bi;" is the solution to �@ui
@xi

+ p�
Q�i;�+"

qi;�+Q�i;�+"
@ui
@yi

=

�i;�, which yields �
�
i(q

F
�i;";q

L
" ;b"; �) > 0. In addition, if �i;� > 0, then qi;" =

��i(q
L
" ;q

F
�i;";b"; �) = �i, while if �i;� = 0, then �

�
i(q

L
" ;q

F
�i;";b"; �) 2 (0; �i). Now,

if �i;� > 0, then qi;" = 0, which means that ��i(q
L
" ;q

F
�i;";b"; �) = 0 and �i;� = 0

since qi;" < �i. Therefore, either we have �
�
i(q

L
" ;q

F
�i;";b"; �) > 0 when qi;" 2 (0; �i]

or ��i(q
L
" ;q

F
�i;";b"; �) = 0. Then, �

�
i(q

L
" ;q

F
�i;";b"; �) > 0. In addition, from (2b), we

haverui(xi; yi) >> 0, then we deducer��i(qi;�;q�i;�;b�; �) 6= 0, when qi;� 2 [0; �i].
But then, the set qi;" 2 fargmax��i(qi;";q�i;";b"; �) : qi;" 2 [0; �i]g is nonempty, so
there exists ��i :

Q
�i2T1

S�i �
Q
j2T2

Sj ! Si such that qi;" = ��i(q
L
" ;q

F
�i;";b"; �),

i =M1 + 1; :::; N1.
Second, we show that ��i(q

L
" ;q

F
�i;";b"; �) is point-valued. Consider an interior

solution to (A2), i.e., �i;"(q
L
" ;q

F
�i;";b"; �) 2 (0; �i), in which case we get �i;� =

�i;� = 0. Di¤erentiating
@��i
@qi;�

= �@ui
@xi

+ p�
Q�i;�+"

qi;�+Q�i;�+"
@ui
@yi

with respect to qi;� leads

to @2��i
(@qi;�)2

= @2ui
(@xi)2

� 2p�Q�i;�+�
Q�+�

@2ui
@xi@yi

+
h
p�
Q�i;�+�
Q�+�

i2
@2ui
(@yi)2

� 2p�Q�i;�+�
(Q�+�)2

@ui
@yi
. As

p�
Q�i;�+�
Q�+�

= @ui=@xi
@ui=@yi

, the �rst three terms on the right hand side of this equation
are equal to the negative of the determinant of the bordered Hessian matrix of ui,
which is positive from (2c), and as the last term is negative, then @2��i

(@qi;�)2
< 0.

Third, we show ��i(q
L
" ;q

F
�i;";b"; �) is continuously di¤erentiable. From Berge

Maximum Theorem (1959), qi;" = ��i(q
L
" ;q

F
�i;";b"; �), i =M1 + 1; :::; N1, is C1.

6.2. Appendix B: Proof of Proposition 2

First, consider the case: �I << J��
qF�

(�q�; �b�) � I, where I is the (N1�M1; N1�
M1) unit matrix.
The matrix J��

qF�

(�q�; �b�) has unit terms on the main diagonal. Next, con-

sider the partial e¤ects of a change in the strategy of any other follower (of any
type), i.e., q�i;�, �i 6= i, �i = M1 + 1; :::; N1, and bj;�, j = M2 + 1; :::; N2. To
this end, let @��i

@qi;�
(��i(q

L
� ;q

F
�i;�;b�; �);�

�
�i(q

L
� ;q

F
i;�;b�);b�; �) � 0, where, for each

i = M1 + 1; :::; N1, and �
�
i(q

L
� ;q

F
�i;�;b�; �) is the solution to (A2). Implicit partial

di¤erentiation of the identity @��i
@qi;�

(��i(q
L
� ;q

F
�i;�;b�; �);�

�
�i(q

L
� ;q

F
i;�;b�; �);b�; �) � 0

with respect to q�i;�, with �i 6= i, leads to @��i(:)
@q�i;�

= �
@2��i

@qi;�@q�i;�
@2��

i
(@qi;�)

2

, so we deduce:

@��i(:)

@q�i;�
=

p�
�

qi;�
Q�+�

@2ui
@xi@yi

+
qi;��(Q�i;�+�)

(Q�+�)2
@ui
@yi

� p� (Q�i;�+�)qi;�
(Q�+�)2

@2ui
(@yi)2

�
@2ui
(@xi)2

� p�
�
2
Q�i;�+�
Q�+�

@2ui
@xi@yi

� p�(Q�i;�+�
Q�+�

)2 @2ui
(@yi)2

+ 2
Q�i;�+�
(Q�+�)2

@ui
@yi

� . (B1)
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As
��� (Q�i;�+�)qi;�

(Q�+�)2

��� < �����Q�i;�+�
Q�+�

�2����, 2Q�i;�+�
Q�+�

>
qi;�
Q�+�

, and qi;��(Q�i;�+�)
(Q�+�)2

< 2
Q�i;�+�
(Q�+�)2

,

then we deduce
��� @��i(:)@q�i;�

��� < 1.
Second, consider the case: �I << J��

bF�

(�q�; �b�) << I. Implicit partial di¤eren-

tiation with respect to bj;�, j =M2 + 1; :::; N2, leads to:

@��i(:)

@bj;�
=

qi;�
Q�+�

@2ui
(@xi)2

� Q�i;�+�
(Q�+�)2

@ui

@yi
� p� (Q�i;�+�)qi;�

(Q�+�)2
@2ui
(@yi)2

@2ui
(@xi)2

� p�
�
2
Q�i;�+�
Q�+�

@2ui
@xi@yi

� p�(Q�i;�+�
Q�+�

)2 @2ui
(@yi)2

+ 2
Q�i;�+�
(Q�+�)2

@ui
@yi

� . (B2)
Then, a similar reasoning leads to the conclusion

���@��i(:)@bj;�

��� < 1, for all i 2 fM1 +

1; :::; N1g, and all j 2 fM2 + 1; :::; N2g.
The cases �I << J �

bF�

(�q�; �b�) � I and �I << J �
qF�

(�q�; �b�) << I may be

handled in the same way.

