
HAL Id: hal-04141597
https://hal.science/hal-04141597v1

Preprint submitted on 26 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On Noncooperative Oligopoly Equilibrium in the
Multiple Leader-Follower Game

Ludovic A. Julien

To cite this version:
Ludovic A. Julien. On Noncooperative Oligopoly Equilibrium in the Multiple Leader-Follower Game.
2016. �hal-04141597�

https://hal.science/hal-04141597v1
https://hal.archives-ouvertes.fr


Equilibrium 
in the Multiple Leader-Follower Game

Université de Paris Ouest Nanterre La Défense 
 (bâtiment G)

200, Avenue de la République
92001 NANTERRE CEDEX

Tél et Fax : 33.(0)1.40.97.59.07
Email : nasam.zaroualete@u-paris10.fr

Document de Travail 
Working Paper
2016-13

Ludovic Alexandre Julien

UMR 7235



On Noncooperative Oligopoly Equilibrium
in the Multiple Leader-Follower Game

Ludovic A. Julien
EconomiX, Université de Paris Ouest-Nanterre La Défense
200 avenue de la République, 92001 Nanterre Cédex, France.

E-mail: ludovic.julien@u-paris10.fr

Version: February, 1rst 2016

In this paper, we provide new proofs of existence and uniqueness of a Stackelberg
market equilibrium for a multiple leader-follower noncooperative oligopoly model in which
heterogeneous �rms compete on quantities. To this end, we consider a two-step game of
perfect and complete information in which many leaders interact strategically with many
followers. The Stackelberg market equilibrium constitutes a pure strategy subgame perfect
Nash equilibrium of this game. The existence (and uniqueness) problem is complexi�ed
in this framework since strategic interactions occur within each partial game but also
between both partial games through sequential decisions. Then, to prove existence, we
notably provide a new procedure to determine (the conditions under which) the optimal
behavior of the followers (may be written) as functions of the leaders�strategy pro�le only.
Some examples outline our procedure and discuss our assumptions.

Key Words: Best response functions, existence, uniqueness.
Subject Classi�cation: C61, C62, C72, D43

1. INTRODUCTION

Stackelberg competition (1934) portrays a model of a market economy in which
strategic �rms move sequentially and compete on quantities. In the basic duopoly
model one �rm (the leader) moves �rst and makes her decision by taking into con-
sideration the reaction of the other �rm (the follower). The leader perfectly knows
her rival best response function. The follower can set his own supply according
to any possible function of the quantity set by the leader, with the belief that the
leader will not counter-react. Similarly, the leader expects the follower to conform
to the decisions given by his best response function. A Stackelberg equilibrium
(SE thereafter) is a noncooperative equilibrium of a two-step game with perfect
and complete information where the players are the �rms, the strategies are their
production decisions, and their payo¤s are their pro�t functions. A SE constitutes a
pure strategy subgame perfect Nash equilibrium (SPNE). Existence and uniqueness
of SE are studied by Robson (1990) in the T -stage model of Boyer and Moreaux
(1986), with one monopoly �rm per stage. Alj et al. (1988) and Freiling et al. (2001)
show existence in di¤erential duopoly games. The common feature of these models
is the leader behaves as a monopolist by using the well-de�ned follower�s best re-
sponse. But the existence (and uniqueness) problem is complexi�ed with multiple
leaders and followers as strategic interactions also occur within step of the game.
As a consequence, in the presence of heterogeneous followers, the best responses
could not be well-de�ned. This problem is the starting point of this paper.
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This paper deals with the existence and uniqueness of a SE in a multiple leader-
follower model. To this end, we consider an extension of the two-stage deterministic
and static noncooperative multiple leader-follower oligopoly model introduced by
Sherali (1984). There are several leaders and followers who compete on quantities
to sell one homogeneous divisible product. This hierarchical model consists of two
Cournot competitions encompassed by a Stackelberg competition. This model is
thus described by a two-step game which embodies two simultaneous move partial
games. Indeed, the leaders play a two-step game with the followers, but the leaders
(the followers) play together a simultaneous move game. We assume the timing of
positions is given. Information is assumed to be perfect and complete. Thus, we
look for pure strategy SPNE. In addition, we focus on the case where pure strategies
are substitutes. Existence and uniqueness problems are complexi�ed in this frame-
work since strategic interactions occur within each partial game but also between
both partial games through sequential decisions. One di¢ culty stems from the fact
that any leader faces many followers optimal decision mappings. In a decentral-
ized economy �rms determine their optimal decisions without central coordination
device: each individual �rm acts independently and without communication with
any of the others (see notably Johansen (1982) and Daughety (2009)). Therefore,
the resulting followers� (leaders�) optimal decision mappings might be mutually
inconsistent. More speci�cally, the followers�optimal decisions must be internally
consistent to solve the game. Under this consistency requirement, the set of opti-
mal decision mappings of followers can determine the best responses as functions of
the strategies of leaders only. This problem is eluded in the literature and deserves
more careful study. One novelty of our paper is that we provide a simple consistency
criterion which determines the conditions under which such best response functions
may be obtained. Our criterion also creates a logical link between the two partial
games to study existence and uniqueness issues. Indeed, our existence and unique-
ness proofs stem from a consistency (su¢ cient) condition among followers�decision
mappings, each function being based on decentralized optimizing behavior.
Existence and uniqueness have already been explored in the multiple leader-

follower model. Sherali (1984) shows existence and uniqueness with identical convex
costs for leaders, and states some results under the assumptions of linear demand
either with linear or quadratic costs (see also Ehrenmann (2004)). Sherali�s model
constitutes an extension of the seminal paper of Murphy et al. (1983) which covers
the case of many followers who interact with one leader. In their model the authors
provide a characterization of the SE and an algorithm to compute it. They state a
Theorem 1 which gives the properties of the aggregate best response of the followers
as a function of the leader�s strategy. This determination stems from a family of
optimization programs for the followers conceived as a price function perturbed by
the supply of the leader. They show this aggregate function is convex, and then,
study the leader�s problem. But they do not study the conditions under which
the followers�optimal decisions are mutually consistent. In the same vein, Tobin
(1992) provides an e¢ cient algorithm to �nd a unique SE by parameterizing the
price function by the leader�s strategy. Some strong assumptions on the thrice-
di¤erentiability of the price function and cost function of the leader pro�t function
are made. Following De Wolf and Smeers (1997) who extend Murphy et al. (1983),
De Miguel and Xu (2009) extend (1984) to uncertainty with stochastic market
demand. Unlike Sherali (1984) they allow costs to di¤er across leaders. Nevertheless,
to show the concavity of the expected pro�t of any leader, they assume that the
follower aggregate best response is convex. But as this assumption does not always
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hold, they must resort to a linear demand. Fukushima and Pang (2005), Yu and
Wang (2008), and He et al. (2015) prove existence of an equilibrium point of a �nite
game with two leaders and several followers without specifying the assumptions
made on demand and costs. In this paper, we consider a simple deterministic
version of the hierarchical model without strategic complementarities.
Our contribution to the literature is twofold. First, existence and uniqueness of

a SE are obtained under weaker assumptions on cost and demand functions. The
demand function is not speci�c and �rms may not bear the same costs. In addition,
by contrast with Sherali (1984), Ehrenmann (2004) and De Miguel and Xu (2009),
some �rms (not all) may have nonconvex costs. Second, we provide a new proce-
dure to characterize a SE, and thereby to prove its existence and its uniqueness. A
SE is the outcome of a decentralized mechanism through which seperate rational
�rms interact strategically. Indeed, our model is made up of two partial games
encompassed by an entire game. Within each partial game the behavior of any
leader (follower) is based on a separate maximization program. Therefore, the com-
patibility among individual decisions should be satis�ed within each step, but also
between both steps of the game. The link between the two partial games is studied
through a system of equations which speci�es a mutual consistency condition which
is critical to derive followers�best responses. To this end, we provide a criterion
to obtain the best responses from which we derive the e¤ective demand which ad-
dresses to any leader. This criterion works under some regularity conditions linked
to di¤erentiability.
Within this framework we obtain the following results. First, we determine the

optimal decision of any follower as a function of the strategy pro�les of the other
followers and of the leaders. We show such functions are decreasing, with bounded
partial derivatives. Then, we consider the existence of the best response functions
of followers. To this end, we give a criterion to test the consistency of the system of
equations which allows the determination of best responses. Hence, if the Jacobian
matrix of followers best responses is of full rank, then, each follower�s best response
may be written as a function of leaders�strategy pro�le. Then, we consider any
leader�s problem when she faces the e¤ective demand, that is, the price as a function
of leaders� strategy pro�le only. We also study the optimal decisions of leaders.
Third, we consider the entire game and show existence and uniqueness of an active
SE, i.e., an equilibrium with strictly positive strategies. Existence is shown by using
some �xed point argument. Uniqueness is obtained by using some mild assumptions
on costs and demand functions. The advantages of our approach are threefold. First,
we provide a characterization of the strategic equilibrium which brings into light
a consistency criterion. The possibility to solve the game depends on whether our
criterion is satis�ed. If the criterion holds, our �nite extensive form game of perfect
information may have a unique pure strategy SPNE. Second, we make some general
assumptions on costs and demand functions. Third, our procedure puts forward the
beliefs of leaders: by construction of a SE they know the reactions of the followers
through the slope of the aggregate best response. Indeed, any leaders�markup and
Lerner index, derived from the optimality conditions, are expressed in terms of this
slope. Thus, the behavior of leaders deserve also to be analyzed in detail.
The remaining of the paper is organized as follows. In section 2 we present

the model. Section 3 is devoted to a de�nition of the SE which relates to rational
behavior and to our consistency criterion. Existence and uniqueness are studied
in Section 4. Section 5 provides some examples to discuss our assumptions and to
illustrate our criterion. In section 6 we conclude.
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2. THE MODEL

The model is described in three steps. First, we set up the framework and �x
some notations. Second, we give two assumptions and we discuss each of them.
Third, we complete the description of the model with the associated game.

