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Abstract

We develop an overlapping generations model of growth, in which
agents differ through their ability to procreate. Based on epidemio-
logical evidence, we assume that pollution is a cause of this health
heterogeneity, affecting sperm quality. Nevertheless, agents with im-
paired fertility may incur health treatments in order to increase their
chances of parenthood. In this set-up, we analyse the dynamic be-
haviour of the economy and characterise the situation reached in the
long run. Then, we determine the optimal solution that prevails when
a social planner maximises a Millian utilitarian criterion and propose
a set of available economic instruments to decentralise the optimal
solution. We underscore that to correct for both the externalities of
pollution and the induced-health inefficiency, it is necessary to tax
physical capital while it requires to overall subsidy mostly harmed
agents within the economy. Hence, we argue that fighting against the
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sources of an altered reproductive health is more relevant than directly
inciting agents to incur health treatments.

JEL classification: O44; Q56; I18.

Keywords : Pollution; Growth; Fertility; Health.

1 Introduction

As a striking starting point of the paper, it has been observed that impaired
fertility affects around 9% of procreating-aged couples worldwide (Boivin et
al., 2007; Mascarenhas et al., 2012). Far from being negligible, this estima-
tion comes along with an other interesting observation according to which it
is indeed male infertility that is a major contributor to global childlessness
- between a third to a half of all cases - (Inhorn and Patrizio, 2015). The
downward trend in semen quality has simultaneously raised concerns that
semen quality could be falling to thresholds levels which could impact fecun-
dity at population level (Carlsen et al., 1992; Swan et al., 1997; Swan et al.,
2000). Face to these evidence, identifying their origins and assessing their
potential outcome is clearly warranted.

In addition, it appears that the reduced ability of fathering is a dynamic
process that is concomitant with a period of rapid economic development. It
seems that post-industrial societies have created the potential for increasing
the exposure to specific lifestyle factors and behaviours that might negatively
affect the reproductive health. And interestingly, increased environmental
chemical pollution has often been implicated in poor semen quality, among
others more health-related diseases or disorders (WHO, 2013). A bench
of toxicological data and studies can be referred to on that subject and a
large majority has concluded, so far, to an emerging evidence for adverse
reproductive outcomes associated with the exposure, even at low levels of
concentration, to more and more chemical pollutants that directly interfere
with hormonal systems (Persistent Organic Pollutants (POPs), pesticides,
metals, textiles, air particulates and the like). We therefore argue that male
infertility and environmental quality are tightly related and might together
have an impact on the long-run behaviour of one economy. Even if delaying
the age of the first pregnancy has been established as a major driver of
fertility rates decline in western economies (Myrskylä et al., 2009; ESHRE,
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2010), we do not contradict these observations: We rather argue that the
postponement of the first pregnancy and the induced difficulties to conceive
could also be explained by impaired reproductive health functions so that the
time to pregnancy mechanically becomes larger in a more polluted world.
This phenomenon might be true all the more that substantial gains have
been realised in longevity so that, coupled with sub-replacement fertility
rate, many economies must face an inexorable ageing population.

Nevertheless, the growth process has also been accompanied by the de-
velopment of new medical technologies and a better access to Assisted Re-
productive Technologies (ARTs), going from basic hormonal treatments to
most sophisticated methods of procreation broadly called In-Vitro Fecunda-
tion (IVF). From the first successful IVF performed in 1978 in the UK, the
number of babies born thanks to ARTs amounts up to 3.5 millions of the
overall births worldwide in 2008 (Connolly et al., 2010). All these various
stylised facts are more deeply discussed in Section 2.

In this paper and based upon these epidemiological evidence, we aim
at understanding the long-run consequences of such phenomenon, that is
the reduced fertility of households due to pollution, in terms of growth and
pattern of development, taking into account that households can invest in
medical treatments. We further determine the social optimum and design
the optimal policy.

We present an overlapping generations model where we assume that pollu-
tion induces a health heterogeneity to the extent that two types of household
co-exist within one generation: Fertile and Infertile ones. Nevertheless, cou-
ples with impaired fertility may incur health treatments in order to increase
their chances of parenthood, depending on the level of wealth that prevails
in the economy. In this set-up, we analyse the dynamic behaviour of the
economy and characterise the situation reached in the long run.

One key feature of the model is that pollution, by reducing the size of
next generations, entails a perverse effect, that is an increase in future phys-
ical capital stocks per capita. This vicious effect is large all the more that
production is highly polluting. Hence, a dirty economy initially poorly en-
dowed with physical capital can experience an enhanced growth process and
a faster accumulation of physical capital. As the economy gets richer, in
order to improve their reproductive health, households might trigger invest-
ment in fertility healthcare, detrimental to savings. Obviously, the impact
of pollution on the demography is reduced and the accumulation of capital
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might slacken. Then, the economy reaches a stationary solution.
Because such an economy is characterised by several externalities, we

determine the optimal solution of a social planner that maximises a Mil-
lian utilitarian criterion. Indeed, pollution creates negative externalities on
the population growth and the number of infertile couples. In addition,
the individual choice of health investment affects population growth, giving
birth to an adding externality. We show that at the optimum, households
should always invest in fertility treatments - and thus misbehave at the com-
petitive equilibrium if they don’t. Finally, we propose a set of available
economic instruments to decentralise the optimal solution. To rule out the
three sources of inefficiency and even though households should invest in
fertility treatments, both capital accumulation and healthcare expenditure
are taxed. However, in order to deal with heterogeneity between households,
the government should provide transfers to the young infertile couples and
levy lump-sum taxes on revenues of all the old. Eventually, infertile house-
holds are overall subsidised. Hence, we recommend to implement a curative
health policy that does not directly create incentives to invest in fertility
treatments. Nonetheless, the tax on physical capital should be understood
as a preventive policy tool that aims at controlling the sources of an altered
reproductive health.

Our paper contributes to our knowledge to two main different strands of
the economic literature. Concerns about the negative effects of pollution on
health have already been developed in the literature. However most papers
have used mortality or morbidity health indicators, like for instance life ex-
pectancy, productivity at work or at school (see for instance Williams III,
2000, 2003; Pautrel, 2008; Mariani et al., 2010; Varvarigos, 2010; Raffin,
2012; Raffin and Seegmuller, 2014, 2016). We focus in this paper on an al-
ternative dimension of health which is fertility and thus, we tackle different
issues directly linked to demographic ones. In line with fertility-related re-
search, which is concerned with the determinants of fertility behaviour and
emphasizes the role played by parents preferences, we contribute to the eco-
nomic literature by considering an alternative variable as a determinant of
fertility behaviour which is the environmental quality. Hence, we depart from
the standard endogenous fertility growth models (Galor and Weil, 2000; de
la Croix and Doepke, 2003; Galor, 2005) since we consider that demogra-
phy evolves endogenously but is driven by environmental conditions changes
rather than the usual quality-quantity trade-off. We also differ from more
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recent contributions that focus on childlessness (Gobbi, 2013; Baudin et al.,
2015). Indeed, this literature is interested in the endogenous choices of having
children, whereas in our paper, couples suffer from the inability to conceive
children. Therein, our paper is closer to Momota (2016) who also introduces
heterogeneity among households due to the ability of having children. How-
ever, his concern is drastically different to ours: He focuses on the effect
of exogenous population growth on the level of capital accumulation in a
model without environment, whereas in our framework, population growth
is endogenous and pollution determines the share of infertile couples.

The paper is organised as follows: Following the Introduction, Section 2
provides with more precise stylised facts; Section 3 presents the set-up of the
model and Section 4 the laissez-faire equilibrium. In Section 5, we study the
dynamic behaviour of the economy and the convergence towards a stationary
solution. Section 6 investigates the optimal stationary solution and presents
the set of optimal tools in order to decentralise the optimal solution. Finally
Section 7 concludes. Technical proofs are relegated to Appendices.

2 Stylised facts

As previously mentioned, we provide some stylised facts with regards to
the changes in the human reproductive health and the induced effects of
pollution.

Impairment of male fertility
Impairment of male fertility has been widely studied in the epidemiolog-

ical literature from a functional perspective using relatively easily collectible
biomarkers of semen quality (like concentration, volume number motility and
morphology) for descriptive purposes and to study trends over time.

In particular, a wide part of the literature on fertility trends has specifi-
cally related to sperm concentration: This issue was raised in the late twen-
tieth century in the seminal paper by Carlsen et al. (1992) published in the
British Medical Journal, which establishes ”the falling sperm counts story”
(Joffe, 2010). In their article, the authors review 61 studies published be-
tween 1938 and 1991 which had analysed sperm concentration. They con-
clude that mean sperm concentration had fallen from 113 to 66 million/ml
over the period. This meta-analysis constitutes the starting point of a whole
strand of epidemiological literature meanwhile it has met with scepticism on
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grounds of laboratory methods, statistical issues, selection etc. Nonetheless,
this study stimulates the analysis of time trends on sperm quality and ac-
cording to more recent papers, we might still conclude to a global declining
quality of spermatogenesis over the century at least in some places (see for
instance, Auger et al., 1995, on French data; Van Waeleghem et al., 1996,
on Belgian ones; Irvine et al., 1996, on Scottish ones; Swan et al., 2000, on
Europe and North America). As an illustration, we have reported on Fig-
ure 1 more recent empirical evidence provided by various studies that cover
different time periods, geographical areas.
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Figure 1: Evolution of sperm concentration.