6.3. Appendix C: Proof of Lemma 1

Consider the set of optimal decision mappings speci�ed in De�nition 1. We
consider a set of functions which will be useful to build the system of equations that
will implicitly de�ne the best responses for the perturbed game. De�ne the function
��i :

Q
i2T1

Si�
Q
j2T2

Sj�R++ ! Si, with ��i(q�;b�; �) := bi;����i(qL� ;qF�i;�; ;bL� ;bF� ; �),

i = M1 + 1; :::; N1, and the function 	�j :
Q
i2T1

Si �
Q
j2T2

Sj � R++ ! Sj , with

	�j(q�; ;b��) := qj;� �  �j(q
L
� ;q

F
� ;b

L
� ;b

F
�j;�; �), j = M2 + 1; :::; N2. For all � > 0,

consider the following system of equations of the perturbed game:

��i(q";b"; ") = 0, i =M1 + 1; :::; N1, (C1)

	�j(q";b"; ") = 0, j =M2 + 1; :::; N2.

For all � > 0;let the (N1 � M1) + (N2 � M2)-dimensional vector function

�� be de�ned as �� :
Q
i2T1

Si �
Q
j2T2

Sj � R++ !
N1Q

i=M1+1

Si �
N2Q

j=M2+1

Sj , with

�� = ��(q�;b�; �) = (��M1+1
(:; �); :::;��N1

(:; �);	�M2+1
(:; �):::; :::;	�N2

(:; �)). Thus,
(C1) may be written as a (N1 � M1) + (N2 � M2)-dimensional vector equation
��(q�;b�; �) = 0. Since we focus on inner solutions, consider the restriction of
N1Q
i=1

Si�
N2Q
j=1

Sj�R++ to the open set
N1Q
i=1

�Si�
N2Q
j=1

�Sj�R++, with �Si � Si, i = 1; :::; N1,

and �Sj � Sj , j = 1; :::; N2. The vector function ��(q�;b�) is C1 on the open set
N1Q
i=1

�Si �
N2Q
j=1

�Sj � R++ as each ��i and each 	
�
j are C

1 functions of (qL� ;b
L
� ) on

the open set
N1Q
i=1

�Si �
N2Q
j=1

�Sj � R++. Let (�qL� ; �qF� ; �bL� ; �bF� ) be an interior point ofQ
i2T1

Si �
Q
j2T2

Sj , where (�qL� ; �bL� ) corresponds to a parameter con�guration. There-

fore, the following identity, which de�nes implicitly (at least locally) best responses,
holds in an open neighborhood of (�qL� ; �q

F
� ; �b

L
� ; �b

F
� ):
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��(qL� ;q
F
� (b

L
� ;q

L
� ; �);b

L
� ;b

F
� (b

L
� ;q

L
� ; �)) � 0. (C2)

Implicit partial di¤erentiation with respect to each component of (�qL� ; �b
L
� ) leads

to the equation:

J��

(qF� ;bF� )
(�q�; �b�):A� + B� = 0, for each � > 0, (C3)

where:

J��

(qF� ;bF� )
(�q�; �b�) =

266666666664

1 :::
@��M1+1

@qN1;�

@��M1+1

@bM2+1;�
:::

@��M1+1

@bN2;�

::: ::: ::: ::: ::: :::
@��N1

@qM1+1;�
::: 1

@��N1
@bM2+1;�

:::
@��N1
@bN2;�

@	�
M2+1

@qM1+1;�
:::

@	�
M2+1

@qN1;�
1 :::

@	�
M2+1

@bN2;�

::: ::: ::: ::: ::: :::
@	�

N2

@qM1+1;�
:::

@	�
N2

@qN1;�

@	�
N2

@bM2+1;�
::: 1

377777777775
is a ((N1�M1)+(N2�M2); (N1�M1)+(N2�M2)) matrix, while the two matrices:

A� =

26666666664

@qM1+1;�

@q1;�
:::

@qM1+1;�

@qM1;�

@qM1+1;�

@b1;�
:::

@qM1+1;�

@bM2;�

::: ::: ::: ::: ::: :::
@qN1;�
@q1;�

:::
@qN1;�
@qM1;�

@qN1;�
@b1;�

:::
@qN1;�
@bM2;�

@bM2+1;�

@q1;�
:::

@bM2+1;�

@qM1;�

@bM2+1;�

@b1;�
:::

@bM2+1;�

@bM2;�

::: ::: ::: ::: ::: :::
@bN2;�
@q1;�

:::
@bN2;�
@qM1;�

@bN2;�
@b1;�

:::
@bN2;�
@bM2;�

37777777775
and

B� =

26666666664

@��M1+1

@q1;�
:::

@��M1+1

@qM1;�

@��M1+1

@b1;�
:::

@��M1+1

@bM2;�

::: ::: ::: ::: ::: :::
@��N1
@q1;�

:::
@��N1
@qM1;�

@��N1
@b1;�

:::
@��N1
@bM2;�

@	�
M2+1

@q1;�
:::

@	�
M2+1

@qM1;�

@	�
M2+1

@b1;�
:::

@	�
M2+1

@bM2;�

::: ::: ::: ::: ::: :::
@	�

N2

@q1;�
:::

@	�
N2

@qM1;�

@	�
N2

@b1;�
:::

@	�
N2

@bM2;�

37777777775
.

are of dimension ((N1 �M1) + (N2 �M2);M1 +M2).
The square matrix J��

(qF� ;bF� )
(�q�; �b�) has unit terms on the main diagonal and

o¤-diagonal terms bounded below by �1 and above by 1 as from Proposition 2,
we have that �I << J��

(qF� ;bF� )
<< I and �I << J �

(qF� ;bF� )
<< I. Then, @�

�
i(:)

@q�i;�
=

� @��i(:)
@q�i;�

2 (�1; 1), with �i 6= i, and
���@��i(:)@bj;�

��� = ����@��i(:)
@bj;�

��� < 1, i = M1 + 1; :::; N1;

and
@	�

j(:)

@b�j;�
= �@ �j(:)

@b�j;�
2 (�1; 1), with �j 6= j, and

���@	�
j(:)

@qi;�

��� = ����@ �j(:)

@qi;�

��� < 1,

j = M2 + 1; :::; N2. The signs of the o¤ diagonal terms depend on whether strate-
gies of followers within each side and/or between both sides are complements or
substitutes. But, in any case, for all � > 0, the rows of the matrix J��

(qF" ;bF" )
(�q"; �b")
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are linearly independent, so the matrix J��
(qF� ;bF� )

(�q�; �b�) is of full rank, and then

invertible. Then, for all � > 0,
���J��

(qF� ;bF� )
(�q�; �b�)

��� 6= 0. Then, by the Implicit Func-
tion Theorem, there exist open sets U � V in

N1Q
i=1

�Si �
N2Q
j=1

�Sj and (U � V)(qL� ;bL� )

in
M1Q
i=1

�Si �
M2Q
j=1

�Sj , with (�q�; �b�) � U � V and (qL� ;bL� ) � (U � V)(qL� ;bL� ) such that

for each (qL� ;b
L
� ) in (U � V)(qL� ;bL� ), there exists (at least locally) some unique

((N1�M1)+(N2�M2)) dimensional vector function (qF� (q
L
� ;b

L
� ; �);b

F
� (q

L
� ;b

L
� ; �))

in some neighborhood of (qL� ;b
L
� ) such that (q

L
� ;q

F
� (q

L
� ;b

L
� ; �);b

L
� ;b

F
� (q

L
� ;b

L
� ; �)) 2

U � V and ��(qL� ;q
F
� (q

L
� ;b

L
� ; �);b

L
� ;b

F
� (q

L
� ;b

L
� ; �)) � 0. Indeed, the unique so-

lution (��(qL� ;b
L
� ; �);'

�(qL� ;b
L
� ; �)) to (q

F
� (q

L
� ;b

L
� ; �);b

F
� (q

L
� ;b

L
� ; �)) = ��1(0) is

de�ned by �� :
M1Q
i=1

Si �
M2Q
j=1

Sj � R++ � (U � V)(qL� ;bL� ) !
N1Q

i=M1+1

Si, with qF� =

��(qL� ;b
L
� ; �), and by '

� :
M1Q
i=1

Si �
M2Q
j=1

Sj � R++ � (U � V)(qL� ;bL� ) !
N2Q

j=M2+1

Sj ,

with bF� = '�(qL� ;b
L
� ; �). For all � > 0, each component function ��i(:) is de�ned

as ��i :
M1Q
i=1

Si �
M2Q
j=1

Sj � R++ � (U � V)(qL� ;bL� ) ! Si, with qi;� = ��i(q
L
� ;b

L
� ; �),

i = M1 + 1; :::; N1, and each component function '�j(:) is de�ned as '
�
j :

M1Q
i=1

Si �
M2Q
j=1

Sj � R++ � (U � V)(qL� ;bL� ), with bj;� = '�j(q
L
� ;b

L
� ; �) j = M2 + 1; :::; N2. In

addition, for all � > 0, ��i(q
L
� ;b

L
� ; �) � C1, for each i 2 fM1 + 1; :::; N1g, and

'�j(q
L
� ;b

L
� ; �) � C1, for each j 2 fM2 + 1; :::; N2g.

6.4. Appendix D: Proof of Proposition 3

We must show that, for i 2 fM1 + 1; :::; N1g, we have �1 6 @��i(q
L
� ;b

L
� ;�)

@q�i;�
< 1,

�i 6= i, �i = 1; :::;M1, and, for j 2 fM2 + 1; :::; N2g, we have
@'�j(:)

@qi;�
> 0, i =

1; :::;M1. The same analysis will hold for j 2 fM2+1; :::; N2g, with 0 6
@'�j(:)

@b�j;�
< 1,

�j 6= j =, �j = 1; :::;M2, and for i 2 fM1 + 1; :::; N1g, with @��i(:)
@bj;�

> 0, j =
1; :::;M2.
First, we show �1 6 @��i(:)

@q�i;�
< 1, i = M1 + 1; :::; N1, �i 6= i, �i = 1; :::;M1.

Consider the system given by (9). Without loss of generality, we want to determine
@qM1+1;�

@q1;�
. Then, by using Cramer�s rule, we deduce

@qM1+1;�

@q1;�
= �

����J 0
��
(qF� ;bF� )

(�q�; �b�)

�������J��
(qF� ;bF� )

(�q�; �b�)
��� , (D1)

where J 0
��
(bF� ;qF� )

(�b�; �q�) is the ((N1 �M1) + (N2 �M2); (N1 �M1) + (N2 �M2))

square matrix obtained by replacing the �rst column in J��
(bF� ;qF� )

(�b�; �q�) by the

�rst column of B�, so that:
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J 0
��

(qF� ;bF� )

(�q�; �b�) =

266666666664

@��M1+1

@q1;�
:::

@��M1+1

@qN1;�

@��M1+1

@bM2+1;�
:::

@��M1+1

@bN2;�

::: ::: ::: ::: ::: :::
@��N1
@q1;�

::: 1
@��N1

@bM2+1;�
:::

@��N1
@bN2;�

@	�
M2+1

@q1;�
:::

@	�
M2+1

@qN1;�
1 :::

@	�
M2+1

@bN2;�

::: ::: ::: ::: ::: :::
@	�

N2

@q1;�
:::

@	�
N2

@qN1;�

@	�
N2

@bM2+1;�
::: 1

377777777775
(D2)

Note that (D1) is well-de�ned as from Lemma 1, we have
���J��

(qF� ;bF� )
(�q�; �b�)

��� 6= 0.
Let @��i

@q1;�
= 0, i = M1 + 1; :::; N1, and

@	�
M2+1

@q1;�
= 0, j = M2 + 1; :::; N2, in (D2).