2.1. Framework and notations

Consider an oligopoly market with a single divisible homogeneous product.
There is a �nite set of �rms F which embodies two types of �rms labeled F and
L. Thus, the set F partitions into two subsets FL= f1; :::; nLg and FF= f1; :::; nF g,
with FL [ FF = F and FL \ FF = ?. We consider jFLj > 1 and jFF j > 1, where
jAj denotes the cardinality of the set A. Firms of type L are leaders, while �rms of
type F are followers. Leaders are indexed by i and followers are indexed by j.

We adopt the following notational conventions. Let x 2 Rn+. Then, x � 0 means
xi > 0, i = 1; :::; n; x > 0 means there is some i such that xi > 0, with x 6= 0,
and x >> 0 means xi > 0 for all i, i = 1; :::; n. Let xL = (x1L; :::; x

i
L; :::; x

nL
L )

be a strategy pro�le of leaders, and xF = (x1F ; :::; x
j
F ; :::; x

nF
F ) be a strategy pro-

�le of followers, where xiL and xjF represent respectively the supply of leader
i 2 FL, and of follower j 2 FF . In addition, let x�iL = (x1L; :::; x

i�1
L ; xi+1L ; :::; xiL)

and x�jF = (x1F ; :::; x
j�1
F ; xj+1F ; :::; xjF ). We sometimes consider XL �

P
i2FL

xiL

and XF �
P
j2FF

xjF . In addition, let X
�i
L �

P
�i2FL

x�iL , with X�i
L = XL � xiL,

and X�j
F �

P
�j2FF

x�jF , with X�j
F = XF � xjF . Let f be a function de�ned by

f : A � Rn ! B � R, with z 7�! f(z). The partial derivative of f with re-
spect to zi will be denoted by

@f
@zi
, i = 1; :::; n. When n = 1 the derivative is df

dz .

The partial derivative of f with respect to zi at zi = �zi is denoted by
@f
@zi
(�zi).

The same holds with df
dz (�z). A m dimensional vector function F is de�ned by F :

A � Rn ! B � Rm, with F(z) = (f1(z); :::; f j(z); :::; fm(z)). The notation z(y),
where y 2 Rk, means that each zi is a function of y. The Jacobian matrix of F(z)
with respect to z at �z will be denoted by JF(�z), with JF(�z) =

h
@(f1;:::;fj ;:::;fm)
@(z1;:::;;zi;:::;zn)

i
.

Let jJF(�z)j be the determinant of JF at �z. Finally, when the distinction matters,
if we partition z in such a way z = (x;y), then JFx(�z) is the Jacobian matrix of
F(z) at �z when the di¤erentiation is partial and made with respect to x only. The
corresponding determinant is denoted by jJFx(�z)j.

2.2. Assumptions: statement and discussion

We now make some assumptions regarding the demand side and the supply side
of the market. There is a continuous market demand function D(p) which balances
the aggregate supply X, with X � XL + XF . It represents the maximum price
the consumers are willing to pay to buy the quantity X as well the minimum price
the �rms are willing to charge to sell the corresponding production X. Indeed, let
X 7�! p(X) = D�1(X) be the market inverse demand function. We make the
following set of assumptions regarding p(X), which we designate as Assumption 1.
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Assumption 1. The price function p(X) satis�es the following:
(1a) p(X) > 0 for all X > 0, with p(X) 2 C2(R++);
(1b) dp(X)

dX < 0 for X > 0;
(1c) 8x > 0, dp(X)dX + kxd

2p(X)
(dX)2 6 0, where k > 0.

(1a) says that the inverse demand function p(X) is positively valued, and it
may or may not intersect both the quantity axis and the price axis. We do not
preclude that the price function intersects only one of the two axis. For instance,
if p(X) = 1

X � 1 with nF = nL = 1 yields xL = 1
4 and xF =

1
4 , with

�X = 1. If it
would intersect only the price axis since we had limX!0 p(X) = �p > 0 (for instance:
p(X) =

p
1�X with jFF j = jFLj = 1 yields xL = 1

3 and xF =
1
9 ). Therefore, (1a)

does not impose too stringent property on the market demand function: it may be
strictly concave (convex) or linear, without imposing some boundary conditions.
(1a) also says that p(X) is well-behaved: it is twice continuously di¤erentiable
on the open set R++. This assumption will be useful notably to characterize the
optimal behavior in a Stackelberg market in Section 3.
(1b) is obvious.
(1c) stipulates that marginal revenue for any single �rm is a decreasing function

of total industry output. This formulation deserves two comments. First, we do
not impose d2p(X)

(dX)2 6 0, so we do not preclude (strictly) convex market demand
functions. Second, our formulation of the decreasing marginal revenue hypothesis
embodies the parameter k. For any follower �rm, we have k = 1, as in the Cournot
model (Hahn (1962), Okugushi (1976)). However, for any leader �rm k may be gen-
erally di¤erent from unity unless leaders behave as followers (see Section 3). Our
formulation puts forward an important feature of Stackelberg competition which
explicitly takes into account leader �rms have perfect information regarding the
optimal reactions of followers to change in their strategies (Julien (2011)).

Each �rm bears some costs. Cost functions satisfy the following set of assump-
tions, which we designate by Assumption 2.

Assumption 2. The cost function ch(xh), h 2 F , satis�es the following:
(2a) 8h 2 F , ch(xh) > 0 for all x > 0, ch(xh) 2 C2(R++);
(2b) 8h 2 F , d

2ch(xh)
(dxh)2

� k dp(X)dX > 0, k > 0 for each xh > 0;

(2c) p(0) > max
n
dch

dxh
(0), h 2 F

o
, and there exists X� > 0 large enough for

which dch

dxh
(X�) > p(X�), for all X > X�, 8h 2 F .

Let ciL(x
i
L), for each i 2 FL, and c

j
F (x

j
F ), for each j 2 FF .

(2a) stipulates that the cost functions are positive and twice continuously dif-
ferentiable on the open set R++.
(2b) requires that the marginal cost rises faster than the decrease in the average

revenue (the price). Let us notice costs may be di¤erent and need not be convex for
all �rms, but it precludes concave costs for all �rms. In the presence of increasing
returns, �rms should supply nothing. For instance, if jFF j = jFLj = 1, with
p(X) = 4

X , and cF (xF ) = ln(1+xF ) and cL(xL) = 2
p
xL, then the market outcome

is the trivial solution, i.e., xL = xF = 0. Hence, market outcomes with positive
supplies require smooth costs. This condition is not stated exactly in the same way
for leaders and for followers since leaders know the reactions of followers.
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(2c) stipulates two things. First, the maximum price exceeds the higher mar-
ginal costs. It is assumed in all models; in particular the standard linear model
with linear demand p(X) = a � bX and constant marginal costs c1 and c2, with
c1 > c2, considers a > c1. Second, industry supply is bounded if there is some
large output level for which marginal costs exceeds any �rm�s revenue, leading to
negative marginal pro�ts. Hence, to prevent high production supply, we assume no
�rm wishes to produce such a large quantity. Therefore, there is an upper bound
on the production set, which compacti�es the set of possible supply (see Murphy
et al. (1983)). Thus, (2c) is a weakening of the usual assumption made on inverse
market demand; we do not assume there is some �nite large quantity �X < 1 for
which p(X) = 0, for all X > �X (Frank and Quandt (1963), Novshek (1985)).

The pro�t functions �iL(:) of �rm i and �jF (:) of �rm j may be written:

�iL(x
i
L;x

�i
L ;xF ) = p(X)xiL � ciL(xiL), i 2 FL (1)

�jF (x
j
F ;x

�j
F ;xL) = p(X)xjF � c

j
F (x

j
F ), j 2 FF . (2)

Proposition 1. Let Assumption 1 and (2a)-(2b) be satis�ed. Then, the pro�t
function (2) is strictly concave with respect to xjF given x

�j
F and xL.

Proof. Di¤erentiating partially twice (2) with respect to xjF , and using (1c) and

(2b) with k = 1, we deduce @2�jF
(@xjF )

2
= 2dp(X)dX + xjF

d2p(X)
(dX)2 �

d2cjF (x
j
F )

(dxjF )
2
< 0.

Remark 1. A rather more complicated expression than the preceding one holds
for any leader (see Section 4, Remark 2).

2.3. The Stackelberg game

To this economy we associate a game �. The players are the �rms, the strate-
gies are the production decisions, and the payo¤s are the pro�ts. Let SiL =�
xiL 2 R+ : 0 6 xiL 6 X�	 and SjF =

n
xjF 2 R+ : 0 6 xjF 6 X�

o
be the strategy

sets of leader i 2 FL and follower j 2 FF respectively. The supply xiL (resp. x
j
F )

represents the pure strategy of leader i 2 FL (follower j 2 FF ). A strategy pro�le
will be represented by the vector (xL;xF ), with (xL;xF ) 2

Q
i2FL

SiL�
Q

j2FF
SjF . The

corresponding payo¤s are given by �iL, i 2 FL, and �
j
F , j 2 FF .