1

Pollution and reproductive health
Once human reproductive problems are established, it remains to wonder

why such issues arise and why did they increase in the last decades. One
prevalent hypothesis to justify the deterioration of the male reproductive
health is that it is due to ubiquitous chemical pollutants that affect the hor-
monal system and interfere with developmental processes in humans: the
Endocrine Disruptor Chemical (EDC) hypothesis. Those EDCs are found
among many classes of chemicals, including POPs, currently used pesticides,
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phytoestrogens, metals, additive or contaminants in food, personal care prod-
ucts, cosmetics, textiles and construction materials. Human exposure-be it
occupational or non-occupational- to EDCs occurs via ingestion of food, dust
and water, inhalation of gases and particles in the air or through dermal up-
take (WHO, 2013). To illustrate our argument we may cite for instance the
papers by De Rosa et al. (2003), Martenies and Perry (2013) or Zhou et
al. (2014) which provides us with estimations of the harmful effects of air
pollution and Particulate Matter on the male reproductive health in Italy
and China, respectively. We can also cite the study by Meeker et al. (2008)
in which non-occupational exposure to metals, like Molybdenum, has been
implicated to explain poor semen quality. In addition, we may refer to the
articles that emphasize the noxious impact of pesticides like Polychlorinated
Biphenyls (PCBs), even at low levels, on human spermatogenesis. Some of
them deal with occupational exposure (Tuc et al., 2007; Recio-Vega et al.,
2008), non-occupational one (Swan et al., 2003; Bouvier et al., 2006; Aneck-
Hahn et al., 2007; Perry et al., 2011) while the others focus on dietary factors
(fruits, vegetables, meat, fish) (Mehrpour et al. (2014) or Chiu et al. (2015)
among others).

Medical treatments and ARTs
Since 2000, the ART services annually grows by 5%-10% in developed

countries (American Society of Reproductive Medicine, European Society of
Human Reproduction and Embryology). In 2011, over 17 European countries
that fully reported their ART activities (Kupka et al., 2016), ART babies rep-
resented 2,4% of all infants born, that is around 800 000 births, going from
1.7% in Italy to 5.8% in Denmark. Despite a substantial increase in the num-
ber of ART cycles performed worldwide, there are considerable international
discrepancies in the availability of ART treatments and per capita utilisation
rates (Collins, 2002). Chambers et al. (2009) compare economic aspects of
ART in selected developed countries (U.S., Australia, Canada, U.K., Scan-
dinavia and Japan) and show that they represent substantial out-of-pocket
expenses. They found that the cost of a standard IVF cycle ranged from 28%
of Gross National Income (GNI) per capita in the United States to 10% of
GNI per capita in Japan. Moreover, before any public policy, the gross cost
of a standard IVF cycle ranged from 50% of an individual’s annual disposable
income in the U.S., approximately 20% in the UK, Scandinavian countries
and Australia, to 12% in Japan. After accounting for government subsidies,
the resultant cost to the patient of an ART cycle was unchanged in the USA
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and Japan (due to negligible public funding for ART treatment) but fell to
approximately 12% of annual disposable income in the UK and Scandinavian
countries.

3 The Model

Let us consider a two-period overlapping generations model. During the first
period, the adulthood, households work, consume, save and procreate. At
each date t, two types of household co-exist depending on their ability to
conceive children: We distinguish Fertile households (denoted by superscript
F ) and Infertile ones (denoted by superscript I). In case of infertility, house-
holds may engage in medical treatments in order to improve their ability to
father offspring. These fertility treatments include hormonal remedies, as-
sisted reproduction treatments (ART) like in vitro fertilisation (IVF). They
aim at augmenting the chances of parenthood so that with a probability q,
initially infertile couples may have children. During the second period of life,
households retire and consume their saving.

Demography. The population size of a generation born at period t is Nt.
The proportion of fertile households within the population is denoted by πt
and the proportion of infertile ones obviously equals (1 − πt). This proba-
bility to be fertile (πt) is randomly distributed among the population and is
endogenous as it will be discussed later. On the other hand, the potential
number of children per household, n, is exogenous. The total number of
children at date t is given by the number of children of fertile households
(Ntnπt) plus the number of children of successfully treated infertile house-
holds (Ntn(1− πt)qt). Hence, the population evolves overtime according to

Nt+1 = Nt × n× [πt + (1− πt)qt] (1)

where Nt is the size of the adult generation born at date t, that is the labour
force.

Households. Households derive utility from current and future con-
sumptions as well as parenthood. Agents do not choose the number of chil-
dren they have, but rather they might suffer from being not able to procreate.
We do not here aim at investigating fertility behaviours per se but consider
that there is an average exogenous targeted level of fertility within the econ-
omy (or a a desired number of children) given by n. Agents are identical
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ex-ante but become heterogeneous ex-post once the risk of infertility has re-
alised. Households’ preferences are represented by a utility function, which
is additively separable between consumption levels and parenthood, so that{

u(cFt ) + δu(dFt+1) + v

u(cIt ) + δu(dIt+1) + q(xt)v
(2)

where cit and dit+1, i = F, I, denote consumptions in the first and the second
period, xt denotes the level of curative health treatment which influences the
ability to procreate through the probability qt.
Notice that the utility of parenthood, v, is constant since the number of
children is exogenous. For the sake of simplicity, let us consider the follow-
ing specifications. On the one hand, the utility function can be given by
u(zt) = ln zt and, on the other hand, the probability of a successful treat-
ment can be written as q(xt) = axt

1+xt
, with a 6 1. The parameter a merely

accounts for the efficiency of the available medical technology or, equiva-
lently, the level of scientific medical knowledge. In addition, and according
to physicians and clinical psychologists, we consider for the remaining of
the paper that the desire of parenthood is strong or said otherwise, the loss
suffered from not being able to procreate is large enough. The medical or
experiences studies that have been conducted in order to evaluate the dis-
tress associated with the diagnosis of infertility or treatments of infertility
causes unequivocally show that the socio-psychological costs of infertility are
not negligible but rather substantial, without referring to economic costs of
treatments. Indeed, infertility is often felt as a terrible experience and the
multi-dimensional consequences of it may encompass a severe degradation
of self-esteem, syndromes of depression, loss of gender identity, self-assessed
social pressure from families, friendships, or even social stigma in developing
countries (Greil, 1997; Moura-Ramos et al., 2012). Using contingent valu-
ation to directly quantify the monetary value of a baby conceived through
ART, Neumann and Johannesson (1994) estimate that the willingness-to-pay
for a baby was $177 730 for potential child bearers in the event that they
were infertile, and $1.8 million for society to pay for insurance to allow cou-
ples access to ART. Hence, we formally assume that v is sufficiently high and
that there exists a threshold value v such that v > v.

Let us present the budget constraints faced by households. For ease of
presentation, we right now introduce a set of policy instruments that we
will be useful to decentralise the optimal allocation later on (see Section 6).
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Hence, during adulthood, each household is endowed with one unit of labour
inelastically offered to firms for which they receive the prevailing competitive
wage, wt.

1 In addition, there are some differentiated lump-sum transfers, T it .
The net total income can be shared among current consumption, savings, sit,
and possibly for infertile households healthcare expenditure. During retire-
ment, each couple consumes the net income which equals the revenue from
her savings minus a transfer, θt. For both types of household, first period of
life budget constraints can be expressed as follows:

cFt + sFt = wt + T Ft (3)

cIt + sIt + (1 + σt)xt = wt + T It , (4)

where σt is a proportional tax on health care. The second period of life
budget constraints write:

dit+1 = Rt+1s
i
t − θt, for i = F, I (5)

where we assume a complete depreciation of capital and we define Rt+1 ≡
(1− ρt+1)rt+1, with ρt a proportional tax on capital income.

Government. At each date t, the government provides transfers to the
young generation financed through taxes on capital, health expenditure and a
lump-sum tax on the old. The balanced budget constraint of the government
is given by:

Ntσt(1−πt)xt+Nt−1[θt+ρtrt(πt−1s
F
t−1+(1−πt−1)sIt−1)] = Nt(πtT

F
t +(1−πt)T It )

(6)
Firms. In this economy, one good is produced using both physical capital,
Kt, and labour, Lt. Let us define per capita variables yt = Yt/Lt, kt =
Kt/Lt. In order to obtain tractable results, we assume a fairly standard
Cobb-Douglas production function:

yt = f(kt) = kαt (7)

with 0 < α < 1/2. Being given the price of capital (rt) and the competitive
wage (wt), the optimisation program of firms yields:

1Notice that here the health status does not affect productivity at work. Also, to keep
the analysis as simple as possible, we do not introduce rearing cost of children. Since the
number of offspring is assumed to be constant, enriching the analysis with such a cost will
not drastically alter our analysis.
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rt = αkα−1
t (8)

wt = (1− α)kαt (9)

Pollution. At each date t, we consider some pollution flows, Pt, which arise
as a side-effect of the production process. As standard in the literature, the
stock of pollution evolves according to:

Pt+1 = (1− b)Pt + βYt (10)

where β > 0 captures the dirtiness degree of production and 0 < b < 1 the
natural absorption rate of the environment.