The matrices J 0
��
(qF� ;bF� )

(�q�; �b�) and J��
(qF� ;bF� )

(�q�; �b�) have common terms: the o¤-

diagonal terms of the matrix B� coincide with the o¤-diagonal terms of the matrix
J��

(qF� ;bF� )
(�q�; �b�) as Q �

P
i2T1

qi and B �
P
j2T2

bj . Assume that
@bM1+1;�

@q1;�
< �1.

Then, we deduce

����J 0
��
(qF� ;bF� )

(�q�; �b�)

���� > ���J��
(qF� ;bF� )

(�q�; �b�)
���. Expansion by cofactors

of the both sides of the inequality

����J 0
��

(qF� ;bF� )

(�q�; �b�)

���� > ���J��

(qF� ;bF� )
(�q�; �b�)

���, and
cancellation among common terms on both sides, lead to:

@��M1+1

@q1;�

���� �J 0
��

(qF� ;bF� )

(�q�; �b�)

���� > ��� �J��
(qF� ;bF� )

(�q�; �b�)
��� , (D3)

where

���� �J 0
��

(qF� ;bF� )

(�q�; �b�)

���� (resp. ��� �J��

(qF� ;bF� )
(�q�; �b�)

���) stands for the principal minor
of order ((N1�M1)+(N2�M2)�1; (N1�M1)+(N2�M2)�1) of J 0

��
(qF� ;bF� )

(�q�; �b�)

(resp. J��

(qF� ;bF� )
(�q�; �b�)). But

���� �J 0
��
(qF� ;bF� )

(�q�; �b�)

���� > ��� �J��

(qF� ;bF� )
(�q�; �b�)

��� by construc-
tion. Then, we deduce

@��M1+1

@q1;�
> 1, which is false as we assumed

@��M1+1

@q1;�
< �1. A

contradiction. Then, we have �

�����J 0
��
(qF� ;bF� )

(�q�;�b�)

����������J��
(qF� ;bF� )

(�q�;�b�)

�����
6 1, so we deduce @��M1+1

@q1;�
> �1.

Next, assume @bM1+1;�

@q1;�
> 1. A similar reasoning leads to

@��M1+1

@q1;�
< �1, a con-

tradiction. Then we deduce
@��M1+1

@q1;�
< 1. The same argument holds for all the

other best responses. The same reasoning holds for any i = 1; :::;M1, so we have

�I � @��(bL� ;q
L
� ;�)

@qL�
<< I, where I is the (N1 �M1;M1) unit matrix.

Second, we show
@'�j(:)

@qi;�
> 0, j =M2+1; :::; N2, i = 1; :::;M1. Assume

@'�j(:)

@qi;�
< 0,

j = M2 + 1; :::; N2, i = 1; :::;M1: any type two follower decreases his supply when
any leader increases her supply. This means that commodities are complements
for these followers, and thereby, that their utility functions are not di¤erentiable,
which contradicts Assumption (2a). Then, we must have @'�(:)

@qL�
� 0, where 0 is the

(N2 �M2;M1) zero matrix. Likewise,
@��(:)
@bL�

� 0, where 0 is the (N1 �M1;M2)

zero matrix.

24



6.5. Appendix E: Proof of Proposition 4

Consider a leader of type 1 (the same holds for a leader of type 2). First, we
show ��i(q

L
�i;�;b

L
� ; �) is well de�ned. For all � > 0, leader i�s problem is to maxi-

mize her reduced payo¤ ��i(qi;�;q
L
�i;�;�

�(qi;�;q
L
�i;�;b

L
� ; �);b

L
� ;'

�(qi;�;q
L
�i;�;b

L
� ; �)),

a continuous function (as ��(:; �) and '�(:; �) are continuous) with respect to qi;�
subject to qi;� 2 [0; �i], a nonempty and compact convex set. Then, there ex-

ists ��i :
M1Q
�i=1

S�i �
M2Q
j=1

Sj ! Si, with qi;� = ��i(q
L
�i;b

L; �), i = M1 + 1; :::; N1. Let

L�i(qi;�;qL�i;�;bL� ;�i;�; �i;�; �) := ��i(qi;�;q
L
�i;�;�

�(qi;�; :; �);b
L
� ;'

�(qi;�; :; �))+�i;�qi;�+

�i;�(�i � qi;�), � > 0, with �i;�; �i;� > 0. Then, ��i(qL�i;�;bL� ; �) is the solution to:

maxL�i(:; �) = ui

0B@�i � qi;�; BL� +
P
j

'�j(:; �) + �

qi;� +QL
�i;� +

P
k 6=i

��k(:; �) + �
qi;�

1CA+�i;�qi;�+�i;�(�i�qi;�):
(E1)

For all � > 0, the Kuhn-Tucker conditions may be written:

@L�i
@qi;�

= �@ui
@xi

+ p��
@ui
@yi

+ �i;� � �i;� = 0 (E2)

�i;� > 0, bi;� > 0, with �i;�bi;� = 0
�i;� > 0, (�i � bi;�) > 0, with �i;�(�i � bi;�) = 0,

where � � 1� (1 + �Xi;�)
qi;�
Q�+�

+ �Xi;�
qi;�
B�+�

, �Xi;� =
@
P

i �
�
i(:)

@qi;�
, and �Xi;� =

@
P

j '
�
j(:)

@qi;�
. By

construction �Xi;� = �X� , and �
X
i;� = �X� , with �

X
� 2 [�1; 1) and �X� > 0. Indeed, as

� 2 [0; 1], then 0 6 �(1 + �X� )
qi;�
Q�+�

+ �X�
qi;�
B�+�

6 1, which leads to �X�
2��X�

6 B�+�
Q�+�

6
�X�
1+�X�

. Then, �X� 6 1
2 . In addition, from Proposition 3, we get �X� > �1 as for

i 2 f1; :::;M1g,
@'�j(:)

@qi;�
> �1, i =M1 + 1; :::; N1. Next, from (2a), we have �X� > 0.