This game displays two stages of decisions and no discounting. We also assume
the timing of positions as given. Thus, this hierarchical model consists of two
Cournot competitions encompassed by a Stackelberg competition. Indeed, the nL
leaders play a two-step game with the nF followers, but the leaders (the followers)
play a simultaneous moves game. Finally, information is assumed to be complete and
perfect. It notably implies that any leader perfectly knows the followers�behavior.
Any leader is able to perceive the reactions of any follower. Perfect information
also implies that, for any follower, each information set is a single decision node. In
addition, in each decision node, any follower makes an optimal choice, so sequential
rationality prevails. As sequential rationality is common knowledge, the game is
solved by backward induction, considering �rst the optimal strategic decisions of
the followers, and then the optimal strategic choices of the leaders.
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3. OPTIMAL BEHAVIOR

In contrast with the duopoly game the behavior of �rms are complexi�ed in this
model. First, given a feasible strategy pro�le for the leaders xL, each follower will
determine her optimal decision as a mapping whose arguments are the strategies
of all other followers and the strategies of all leaders. But the followers optimal
decisions must be consistent. This consistency means that each optimal decision
mapping may be reduced to a best response function of the leaders�s strategies only.
The following subsections provide three Lemmas. Lemmas 1 and 3 characterize
followers and leaders behavior respectively, while Lemma 2 provides a consistency
condition to determine the e¤ective demand which addresses to any leader.

3.1. The followers

Definition 1. Let �j :
Q

�j2FF
S�jF �

Q
i2FL

SiL ! SjF , with �
j(x�jF ;xL) = fxjF 2

SjF : x
j
F 2 argmax�

j
F (x

j
F ;x

�j
F ;xL)g be follower j�s optimal decision, j 2 FF .

Lemma 1. Let the function p(:) satis�es Assumption 1, and the functions cjF (:),
j 2 FF , satisfy Assumption 2. Then, for each j 2 FF , the mapping �j(x�jF ;xL) is
well de�ned, point-valued (a function) and continuously di¤erentiable.

Proof. The mapping �j(xL;x
�j
F ) is well de�ned. The program of follower j con-

sists in maximizing �jF (x
j
F ;x

�j
F ;xL), a strictly concave function with respect to x

j
F

(by Proposition 1), subject to xjF 2 [0; X�], a nonempty and compact (convex) set
(by (2c)). As the pro�t function is strictly concave it is continuous. Then, from the

Weierstrass Theorem, the set argmax
n
�jF (x

j
F ; :; :) : x

j
F 2 [0; X�]

o
is nonempty, so

there exists �j :
Q
�j 6=j

S�jF �
Q
i

SiL ! SjF , such that x
j
F = �j(x�jF ;xL), j 2 FF .

In addition, from Proposition 1, we deduce �j(x�jF ;xL) is point valued. We now
characterize follower j�s optimal behavior. Let L be the Lagrangian and �j and �j
the nonnegative Lagrange multipliers. Then, given xL, with xL 2

Q
i

SiL, follower

j�s optimal decision is the solution to:

maxL(xjF ;x
�j
F ;xL; �

j ; �j) := �jF (x
j
F ;x

�j
F ;xL)+�

jxjF +�
j(X��xjF ), j 2 FF . (3)

The Kuhn-Tucker conditions may be written:

@L
@xjF

=
@�jF
@xjF

+ �j � �j = 0, j 2 FF (4)

�j > 0, xjF > 0, with �
jxjF = 0

�j > 0, (X� � xjF ) > 0, with �j(X� � xjF ) = 0,

where @�
j
F

@xjF
= p(X)+xjF

dp(X)
dX � dcjF (x

j
F )

dxjF
. From (1a), we have either �j(x�jF ;xL) = 0

or �j(x�jF ;xL) > 0. Therefore, if xjF > 0, then �j = 0, where xjF is the solution

to the equation p(X) + xjF
dp(X)
dX � dcjF (x

j
F )

dxjF
= �j , which yields �j(x�jF ;xL) > 0. In

addition, if �j > 0, then xjF = �j(0;0) = X�, while if �j = 0, then �j(x�jF ;xL) 2
(0; X�). Now, if �j > 0, then xjF = 0, which means that �j(x�jF ;xL) = 0 and
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�j = 0 since xjF < X�. Then, either �j(x�jF ;xL) > 0 whenever xjF 2 (0; X�] or
�j(x�jF ;xL) = 0, j 2 FF . Then, �j(x�jF ;xL) > 0, j 2 FF .
The function �j(x�jF ;xL) is continuously di¤erentiable. Using Proposition 1,

then, from the Berge Maximum Theorem (1963), we deduce xjF = �j(x�jF ;xL),
j 2 FF , is C1 on

Q
�j 6=j

S�j �
Q
i

Si.

Proposition 2. Let � :
Q
i2FL

Si �
Q

j2FF
Sj !

Q
j2FF

Sj be the nF dimensional

vector function de�ned by � = (�1; :::; �j ; :::; �nF ). Consider the Jacobian matri-

ces J�xF (�xF ; �xL) =
h
@(�1;:::;�j ;:::;�nF )

@(x1F ;:::;;x
j
F ;:::;x

nF
F )

i
and J�xL (�xF ; �xL) =

h
@(�1;:::;�j ;:::;�nF )

@(x1L;:::;;x
i
L;:::;x

nL
L )

i
.

Then, �I(nF ;nF ) << J�xF (�xF ; �xL) � 0(nF ;nF ) and �I(nF ;nL) << J�xL (�xF ; �xL) �
0(nF ;nL), where 0 and I are the zero matrix and the unit matrix respectively.

Proof. See Appendix A.

Proposition 2 notably states that each follower�s optimal decision function is
decreasing in the strategy of each other follower and in the strategy of each leader.

3.2. The best responses: a consistency criterion

Each leader has perfect information on the optimal decisions. But before consid-
ering the problem of any leader we must check that the system of optimal decisions
is internally consistent: each follower�s optimal decision mapping may be expressed
as a function of the leaders�s strategies only. To this end, we provide a consistency
criterion which determines each optimal decision as a function of the strategy pro�le
of the leaders. Indeed, any leader �rm is then able to solve the system of optimal
decision mappings to obtain the best responses as functions of his own strategy and
of the other leaders�strategies. It leads to the e¤ective demand (the price function
as a mapping of the leaders�strategic supplies only) which addresses to any leader.
Otherwise, if the criterion is not satis�ed, we cannot determine the individual best
responses. Example 3 in Section 5 illustrates this fact.
Let the system of nF simultaneous equations with nF unknowns xjF and nL

parameters be given by:

xjF � �
j(x�jF ;xL) = 0, j 2 FF . (5)

These nF equations taken together consist in a system of equations, whose
solution, if it exists, provides best responses.

Definition 2. Let 'j :
Q
i2FL

Si ! Sj , with xjF = 'j(xL), be the best response

of follower j, j 2 FF .

To introduce our criterion de�ne the function �j :
Q

j2FF
SjF�

Q
i2FL

SiL ! Sj , with

�j(xF ;xL) � xjF � �j(x�jF ;xL), j 2 FF . Let � :
Q

j2FF
SjF �

Q
i2FL

SiL !
Q

j2FF
SjF

the nF dimensional vector function de�ned by � =
�
�1; :::;�j ; :::;�nF

�
. Consider

the nF -dimensional vector equation �(xF ;xL) = 0. Let J�xF
(�xF ; �xL) be the

(nF ; nF ) square matrix formed by all partial derivatives of �j with respect to xF
at a point (�xF ; �xL). The next lemma provides a su¢ cient condition for the existence
(and continuous di¤erentiability) of such best responses. So, Lemma 2 provides a
criterion to determine locally the best responses.
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Lemma 2. If
���J�xF

(�xF ; �xL)
��� > 0, then, for each j 2 FF , there exists 'j :Q

i2FL
SiL ! SjF , with x

j
F = 'j(xL). Moreover, for each j 2 FF , 'j � C1(R++).

Proof. See Appendix B.

Proposition 3. Let 'j :
Q
i2FL

SiL � U(�xL) ! SjF , with x
j
F = 'j(xL), j 2 FF .

Consider J'(�xL) =
h
@('1;:::;'j ;:::;'nF )

@(x1L;:::;;x
i
L;:::;x

nL
L )

i
. Then, �I(nF ;nL) << J'(xL) � 0(nF ;nL).

Proof. See Appendix C.

3.3. The leaders

In the second step each leader knows how the market price is a¤ected by the
followers�reactions. This information is transmitted through the e¤ective demand
which adresses to her, i.e., p(xiL +X

�i
L +

P
j

'j(xL)).

Definition 3. Let leader i�s optimal decision be de�ned by  i :
Q

�i2FL
S�iL !

SiL, with  
i(x�iL ) =

�
xiL 2 SiL : xiL 2 argmax�iL(xiL;x�iL ;'(xL))

	
, i 2 FL.

Lemma 3. Let the function p(:) satis�es Assumption 1 and the functions ciL(:),
i 2 FL, and cjF (:), j 2 FF satisfy Assumption 2. Then, for each i 2 FL, the map-
ping  i(x�iL ) is well de�ned, point-valued (a function) and continuous on

Q
�i
S�iL .