As documented in Introduction, this harmful pollution constitutes a nega-
tive externality that affects the probability of being fertile. Formally, we state
that πt = π(pt), where pt = Pt/Nt accounts for the pollution ”consumed” by
each young man. Such an hypothesis can be justified with regards to the
epidemiological literature that has identified many potential causes of im-
paired male reproductive health among which pesticides, metals, textiles ...
(Aneck-Han et al., 2007; Mehrpour et al., 2014). In particular, fertility issues
are at least partially explained by the pollution that is mostly ingested, in-
haled by individuals or the one which is carried to functional organs through
dermal exposure. For example, Chiu et al. (2015) found a relation between
dietary pesticide exposure via fruit and vegetable intake and semen quality.
An other example can be found in the paper by Meeker et al. (2008), where
the authors estimate the impact of voluntarily or not metal concentration
exposure on semen quality through intake of contaminated food or water.

Before analysing the equilibrium and, further on, the existence of steady
states and dynamics, let us clarify our formal assumptions about this endoge-
nous probability of being fertile, according to the above referred epidemio-
logical literature:

Assumption 1 We assume that π is sufficiently close to 1 and επ ≡ π′(p)p
π(p)

is

close to 0. In addition π′(p) 6 0 6 π′′(p), π(0) = π0 > 0, π(+∞) > (1−b)/n,
επ >

−1
nπ(+∞)

nπ(+∞)+b−1
+ α

1−α
.

This assumption means that the chances of parenthood are weakly de-
creasing with the stock of pollution and sufficiently close to 1, which seems
to be a reasonable assumption according to the empirical literature (Slama
et al., 2004).
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4 The Equilibrium

This section defines the inter-temporal equilibrium in the laissez-faire econ-
omy, the levels of policy instruments, T it , σt, θt and ρt, being set to zero.

Households’ choices. Households maximise their utility (2) under the bud-
get constraints (3)-(5) and a positivity constraint, xt ≥ 0. As the framework
involves, fertile couples do not expand in health and we can easily deduce
their optimal level of savings, which is increasing with labour income:

sFt =
δ

1 + δ
wt (11)

As for the infertile, let us note that if xt = 0, then

sFt 6
δ

av
(12)

Importantly, this inequality implies that the loss of utility from a lower
level of consumption dominates the potential welfare gain associated with an
improved reproductive health. Yet, as the utility function defined over con-
sumption is concave, this inequality is verified all the more that consumption
levels are initially low. Then, we can state that for low incomes, it is more
likely that households do not invest in curative fertility treatments. In that
configuration, sIt = sFt .

If equation (12) is not satisfied, then xt > 0 and we get the optimal savings
and effort of curative treatments that can also be expressed as functions of
sFt :

sIt +
δ

1 + δ
xt =

δ

1 + δ
wt = sFt (13)

(1 + xt)
2 =

av

δ
sIt (14)

Solving the system (13)-(14), we deduce the expression of xt:

xt =

√
av

δ
sFt − 1 + A2 − A, with A ≡ 1 +

av

2(1 + δ)
(15)

Labour market. On the labour market at date t, the supply of labour Nt

being inelastic and the demand Lt being the solution to equation (9), we get
that:

Lt = Nt = Nt−1 × n× [π(pt−1) + (1− π(pt−1))q(xt−1)] (16)
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Capital market. The clearing condition on the capital market entails that
the supply of savings by young individuals equals the investment of firms:

Kt+1 = Nt

[
π(pt)s

F
t + (1− π(pt))s

I
t

]
(17)

Using equation (16), we derive the dynamics of capital-labor ratio:

kt+1 =
π(pt)s

F
t + (1− π(pt))s

I
t

nΓ(xt, pt)
, (18)

where Γ(xt, pt) = [π(pt) + (1− π(pt))q(xt)] and nΓ(xt, pt) is the growth factor
of the young population. Notice that the latter decreases with pollution but
this effect might be dampened by positive health investments. We can also
rewrite equation (10), using market clearing conditions, to obtain:

pt+1 =
(1− b)pt + βf(kt)

nΓ(xt, pt)
(19)

As for equation (18), it depicts the way the stock of pollution evolves in the
long term.

Given k0 = K0/L0 > 0, p0 = P0/L0 > 0, the inter-temporal equilibrium
is a sequence (kt, pt) that satisfies conditions (18) and (19) for all t > 0. Note
that both kt and pt are predetermined variables.

From now on, let us highlight two main mechanisms at stake. First, the
endogenous population growth induces a dilution effect which may strongly
impact the accumulation of capital and pollution.2 Second, health investment
also plays a direct role on physical capital by reducing infertile individual
savings.

5 Steady states and dynamics

Once we have defined the dynamic system that drives the sequence (kt, pt)t>0

overtime, we can characterise the equilibrium, given initial conditions (k0, p0).

2Recall that the dilution effect corresponds to a decrease of per capita variables following
an increase in the labour force or equivalently in the population growth.
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Using equation (11), we derive a positive relationship between kt and sFt such
that kt = [ 1+δ

δ(1−α)
sFt ]1/α. Then, choosing for convenience (pt, s

F
t ) as variables

of interest, the dynamical system (18)-(19) can be investigated according to
the two prevailing configurations exposed previously: In a first step, when
households do not invest in curative fertility treatments (xt = 0); and in a
second step, when they do it (xt > 0).

5.1 No-health expenditure regime, xt = 0

In this regime, the share of fertile households determines the way popula-
tion evolves over time and the growth factor of population boils down to
nΓ(0, pt) = nπ(pt). Consequently, as pollution grows, population diminishes.
Using equations (18) and (19) and as inequality (12) is strictly satisfied, the
dynamic system that describes the behaviour of the economy is given by:[

1 + δ

δ(1− α)
sFt+1

]1/α

=
sFt

nπ(pt)
(20)

pt+1 =
(1− b)pt + β 1+δ

δ(1−α)
sFt

nπ(pt)
(21)

A steady state, if it exists, is thus a solution (p, sF ) to the following system:

sF =

[
δ(1− α)

1 + δ

] 1
1−α

[nπ(p)]−
α

1−α ≡ ϕ(p) (22)

sF =
δ(1− α)

β(1 + δ)
p[nπ(p) + b− 1] ≡ ψ(p), (23)

Consistently with the fact that the psychological distress induced by the
inability to procreate proves to be substantial, we make the following as-
sumption:

Assumption 2 v > δ−
α

1−α
(

1+δ
1−α

) 1
1−α [nπ(+∞)]

α
1−α

a
≡ v

When this assumption is not satisfied, it turns out that the motive to incur
fertility treatments vanishes. Thus, in the long run, the only conceivable
stationary situation would be characterised by a null investment in health
care. Nevertheless, we aim at studying two distinct configurations, which
might better fit with real observed situations, so that couples may incur
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or not fertility treatments. Hence, the long-run situation reached by one
economy is not trivial.

To ensure that our stationary solution exists but also fulfils inequality
(12), let us state the following lemma:

Lemma 1 Under Assumptions 1 and 2, there exists a finite value p̃ solving
ϕ(p̃) = δ

av
which is given by:

p̃ = π−1

(
[av]

1−α
α δ

n

(
1− α
1 + δ

) 1
α

)
(24)

so that any solution (p, sF ) solving the system (22)-(23) belongs to (0, p̃) ×
(0, δ

av
).

Proof. See Appendix A.

Let us now characterise the stationary solution so that savings and the
stock of pollution are low enough. The polluting intensity of production
embedded by the parameter β is crucial to our analysis. Indeed, it captures
the impact of production on pollution and thus on population dynamics.
Through the dilution effect, the value of β determines whether there exists
a steady state without health investment.

Proposition 1 Under Assumptions 1 and 2, there exists a threshold value
on dirtiness of production β such that:

(i) For β < β, there exists a unique steady state (p, sF ) ∈ (0, p̃) × (0, δ
av

)
with x = 0;

(ii) For β ≥ β, there exists no steady state (p, sF ) ∈ (0, p̃) × (0, δ
av

) with
x = 0.

Proof. See Appendix B.

To have a qualitative picture of the dynamics when infertile househols do
not expend in health expenditure, let’s say in the corner solution, one has to
analyse the dynamic properties of the system (20)-(21), that are the areas
where sFt and/or pt grow and go down, respectively. Using equation (20), we
can observe that sFt+1 > sFt is equivalent to sFt 6 ϕ(pt). Using equation (21),
we have that pt+1 > pt is equivalent to sFt > ψ(pt). We deduce that, when
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it exists, the single steady state is stable. Otherwise, the economy is driven
towards an alternative regime studied in the next section.

One key mechanism to figure out this proposition goes through the dilu-
tion effect that comes along with the endogenous population growth. Any
increase in pollution directly reduces the number of fertile households and
this induces a slower growth of population. The overall effect of this slacken-
ing demographic growth consists in a negative dilution effect as the stock of
capital per worker grows. When β is large, a small rise in production gives
birth to large pollution flows and exhibits a heavy effect on the population
growth. The negative dilution effect is important and allows for a continuous
increase in physical capital as well as pollution. When β is lower, pollution
responds less to a rise in production and the share of fertile and infertile
households barely changes. Therefore, the dilution effect is more negligi-
ble. Due to the concavity of the wage with respect to capital, the increase
in income is not sufficient enough to permit a further rise in investment.
Eventually, the economy can reach a stationary solution.