If ��i(q
L
�i;�;b

L
� ; �) > 0, then �i;� = 0, where bi;� is the solution to the equa-

tion �@ui
@xi

+ p��@ui@yi
= �i;�. If �i;� > 0, then qi;� = ��i(q

L
�i;�;b

L
� ; �) = �i, while if

�i;� = 0, then �
�
i(q

L
�i;�;b

L
� ; �) 2 (0; �i). Now, if �i;� > 0, then ��i(q

L
�i;�;b

L
� ; �) = 0

and �i;� = 0 since qi;� < �i. Then, either �
�
i(b

L
�i;�;q

L
� ; �) > 0 when bi;� 2 (0; �i]

or ��i(b
L
�i;�;q

L
� ; �) = 0. Then, ��i(b

L
�i;�;q

L
� ; �) > 0. In addition, as under (2b),

we have rui(xi; yi) >> 0, then r��i(bi;�;bL�i;�;qL� ; �) 6= 0, when bi;� 2 [0; �i]. But
then, the set fargmax��i(qi;�;qL�i;�;��(qi;�;qL�i;�;bL� ; �);bL� ;'�(qi;�;qL�i;�;bL� ; �)) :
qi;� 2 [0; �i]g is nonempty, so there exists qi;� = ��i(q

L
�i;�;b

L
� ; �), i = 1; :::;M1.

Next, ��i(q
L
�i;�;b

L
� ; �) is point-valued. The cases �

�
i(q

L
�i;�;b

L
� ; �) = f0; �ig are

trivial. If ��i(q
L
�i;�;b

L
� ; �) > 0 and di¤erentiating (E2) with respect to qi;� yields:

@2��i
(@qi;�)2

=
@2ui
(@xi)2

� 2p�� @ui
@xi@yi

+ (p��)2
@2ui
(@yi)2

� �@ui
@yi

], (E3)

where � � (1+�X� )(B�+�)
(Q�+�)2

(2� (1+�X� )qi;�
Q�+�

)� 2�X�
Q�+�

(1� (1+�X� )qi;�
Q�+�

). The �rst three terms
on the right hand side of (E3) are equal to the negative of the determinant of
the bordered Hessian matrix of ui, which is positive from (2c). For (E3) to be

strictly negative, it is su¢ cient that � > 0, that is, B�+�
Q�+�

>
2�X�
1+�X�

1� (1+�X� )qi;�
Q�+�

2� (1+�X� )qi;�
Q�+�

.
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But, as � 6 1, then B�+�
Q�+�

6 �X�
1+�X�

. Assume that �X�
1+�X�

<
2�X�
1+�X�

1� (1+�X� )qi;�
Q�+�

2� (1+�X� )qi;�
Q�+�

. Then,

1
2 <

1� (1+�X� )qi;�
Q�+�

2� (1+�X� )qi;�
Q�+�

. A contradiction. Therefore, � > 0. Then, @2��i
(@qi;�)2

< 0.

Finally, from Berge Maximum Theorem, ��i(q
L
�i;�;b

L
� ; �) � C1.

6.6. Appendix F: Proof of Lemma 3

To show Lemma 3, we need one intermediate result based on the Uniform
Monotonicity Lemma proved by Dubey and Shubik (1978) (see their Lemma C,
p. 8), and which we adapt to our sequential framework.

Lemma 6. (Uniform monotonicity). Let c 2 fX;Y g, let uk : R2+ ! R, zk !
uk(zk), k = i; j, i 2 T1, j 2 T2, be a continuous and increasing function, and let
H be a positive constant. Then, there exists a positive real number h(uk(:); c;H) 2
(0; 1) such that, for all sk; zk 2 R2+, if kzkk 6 H and ksk � zkk 6 h(uk(:); c;H),
then uk(sk + ec) > uk(zk), where k:k denotes the Euclidean norm, and ec denotes
the vector in R2+ whose c-th component is 1 and the other 0.

Proof. The Lemma is an immediate consequence of Lemma C in Dubey and
Shubik (1978) (see their Appendix B, p. 19) as the utility funtions satisfy notably
Assumptions (2a) and (2b).

First, we show the existence of �1 > 0 such that p� > �1. Let (~b�; ~q�) be an
�-SNE. Consider one leader j and one follower j0. Let:

H = max
�
��; ��

	
, with �� �

N1X
i=1

�i and �� �
N2X
j=1

�j ; (F1)

h = minfh(uj ; Y;H); h(uj0 ; Y;H)g;

A =
1

2
minf�j ; �j0g, j 6= j0.