Proof. The mapping  i(x�iL ) is well de�ned. Given 'j :
Q
i

SiL ! SjF , with

xjF = 'j(xL), j 2 FF , let '(xiL;x�iL ) = ('1(xiL;x
�i
L ); :::; '

nF (xiL;x
�i
L )). The pro-

gram of leader i consists in maximizing her pro�t �i(xiL;x
�i
L ;'(xiL;x

�i
L )) subject

to xiL 2 [0; X�], a nonempty and compact (convex) set. Moreover, from Lemma
2, the e¤ective demand p(xiL +

P
�i 6=i

x�iL +
P
j

'j(xiL;x
�i
L )) is continuous as each

'j(xiL;x
�i
L ), j 2 FF , is continuous. Then �i(:) is a continuous function from

Q
i

SiL
to SiL. Then, the set argmax

�
�i(xiL;'(x

i
L;x

�i
L )) : x

i
L 2 [0; X�]

	
is nonempty, so

there exists  i :
Q
�i 6=i

S�iL ! SiL, with  
i(x�iL ), i 2 FL. We now characterize leader

i�s optimal behavior. Let L be the Lagrangian and �i and �i the Lagrange multi-
pliers. The problem of leader i 2 FL may be written:

maxL(xiL;x�iL ; �i; �i) := �iL(x
i
L;x

�i
L ;'(xiL;x

�i
L )) + �

ixiL + �
i(X� � xiL). (6)

The Kuhn-Tucker conditions may be written:

@L
@xiL

=
@�iL
@xiL

+ �i � �i = 0, i 2 FL (7)

�i > 0, xiL > 0, with �ixiL = 0
(X� � xiL) > 0, �i > 0, with �i(X� � xiL) = 0,

where:
@�i

@xiL
= p (X) +

�
1 + �i

�
xiL
dp(X)

dX
� dci(xiL)

dxiL
, i 2 FL. (8)
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The term �i =
@
P
j

'j(xL)

@xiL
, with �i 2 [�1; 0], represents the reaction of all followers

to leader i�s strategy, i.e., the slope of the aggregate best response to i, i 2 FL.
By construction �i = ��i = � for all i;�i 2 FL. From (1a) we may have either
 i(x�iL ) = 0 or  i(x�iL ) > 0. Therefore, if xiL > 0, then �i = 0, where xiL is the

solution to p (X) + (1 + �)xiL
dp(X)
dX � dci(xiL)

dxiL
= �i, which then yields  i(x�iL ) > 0.

And, if �i > 0, then  i(x�iL ) = X�, since x�iL = 0 and xF = 0, while if �i = 0,

then  i(x�iL ) 2 (0; X�]. Otherwise, if xiL = 0, then p(X)�
dci(xiL)

dxiL
= 0 and �i = 0.

Then  i(x�iL ) > 0 whenever xiL 2 [0; X�].
The mapping  i(x�iL ) is a continuous function on

Q
�i 6=i

S�iL . We �rst show it is

point valued. Di¤erentiating @�iL
@xiL

with respect to xiL leads to:

@2�i

(@xiL)
2
= (1 + �)

2
xiL
d2p(X)

(dX)2
+ 2 (1 + �)

dp(X)

dX
� d2ciL(x

i
L)

(dxiL)
2
. (9)

We now check that @2�iL
(@xiL)

2 < 0. The expression given by (9) may be written
@2�iL
(@xiL)

2 =

(1 + �)
2
�
xiL

d2p(X)
(dX)2 +

dp(X)
dX

�
+ (1 � �2)dp(X)dX � d2ciL(x

i
L)

(dxiL)
2 by adding (1 + �)2 dp(X)dX

and substracting � (1 + �) dp(X)dX . As the �rst term is non positive, and the second

term is strictly negative under (2b), and since � 2 [�1; 0], then we have @2�iL
(@xiL)

2 < 0.

Then, the solution to (6), that is  i(x�iL ), i 2 FL, is point valued. In addition,
 i(x�iL ), i 2 FL, is continuous at all x

�i
L 2

Q
�i
S�i, and then on

Q
�i
S�i.

Remark 2. When  i(x�iL ) 2 (0; X�] (7) may be written Li = � 1+�
�

xiL
X , where

Li �
p(X)� dciL(x

i
L)

dxi
L

p(X) is the Lerner index, � the price elasticity of demand, and xiL
X the

market share of leader i. In addition, p(X) = 1
1��i

dciL(x
i
L)

dxiL
, where 1

1��i > 1 is her

markup, with �i = 1� 1+�
�

xiL
X , �

i 2 [0; 1). When �i = 0 (resp. �i > 0) she behaves
as a price taker (resp. an oligopolist). As �i 2 [0; 1), we have � > �1.
Remark 3. Let us notice that k = (1 + �) in (1c), so using (8), we have:

@2�i

@xiL@x
�i
L

= (1 + �)

�
dp(X)

dX
+ (1 + �)xiL

d2p(X)

(dX)2

�
6 0, i 2 FL. (10)

The expression given in (10) echoes Remark 1.

Proposition 4. Let 	 :
Q
i2FL

Si !
Q
i2FL

Si, with 	 = ( 1; :::;  i; :::;  nL).

Consider J	(�xL) =
h
@( 1;:::; i;:::; nL )

@(x1L;:::;;x
i
L;:::;x

nL
L )

i
. Then, �I(nL;nL) << J	(�xL) � 0(nL;nL).

Proof. The Jacobian matrix J	(�xL) is bounded. Di¤erentiating partially the

identity @�iL
@xiL

( j(x�iL );x
�i
L ) � 0 with respect to x

�i
L , and using (10), we get

@ i

@x�iL
=

�
@2�iL

@xi
L
@x

�i
L

@2�i
L

@(xi
L
)2

= �
k
dp(X)
dX +k2xiL

d2p(X)

(dX)2

2k
dp(X)
dX +k2xiL

d2p(X)

(dX)2
� d2ci

L
(xi
L
)

(dxi
L
)2

. From (1b) and (2b), and as for each

i 2 FL, � 2 [�1; 0], we deduce @�j

@x�jF
2 (�1; 0], for all �i 6= i, �i; i 2 FL.
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4. SE: EXISTENCE AND UNIQUENESS

We now turn to the existence and uniqueness of a SE. Before we provide a

de�nition of a SE for the game � =
n
F ; (SiL; �iL); (S

j
F ; �

j
F )
oj2FF
i2FL

.

Definition 4. (SE) A Stackelberg equilibrium of � is given by a strategy pro�le
(~xL; ~xF ) 2

Q
i2FL

SiL �
Q

j2FF
SjF such that:

i. �jF (~x
j
F ; ~x

�j
F ; ~xL) > �jF (x

i
F ; ~x

�j
F ; ~xL), 8xjF 2 Sj , j 2 FF

ii. �iL
�
~xiL; ~x

�i
L ;'(~xiL; ~x

�i
L )
�
> �iL

�
xiL; ~x

�i
L ;'(xiL; ~x

�i
L )
�
, 8'(xL) 2

Q
j2FF

SjF ,

8x�iL 2
Q

�i2FL
S�iF and 8xiL 2 SiL, i 2 FL.

A SE is a noncooperative oligopoly equilibrium of a two-step game of perfect
information such that, on the one hand, the market clears, and on the other hand,
in each step of the game, no �rm has an incentive to unilaterally deviate from
its choice. Therefore, we must �rst consider the mutual consistency of the optimal
behavior. Then, we turn to the study of uniqueness.

4.1. Existence

The hierarchical model of Sections 2 and 3 consists of two Cournot competitions
encompassed by a Stackelberg competition. Indeed, the nL leaders play a two-
step game with the nF followers, but the leaders (the followers) play together a
simultaneous move game. Stackelberg competition is thus described by a two-step
game which embodies two simultaneous move games. Therefore, this hierarchical
game � displays two partial games, namely �F and �L. The equilibrium of the
entire game � is a pure strategy subgame perfect Nash equilibrium (SPNE), while
the equilibria in each partial game are Nash equilibria. Therefore, we must show
that there exists a pure strategy SPNE of �. But such a SPNE exists for the entire
game if it is a Nash equilibrium of each subgame of � (Selten (1975)). In addition,
we must check that the �xed point is an active equilibrium, i.e., the Stackelberg-
Nash equilibrium strategy pro�le contains strictly positive components. Remark 4
outlines this point.

Remark 4. (Trivial equilibrium). Let us notice that the existence of interior
solutions to programs (3) and (6), whose solutions may be well de�ned optimal de-
cisions, does not ensure that the SE is not a trivial equilibrium. A trivial equilibrium
is given by a strategy pro�le (~xL; ~xF ) 2

Q
i

SiL �
Q
j

SjF such that (~xL; ~xF ) = (0;0).

For instance, assume jFF j = jFLj = 1, with p(X) = 1
X , and cF (xF ) =

1
2xF

and cL(xL) = 0. Then, the follower�s best response is well de�ned and given
by �(xL) = �xL +

p
2xL, with �(xL) > 0. But the equilibrium strategy pro�le is

(~xL; ~xF ) = (0; 0), the trivial solution (note the pro�t functions are strictly concave).

We are now able to state the following Theorem.