5.2 Positive health expenditure regime, xt > 0

Let us now examine the behaviour of the economy when inequality (12)
is not satisfied, that is sFt > δ

av
. In this configuration, the evolution of

the population depends also on the level of health care expenditure that
might compensate the negative impact of pollution. Finally, three types of
households co-exist: As before, the economy is composed of fertile couples,
but the infertile ones are themselves divided into two categories, the cured
and uncured infertile households. Using equations (18) and (19), the dynamic
system that describes the behaviour of the economy can be reduced to:

F (sFt+1) = H(pt, s
F
t ) (25)

pt+1 = J(pt, s
F
t ) (26)

where:

F (sFt+1) =

[
1 + δ

δ(1− α)
sFt+1

]1/α

(27)

H(pt, s
F
t ) =

[sFt − (1− π(pt))
δ

1+δ
x(sFt )](1 + x(sFt ))

n[π(pt) + x(sFt )(π(pt) + a(1− π(pt)))]
(28)

J(pt, s
F
t ) =

[(1− b)pt + β 1+δ
δ(1−α)

sFt ](1 + x(sFt ))

n[π(pt) + x(sFt )(π(pt) + a(1− π(pt)))]
(29)
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and x(sFt ) is given by (15).
A steady state with x > 0, if it exists, is a solution (p, sF ) that solves the

above dynamic system (25)-(26) evaluated at the steady state. The existence
and uniqueness of such a steady state is shown in the following proposition3

Proposition 2 Under Assumptions 1 and 2, there exists a > 0 such that,
for a < a and sF > δ

av
:

1. For β < β, there is no steady state (p, sF ) with x > 0;

2. For β ≥ β, there exists a unique steady state with x > 0.

Proof. See Appendix C.

To have a qualitative picture of the dynamics when infertile households do
incur fertility treatments in health expenditures, we can determine the areas
where sFt and/or pt grow and go down, respectively. Using equation (25),
sFt+1 > sFt is equivalent to H(sFt , pt) > F (sFt ), which implies that sFt 6 ϕ̃(pt).

4

Using equation (26), pt+1 > pt is equivalent to J(sFt , pt) > pt, which implies

that sFt > ψ̃(pt). Finally, we deduce that, when it exists, the steady state is
stable.

When the technology is highly polluting, the dilution effect is strong, but
new effects arise. First, investing in fertility treatments to augment chances
of parenthood is costly and induces an eviction effect on savings. Second, by
increasing the share of procreating households, the demographic growth is
boosted. Since the effort in health care is a growing function of savings, these
two adding effects promote the convergence to a steady state with x > 0.

5.3 Dynamics with regime-switching

Using the previous results, let us now present a global picture of the dynamics
of the economy. We then consider both regimes together, i.e. xt = 0 and
xt > 0, and describe the convergence of one economy towards the steady
state. The following corollary sums up the main results and is illustrated in
Figure 2 below:

3Let us notice that the parameter a, which captures the medical technology, is bounded
above. This assumption can be supported by empirical evidence since the success of ART
treatments is still limited.

4Note that ϕ̃(pt) and ψ̃(pt) are defined in Appendix C.
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Corollary 1 Under Assumptions 1-2 and a < a,

(i) when β < β, the economy converges towards the unique and stable
steady state (p, sF ) with x = 0;

(ii) when β ≥ β, the economy converges towards the unique and stable
steady state (p, sF ) with x > 0.

If the technology is clean enough (β < β), a rise in production weakly
affects pollution. Since the sensitivity of π(pt) to pollution is arbitrarily low,
population growth is left almost unaffected and the so-called dilution effect is
very small. In this configuration, the economy converges to a unique steady
state, which belongs to the no-health expenditure regime. This is due to the
concavity of the wage with respect to capital so that, even though the level
of capital in the economy is initially large enough, it eventually decreases
through time, because the labour income cannot sustain further increases in
investment.

On the contrary, when the technology is dirty (β ≥ β), the dilution
effect is stronger. Both capital and pollution can grow continuously from the
no-health regime to the positive health expenditure one. Because fertility
treatment entails an eviction effect on savings and pushes up the demographic
growth, the economy eventually reaches a steady state with x > 0.

We would like to draw the reader’s attention to the fact that the thresh-
old value β is a decreasing function of v, the utility gain of being fertile.
Intuitively, when infertility does not bring so much inconvenience, then the
long-term solution is more likely to be featured by a null investment in health
care expenditure. As we consider that the utility loss induced by the inabil-
ity of being parent is large enough, one might thought that it would trigger
the investment in fertility treatments. This is not necessarily true when
production is clean enough.

Interestingly, note that in configuration (ii), the demographic growth
pattern might be related to some fertility trends observed from the last fourty
years. Let us consider that the initial stock of pollution and capital are low
enough, so that pt and sFt continuously grow. At the beginning, xt = 0, but
after a finite number of periods, the economy enters the regime with positive
health expenditure and converges to the steady state with x > 0. The rise of
sFt and pt imply first a continuous decrease in the population growth factor
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Figure 2: Global dynamics

through time. When one switches to the regime with xt > 0, a positive
effect arises since infertile households invest in health and some of them
succeed in having children. Then two opposite forces drive the evolution
of the demographic rate of growth: A negative effect through the growing
pollution stock; A positive effect through fertility treatments. If the positive
effect would dominate, then the rate of growth of population would rise in
this regime. As for an illustration, Habbema et al. (2009) have highlighted
that early IVF treatments could substantially increase total fertility rates in
western economies up to 0,11-0,25.

The analysis of the competitive equilibrium allows to highlight the role
played by the pollution externality in the long run and to emphasize the
outcome of pollution-induced heterogeneity. In the following, we aim at
exploring what would be a first-best optimal solution.

6 Optimality and policy

Let us now consider a social planner who seeks to maximise a social welfare
objective that takes into account the sum of individuals’ preferences. In
this context of endogenous population, this corresponds to Millian utilitarian
criterion, as soon as the social planner does not grant any particular weight to
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the overall size of the population. To comply with this goal, she chooses the
optimal levels of consumption (cF , cI , dF , dI), curative health treatment (x),
physical capital (k) and pollution (p), under the two constraints of resources
and pollution. In order to derive clear cut results, we focus on the stationary
solution. Consequently, the program of the central planner evaluated at the
steady state can be written as follows5:



max
cF ,cI ,dF ,dI ,x,k,p

π(p)
[
ln cF + δ ln dF + v

]
+(1− π(p))

[
ln cI + δ ln dI + ax

1+xv
]

s. t. kα ≥ π(p)cF + (1− π(p))(cI + x) + π(p)dF+(1−π(p))dI

nΓ(x,p) + nkΓ(x, p)

p = βkα+(1−b)p
nΓ(x,p)

x ≥ 0

We denote by λ, µ and ξ the Lagrange multipliers (or shadow prices)
associated to the resource constraint, the law of motion of the pollution
stock and the positivity constraint on x, respectively.

First of all, at the optimum, we can establish that consumption levels
should be equalised among heterogeneous agents, cF = cI = c∗, dF = dI =
d∗.6 Second, we obtain the trade-off between consumptions over life cycle:

δc∗ =
d∗

nΓ(x, p)
; (30)

The trade-off between consumption and health:

− 1

c∗
+

av

(1 + x∗)2
= −c

∗Γx(x
∗, p∗)

(1− π(p∗))
×
[

d∗

nΓ(x∗, p∗)2
− nk∗

]
− µ∗

(1− π(p∗))

p∗Γx(x
∗, p∗)

nΓ(x∗, p∗)
+ ξ; (31)

The trade-off between generations:

α(k∗)α−1 = f ′(k∗) = nΓ(x∗, p∗) + µ∗c∗
βα(k∗)α−1

nΓ(x∗, p∗)
. (32)

Let us show that µ∗ is strictly positive:

5See Appendix D for more details.
6Superscripts ∗ indicate the utilitarian optimal solution.
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Lemma 2 Under Assumptions 1 and 2, we have µ∗ > 0 for all x∗ > 0
because v is sufficiently large, such that

v >
α− δ(1− 2α)

(1− α)π(+∞)
(33)

Proof. See Appendix E.

By inspection of equation (31), curative health expenditure entails a
marginal utility gain and a marginal cost in terms of consumption but also
induces externalities that go through their impact on the endogenous growth
rate of population. When households incur more fertility treatment, the
growth factor of population rises so that the weight granted to old house-
holds’ consumption diminishes but, simultaneously, the overall production
must afford increased productive investment. In addition, it also reduces the
pollution stock per worker.

As for equation (32), it represents a green golden rule. Keeping in mind
that investment, production and pollution are closely related, more capital
means more pollution and thus less population, lowering the cost of produc-
tive investment. Nevertheless, more pollution induces more infertile house-
holds and thus lower welfare. This last negative effect reduces the optimal
level of capital accumulation.