Assume, without loss of generality, that, for at least one leader j or one follower
j0 we have ~bj;� 6 ~B�

2 or ~bj0;� 6 ~B�

2 (otherwise we would have ~bj;�+ ~bj0;� > ~B�).
Consider an increase of the strategy of one trader in each stage. First, assume that
�j0 � ~bj0;� > A. Then, an increase � in follower j0�s strategy such that bj0;�(�) =
~bj0;� + � is feasible if it is su¢ ciently small, i.e., if � 2 (0; 12 minf�; Ag]. Such an
increase has the following incremental e¤ect on his �nal holding:

xj0;�(�)� xj0;� =
~Q� + �

~B� + �+ �
(~bj0;� + �)�

~Q� + �

~B� + �
~bj0;� (F2)

= �
~B� + �� ~bj0;�
~B� + �+ �

~Q� + �

~B� + �

> �

~B�

2 +
�
2 +

�
2

~B� + �+ �

~Q� + �

~B� + �
=
�

2

1

~p�
,

and:
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yj0;�(�)� yj0;� = (�j0 � ~qj0;� � �)� (�j0 � ~qj0;�) = ��, (F3)

where the strict inequality in (F2) results from ~B�+ ��~bj0;� > ~B�

2 + � >
~B�

2 +
�
2 +

�
2

(as ~bj0;� 6 ~B�

2 and � 6 1
2�). Let us de�ne:

t = �2~p�eY , where eY = (0; 1). (F4)

Then, the following vector inequality holds:

zj0;�(bj0;�(�); p
�(~q�;bj0;�(�); ~b�j0;�)) � zj0;�(bj0;�; ~p�(~q�; ~b�)) +

�

2

1

~p�
(eX + t), (F5)

where eX = (1; 0). We apply Lemma 6, with c = X, zj0;� = zj0;�(bj0;�; ~p
�(~q�; ~b�))

and sj0;� = zj0;�(bj0;�; ~p�(~q�; ~b�)) + t. We know that zj0;�(bj0;�; ~p�(~q�; ~b�)) 2 R2+ andzj0;�(bj0;�; ~p�(~q�; ~b�)) 6 H. Suppose that sj0;� 2 R2+ and ktk 6 h. Then, by

Lemma 6, we deduce:

uj0(zj0;�(bj0;�; ~p
�(~q�; ~b�)) + e

X + t) > uj0(zj0;�(bj0;�; ~p
�(~q�; ~b�))). (F6)

As from Assumptions (2b) and (2c) uj0 is strictly increasing and strictly quasi-
concave, and as 0 < �

2
1
~p� < 1, then we deduce:

uj0(zj0;�(~q�; ~b�) +
�

2

1

~p�
(eX + t)) > uj0(zj0;�(bj0;�; ~p

�(~q�; ~b�))). (F7)

Since in (~q� + �; ~b�) the strategy ~qj0;� increases, the amount of commodity 2
obtained by any trader i 2 T1 increases. Then, from (2b) and (2c), we have that:

uj0(zj0;�(bj0;�(�); p
�(~q�;bj0;�(�); ~b�j0;�))) > uj0(zj0;�(bj0;�; ~p

�(~q�; ~b�))). (F8)

A contradiction. Hence, either zj0;�(bj0;�; ~p�(~q�; ~b�)) + t < 0 or ktk > h. There-
fore, if zj0;�(bj0;�; ~p�(~q�; ~b�)) + t < 0, then, ~yj0;� � 2~p�(~q�; ~b�) < 0. As ~yj0;� =
�j0 � ~bj0;� > A, we deduce:

~p�(~q�; ~b�) >
A

2
. (F9)

Suppose now we have ktk > h. Then, we deduce:

~p�(~q�; ~b�) >
h

2
. (F10)

Finally, assume that the inequality �j0 � ~bj0;� > A does not hold, which means
that �j0 � ~bj0;� < A. Then, we have ~bj0;� > �j �A > A. Then ~bj0;� > A, so, we get:

~p�(~q�; ~b�) >
A

��
. (F11)

Therefore, it su¢ ces to take for follower j0:

�j
0

1 = min

�
A

2
;
h

2
;
A

��

�
. (F12)
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Consider now leader j, with ~p� =
~BL
� +

P
j '

�
j(b

L
� ;q

L
� )+�

~QL
� +

P�
i �i(b

L
� ;q

L
� )+�

. Assume �j � ~bj;� > A.

We have to show that inequalities similar to (F9)-(F12) also hold for leader j.
Consider an increase � in leader j�s strategy such that bj;�(�) = ~bj;� + �, with
� 2 (0; 12 minf�; Ag]. This increase has the following e¤ect on her �nal holding:

xj;�(�)� xj;� =
~QL
� +

P
i �

�
i(q

L
� + �;b

L
� ) + �

~BL� + � +
P
j '

�
j(q

L
� + �;b

L
� ) + �

(~bj;� + �)�
1

~p�
~bj;� (F13)

= �
~B� + �� (1 + �Y� )~bj;�
~B� + �+ (1 + �Y� )�

~Q� + �

~B� + �
+ ��Y�

~bj;� + �

~B� + �+ (1 + �Y� )�

> �(1� �Y� )
~B�

2 +
�
2 + (1 + �

Y
� )

�
2

~B� + �+ (1 + �Y� )�

~Q� + �

~B� + �
+ �a�Y�

=
�

2

�
1� �Y�
~p�

+ 2a�Y�

�
,

and:

yj;�(�)� yj;� = ��, (F14)

where a � ~bj;�+�
~B�+�+(1+�Y� )�

, with 0 < a 6 1, �Y� =
@
P

j '
�
j(:)

@bj;�
and �Y� =

@
P

i �
�
i(:)

@bj;�
for �

su¢ ciently small, and where the strict inequality results from ~B�+��(1+�Y� )~bj;� >
(1��Y� )

~B�

2 +� > (1��
Y
� )(

~B�

2 +
�
2+(1+�

Y
� )

�
2 ) as

~bj;� 6 ~B�

2 , � 6
1
2� and �

Y
� 2 [�1; 12 ].

Let us de�ne:

t = �2 ~p�

1� �Y� + 2a�Y� ~p�
eY . (F15)

Then, the following vector inequality holds:

zj;�(qj;�(�); p
�(qj;�(�); ~q�j;�; ~b�)) � zj;�(~qj;�; ~p�) +

�

2

1� �Y� + 2a�Y� ~p�
~p�

(eX + t).