Theorem 1. (Existence). Consider the game � =
n
F ; (SiL; �iL); (S

j
F ; �

j
F )
oj2FF
i2FL

,

and let Assumptions 1 and 2 be satis�ed. Then, there exists a Stackelberg equilib-
rium which is an active equilibrium.
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Proof. The strategy of the proof is as follows. First, we show there exists a
strategy pro�le (~xL; ~xF ) 2

Q
i

SiL�
Q
j

SjF such that the leaders and followers strategic

optimal plans determined in Section 3 are mutually consistent. Second, we show
that there may exist the strategy pro�le (~xL; ~xF ) is such that (~xL; ~xF ) >> (0;0).
1. Consistency of optimal plans. The game � is a two-step game which embodies

two simultaneous move games. Let �L and �F be the simultaneous move partial
games between leaders and between followers respectively. Therefore, we must show
that the set of optimal decision functions for each partial game has a �xed point,
which also constitutes a Nash equilibrium for the entire game.
We �rst show there is a �xed point to the system of leader�s optimal decision

mappings. From Lemmas 1-3, we can de�ne  i :
Q
�i
S�iL ! SiL, with  

i(x�iL ), i 2 FL.

Now de�ne the function �L :
Q
i

SiL !
Q
i

SiL, with �L(xL) = �
nL
i=1 

i. The function

�(xL) is continuous (as each  i is continuous) in xL on
Q
i

SiL, a compact and

convex subset of Euclidean space (as the product of compact and convex sets SiL,
i 2 FL). Then, by the Brouwer Fixed Point Theorem, the function �(xL) admits
a �xed point ~xL 2

Q
i

SiL, with components ~xiL, with ~xiL 2 SiL, i 2 FL. This �xed

point constitutes a pure strategy Nash equilibrium of �L.
We now show there is a �xed point to the system of followers optimal decision

mappings. Using Lemma 1, we can de�ne �F :
Q
j

SjF �
Q
i

SiL !
Q
j

SjF �
Q
i

SiL, with

�F (xF ;xL) = �nFj=1�
j . Given ~xL 2

Q
i

SiL, we have �F (xF ; ~xL) = �
nF
j=1�

j . A simi-

lar argument as the one made for the leaders shows that the function �F (xF ; ~xL)
admits a �xed point ~xF 2

Q
j

SjF , with components ~x
j
F 2 SjF , j 2 FF . This

�xed point is a pure strategy Nash equilibrium of �F . Now we must show that
there is a Nash equilibrium for the entire game �. From Lemma 2, we can de�ne
'j :

Q
i

SiL ! SjF , with xjF = 'j(xL), i 2 FL. Consider the vector function of

best responses xF = '(xL), with xF 2
Q
j

SjL. If ~xL 2
Q
i

SiL is a pure strategy

Nash equilibrium of �L, then, by using Lemma 2, we have ~xF = '(~xL) 2
Q
j

SjF .

Then, to ~xL 2
Q
i

SiL corresponds a strategy pro�le ~xF 2
Q
j

SjF , which constitutes a

pure strategy Nash equilibrium of �F . We conclude there exists a strategy pro�le
(~xL; ~xF ) � (0;0), with (~xL; ~xF ) 2

Q
i

SiL �
Q
j

SjF , which constitutes a SPNE of �.

Then, from ~X we deduce ~p( ~X), with ~X 2 [0; X�]. The payo¤s ~�i(~xL; ~xF ), i 2 FL,
and ~�j(~xL; ~xF ), j 2 FF , follow from (1) and (2).
2. Equilibrium strategy pro�les. The equilibrium strategy pro�le may be the

trivial one, in which case (~xL; ~xF ) = (0;0), or interior, i.e., (~xL; ~xF ) >> (0;0),
with (~xL; ~xF ) 2

Q
i

Si �
Q
j

Sj . So, we must now show that for any leader i 2 FL

(resp. follower j 2 FF ), there may exist lower and upper bounds �xiL and �xiL (resp.
�xjF and �x

j
F ) on equilibrium supplies such that 0 < �xiL 6 ~xiL 6 �xiL < 1, i 2 FL

(resp. 0 < �xjF 6 ~x
j
F 6 �x

j
F <1, j 2 FF ).

Existence of upper bound : ~xiL 6 �xiL < 1, i 2 FL. There are two cases to
deal with: either the inverse demand function intersects the axes or it does not.
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Assume �rst the inverse demand function p(X) intersects the quantity axis. In such
a case, p(X) may be either (strictly) concave or (strictly) convex. Therefore, there is
�X <1 such that p(X) > 0 for X < �X, and p( �X) = 0 for X > �X. Therefore, there
is some �nite quantity demanded when the commodity is a free good. Select one
leader i 2 FL. Consider �xiL = max

�
�1L �X; :::; �

nL
L
�X; �1F �X; :::; �

nF
F
�X
�
, with �iL; �

j
F 2

[0; 1], for each i 2 FL and each j 2 FF , where
PnL
i �iL +

PnF
j �jF = 1. As �X <1,

then �xiL < 1. Then, �xiL < 1, i 2 FL, and �xjF < 1, j 2 FF . Assume now
limX!0 p(X) = 1 and limX!X� p(X) = 1. Consider there is some i 2 FL for
which ~xiL = 1. But, from (2c), we know that dciL

dxiL
(~xiL) > p(~xiL), so we must have

~xiL <1. The same argument holds for all i 2 FL, and for all j 2 FF .
Existence of lower bound : 0 < �xiL 6 ~xiL, i 2 FL. The proof holds either when

limX!0 p(X) = �p, with 0 < p < 1, or when limX!0 p(X) = 1. Assume ~xiL = 0,
with ciL(~x

i
L) = min

�
c1L(~x

1
L); :::; c

nL
L (~xnLL ); c1F (~x

1
F ); :::; c

nF
F (~xnFF )

	
. Let ~x�iL > 0, for

all �i 6= i, �i 2 FL, and ~xjF > 0, for all j 2 FF . As ~xiL = 0, from (9), we deduce
�i > 0, so the �rst-order condition is given by p( ~X) + �i = ciL(~x

i
L), which implies

p( ~X) 6 ciL(0). Therefore, the e¤ective demand which addresses to any leader �i 6= i

is given by p( ~X�i
L + ~XF ( ~X

�i
L )). As from (1b), we have dp(X)

dX < 0, then assuming

~x�iL > 0 leads to p( ~X�i
L + ~XF ( ~X

�i
L )) + kx

�i
L

dp
dX (

~X�i
L + ~XF ( ~X

�i
L ))�

dc�iL
dx�iL

(~x�iL ) < 0,

�i 2 FL, since dc�iL
dx�iL

(~x�iL ) >
dciL
dxiL

(~xiL). Then, we deduce ~x
�i
L = 0 for all �i 2 FL.

But then, for each �i 2 FL, p(0) 6 dc�iL
dx�iL

(0), a contradiction, as (2c) must hold.

In consequence, if the residual demand which addresses to any follower j 2 FF is
p(0+ ~XF ), then, from (4) and Lemma 2, we deduce p( ~XF )+x

j
F
dp
dX (

~XF )� dcjF
dxjF

(~xjF ) <

0, j 2 FF , since dcjF
dxjF

(~xjF ) >
dciL
dxiL

(~xiL). But then, for each j 2 FF , p(0) 6
dcjF
dxjF

(0), so

~xjF = 0, for all j 2 FF . A contradiction. Then, we conclude that there must exist
some �rm i 2 FL for which �xiL > 0, and some �rm j 2 FF for which �xjF > 0.

Thus, the second part of the proof of Theorem 2 reveals that there is always a
more pro�table strategic supply than the inactive one.

4.2. Uniqueness

Uniqueness is not guaranteed since we should have a con�guration in which the
best responses are uniquelly determined but there could exist multiple equilibrium
leaders�strategy pro�les (see Example 4 in Section 5).
Nevertheless, we are able to state the following Theorem.

Theorem 2. (Uniqueness). Let Assumptions 1 and 2 be satis�ed. Then, if there
exists an active Stackelberg equilibrium, then it is unique.

Proof. The strategy of the proof is as follows. We show that if the partial game
�L has a unique active Nash equilibrium, namely ~xL 2

Q
i

SiLn f0g, then the equi-

librium ~xF 2
Q
j

SjF in the partial game �F is unique as the function ' de�ned as

' :
Q
i

SiL � U(�xL) !
Q
j

SjF , with xF = '(xL), is one to one. Then, uniqueness of

the SNPE for � (and then uniqueness of SE) is obtained through Lemma 2.
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To this end, consider the gradient vector �L=
�
@�1L
@x1L

; :::;
@�iL
@xiL

; :::;
@�

nL
L

@x
nL
L

�
. Let an

active equilibrium strategy pro�le (~xL; ~xF ) 2
Q
i

SiL �
Q
j

SjF . Then, consider the

determinant of the Jacobian matrix of ��L at (~xL; ~xF ), which we denote by
jJ��L

(~xL; ~xF )j. It is well known that if the determinant at an active Cournot
equilibrium is positive, then the equilibrium is unique (see Corollary 2.1 in Kolstad
and Mathiesen (1987)). As leaders in the partial game �L behave as Cournot �rms,
we show this criterion is satis�ed, so the pure strategy Nash equilibrium in the
partial game �L is unique. Then, using Lemma 2, we deduce there is a unique pure
strategy Nash equilibrium of �F .
Select one strategy pro�le (~xL; ~xF ) 2

Q
i

SiL �
Q
j

SjF , with ~xL >> 0. We have

to show that jJ��L
(~xL; ~xF )j > 0. Given (~xL; ~xF ), consider the Jacobian matrix

J��L
((~xL; ~xF ) = �

�
@2�iL

@xiL@x
�i
L

�
, i;�i 2 FL, with @�iL

@xiL
= p(X)+kxiL

dp(X)
dX � dciL(x

i
L)

dxiL
,

and where @2�iL
(@xiL)

2 and
@2�iL

@xiL@x
�i
L

are given by (9) and (10) respectively.