As we will see in Section 6.2, the analysis of policy instruments will help
us to clear up the comparison between the laissez-faire equilibrium and the
social optimal one. Let us now study the existence and the properties of an
optimal allocation.

6.1 Social optimal allocation

Although we do not know whether the optimal level of health expenditure
is higher than the laissez-faire one, we can show that it should be strictly
positive.

Proposition 3 Consider that Assumptions 1-2 and inequality (33) hold.
There is no optimal allocation with x∗ = 0 because v is sufficiently large.

21



Proof. See Appendix F.

Following proposition 3, infertile households misbehave at the competitive
equilibrium if they choose not to expand in fertility treatments. Thus, an
optimal allocation satisfies x∗ > 0. Let us now prove the existence of such
an allocation.

Proposition 4 Consider that Assumptions 1-2 and inequality (33) hold,
there exists an optimal allocation (x∗, k∗, p∗) with x∗ > 0.

Proof. See Appendix G.

Then, we can establish that this optimal solution is indeed a maximum
as stated in Proposition 5 below:

Proposition 5 Consider that Assumptions 1-2 and inequality (33) hold.
There exists a threshold value ã, such that for a < ã, any optimal alloca-
tion with x∗ > 0 satisfies the second order conditions of the central planner
programme and implies that such a solution is unique.

Proof. See Appendix H.

Through Propositions 4 and 5, the unique solution is such that the level
of health investment is strictly positive. This result can be understood as
a direct consequence of the utilitarian criterion, but does not reflect here
any potential natalist bias of the social planner. In particular, this does
not reveal the preference of the social planner with regards to the size of
the global population at the steady state. In addition, it is worth to mention
that since x∗ is strictly positive, fertility treatments are a source of externality
through its stimulating effect on population growth. This creates an adding
inefficiency, besides the effect of pollution which is double. On the one hand,
pollution affects the sharing between fertile and infertile households. On the
other hand, more pollution means less population.

6.2 Optimal policy

Once we have identified the optimal solution, we naturally wonder how to
reach it in a private equilibrium. Let us now examine how the social op-
timum can be decentralised. Comparing the laissez-faire solution with the
first-best optimum, one sees that the social optimum can be decentralised
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with appropriate choices of taxes for the environmental damage. We have
highlighted three sources of inefficiency. Moreover, taking into account that
optimal consumptions are the same for all agents, the positive costs induced
by health investment should be offset by a government intervention. Conse-
quently, we come out with five instruments, one being used to balance the
government budget. The following proposition summarises our results.

Proposition 6 Consider that Assumptions 1-2, a < min{ã, a} and inequal-
ity (33) hold. The social optimum can be decentralised by means of the fol-
lowing instruments:

(i) Intra-generational lump-sum transfers allowing the equalisation of con-
sumption levels across the fertile and the infertile, T F and T I satisfying
T F = 0 and T I = (1 + σ)x∗ > 0;

(ii) A proportional tax on capital income allowing the capital stock to reach
its optimal level, k∗, ρ = µ∗c∗β

nΓ∗
= 1− nΓ∗

α(k∗)α−1 ∈ (0, 1);

(iii) A proportional tax on fertility treatment, σ, allowing the level of health
expenditure to reach its optimal level, x∗, such that σ

1+σ
= 1

v

(
nk∗

c∗
− δ+µ∗p∗

Γ∗

)
> 0;

(iv) A positive lump-sum tax to old, θ > 0, to balance the government budget.

Proof. See Appendix I.

Firstly, notice that we need not to impose transfer for young fertile couples
(T F = 0). Thus, to implement the optimal level of curative health investment
and to guarantee that young and old consumptions are identical among the
two types of couples, we use two instruments: A lump-sum transfer to the
infertile and a tax on fertility treatments. Secondly, the decentralisation of
the social optimum requires a positive tax on capital income to control the
level of pollution and to ensure the achievement of the green golden rule
(see equation (32)). Notice that the introduction of capital taxation is more
relevant than a policy that would aim at reducing the dirtiness of production
(β). Indeed, the role of capital taxation is twofold: First, it corrects for
the level of polluting emissions and second, it avoids a potential physical
capital over-accumulation. Finally, θ permits to implement the social level
of consumption when old.
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The positiveness of θ involves a taxation of old households’ consumption.
This incites households to save more and it displays two outcomes. On
the one hand, it triggers capital accumulation and therefore pollution. The
capital tax restores the optimal level of capital. On the other hand, it allows
for positive health expenditure through the household’s trade-off between
consumption and health. However, in order to reach the positive and optimal
level of fertility treatments, a positive tax on healthcare is required. Finally,
the lump-sum transfer to infertile young is used to rule out heterogeneity
between young consumptions.

This result might be at first sight surprising and counter-intuitive since
it drives the government to tax fertility treatments. Nevertheless, let us re-
examine the infertile household’s budget constraint: cI+(1+σ−T I/x)x+sI =
w. Taking into account the redistribution effect through T I , the health pol-
icy design can be summarised by t(x) ≡ σ − T I/x. At the optimum, we
easily see that t(x∗) < 0.7 Overall, the curative treatments are subsidised by
the government. Indeed, despite the positive tax on fertility treatment, the
redistribution from the old (θ > 0) to the infertile couples provides an incen-
tive health policy. It can be interpreted as a sanitary curative policy, whereas
the tax on physical capital should be understood as a preventive policy tool.
Indeed, capital taxation serves as an environmental policy instrument that
controls the level of pollution and shapes the sharing between the fertile and
the infertile. Hence, we argue that fighting against the sources of altered
reproductive health is more relevant than directly inducing households to
incur health treatments.

7 Concluding remarks

Based on epidemiological evidence, we assume that pollution reduces fertility.
In this paper, we analyse the implications of such a feature considering an
OLG economy where households with impaired fertility may incur health
treatments in order to increase their chances of parenthood and characterise
the situation reached in the long run. We also examine the optimal allocation
and determine the policy that allows its decentralisation.

Our main results are the following: As the economy gets dirtier, there is
a stronger negative dilution effect that enhances the growth process and the

7Since σ > 0 and T I > 0, t(x) is strictly increasing and there exists x̂ = T I/σ such
that t(x) < 0 for x < x̂ and t(x) > 0 for x > x̂.
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accumulation of physical capital. Then, the economy might reach in the long
run a stationary equilibrium with higher levels of capital and pollution per
worker, despite the health cost incurred by infertile couples and the fact that
population growth declines. On the normative side, our analysis highlights
that the long-run social optimum can be decentralised. We underscore that
to correct for both the externalities of pollution and the induced-health in-
efficiency, it is necessary to tax physical capital while it requires to globally
subsidy mostly harmed agents within the economy.
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Appendices

A Proof of Lemma 1

Let us examine the properties of equation (22) in order to determine the
conditions under which inequality (12) strictly holds. Indeed, thanks to
Assumption 1, we can easily see that ϕ(0) > 0 and is bounded above. In
addition, the derivative of the function with respect to p allows us to state
that ϕ(p) is an increasing function since εϕ(p) ≡ ϕ′(p)p

ϕ(p)
= − α

1−αεπ > 0.

In addition, we can show that that ϕ(+∞) > δ
av

if v is sufficiently large so

that v > δ−
α

1−α
(

1+δ
1−α

) 1
1−α [nπ(+∞)]

α
1−α

a
. Then, there exists a unique threshold

value p̃ solution of ϕ(p̃) = δ
av

, such that for p ∈ (0, p̃) inequality (12) holds,
otherwise it doesn’t.

B Proof of Proposition 1

To prove Proposition 1, let us first study the properties of the function ψ(p).
Thanks to Assumption 1, we can easily see that ψ(0) = 0 and εψ(p) ≡
ψ′(p)p
ψ(p)

= 1 + nπ(p)
nπ(p)+b−1

επ > 0. Moreover, we can observe that ψ(p) is bounded

below by δ(1−α)
β(1+δ)

p[nπ(+∞) + b− 1]. Since ϕ(0) > ψ(0), there exists a steady

state with x = 0 if ψ(p̃) > ϕ(p̃), where p̃ is given by (24). Since ψ(p) is the
only equation that depends on the parameter β, we use this parameter as
a scaling parameter. Then, we can rephrase the previous conditions so that
there exists a steady state if β < β where

β ≡ av(1− α)

1 + δ
p̃

[
[av]

1−α
α δ

(
1− α
1 + δ

) 1
α

+ b− 1

]
(B.1)

and β is strictly positive under Assumption 1. Moreover, Assumption 1
allows us to state that the steady state is unique since εψ(p) > εϕ(p) for all
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p ∈ (0, p̃) as soon as

επ

[
nπ(p)

nπ(p) + b− 1
+

α

1− α

]
> −1 (B.2)

which is ensured as επ is sufficiently close to 0 for all p > 0.

Finally, if β > β and ϕ(0) > ψ(0), then it means that ψ(p̃) < ϕ(p̃). In
that configuration, there is no steady state with x = 0. Indeed, according to
Assumption 1, εψ(p) > εϕ(p) for all p ∈ (0, p̃). Then, the two functions can
never cross.