(F16)
Let c = X, zj;�(~qj;�; ~p�(~q�; ~b�)) and sj;� = zj;�(~qj;�; ~p�(~q�; ~b�))+ t. We know that

zj;�(~qj;�; ~p
�(~q�; ~b�)) 2 R2+ and

zj;�(~qj;�; ~p�(~q�; ~b�)) 6 H. Suppose that sj;� 2 R2+
and ktk 6 h. Then, by Lemma 6, we deduce:

uj(zj;�(~qj;�; ~p
�(~q�; ~b�)) + e

X + t) > uj(zj;�(~qj;�; ~p
�(~q�; ~b�))). (F17)

From Assumptions (2b) and (2c) and as 0 < �( 12
1��Y�
~p� + a�Y� ) < 1, we deduce:

uj(zj;�(~qj;�; ~p
�) +

�

2

1� �Y� + 2a�Y� ~p�
~p�

(eX + t)) > uj(zj;�(~qj;�; ~p
�)). (F18)

But then, by Assumptions (2b) and (2c), we have that:

uj(zj;�(bj;�(�); p
�(~q�;bj;�(�); ~b�j;�))) > uj(zj;�(~qj;�; ~p

�(~q�; ~b�))). (F19)
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A contradiction. Hence, either zj;�(~qj;�; ~p�(~q�; ~b�))+t < 0 or ktk > h. Therefore,
if zj;�(~qj;�; ~p�(~q�; ~b�))+t < 0, then, ~yj;��2 ~p�

1��Y� +2a�Y� ~p�
< 0. As ~yj;� = �j�~bj;� > A,

we deduce:

~p�(~q�; ~b�) >
A

2

�
1� �Y�
1� a�Y� A

�
, (F20)

where A
2

1��Y�
1�a�Y� A

> 0. Reason: A
2

1��Y�
1�a�Y� A

> A
2 (1 � �Y� ) > 0. The strict inequality

holds as A2 > 0 and �
Y
� < 1, while the weak inequality results from a�Y� A > 0 since

0 < a 6 1, A > 0, and �Y� > 0 (uj is di¤erentiable so �Y� is never negative, and
� 2 [�1; 1] in (E2)). Next, if ktk > h, then:

~p�(~q�; ~b�) >
h

2

�
1� �Y�
1� a�Y� h

�
, (F21)

where h
2

1��Y�
1�a�Y� h

> 0. Reason: h
2

1��Y�
1�a�Y� h

> h
2 (1 � �Y� ) > 0. The strict inequality

holds as h
2 2 (0;

1
2 ) and �

Y
� < 1, while the weak inequality results from a�Y� h > 0

since 0 < a 6 1, h 2 (0; 1), and �Y� > 0. Finally, assume that the inequality
�j � ~bj;� > A does not hold, i.e., �j � ~bj;� < A. Then, we have ~bj;� > �j � A > A.
Then, ~bj;� > A, so we deduce:

~p�(~q�; ~b�) >
A

��
. (F22)

Therefore, it su¢ ces to take for leader j:

�j1 = min

�
A

2

�
1� �Y�
1� a�Y� A

�
;
h

2

�
1� �Y�
1� a�Y� h

�
;
A

��

�
. (F23)

Then, by taking �1 = min(�
j
1; �

j0

1 ), where �1 > 0, we conclude that:

~p�(~q�; ~b�) > 0. (F24)

Second, we show the existence of �2 > 0 such that p
� < �2. Consider one leader

i and one follower i0. Let:

ĥ = minfh(uj ; Y;H); h(uj0 ; Y;H)g; (F25)

Â =
1

2
minf�i; �i0g, i 6= i0.

Assume that, for at least one leader i or one follower i0, we have ~qi;� 6
~Q�

2

or ~qi0;� 6
~Q�

2 . Consider follower i
0. Assume that �i0 � ~qi0;� > Â. Then, it can be

shown that an increase � in follower i0�s strategy such that qi0;�(�) = ~qi0;� + �, with
� 2 (0; 12 minf�; Âg], has the following incremental e¤ect on his �nal holding:

xi0;�(�)� xi0;� = ��, (F26)

and:

yi0;�(�)� yi0;� >
�

2
~p�. (F27)
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where the strict inequality in (F27) results from ~Q�+��~qi0;� >
~Q�

2 +� >
~Q�+��~qi0;�

2 +
�
2 +

�
2 (as � < �). Let us de�ne:

t = � 2
~p�
eX . (F28)

Then, we have the vector inequality:

zi0;�(qi0;�(�); p
�(qi0;�(�); ~q�i0;�; ~b�)) � zi0;�(~qi0;�; p�(~qi;�; ~b�)) +

�

2
~p�(t+ eY ). (F29)

We apply once again Lemma 6, with c = Y . Suppose that ri;� 2 R2+ and ktk 6 h.
Then, by Lemma 6, we deduce:

ui0(zi0;�(~qi0;�; p
�(~qi;�; ~b�)) + t+ e

Y ) > ui0(zi0;�(~qi0;�; p
�(~qi;�; ~b�))): (F30)

As ui is strictly increasing and strictly quasi-concave, and as 0 < �
2 ~p
� < 1, then:

ui0(zi0;�(~q�; ~b�) +
�

2
~p�(t+ eY )) > ui0(zi0;�(~qi0;�; p

�(~qi;�; ~b�))). (F31)

As the strategy bi0;� increases, the amount of commodity 2 obtained by any
trader j 2 T2 increases. But then, by Assumptions (2b) and (2c), we have that:

ui0(zi0;�(qi0;�(�); p
�(qi0;�(�); ~q�i0;�; ~b�))) > ui0(zi0;�(~qi0;�; p

�(~qi;�; ~b�))), (F32)

a contradiction. Then, either zi0;�(~qi0;�; p�)+t < 0 or ktk > h. Thus, if zi0;�(~qi0;�; p�)+
t < 0, then, ~xi0;� � 2