If (1a) and (2a) are satis�ed, then, by substracting columm 1 to the other
columns and expanding by co-factors, we deduce:

jJ��L
j=

0@1� k X
i2FL

dp(X)
dX + kxiL

d2p(X)
(dX)2

d2ciL(x
i
L)

(dxiL)
2 � k dp(X)dX

1A Q
i2FL

�
d2ciL(x

i
L)

(dxiL)
2
� kdp(X)

dX

�
. (11)

Assuming (2b), we deduce:

sign jJ��L
j=sign

0@1� k X
i2FL

dp(X)
dX + kxiL

d2p(X)
(dX)2

d2ciL(x
i
L)

(dxiL)
2 � k dp(X)dX

1A . (12)

From (1c) and (2b), we deduce jJ��L((~xL; ~xF )j > 0. Then, there exists a unique
pure strategy Nash equilibrium in the partial game �L. Now set ~xL >> 0. From
Lemma 2, we deduce ~xF = '(~xL), which constitutes a unique pure strategy Nash
equilibrium of �F . Then, we conclude the pure strategy SPNE in � is unique,
which proves uniqueness of the SE.

Assuming symmetry among leaders, the condition for the sign of jJ��L((~xL; ~xF )j
might be rewritten as dp(X)dX + kxiL

d2p(X)
(dX)2 < 1

knL

�
d2ciL(x

i
L)

(dxiL)
2 � k dp(X)dX

�
, which would

say that "on average" leaders�marginal revenues could be increased but not too
much (see Kolstad and Mathiesen (1987) for the Cournot market).

In addition, we can check that, under (2b), we would have had d2ciL(x
i
L)

(dxiL)
2 �

k dp(X)dX +nL

�
dp(X)
dX + kxiL

d2p(X)
(dX)2

�
=

@2�1L
(@x1L)

2 +(nL�1) @2�iL
@xiL@x

�i
L

< 0: the e¤ect on i�s

marginal pro�t of a change in xiL dominates the sum of the cross e¤ects of similar
changes of other leaders�supply.
Let us notice that strategic complementarities are not precluded here, but they

are not su¢ ciently strong to compensate strategic substituabilities. Therefore, our
result transposes in a Stackelberg framework a result which holds in the Cournot
market (see notably Vives (1999)).
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5. DISCUSSION: SOME EXAMPLES

In order to discuss Theorems 1 and 2 and to illustrate our consistency criterion
(Lemma 2), we provide four examples. We put forward the decreasing marginal
revenue assumption which leads to consider the behavior of the price function on
the boundary (hypothesis (2a)). We know that this condition may not be written
in the same way for the leaders and for the followers (see Remarks 1 and 3). We
also put forward the possibility of marginal costs to decrease more than the price
function, letting the possibility of increasing returns (hypothesis (2b)). Example 1
outlines the procedure to compute a SE when Assumptions 1 and 2 hold. Example 2
shows that even if Assumption 1 is not satis�ed, a unique SE may exist. Example 3
illustrates existence failure, a case for which our criterion is not satis�ed. Example 4
provides a case with multiple equilibria. These examples illustrate that our criterion
constitutes a su¢ cient test condition for the existence of best responses. They
also put forward that condition (12) is only su¢ cient for uniqueness of SE. We
assume jFF j = jFLj = 2. To save notations, we sometimes let XF � x1F + x2F and
XL � x1L + x

2
L.

5.1. Existence and uniqueness with Assumptions 1 and 2

Let the inverse market demand function be given by:

p(X) = 1�X. (13)

The cost functions are ciL(x
i
L) = ln

�
1 + 1

2x
i
L

�
, i = 1; 2, c1F (x

1
F ) =

1
2 (x

1
F )

2 and

c2F (x
2
F ) =

1
2x

2
F . Let max

n
1=2

1+(1=2)xiL
; x1F ;

1
2

o
= 1

2 . From (13) we get X� = 1
2 , so

xiL 2 [0; 12 ], i = 1; 2, and x
j
F 2 [0; 12 ], j = 1; 2.

The followers�s optimal decisions corresponding to (4) are given by:

�1(x2F ;xL) =
1

3
� 1
3
(x2F +XL) (14)

�2(x1F ;xL) =
1

4
� 1
2
(x1F +XL). (15)

Using (5), we get �1(xF ;xL) � x1F � 1
3 +

x2F+XL

3 and �2(xF ;xL) � x2F � 1
4 +

x1F+XL

2 . Implicit di¤erentiation of �j('1(xL); '2(xL);xL) � 0, j = 1; 2, leads to:�
1 1

3
1
2 1

�24 @x1F
@x1L

@x1F
@x2L

@x2F
@x1L

@x2F
@x2L

35 = � � 1
3

1
3

1
2

1
2

�
. (16)

As
���J�xF

(xF ;xL)
��� = 5

6 > 0, we can determine the best responses:

'1(xL) =
3

10
� 1
5
XL (17)

'2(xL) =
1

10
� 2
5
XL. (18)

Let us notice @'1(xL)
@xiL

= � 1
5 and

@'2(xL)
@xiL

= � 2
5 , which may be obtained by

applying Cramer�s rule to (16). In addition, we have � = � 3
5 . Using (17)-(18),
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leader i faces the e¤ective demand
�
3
5 �

2
5x

i
L � 2

5x
�i
L

�
, so her program is max�

3
5 �

2
5x

i
L � 2

5x
�i
L

�
xiL� ln

�
1 + 1

2x
i
L

�
. We deduce (~x1F ; ~x

2
F ) =

�
18�

p
105

30 ; 21�2
p
105

30

�
.

The residual demand p(X) = 15�
p
105

6 �XF leads to (14)-(15).
In addition, Assumptions 1 and 2 are satis�ed for any leader:

dp(X)

dX
+ (1 + �)~xiL

d2p(X)

(dX)2
= �1 6 0, i = 1; 2 (19)

d2ci(xiL)

(dxiL)
2

= � 144

(15 +
p
105)2

> �2
5
= (1 + �)

dp(X)

dX
,

and for any follower:

dp(X)

dX
+ ~xjF

d2p(X)

(dX)2
= �1 < 0, j = 1; 2 (20)

d2c1F (x
1
F )

(dx1F )
2

= 1 > �1 = dp(X)

dX

and
d2c2F (x

2
F )

(dx2F )
2

= 0 > �1 = dp(X)

dX
.

The marginal revenue of any �rm decreases, which illustrates the fact that
supplies are strategic substitutes between leaders and /or followers.

Finally, (12) yields sign jJ��L(~xL; ~xF )j = sign
�
1 + 4(15+

p
105)2

2(15+
p
105)2�720

�
> 0. So

the SE is unique. We could also check that sign jJ��F (~xL; ~xF )j = sign( 52 ) > 0.

5.2. Existence and uniqueness without Assumption 1

Let the inverse market demand function be given by:

p(X) =
1

X�
, � > 2, (21)

where limX!0 p(X) =1, limX!1 p(X) = 0, dp(X)dX = � �
X�+1 and

d2p(X)
(dX)2 =

�(�+1)
X�+2 .

Let ciL(x
i
L) =

1
2x

i
L, i = 1; 2, and c

j
F (x

j
F ) = 0, j = 1; 2. Let max

�
1
2 ; 0
	
= 1

2 , from
(21), we take X� = 1

2 , so x
i
L 2 [0; 12 ], i = 1; 2, and x

j
F 2 [0; 12 ], j = 1; 2.

The optimal decisions corresponding to (4) are given by:

�1(x2F ;xL) =
x2F +XL

� � 1 (22)

�2(x2F ;xL) =
x1F +XL

� � 1 . (23)

Let �1(xF ;xL) � x1F �
x2F+XL

��1 and �2(xF ;xL) � x2F �
x1F+XL

��1 . We deduce:���J�xF
(xF ;xL)

��� = ���� 1 � 1
��1

� 1
��1 1

���� = �(� � 2)
(� � 1)2 2 (0; 1) as � > 2. (24)

If � = 2 there is no solution to �j(xL;xF ) = 0, j = 1; 2. Otherwise, we get
'j(xL) =

XL

��2 , j 2 FF . Let us notice that �
1 = 2

��2 > 0, so leaders and followers
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strategies are strategic complements. Using (22)-(23), leader i faces the e¤ective

demand (��2�
1

xiL+x
�i
L

), so she solves max ��2
�

xiL
xiL+x

�i
L

� 1
2x

i
L. We deduce ~x

i
L =

1
2
��2
� ,

i = 1; 2. Therefore, ~xjF =
1
� , j = 1; 2.