C Proof of Proposition 2

As a first step, we study the implicit relationships between sF and p involved
by equations (25) and (26) evaluated at the steady state. It yields:

F (sF ) = H(sF , p) (C.3)

p = J(sF , p) (C.4)

Lemma C.1 Consider that Assumptions 1 and 2 hold, then there exists
a > 0 such that equation (C.3) implicitly defines sF = ϕ̃(p), with εϕ̃ ≡
ϕ̃′(p)p/ϕ̃(p) > 0 if a < a.

Proof. Differentiating equation (C.3), we get:

εϕ̃ =
εH/p

F ′(sF )sF

F (sF )
− εH/sF

(C.5)

where εH/p ≡ ∂H(sF ,p)
∂p

p
H(sF ,p)

and εH/sF ≡ ∂H(sF ,p)
∂sF

sF

H(sF ,p)
. We first focus on

the sign of εH/sF . As a preliminary result, using equation (15), we compute
the following elasticity:

x′(sF )sF

x(sF )
=

av
2δ
sF

x(sF )[x(sF ) + A]
(C.6)

Differentiating (28) evaluated at the steady state and using (15) and
(C.6), we obtain:

εH/sF =
sF

x+ A

[
x+ 1 + π av

2(1+δ)

sF − (1− π) δ
1+δ

x
− a2(1− π) v

2δ

(1 + x)[π + x(π + a(1− π))]

]
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Using (13) and (14), we deduce that sF = δ
av

(1 + x)2 + δ
1+δ

x. Using this
expression and equation (15), we can show that:

εH/sF <
δ
av

(1 + x)2 + δ
1+δ

x
δ
av

(1 + x)2 + π δ
1+δ

x

x+ 1 + π av
2(1+δ)

x+ 1 + av
2(1+δ)

The right-hand side of this inequality is lower than 1/α if and only if:

(α− 1)
δ

av
(1 + x)3 + (α− π)

δ

1 + δ
x(1 + x)

+(απ − 1)
δ

2(1 + δ)
(1 + x)2 + (α− 1)π

avδ

2(1 + δ)2
x < 0

This inequality holds because α < π. Since F ′(sF )sF

F (sF )
= 1

α
, it means that

F ′(sF )sF

F (sF )
− εH/sF > 0.

Differentiating now (28) at the steady state with respect to p and using
again the expression of sF , we get:

εH/p = −εππ
[

1 + x(1− a)

π + x[π + a(1− π)]
− x

(1 + x)2 1+δ
av

+ πx

]
(C.7)

This elasticity is lower than one and its sign is given by the following
polynomial:

x3 (1− a)(1 + δ)

av
+ x2

[
(1 + δ)(3− 2a)

av
− a
]

+ x
(1 + δ)(3− a)

av
+

1 + δ

av

It is strictly positive if the coefficient of x2 is positive. There exists a > 0
such that this last condition is satisfied if a < a. In this case, εH/p > 0, which
concludes the proof of the lemma.

Lemma C.2 Consider that Assumptions 1 and 2 hold, then equation (C.4)

implicitly defines sF = ψ̃(p), with εψ̃ ≡ ψ̃′(p)p/ψ̃(p) > 0.

Proof. Using equation (C.4), we get:

εψ̃ =
1− εJ/p
εJ/sF

(C.8)
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where εJ/p ≡ ∂J(sF ,p)
∂p

p
J(sF ,p)

and εJ/sF ≡ ∂J(sF ,p)
∂sF

sF

J(sF ,p)
.

Differentiating (29) at the steady state with respect to p and using (26),
we get:

εJ/p =
(1− b)(1 + x)− nπ(1 + x(1− a))επ

n[π + x(π + a(1− π))]
(C.9)

Using (C.9), we deduce that:

1− εJ/p =
nxa(1− π − πεπ) + (1 + x)[nπ(1 + επ)− (1− b)]

n[π + x(π + a(1− π))]
> 0

under Assumption 1. Differentiating now (29) at the steady state with re-
spect to sF , and using (26) and (C.6), we obtain:

εJ/sF =
sF

(1− b)p+ β(1+δ)
δ(1−α)

sF
B

with

B ≡ β(1 + δ)

δ(1− α)
− av

2δ

a(1− π)np

(x+ A)(1 + x)2

Using (29) and (C.4), we have that nπp 6 (1 − b)p + β 1+δ
δ(1−α)

sF , which

means that p 6
β 1+δ
δ(1−α) s

F

nπ+b−1
. Therefore,

B >
β(1 + δ)

δ(1− α)

[
1−

va2(1−π)
2δ

(x+ A)(1 + x)2

nsF

nπ + b− 1

]

Since sF < (1 + x)2( δ
av

+ δ
1+δ

), we get:

B >
β(1 + δ)

δ(1− α)

[
1− vna2(1− π)

2δ(x+ A)

δ
av

+ δ
1+δ

nπ + b− 1

]

The right-hand side of this inequality is strictly positive if:

(nπ + b− 1)

(
1 +

av

2(1 + δ)

)
>
a(1− π)n

2

(
1 +

av

1 + δ

)
which is satisfied for π sufficiently close to 1 as stated in Assumption 1. In
this case, εJ/sF > 0, which proves the lemma.
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Lemma C.3 Consider that Assumption 1 and 2 hold, for sF > δ
av

, we have:

• sF = ψ̃(p) > ψ(p);

• sF = ϕ̃(p) < ϕ(p).

where ϕ(p) and ψ(p) are respectively given by (18) and (19).

Proof. As a preliminary result, we can show that 1+x
π+x(π+a(1−π))

is decreasing
with respect to x.

Using (26) and (29), we deduce that:

p = J(sF , p) <
(1− b)p+ β(1+δ)

δ(1−α)
sF

nπ(p)

which is equivalent to:

sF >
δ(1− α)

β(1 + δ)
p[nπ(p) + b− 1] = ψ(p)

This proves the first part of the lemma. To prove the second part, we note,
using the preliminary result and (28), that H(sF , p) < sF

nπ(p)
. Using (25) and

(27), it implies that: [
1 + δ

δ(1− α)
sF
]1/α

<
sF

nπ(p)

This inequality is equivalent to:

sF <

[
δ(1− α)

1 + δ

] 1
1−α

[nπ(p)]−
α

1−α = ϕ(p)

A direct implication of this lemma is that, using the beginning of the proof
of Proposition 1, we deduce that limp→+∞ ψ̃(p) = +∞, while limp→+∞ ϕ̃(p)
has a finite value. In addition, Assumption 1 implies that εϕ̃ is close to 0,
which ensures uniqueness. We easily deduce Proposition 2.
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D The optimal programme

To solve the optimal programme, let us write the Lagrangian as:

L = π(p)
[
ln cF + δ ln dF + v

]
+ (1− π(p))

[
ln cI + δ ln dI +

ax

1 + x
v

]
+ λ

[
kα − π(p)cF − (1− π(p))(cI + x)− π(p)dF + (1− π(p))dI

nΓ(x, p)
− nkΓ(x, p)

]
+ µ

[
p− βkα + (1− b)p

nΓ(x, p)

]
+ ξx

we obtain the following First Order Conditions:

ci :
1

ci
= λ, i = F, I (D.10)

di :
δnΓ(x, p)

di
= λ, i = F, I (D.11)

x :
(1− π(p))av

(1 + x)2
+ λΓx(x, p)

{[
π(p)dF + (1− π(p))dI

]
nΓ(x, p)2

− nk
}

−λ(1− π(p)) + µΓx(x, p)
[βkα + (1− b)p]

nΓ(x, p)2
+ ξ = 0 (D.12)

k : λ
[
αkα−1 − nΓ(x, p)

]
− µ βαk

α−1

nΓ(x, p)
= 0 (D.13)

p : π′(p)

[
ln cF + δ ln dF + v − ln cI − δ ln dI − ax

1 + x
v

]
−λ
{
π′(p)

(
dF − dI

)
Γ(x, p)− Γp(x, p)

[
π(p)dF + (1− π(p))dI

]
nΓ(x, p)2

}
−λπ′(p)

(
cF − cI − x

)
− λnkΓp(x, p)

+µ

{
1−

[
(1− b)Γ(x, p)− Γp(x, p) (βkα + (1− b)p)

nΓ(x, p)2

]}
= 0 (D.14)
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kα = π(p)cF +(1−π(p))(cI +x)+
π(p)dF + (1− π(p))dI

nΓ(x, p)
+nkΓ(x, p) (D.15)

p =
βkα + (1− b)p

nΓ(x, p)
(D.16)

ξx = 0 (D.17)

with complementary slackness and

Γx(x, p) = (1− π(p))
a

(1 + x)2
> 0 (D.18)

Γp(x, p) = π′(p)
1 + x(1− a)

1 + x
< 0 (D.19)

E Proof of Lemma 2

If x∗ = 0, we have Γ(x, p) = π(p), Γx(x, p) = a(1−π(p)) and Γp(x, p) = π′(p).
Using (D.14), we get:

µ∗ =
−επ [vπ(p) + δ − nkπ(p)/c∗]

p
[
1− 1−b

nπ(p)
+ επ

] (E.20)

Substituting this expression into (D.13), and using (D.14) and (D.16), an
allocation with x∗=0 is defined by:

αkα−1 − nπ(p) =
βαkα−1

nπ(p)

(−επ) [(vπ(p) + δ)c∗ − nkπ(p)]

p
[
1− 1−b

nπ(p)
+ επ

] (E.21)

nπ(p)p = βkα + (1− b)p (E.22)

kα = (1 + δ)c∗ + nkπ(p) (E.23)

From (E.22), we define c∗ as a function of k and π(p) and then using
(E.21) and (E.23), we obtain after some computations:

αkα−1{(1 + δ)(nπ(p)− (1− b)) + επ[(vπ(p) + δ)(nπ(p)− (1− b))
+(1 + δ)nπ(p)]} = nπ(p){(1 + δ)(nπ(p)− (1− b)) + επ[α(vπ(p) + δ)

(nπ(p)− (1− b)) + α(1 + δ)nπ(p) + (1 + δ)(nπ(p)− α(1− b))]}(E.24)
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Taking into account that π(p) is close to 1 and bounded above and below
by π(0) and π(+∞) respectively, and p is implicitly defined by (E.21) as a
function of k, there exists a solution k∗ to this equation. Moreover, we have
αkα−1 > nπ(p) if the term into brackets on the left-hand side is lower than
the one on the right-hand side. We deduce that αkα−1 > nπ(p) if and only if

vπ(p) + δ

1 + δ
>

α

1− α
Then, in this case where x∗ = 0 and using (D.13), we deduce that µ∗ > 0.