~p�(~q�;~b�)
< 0. As ~xi0;� = �i0 � ~qi0;� > Â, we deduce:

~p�(~q�; ~b�) <
2

Â
. (F33)

Suppose now we have ktk > h. Then, we deduce:

~p�(~q�; ~b�) <
2

ĥ
. (F34)

Finally, assume �i � ~qi0;� < Â. Then, we have ~qi0;� > �i � Â > Â, so ~qi0;� > Â.
Then, we deduce:

~p�(~q�; ~b�) <
��

Â
. (F35)

Therefore, it su¢ ces to take:

�i
0

2 = max

�
2

Â
;
2

ĥ
;
��

Â

�
. (F36)

Consider now leader i. Assume that �i � ~qi;� > Â. Let qi;�(�) = ~qi;� + �, with
� 2 (0; 12 minf�; Âg]. Such an increase has the following e¤ect on her �nal holding:

xi;�(�)� xi;� = ��, (F37)

and:
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yi;�(�)� yi;� =
~BL� +

P
j '

�
j(b

L
� ;q

L
� + �) + �

~QL
� + � +

P
i �

�
i(b

L
� ;q

L
� + �) + �

(~qi;� + �)� ~p�~qi;� (F38)

= �
~Q� + �� (1 + �X� )~qi;�
~Q� + (1 + �X� )� + �

~B� + �

~Q� + �
+ ��X�

~qi;� + �

~Q� + (1 + �X� )� + �

> �(1� �X� )
~Q�

2 + (1 + �
X
� )

�
2 +

�
2

~Q� + (1 + �X� )� + �

~B� + �

~Q� + �
+ �d�X�

=
�

2
((1� �X� )~p� + 2d�X� ),

where d � ~qi;�+�
~Q�+(1+�X� )�+�

, with 0 < d 6 1, �X� =
@
P

i �
�
i(q

L
� ;b

L
� ;�)

@qi;�
and �X� =

@
P

j '
�
j(q

L
� ;b

L
� ;�)

@qi;�
for � su¢ ciently small, and where the strict inequality results from

~Q� + � � (1 + �X� )~qi;� > (1 � �X� )(
~Q�

2 + �
2 + (1 + �X� )

�
2 ) as ~qi;� 6

~Q�

2 always holds,
and as � < �, with �X� 2 [�1; 1). Let us de�ne:

t = �2 1

(1� �X� )~p� + 2d�X�
eX . (F39)

Then, the following vector inequality holds:

zi;�(qi;�(�); p
�(qi;�(�); ~q�i;�; ~b�) � zi;�(~qi;�; ~p�(~q�; ~b�))+

�

2
((1��X� )~p�+2d�X� )(t+eY ).

(F40)
Suppose that si;� 2 R2+ and ktk 6 h. Then, by Lemma 6:

ui(zi;�(~qi;�; ~p
�(~q�; ~b�)) + t+ e

Y ) > ui(zi;�(~qi;�; ~p
�(~q�; ~b�))). (F41)

From (2b) and (2c) and as 0 < �(
1��X�
2 ~p� + d�X� ) < 1, we deduce:

ui(zi;�(~qi;�; ~p
�)) +

�

2
((1� �X� )~p� + 2d�X� )(t+ eY )) > ui(zi;�(~qi;�; ~p

�)). (F42)

But then, by Assumptions (2b) and (2c), we have that:

ui(zi;�(qi;�(�); p
�(qi;�(�); ~q�i;�; ~b�))) > ui(zi;�(~qi;�; ~p

�(~q�; ~b�))), (F43)

a contradiction. Then, either zi;�(~qi;�; ~p�)+t < 0 or ktk > h. Therefore, if zi;�(~qi;�; ~p�)+
t < 0, then, ~xi;� � 2 1

(1��X� )~p�+2d�X�
< 0. As ~xi;� = �i � ~qi;� > Â, we deduce:

~p�(~q�; ~b�) <
2

Â

 
1� d�X� Â
1� �X�

!
, (F44)

where 2
Â

1�d�X� Â
1��X�

> 0. Reason: 2
Â

1�d�X� Â
1��X�

> 2
Â

d2

1��X�
> 0. The strict inequality

holds as d 2 (0; 1] and �X� < 1. The weak one leads to d2 + d�X� Â � 1 6 0, so

d 6 ��X� Â
2 +

p
(�X� Â)

2+4

2 , with d 6 1. Then we must have ��X� Â
2 +

p
(�X� Â)

2+4

2 6 1,
which holds as �X� Â > 0.
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Next, if ktk > h, then:

~p�(~q�; ~b�) <
2

ĥ

 
1� d�X� ĥ
1� �X�

!
, (F45)

where 2
ĥ

1�d�X� ĥ
1��X�

> 0. Reason: 2
ĥ

1�d�X� ĥ
1��X�

> 2
ĥ

d2

1��X�
> 0. The weak inequality leads

to d2 + d�X� ĥ� 1 6 0, which yields d 6 �
�X� ĥ
2 +

p
(�X� ĥ)

2+4

2 , with d > 0. As d 6 1,
we must have ��X� ĥ

2 +

p
(�X� ĥ)

2+4

2 6 1, which is satis�ed as �X� ĥ > 0.
Finally, assume that the inequality �i�~qi;� > Â does not hold, i.e., �i�~qi;� < Â.

Then, we have ~qi;� > �i � Â > Â. Then, we have ~qi;� > Â, so we deduce:

~p�(~q�; ~b�) <
��

Â
. (F46)

Therefore, it su¢ ces to take for leader i:

�i1 = max

(
2

Â

 
1� d�X� Â
1� �X�

!
;
2

ĥ

 
1� d�X� ĥ
1� �X�

!
;
��

Â

)
. (F47)

Then, by taking �2 = max(�
i
2; �

i0

2 ), we conclude that:

~p�(~q�; ~b�) < �2. (F48)
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