We check that (1b) neither holds for the leaders:

dp(X)

dX
+ (1 + �)~xiL

d2p(X)

(dX)2
=

�(� � 1)
2

> 0, i = 1; 2 (25)

d2ciL(x
i
L)

(dxiL)
2

= 0 > � 2�

� � 2 = (1 + �)
dp(X)

dX
,

nor for the followers:

dp(X)

dX
+ ~xjF

d2p(X)

(dX)2
= 1 > 0 (26)

d2cjF (x
j
F )

(dxjF )
2

= 0 > �1 = dp(X)

dX
, j = 1; 2.

Here marginal revenue increases; so existence of a SE is not inconsistent with
strategic complementarities.

Finally, we have sign jJ��L((~xL; ~xF )j = sign
�
1� �(��1)

2

�
< 0: the SE is

unique even if the su¢ cient condition for uniqueness is not satis�ed. In addition,
sign jJ�F ((~xL; ~xF )j = sign(�1) < 0: strategic complementarities are here not
su¢ ciently strong to produce multiple equilibria.

5.3. Existence failure (without Assumption 2)

The price function is given by (13). Let ciL(x
i
L) = 0, i = 1; 2, c1F (x

1
F ) =

1 + �iFx
i
F � 1

2 (x
i
F )

2, j = 1; 2, with �1F 6= �2F and �1F ; �
2
F < 1. Therefore costs

decreases whenever xjF > �jF , j = 1; 2. Let max
�
0; �1F � x1F ; �2F � x2F

	
= �, where

0 < � <1, so xiL 2 [0; �], i = 1; 2, and x
j
F 2 [0; �], j = 1; 2.

Followers�optimal decisions are given by:

�1(x2F ;xL) = 1� �1F � x2F �XL (27)

�2(x1F ;xL) = 1� �2F � x1F �XL. (28)

Using (5), we get �1(xF ;xL) � x1F � 1 + �1F + x2F + XL and �2(xF ;xL) �
x2F � 1 + �2F + x1F +XL. We deduce:���J�xF

(xF ;xL)
��� = ���� 1 1

1 1

���� = 0. (29)

As �1F 6= �2F there is no solution to (27)-(28). Then, if jJ�(xF ;xL)j = 0,
then 'jL(xL) = f?g, j = 1; 2. We remark that (2b) is not satis�ed since:

d2cjF (x
j
F )

(dxjF )
2
= �1, which is not such that � 1 > �1, j = 1; 2. (30)

The nonexistence stems here from the presence of increasing returns to scale.
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5.4. Nonuniqueness

The inverse market demand is given by:

p(X) =
1p
X � 1

, (31)

where limX!1+ p(X) =1, limX!1 p(X) = 0, dp(X)dX = � 1
2 (X�1)

� 3
2 and d2p(X)

(dX)2 =

� 3
4 (X � 1)� 5

2 . Let ciL(x
i
L) =

p
3xiL, i = 1; 2, and cjF (x

j
F ) = 0, j = 1; 2. Let

X� = p�1(max
�p
3; 0
	
) =

p
3, so xiL 2 [0;

p
3], i = 1; 2, and xjF 2 [0;

p
3], j = 1; 2.

Followers�optimal decisions are given by:

�1(x2F ;xL) = 2� 2x2F � 2XL (32)

�2(x1F ;xL) = 2� 2x1F � 2XL. (33)

Using (5), we deduce:���J�xF
(xF ;xL)

��� = 4 ���� 1 1
1 1

���� = 0: (34)

We deduce 'j(xL) = 2
3 �

2
3XL, j = 1; 2. Then, � = � 4

3 whenever x
i
L > 0,

i = 1; 2. Thus, using (32)-(33), leader i solves xiL 2 max
q

3
1�XL

�
p
3xiL, i =

1; 2. There are two symmetric equilibria (~xL; ~xF ) =
�
(0; 0); ( 23 ;

2
3 )
�
and (~xL; ~xF ) =�

( 49 ;
4
9 ); (

2
27 ;

2
27 )
�
. In the former � = 0, so we have:

dp(X)

dX
+ ~xiL

d2p(X)

(dX)2
= �3

p
3

2
< 0 (35)

d2ciL(x
i
L)

(dxiL)
2

= 0 > �3
p
3

2
=
dp(X)

dX
, i = 1; 2

and
dp(X)

dX
+ ~xjF

d2p(X)

(dX)2
= 3

p
3 > 0

d2cjF (x
j
F )

(dxjF )
2

= 0 > �3
p
3

2
=
dp(X)

dX
, j = 1; 2,

while in the latter we get:

dp(X)

dX
+ (1 + �)~xiL

d2p(X)

(dX)2
=

405

2
> 0 (36)

d2ciL(x
i
L)

(dxiL)
2

= 0 <
27
p
3

2
= (1 + �)

dp(X)

dX
, i = 1; 2

and
dp(X)

dX
+ ~xjF

d2p(X)

(dX)2
= 81

p
3 > 0

d2cjF (x
j
F )

(dxjF )
2

= 0 < 81
p
3 =

dp(X)

dX
, j = 1; 2.

Finally, we have sign
��J��L �(0; 0); ( 23 ; 23 )��� < 0, sign ��J��F �(0; 0); ( 23 ; 23 )��� < 0,

sign
��J��L �( 49 ; 49 ); ( 227 ; 227 )��� < 0, and sign ��J��F �( 49 ; 49 ); ( 227 ; 227 )��� > 0.
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6. CONCLUSION

The paper provides new proofs for the existence and uniqueness of SE in the
multiple leader-follower model. Our noncooperative oligopoly model embodies two
partial simultaneous move games with heterogeneous �rms. As a hierarchical model,
it consists of two Cournot competitions encompassed by a Stackelberg competition.
One salient feature is the existence of a Nash equilibrium for the entire game is also
based on consistent optimal decisions of followers. Our Lemma 2 provides a criterion
to test for the existence of best responses, and thereby for the existence of a SE. In
addition, our model generalizes some models of the literature as it displays some
heterogeneity among �rms which may have di¤erent costs, some of which may be
nonconvex.
The main conclusions of the paper may be stated as follows. First, failure of

existence stems from the fact that the system of equations that implicitly de�nes
the best responses is inconsistent. Under Assumptions 1 and 2 the system is al-
ways consistent. Second, uniqueness is ensured since best responses are decreasing
functions with negative slopes strictly greater than minus unity.
These results suggest three �nal comments. First, our model embodies two step

of decisions and should be developed to embody a �nite number of steps larger than
two. Second, we should consider the strategic complementarities at work when best
responses are increasing. Third, since strategic complementarities a¤ect payo¤s, the
endogeneization of the order of moves should be undertaken within this framework.

7. APPENDIX

The proofs bring into light the role played by Assumptions 1 and 2, and more
speci�cally, which parts in the two Assumptions play a critical role.

7.1. Appendix A: Proof of Proposition 2

The Jacobian matrix J�xF (�xF ; �xL) is bounded. Di¤erentiating partially the

identity @�j

@xjF
(�j(x�jF ;xL);x

�j
F ;xL) � 0 with respect to x�jF , we get:

@�j

@x�jF
= �

@2�jF
@xjF @x

�j
F

@2�jF
@(xjF )

2

= �
dp(X)
dX + xjF

d2p(X)
(dX)2

2dp(X)dX + xjF
d2p(X)
(dX)2 �

d2cjF (x
j
F )

(dxjF )
2

. (A1)

From (1b)-(1c) and (2b), we get @�j

@x�jF
2 (�1; 0), when �j > 0, and @�j

@x�jF
=

0 when �j = 0. Then, @�j

@x�jF
2 (�1; 0], �j; j 2 FF . So, the diagonal terms of

J�xF (�xF ; �xL) consist of zeros and the o¤-diagonal terms are negative and above�1.
The Jacobian matrix J�xL (�xF ; �xL) is bounded. Let x

j
F = �j(x�jF ;xL) 2 (0; X�),

j 2 FF and write (4) as an identity:

p(X) + xjF (x
�j
F ;xL)

dp(X)

dX
� dcjF (x

j
F (x

�j
F ;xL))

dxjF
� 0, (A2)

with X = �1(x�1F ;xL)+ :::+�
j(x�jF ;xL)+ :::+

P
i

xiL. Di¤erentiating partially with

respect to xiL yields, after rearrangement:
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0@X
j

@�j

@xiL
+ 1

1A�dp(X)
dX

+ xjF
d2p(X)

(dX)2

�
+

 
dp(X)

dX
� d2cjF (x

j
F )

(dxjF )
2

!
@�j

@xiL
� 0. (A3)

This indentity is true only if

 P
j

@�j

@xiL
+ 1

!
@�j

@xiL
6 0 under (1b) and (2b). In

addition, if @�
j

@xiL
> 0, then @�j

@xiL
+
P
�j 6=j

@��j

@xiL
+1 6 0, a contradiction. Then @�j

@xiL
6 0,

with
P
j

@�j

@xiL
> �1. Then, we conclude @�j

@xiL
2 (�1; 0], i 2 FL; j 2 FF .