Let us now consider that x∗ > 0. Using (D.12), (D.14), (D.18) and (D.19),
we get:

(1 + x)(1 + x(1− a))π′(p)ξ = π′(p)
1− π(p)

c∗
[1 + 2x+ (1− a)x2]

+a(1− π(p))µ

(
1− 1− b

nΓ(x, p)

)
(E.25)

If x∗ > 0, we have ξ∗ = 0. We immediately deduce that µ∗ > 0.

F Proof of Proposition 3

To demonstrate Proposition 3, we prove that the inequality ξ > 0 cannot be
satisfied if v is sufficiently large. Let us consider equation (E.25) with x = 0.
We have ξ > 0 if and only if:

επ < −a
αkα−1 − nπ(p)k

απ(p)
(F.26)

Using (E.24), we get:

αkα−1 − nπ(p) =
nπ(p)[nπ(p)− (1− b)]επ

A(p)
[α(1 + δ)− (1− α)(vπ(p) + δ)]

(F.27)
with

A(p) ≡ (1+δ)(nπ(p)−(1−b))+επ[(vπ(p)+δ)(nπ(p)−(1−b))+(1+δ)nπ(p)]

Substituting (F.27) into (F.26), we obtain:

1 >
ak

απ(p)
nπ(p)[nπ(p)− (1− b)](1− α)(vπ(p) + δ)− α(1 + δ)

A(p)

>
ak

απ(p)
nπ(p)

(1− α)(vπ(p) + δ)− α(1 + δ)

1 + δ
(F.28)
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Note that because επ is close to 0, k is lower but close to [nπ(p)/α]
1

α−1 .
Recall also that π(p) belongs to (π(+∞), π(0)]. Therefore, if v is sufficiently
large, inequality (F.28) is violated, which concludes the proof.

G Proof of Proposition 4

Using (30), the system of equations (D.16), (31), (32) with x∗ > 0 and ξ∗ = 0,
satisfied by such an allocation, can be written:

αkα−1 − nΓ(x, p) = µc∗
βαkα−1

nΓ(x, p)
(G.29)

p[nΓ(x, p)− (1− b)] = βkα (G.30)

δ + µp

Γ(x, p)
− nk

c∗
+ v =

(1 + x)2

ac∗
(G.31)

aµc∗
(

1− 1− b
nΓ(x, p)

)
= −π′(p)[1 + 2x+ (1− a)x2] (G.32)

(1 + δ)c∗ + (1− π(p))x+ nΓ(x, p)k = kα (G.33)

Equations (G.29) and (G.33) are equivalent to:

c∗ =
1

1 + δ
[kα − (1− π(p))x− nΓ(x, p)k] (G.34)

µ =
nΓ(x, p)

c∗βαkα−1
[αkα−1 − nΓ(x, p)] (G.35)

Using these two equations and (G.30), equation (G.31) becomes:

nk

α[nΓ(x, p)− (1− b)] [αk
α−1 − nΓ(x, p)]− nk

+
δ/Γ(x, p) + v

1 + δ
[kα − (1− π(p))x− nΓ(x, p)k] =

(1 + x)2

a
(G.36)

Now, substituting (G.35) in (G.32), we get:

a

βα
[α− nΓ(x, p)k1−α][nΓ(x, p)− (1− b)] = −π′(p)[1 + 2x+ x2(1− a)] (G.37)

An optimal allocation is a solution (x∗, k∗, p∗) to the system (G.30),
(G.36) and (G.37).

As a preliminary result, we note that Assumption 1 implies that nΓ(x, p)−
(1 − b) + npΓp(x, p) > 0. Differentiating the left-hand side of (G.30) with
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respect to p, we deduce that it is strictly increasing in p. This means that
(G.30) implicitly defines p as a function of k and x, i.e. p ≡ p(k, x), with8:

px ≡
dp

dx
= − pnΓx

nΓ− (1− b) + npΓp
< 0 (G.38)

Substituting p = p(k, x) into (G.36)-(G.37), an optimal allocation is a
solution (x, k) solving this last system of two equations. Let us consider
(G.37). It can be written:

G(x, k) ≡ a

βα
[α− nΓk1−α][nΓ− (1− b)]

+π′(p)[1 + 2x+ x2(1− a)] = 0 (G.39)

with p = p(k, x). It implicitly defines x as a function of k, i.e. x = x(k), if
Gx ≡ ∂G/∂x 6= 0. Differentiating (G.39) with respect to x, we obtain:

Gx =
an

βα
(Γx + Γppx)[−(nΓ− (1− b))k1−α + α− nΓk1−α]

+π′′(p)px[1 + 2x+ x2(1− a)] + π′(p)[2 + 2x(1− a)] (G.40)

Using (G.38), we have:

Γx + Γppx =
Γx(nΓ− (1− b))

nΓ− (1− b) + npΓp
(G.41)

Using (G.39) to substitute α− nΓk1−α and using (G.41), we deduce that
Gx < π′(p)B, with:

B ≡ 2 + 2x(1− a)− (1− π)
an[1 + 2x+ x2(1− a)]

(1 + x)2[nΓ− (1− b) + npΓp]
(G.42)

Since π(p) ∈ (π(+∞), π(0)] is close to 1, the expression B is strictly
positive. Therefore, Gx < 0, meaning that (G.39) implicitly defines x = x(k).

Hence, an optimal allocation is a solution k to equation (G.36), with
x = x(k) and p = p(k, x(k)) ≡ p(k). Of course, k > 0. Since µ > 0, we
also have αkα−1 > nΓ(x(k), p(k)), where Γ(x(k), p(k)) > π(p(k)) > π(+∞).

Therefore, there exists k > 0 defined by αk
α−1

= nΓ(x(k), p(k)) such that
αkα−1 > nΓ(x, p) for all k < k. Hence, k belongs to (0, k).

8To simplify the notations, we omit the arguments of the functions in this proof.
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Let us note LHS(k) the left-hand side and RHS(k) the right-hand side of
(G.36), respectively. When k tends to 0, we deduce, using (G.30) and (G.33),
that x(k) and p(k) tend to 0 too. We get RHS(0) = 1/a > 0 = LHS(0).
Moreover,

LHS(k) = −nk +
δ/Γ(x(k), p(k)) + v

1 + δ
[(1− α)k

α − (1− π(p(k)))x(k)]

RHS(k) =
(1 + x(k))2

a

with (1− α)k
α
> (1− π(p(k)))x(k).

Since k has a bounded value and (G.33) is satisfied, x(k) is bounded
above. This implies that LHS(k) > RHS(k) if v is sufficiently large. Then,
there exists a solution k ∈ (0, k) to equation (G.36).