7.2. Appendix B: Proof of Lemma 2

We show (5) has a solution, namely xF = '(xL), with component function
xjF = 'j(xL), j 2 FF . Consider �(xF ;xL) =

�
�1(xF ;xL); :::;�

nF (xF ;xL)
�
. Since

we focus on inner solutions, consider the restriction of
Q
j

SjF �
Q
i

SiL to the open

set
Q
j

�SjF �
Q
i

�SiL, with �SiL � SiL, i 2 FL and �SjF � SjF , j 2 FF . The vector

function �(xF ;xL) is C1 on the open set
Q
j

�SjF �
Q
i

�SiL as each �j is a C1 function

of (xF ;xL) on the open set
Q
j

�SjF �
Q
i

�SiL. Consider the nF -dimensional vector

equation �(xF ;xL) = 0. Let (�xF ; �xL) be an interior point of
Q
j

�SjF �
Q
i

�SiL, where

�xL corresponds to a parameter con�guration, with �xL 2
Q
i

�SiL, so we have the

identity �(xF (xL);xL) � 0 in an open neighborhood of (�xF ; �xL). Implicit partial
di¤erentiation with respect to xL of this identity leads to:

J�xF
(�xF ; �xL):A = �B, (B1)

where J�xF
(�xF ; �xL) =

26666664
1 ::: @�1

@xjF
::: @�1

@x
nF
F

::: ::: ::: ::: :::
@�j

@x1F
::: 1 ::: @�j

@x
nF
F

::: ::: ::: ::: :::
@�nF

@x1F
::: @�nF

@xjF
::: 1

37777775 is a (nF ; nF )matrix, and

A �

266666664

@x1F
@x1L

:::
@x1F
@xiL

:::
@x1F
@x

nL
L

::: ::: ::: ::: :::
@xjF
@x1L

:::
@xjF
@xiL

:::
@xjF
@x

nL
L

::: ::: ::: ::: :::
@x

nF
F

@x1L
:::

@x
nF
F

@xiL
:::

@x
nF
F

@x
nL
L

377777775
and B �

26666664

@�1

@x1L
::: @�1

@xiL
::: @�1

@x
nL
L

::: ::: ::: ::: :::
@�j

@x1L
::: @�j

@xiL
::: @�j

@x
nL
L

::: ::: ::: ::: :::
@�nF

@x1L
::: @�nF

@xiL
::: @�nF

@x
nL
L

37777775
are matrices of dimension (nF ; nL) respectively.
We �rst show that J�xF

(�xF ; �xL) is a strictly positive square matrix. From

(5), for each j 2 FF , we have @�j

@x�jF
= � @�j

@x�jF
, �j 6= j. And, from Proposition

2, we know that J�xF (�xF ; �xL) 2 (�I(nF ;nF );0(nF ;nF )], which, from (5), means
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@�j

@x�jF
2 [0; 1), �j 6= j, �j; j 2 FF . Then, we deduce 0(nF ;nF ) � �J�xF (�xF ; �xL) <<

I(nF ;nF ). Therefore, we have J�xF
(�xF ; �xL) = I � J�xF (�xF ; �xL), where I is the

identity matrix of dimension (nF ; nF ). So, the matrixJ�xF
(�xF ; �xL) has unit terms

on the main diagonal and strictly positive (less than one) o¤-diagonal terms. We
deduce J�xF

(�xF ; �xL) >> 0(nF ;nF ). But then, the matrix J�xF
(�xF ; �xL) has strictly

positive real eigenvalues ej , j = 1; :::; nF . As the determinant is the product of such

eigenvalues, i.e.,
���J�xF

(�xF ; �xL)
��� = Q

j

ej > 0, we conclude
���J�xF

(�xF ; �xL)
��� > 0.

Then, by the Implicit Function Theorem, there exist open sets U in
Q
j

�SjF �
Q
i

�SiL

and U(xL) in
Q
i

�SiL, with (�xF ; �xL) � U and �xL � U(xL) such that for each xL in

U(xL), there exists a locally unique nF dimensional vector function xF (xL) in some
neighborhood of (�xF ; �xL) such that (xF (xL);xL) 2 U and � (xF (xL);xL) � 0.
The solution xF (xL) = ��1(0) is denoted by '(xL), and is de�ned by ' :

Q
i

SiL �

U(�xL) !
Q
j

SjF , with xF = '(xL). Each component function 'j(xL) is de�ned as

'j :
Q
i

SiL � U(�xL) ! SjF , with x
j
F = 'j(xL), j 2 FF . In addition, the function

'(xL) is continuously di¤erentiable. Then, for each j 2 FF , 'j(xL) is C1.

7.3. Appendix C: Proof of Proposition 3

We must show that for all i 2 FL, �1 < @'j

@xiL
6 0, j 2 FF . We �rst show

@'j

@xiL
6 0, j 2 FF . Consider the system given by (6), and let @x1F

@x�iL
= 0 for all �i 6= i

in A and @�j

@x�iL
= 0 for all �i 6= i in B. Then, from Cramer�s rule, we deduce:

@xjF
@xiL

= �

���J 0
�xF

(�xF ; �xL)
������J�xF

(�xF ; �xL)
��� , (C1)

where J 0
�xF

(�xF ; �xL) is the (nF ; nF ) square matrix obtained by replacing the jth
column in J�(�xF ; �xL) by the ith positive member of B, so that:

J 0
�xF

(�xF ; �xL) =

26666664
1 ::: @�1

@xiL
::: @�1

@x
nF
F

::: ::: ::: ::: :::
@�j

@x1F
::: @�j

@xiL
::: @�j

@x
nF
F

::: ::: ::: ::: :::
@�nF

@x1F
::: @�nF

@xiL
::: 1

37777775 : (C2)

We know
���J�xF

(�xF ; �xL)
��� > 0, so we deduce:

sign
@xjF
@xiL

� sign
���J 0
�xF

(�xF ; �xL)
��� . (C3)

By de�nition of p(X), for each j 2 FF , we know that @�j

@xiL
= @�j

@x�iL
= @�j

@x�jF
,

�i; i 2 FL, �j 2 FF . In addition, from Proposition 2, we have for all j 2 FF ,
@�j

@xiL
2 (�1; 0], i 2 FL;and @�j

@x�jF
2 (�1; 0], for all �j 6= j, �j 2 FF . Then, using (5)
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we deduce that for all j 2 FF , @�j

@x�jF
2 [0; 1), �j 2 FF , and @�j

@xiL
2 [0; 1), i 2 FL.

Then, the square matrix J 0
�xF

is nonnegative. Assume the jth line is such that
@�j

@xiL
= 0, i 2 FL, that is, @�j

@x�jF
= 0, �j 2 FF . Then,

���J 0
�xF

(�xF ; �xL)
��� = 0, so

@xjF
@xiL

= 0, i 2 FL. Assume now the jth line is such that @�j

@xiL
2 (0; 1), i 2 FL. In

addition, as @��j

@xiL
= @��j

@xjF
for each line �j 6= j, we have 1 >

P
j

@��j

@xjF
. Therefore,

there is some q >> 0 such that @�j

@xiF
> 0 and for all j 2 FF ,

P
i

qi

��� @�j@xiL

��� > 0,

as we have 0 <
P
j

@�j

@xiL
< 1, and since for line j, @�j

@xiL
> 0, with

P
j

@�j

@xiL
< 1.

Then, the square matrix J 0
�xF

(�xF ; �xL) has a positive dominant diagonal. Then,���J 0
�xF

(�xF ; �xL)
��� > 0. By repeting the argument for all j 2 FF , from what preceeds,

we deduce @xjF
@xiL

< 0, which means @'j

@xiL
< 0, i 2 FL; j 2 FF . Collecting both cases,

we conclude @'j

@xiL
6 0, i 2 FL; j 2 FF .

We now show for all i 2 FL, @'
j

@xiL
> �1, j 2 FF . Select one �rm j 2 FF . From

what preceed, we know that:

@'jF
@xiL

= �

���J 0
�xF

(�xF ; �xL)
������J�xF

(�xF ; �xL)
��� , i 2 FL. (C4)

We also know that J 0
�xF

(�xF ; �xL) and J�xF
(�xF ; �xL) have common terms since

for each �j 6= j, �j 2 FF , @�
�j

@xiL
= @��j

@xjF
, i 2 FL, j 2 FF . Assume @'jF

@xiL
< �1. It

implies:

�

���J 0
�xF

(�xF ; �xL)
������J�xF

(�xF ; �xL)
��� < �1, (C5)

which leads to: ���J 0
�xF

(�xF ; �xL)
��� > ���J�xF

(�xF ; �xL)
��� . (C6)

Expansion by cofactors of
���J 0
�xF

(�xF ; �xL)
��� > ���J�xF

(�xF ; �xL)
��� and cancellation

among common terms on both sides lead to:

@'j

@xiL
(�1)2j

���(J 0
�xF

)(nF�1;nF�1)(�x)
��� > (�1)2j ���(J�xF

)(nF�1;nF�1)(�x)
��� , (C7)

with �x =(�xF ; �xL), and where
���(J�xF

)(nF�1;nF�1)(�x)
��� (resp. ���(J 0

�xF
)(nF�1;nF�1)(�x)

���)
stands for the principal minor of order (nF �1; nF �1) of J�xF

(�x) (resp. J 0
�xF

(�x)).

But
���(J 0

�xF
)(nF�1;nF�1)(�x)

��� = ���(J�xF
)(nF�1;nF�1)(�x)

��� by construction. Then, we
deduce @'j

@xiL
> 1, which is false as we assumed @'j

@xiL
> �1. A contradiction. Then,

we have �
���J 0

�xF
(�xF ;�xL)

���
jJ�xF (�xF ;�xL)j

< 1, so we deduce @'j

@xiL
> �1, for all i 2 FL, j 2 FF .
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