H Proof of Proposition 5

Let us consider that π(p) = π is constant, i.e. επ = 0. In this case, the
constraint on pollution is no more relevant (the multiplier µ = 0). Since
x > 0, the social planner solves:

 max
cF ,cI ,dF ,dI ,x,k

π(ln cF + δ ln dF + v) + (1− π)(ln cI + δ ln dI + ax
1+x

v)

s. to kα = πcF + (1− π)(cI + x) + πdF+(1−π)dI

nΓ(x)
+ nkΓ(x)

with Γ(x) ≡ π+ (1−π) ax
1+x

. Maximising this objective function is equivalent
to maximise:

ln(cF )π(cI)1−π + δ ln(dF )π(dI)1−π + (1− π)
ax

1 + x
v (H.43)

This program can be solved in two steps. In a second step, we maximise
lnC = ln(cF )π(cI)1−π under the constraint πcF + (1 − π)cI = P cC with
respect to cF and cI , taking the level of consumption expenditures P cC as
given. We perform the same exercise for lnD = ln(dF )π(dI)1−π under the
constraint πdF +(1−π)dI = P dD with respect to dF and dI , taking the level
of consumption expenditures P dD as given. Using the first order conditions,
we deduce that P c = 1 and P d = 1.
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Therefore, in a first step, we have to solve: max
C,D,x,k

lnC + δ lnD + (1− π) ax
1+x

v

s. to kα = C + D
nΓ(x)

+ (1− π)x+ nkΓ(x)

Note that this program above, using the constraint, can be rewritten
maxD,x,k V , with:

V ≡ ln

[
kα − D

nΓ(x)
− (1− π)x− nkΓ(x)

]
+ δ lnD + (1− π)

ax

1 + x
v (H.44)

where C = kα− D
nΓ(x)

− (1−π)x−nkΓ(x). We can then derive the following

first order conditions:9

VD = − 1

nΓ(x)C
+
δ

D
= 0 (H.45)

Vx =
DΓ′(x)/[nΓ(x)2]− (1− π)− nkΓ′(x)

C
+

(1− π)av

(1 + x)2
= 0 (H.46)

Vk =
αkα−1 − nΓ(x)

C
= 0 (H.47)

We easily deduce that:

D = δnΓ(x)C (H.48)

DΓ′(x)/[nΓ(x)2]− (1− π)− nkΓ′(x) = −C (1− π)av

(1 + x)2
(H.49)

αkα−1 = nΓ(x) (H.50)

Establishing the second order conditions for this last program gives us
the second order conditions for the program (H.43). Hence, we differentiate
(H.45)-(H.47) and use (H.48)-(H.50), Γ′(x) = (1 − π) a

(1+x)2
and Γ′′(x) =

−2(1− π) a
(1+x)3

to compute the following Hessian matrix:

H ≡

 VDD VDx VDk
VxD Vxx Vxk
VkD Vkx Vkk


9In the following, we note Vu ≡ ∂V/∂u and Vuv ≡ ∂2V/∂v∂u, with {u, v} = {D,x, k}.
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with

VDD = − 1 + δ

n2Γ(x)2C2δ
(H.51)

VDx =
Γ′(x)

nCΓ(x)2
[1− Γ(x)v] = VxD (H.52)

VDk = 0 = VkD (H.53)

Vxx =
2

C(1 + x)
[CΓ′(x)v − (1− π)]− 2δΓ′(x)2

Γ(x)2

− Γ′(x)v

(1 + x)2
[2 + Γ′(x)v] (H.54)

Vxk = −nΓ′(x)

C
= Vkx (H.55)

Vkk =
(α− 1)nΓ(x)

Ck
(H.56)

To prove that an optimal allocation is a maximum, we have to show that
H1 ≡ VDD < 0, H2 ≡ VDDVxx − VDxVxD > 0 and H3 ≡ detH < 0.
H1 < 0 is obvious. Let us now determine the sign of H2. Using (H.51),

(H.52) and (H.54), we get:

H2n
2C2Γ(x)4 =

1 + δ

δ
Γ(x)2

[
2(1− π)

C(1 + x)
− 2δΓ′(x)2

Γ(x)2

]
− Γ′(x)2

+2Γ(x)Γ′(x)

[
Γ′(x)− x

(1 + x)2

1 + δ

δ
Γ(x)

]
v

+Γ(x)2Γ′(x)2

[
1 + δ

δ

1

(1 + x)2
− 1

]
v2 (H.57)

We observe that H2 > 0 for v sufficiently large if and only if:

(1 + x)2 <
(1 + δ)

δ
(H.58)

Using (G.31), (G.34) and (G.35),

(1 + x)2 < akα
[

n

nΓ(x)− (1− b) +
δ/Γ(x) + v

1 + δ

]
(H.59)

Using (H.50) and Γ(x) > π, we have k 6 [α/(nπ)]
1

1−α , meaning that
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(1 + x)2 < a[α/(nπ)]
α

1−α

[
n

nπ − (1− b) +
δ/π + v

1 + δ

]
.

We deduce that inequality (H.58) is satisfied if:

a[α/(nπ)]
α

1−α

[
n

nπ − (1− b) +
δ/π + v

1 + δ

]
<

(1 + δ)

δ
(H.60)

which is fulfilled if a < â0 with â0 ≡ (1+δ)
δ
×
[

n
nπ−(1−b) + δ/π+v

1+δ

]−1

× [nπ/α]
α

1−α .

Finally, let us investigate the properties of H3. Using (H.53), we have
H3 = VDDVxxVkk−V 2

xDVkk−V 2
xkVDD. Then, using (H.51), (H.52) and (H.54)-

(H.56), we obtain after some computations:

H3nC
3kΓ(x)3 = −(1− α)Γ(x)2 1 + δ

δ

[
2(1− π)

C(1 + x)
+

2δΓ′(x)2

Γ(x)2

]
+(1− α)Γ′(x)2 + n

1 + δ

δ
Γ′(x)2Γ(x)k

+2(1− α)Γ′(x)Γ(x)

[
Γ(x)

1 + δ

δ

x

(1 + x)2
− Γ′(x)

]
v

+(1− α)Γ′(x)2Γ(x)2

[
1− 1 + δ

δ

1

(1 + x)2

]
v2

We deduce that H3 < 0 if v is sufficiently large and inequality (H.58) is
satisfied. This happens when inequality (H.60) holds, i.e. for a < â0.

By a continuity argument, our result still holds if π weakly depends on
p, i.e. επ is close to 0. Therefore, there exits (̂a) > 0 such that any optimal
allocation is a maximum if a < â, v sufficiently large and επ close to 0.
Note also that since this last result holds for any optimal allocation, such an
allocation is unique.
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I Proof of Proposition 6

Each household maximises the utility (2) under the budget constraints (3)-
(4). Solving the households’ program, we obtain:

1

cF
=

Rδ

dF
(I.61)

1

cI
=

Rδ

dI
(I.62)

av

(1 + x)2
6

1 + σ

cI
(I.63)

Recall that the optimal allocation is characterised by a positive invest-
ment in health care, x∗ > 0. Hence, the instruments will be chosen such
that (I.63) holds as an equality. These first order conditions above and the
budget constraints allow us to derive the stationary levels of consumption
and saving for both types of household:

cF =
1

1 + δ

(
w + T F − θ

R

)
(I.64)

dF =
Rδ

1 + δ

(
w + T F − θ

R

)
(I.65)

sF =
δ

1 + δ

(
w + T F

)
+

θ

R(1 + δ)
(I.66)

and

cI =
1

1 + δ

[
w + T I − θ

R
− (1 + σ)x

]
(I.67)

dI =
Rδ

1 + δ

[
w + T I − θ

R
− (1 + σ)x

]
(I.68)

sI =
δ

1 + δ

[
w + T I − (1 + σ)x

]
+

θ

R(1 + δ)
(I.69)

We can also express the chosen level of health expenditure:

(1 + x)2 =
av

(1 + σ)δ

(
sI − θ

R

)
(I.70)

Finally, the government that perceives the different taxes balances its
budget at each period of time. Taking into account the population size, this
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means that10:

θ

nΓ
+ σ(1− π)x+

ραkα

nΓ
= πT F + (1− π)T I (I.71)

Using the previous section, we recall that an optimal allocation is char-
acterised by equations (30), (G.29), (G.30), (G.31), (G.32) and (G.33).

We are now able to derive the appropriate policy design that allows for
decentralising the stationary optimal allocation. Using (I.64), (I.65), (I.67)
and (I.68), the condition (30) is, partly, satisfied for:

T F = T I − (1 + σ)x∗ (I.72)

Obviously, we can set T F to zero and thus, T I = (1 + σ)x∗. Then, the het-
erogeneity in consumption among the two types of household is eliminated.

Substituting (30) into (G.29) and comparing with (I.61) and (I.62), we
should have that R = (1− ρ)αkα−1 = αkα−1(1− µc∗ β

nΓ
), i.e.

ρ =
µ∗c∗β

nΓ∗
= 1− nΓ∗

α(k∗)α−1
∈ (0, 1) (I.73)

Using now (I.63) and (G.31), we obtain:

σ

1 + σ
=

1

v

(
nk∗

c∗
− δ + µ∗p∗

Γ∗

)
(I.74)

where µ∗ is given by (G.32).

It is straightforward that σ > −1. To go further and determine the sign
of σ, let us consider equation (G.31). Using the proof of Proposition 4, we
have that 1 + (x∗)2 < (1 + δ)/δ, which means that x∗ <

√
(1 + δ)/δ− 1 ≡ x.

Using (G.29), equation (G.32) implies c∗ > [(1−α)(k∗)α−(1−π∗)x∗]/(1+δ).
Since we know that k∗ has a finite and strictly positive value and x∗ < x, this
means that c∗ is bounded below by a strictly positive value c, i.e. c∗ > c. We
deduce that the right-hand side of (G.31) is bounded above by (1 +x)2/(ac).
Therefore, v large enough implies:

nk∗

c∗
− δ + µ∗p∗

Γ∗
> 0⇔ σ > 0 (I.75)

10When this is not a source of confusion, we skip the arguments of the functions.
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Note that this last inequality requires that nk∗Γ∗ > δc∗. Using (I.61),
(I.63) and the optimality condition (30), we deduce that sF = sI = s∗.
Hence, the equilibrium on the capital market writes nk∗Γ∗ = s∗. We deduce
that s∗ > δc∗. Using (I.64) and (I.66), we obtain that θ > 0.
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